
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Extending Molecular Docking Desktop Applications with Cloud

Computing Support and Analysis of Results

Temelkovski, D., Kiss, T., Terstyanszky, G. and Greenwell, P.

NOTICE: this is the authors’ version of a work that was accepted for publication in

Future Generation Computer Systems. Changes resulting from the publishing process,

such as peer review, editing, corrections, structural formatting, and other quality control

mechanisms may not be reflected in this document. Changes may have been made to

this work since it was submitted for publication. A definitive version was subsequently

published in Future Generation Computer Systems, 97, p. 814–824, 2019.

The final definitive version in Future Generation Computer Systems is available online

at:

https://dx.doi.org/10.1016/j.future.2019.03.017

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

https://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/189333565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1016/j.future.2019.03.017
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Extending Molecular Docking Desktop Applications
with Cloud Computing Support and Analysis of Results

Damjan Temelkovski∗, Tamas Kiss, Gabor Terstyanszky, Pamela Greenwell

University of Westminster, Faculty of Science and Technology, 115 New Cavendish Street,
London, W1W 6UW

Abstract

Structure-based virtual screening simulations, which are often used in drug
discovery, can be very computationally demanding. This is why user-friendly
domain-specific web or desktop applications that enable running simulations on
powerful computing infrastructures have been created. This article investigates
how domain-specific desktop applications can be extended to use cloud comput-
ing and how they can be part of scenarios that require sharing and analysing
previous molecular docking results. A generic approach based on interviews
with scientists and analysis of existing systems is proposed. A proof of concept
is implemented using the Raccoon2 desktop application for virtual screening,
WS-PGRADE workflows, gUSE services with the CloudBroker Platform, the
structural alignment tool DeepAlign, and the ligand similarity tool LIGSIFT.
The presented analysis illustrates that this approach of extending a domain-
specific desktop application can use different types of clouds, thus facilitating
the execution of virtual screening simulations by life scientists without requiring
them to abandon their favourite desktop environment and providing them re-
sources without major capital investment. It also shows that storing and sharing
molecular docking results can produce additional conclusions such as viewing
similar docking input files for verification or learning.

Keywords: bioinformatics, cloud computing, molecular docking, Raccoon2,
virtual screening, WS-PGRADE/gUSE

1. Introduction

Biochemical interactions between two molecules can be estimated using a
software simulation technique known as molecular docking. Particularly impor-
tant in drug discovery, this technique can predict the conformation, pose, and

∗Corresponding author
Email addresses: damjan.temelkovski@my.westminster.ac.uk (Damjan Temelkovski),

t.kiss@westminster.ac.uk (Tamas Kiss), g.terstyanszky@westminster.ac.uk (Gabor
Terstyanszky), p.greenwell@westminster.ac.uk (Pamela Greenwell)

Preprint submitted to Future Generation Computer Systems November 29, 2018

binding affinity of a ligand and a receptor. In order to achieve this, the 3D struc-5

ture of both molecules must be known. This structure can be experimentally
determined (using X-ray crystallography or NMR spectroscopy), or estimated
(using homology modelling) [1]. Molecular docking consists of an algorithm to
handle the atomic spacial arrangement possibilities, and a scoring function to
estimate the energy between a particular arrangement of the ligand and the10

receptor. Since molecular docking uses the structure of the receptor, large-scale
molecular docking between hundreds of thousands of ligands and one receptor
is called structure-based virtual screening (virtual, as opposed to the robotics-
based high throughput screening). In the remainder of this article, these terms
will be abbreviated to docking and Virtual Screening (VS). Although a sin-15

gle docking simulation is relatively short, a VS experiment is computationally
demanding, requiring the use of Distributed Computing Infrastructures (DCIs).

A DCI can consist of cloud computing resources. Cloud computing is a
paradigm based on virtualisation which “enables ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources20

that can be rapidly provisioned and released with minimal management effort or
service provider interaction” [2]. The scalability and elasticity makes it useful for
various VS simulations. Clouds are available on-demand and users are typically
charged on a pay-per-use basis. This can make scientific applications, such as
VS, more accessible for scientists around the world, lowering the cost of using25

complex computing infrastructure. Scientists and students without access to
expensive DCIs, and without expertise in DCI configuration, will be able to run
VS easily.

Scientific workflow systems such as Taverna [3], Kepler [4] or WS-PGRADE [5],
provide a convenient way to represent and develop complex applications com-30

posed of multiple steps and executables. A user-friendly interface usually pro-
vides convenient workflow management facilities. In some cases, science gate-
ways are developed, providing a user-friendly way to run workflows. There
are several examples of science gateways that use workflows to run VS simu-
lations [6–8]. However, all of these solutions require life scientists to become35

familiar with new, typically web-based user interfaces, and significantly restrict
the use of the docking software for the sake of simplicity and ease of use. On the
other hand, there are popular desktop applications which offer greater flexibil-
ity, such as Raccoon2 [9]. Unfortunately, these desktop applications are either
restricted to local resources, or require expensive compute clusters and signifi-40

cant IT support to run them on DCIs. Such tools typically cannot utilise cloud
computing resources.

A generic approach to extend domain-specific desktop applications to ex-
ecute workflows on clouds, while retaining the same familiar Graphical User
Interface (GUI) presented to end-users, is described in this article. The utilisa-45

tion of distributed heterogeneous clouds to run VS is demonstrated, noting that
various other DCIs can also be used with few or no changes to this approach.
Additionally, the way this extended desktop tool can be utilised when support-
ing more complex VS scenarios, is shown. Based on semi-structured interviews
with life scientists, five representative scenarios were identified. These scenarios50

2

require sharing and storing docking results, and include additional calculation
or analysis of the results. While some existing solutions enable additional anal-
ysis of results [7, 8, 10], their implementations are specific for the tool-chain of
choice and scientists can only access their own stored molecular docking results.
In comparison, the presented solution is generic and enables data sharing be- 55

tween scientists. We demonstrate how our extended Raccoon2 environment can
form the basis of such complex environments by presenting and evaluating the
implementation of a sample scenario.

The rest of this article is structured as follows. Section 2 outlines related
work. The generic concepts for enabling a desktop application to use cloud com- 60

puting, and creating a complex scenario which uses previous docking results are
shown in Section 3. A prototype implementation is provided in Section 4, while
the results and evaluation are presented in Section 5. Section 6 adds conclusions
and future work. This article is a significant extension of a conference paper on
this topic [11]. 65

2. Related Work

Related work is provided from two different angles. First, we outline how
cloud computing has been utilised by other authors to run VS experiments.
Second, we describe work that aims to provide further analysis of these docking
results utilising various DCIs. 70

Applying cloud computing for VS experiments is still relatively new with a
limited number of examples. One such example is wFReDoW [12], a web-based
environment for docking with AutoDock4 [13]. The user uploads the input files
to a server which prepares them for docking, while a custom-made middleware
called FReMI is used to run the docking on the Amazon EC2 cloud [14]. The 75

ligand triclosan with Protein Data Bank (PDB [15]) ID: 1P45A, and 3,100
snapshots of a receptor of the bacteria Mycobacterium tuberculosis generated by
Molecular Dynamics (MD) simulations have been run on 5 c1.xlarge (8-cores,
7GB RAM, 1.65TB storage) instances.

Another example is AutoDockCloud [16], which uses Hadoop to run AutoDock4 80

on a private cloud which can conduct 570 docking simulations simultaneously on
57 16-core nodes. Their custom-made scripts prepare the docking, and submits
the needed files to the private cloud. To test their solution, the authors used
the human oestrogen receptor alpha (PDB ID: 1L2I) and 2,637 ligands from the
DUD [17] database. 85

In a third example [18], a custom-made .NET desktop application was de-
veloped to submit AutoDock and AutoDock Vina [19] jobs to the Microsoft-
Azure-based VENUS-C cloud computing service. The user can upload prepared
input files, set the cloud configuration, submit and visualise the results from
within this application. A receptor and 10,000 ligands have been docked using 90

20 extra small Azure instances (1-core, 768MB RAM, 20GB storage), for a total
of 110,000 CPU hours and more than 40,000 docking runs.

A fourth example uses WS-PGRADE/gUSE technology and the CloudBro-
ker Platform to enable docking with AutoDock4 or AutoDock Vina on various

3

clouds [20]. The user can upload input files, run pre-defined workflows and95

download the results. This approach uses the web-based WS-PGRADE portal
as a user interface which, according to feedback we obtained from scientists, is
more restrictive than the richer user interface of an existing desktop application
called Raccoon2.

All these attempts provided their own restricted GUI for running the simula-100

tions, and required a separate environment for pre-processing or post-processing.
They were, with the exception of [20], focusing on one specific cloud computing
infrastructure. In comparison, the approach suggested in this article, enables
scientists to use the GUI of a popular domain-specific desktop application they
are familiar with (Raccoon2). Pre-docking and post-docking facilities to pre-105

pare input files and analyse results are provided within the same environment.
Finally, our approach utilises a set of services that support a wide range of
different clouds.

Most VS experiments on DCIs that provided further analysis of docking re-
sults have used CPU and GPU clusters [10, 21–24], grid computing resources [7,110

8], or both [6]. They can be divided into VS pipelines, and workflow-based dock-
ing systems.

VS pipelines contain a set of scripts or tools, and are usually set up in order
to explore a particular molecular interaction. For instance, after preparing the
input files and conducting the docking using AutoDock, D’Ursi et al. (2009) [10]115

store the results in a MySQL database, and provide methods for target-specific
filtering, energy-threshold-based filtering, and creating schematic diagrams of
the ligand-receptor complex. Jiang et al. (2008) [23] store the result files on
the file system, and provide a method for 3rd party re-scoring and hierarchical
clustering. Other examples include [18, 24–26].120

Workflow-based docking systems use workflow management systems to de-
fine workflows which prepare the docking input files, utilise a docking algorithm,
and process the docking results. For instance, Kiss et al. (2010) [8] provide
workflows to prepare input files, conduct docking simulations, and additionally
analyse the docking results by running MD simulations and visualising them.125

Krüger et al. (2014) [7] provide workflows for docking, they store the docking
results using a custom-made implementation on a distributed file system, and
further analyse the docking results by re-scoring or visualising them. Other
examples include [20] and [6].

Extensive research in docking has produced many excellent systems. Some130

of them merely provide an environment to conduct the docking simulations [6,
18, 20, 26], while others provide additional methods for the user to analyse their
results [7, 8, 10, 23–25]. However, in all cases it is only the user’s own results
that are available for analysis. These systems lack the ability to use previous
docking results created by other users, in order to produce new conclusions.135

3. Generic Concepts for Extending Docking Applications

This section presents two generic concepts. The first concept describes ex-
tending desktop applications with cloud computing support. The second con-

4

cept describes extending a docking environment to allow further analysis of
docking results. Section 4 shows how an implementation of the first concept 140

can be an element of an implementation of the second concept.

3.1. Extension of Desktop Environments

Accessing heterogeneous cloud computing resources from existing desktop
applications should be achieved without major re-engineering of the desktop
application, or further burdening the end-user. End-users should be able to 145

design and execute the experiments in the same way they have done earlier, but
with the possibility to send the computations to cloud computing resources. In
order to achieve this, a set of services (we call them Cloud Access Services - CAS)
can be invoked from the desktop application. CAS should be available from an
API in order to facilitate its integration to the GUI of the desktop application. 150

Additionally, CAS should provide access to a wide range of cloud computing
resources. The integration requires two major steps from the developers, as
illustrated in Figure 1. During the first step, the CAS are configured to run
the application in the cloud. This step typically requires preparing workflow
applications describing the experiment, and configuring the CAS to interface 155

with the desired cloud resources. In the second step, minor modification of
the desktop application is required in order to facilitate the execution of the
workflow and retrieval of the results. Instead of implementing the core compo-
nent of this concept - the CAS, from scratch, existing tools to support workflow
creation and interfacing with cloud computing resources can be applied. This 160

approach speeds up the development and has the potential to result in a mature
and highly reliable solution.

Figure 1: Generic concept for extending desktop applications to run on clouds.

3.2. Further Analysis of Molecular Docking Results

The aim of our work was to identify scenarios where life scientists reuse and
further utilise molecular docking results and to investigate how these scenarios 165

5

can be generalised. We have conducted interviews with London-based scien-
tists and produced a set of scenarios that would require a shared repository
of molecular docking results. The following five representative scenarios were
identified.

1. Recommend a ligand-receptor pair that should be used in the next molecular170

docking, based on protein similarity and previous results. After a docking
simulation has been completed, a new ligand-receptor pair may be needed.
The scientist may not have the necessary information about the receptor,
so they would search for a similar receptor that has been successfully
docked before. The ligands that have been successfully docked to a similar175

receptor are good candidates for docking with the original receptor.

2. Filter results based on ligand properties. When scientists conduct large-
scale molecular docking simulations, the results need to be filtered. A
scientist wants to identify ligand-receptor pairs to further examine in wet-
lab experiments. This may include a ligand which is a good candidate but180

cannot be examined in the laboratory because of its properties. Therefore,
an external database with ligand properties should be consulted.

3. Find off-target drugs by deducing if the binding is on an active site. Off-
target drugs are drugs that were designed to bind to a receptor, but ad-
ditionally bind to another receptor of the same or a different organism.185

In order to find off-target drugs one needs to: find out if the drug binds
to the active site of one or potentially a large range of proteins that are
not the primary target, look for drugs that may have the same effect, and
conduct wet-lab experiments. The first step requires a method to estimate
if a docking between a ligand and protein is on an active site. Analysing190

previous docking results can be used to provide this. If a receptor has
been docked multiple times in a certain area, it may be deduced that the
area is an active site.

4. Enable verification of the docking methodology and learning from previous
docking. Storing molecular docking results and their provenance, even if195

they are “negative” (a.k.a. null) results is important because another sci-
entist may run the same molecular docking simulation and expect to get
useful results. They may suspect that they are conducting the docking
wrongly. Comparing their input and output files with ones from another
scientist will enable them to verify their docking methodology. Further-200

more, scientists with little or no experience in running molecular docking
simulations can learn more rapidly if they view previous docking input
and output files.

5. Compare results from different docking tools. Comparing the docking re-
sults of the same input files, but using a different molecular docking tool is205

significant. This will enable scientists to determine if there is a significant
difference in the results when using different tools, which may be relevant
for further wet-lab experiments.

6

Based on these scenarios and analysis of existing environments for VS, the
elements of a system that uses a repository of shared previous docking results 210

can be generalised. A key component of this concept is the Molecular Dock-
ing Environment (MDE) that supports preparation and conducting of docking
simulations. An extended desktop environment, as described in Section 3.1,
can be an MDE. The docking results storage system is the Molecular Docking
Results Repository (MDRR). The tools used to further analyse the results are 215

Additional Tools (ATs), an external database is called Additional Data Source
(ADS), and a tool that groups and analyses calculations done by the ATs in
order to make a decision is called a Decision Maker (DM). Figure 2 illustrates
the flow of events through these different generic elements. This flow is generic
for all scenarios: 220

1. A scientist uses an MDE to conduct the docking and the result is uploaded
to the MDRR.

2. The MDRR sends the results to one or more ATs.
3. An AT may communicate with other ATs.
4. An AT may look up data stored in an ADS. 225

5. An AT may require additional previous molecular docking results as input
for its calculation.

6. An AT sends its calculation results to the DM.
7. The MDRR may use data from an ADS directly.
8. The DM may use previous results from the MDRR. 230

9. The DM may use data from the ADS directly.
10. Once the analysis is complete and the decision is made, it can be passed

back to the MDRR.
11. The MDE receives the decision and presents it to the user.

In Section 4 we will illustrate how this generic concept can form the basis 235

of an implementation of a specific scenario, and how this modular approach
enables reusing existing components or integrating custom developed tools.

4. Implementation of Proposed Concepts

Based on the generic concepts described in Section 3, a reference implemen-
tation has been developed. The tools used in this implementation are outlined 240

in Section 4.1. When implementing the generic concept of Figure 1, the domain-
specific desktop application is Raccoon2; the CAS is composed of a gUSE server
connected to the CloudBroker Platform, a WS-PGRADE portal for workflow
development, and the CloudBroker web interface for deployment; while the
cloud infrastructure is the University of Westminster (UoW) OpenStack cloud 245

or the CloudSigma cloud [27] (Figure 3). Section 4.2 provides details about
the implementation of the Raccoon2 extension. This cloud-enabled extension of
Raccoon2 is an MDE in a scenario that retrieves previous docking results with
similar input files in order to help the user verify their docking methodology or
learn from previous experiments (Scenario 4 from Section 3.2). Please note that 250

7

Figure 2: Generic concept for further analysis of previous docking results.

although we only present the implementation of this specific scenario in this ar-
ticle, all other identified (and also other similar) scenarios can be (and in some
cases have been) implemented using the generic concept in a modular way where
components can be easily reused. In the implementation of Scenario 4, which is
based on Figure 2, structurally similar receptors and ligands are identified using255

the ATs DeepAlign and LIGSIFT. Furthermore, three custom-made ATs have
been developed: the first assesses the results of DeepAlign, the second assesses
the results of LIGSIFT, and the third compares AutoDock Vina configuration
files. The implementation includes a custom-made DM, and a MongoDB-based
MDRR. Section 4.3 provides details about the implementation of this scenario.260

The source code of the extended version of Raccoon2 and the implementation
of Scenario 4 is available 1,2.

4.1. Background

4.1.1. DeepAlign and LIGSIFT

DeepAlign [28] is a structural alignment tool which compares two receptors265

based on their structure. It also uses evolutionary information to identify a set
of related fragment pairs and produce a score known as DeepScore. DeepAlign
is the algorithm behind the RaptorX structural alignment web server3.

1https://github.com/damjanmk/Raccoon2
2https://github.com/damjanmk/mdrr-scenarios
3http://raptorx.uchicago.edu/DeepAlign/submit/

8

https://github.com/damjanmk/Raccoon2
https://github.com/damjanmk/mdrr-scenarios
http://raptorx.uchicago.edu/DeepAlign/submit/

LIGSIFT [29] calculates shape-based, size-independent alignment of small
molecules using the scaled Tanimoto Coefficient (sTC). The value for the shape- 270

based sTC is called ShapeSim in the LIGSIFT result file.

4.1.2. Raccoon2 and AutoDock Vina

Raccoon2 is a desktop application for preparing and analysing VS simula-
tions. It supports executing docking experiments on a Linux cluster with the
PBS or SGE schedulers, and it incorporates analysis features such as filtering, 275

visualising, and exporting results. Users can configure docking options, visualise
a binding site, and connect to a cluster to submit jobs, directly from the Rac-
coon2 GUI. Before the jobs can be submitted, Raccoon2 guides users to deploy
the docking tool AutoDock Vina on a computing cluster.

AutoDock Vina is a docking tool that uses a hybrid global-local conformation 280

search with a gradient-based local optimisation. Its scoring function is based
on empirically weighted parameters such as: hydrophobic (van der Waals) in-
teractions, hydrogen bonding, and torsional penalties, similarly to its sister-tool
AutoDock. AutoDock Vina has built-in support for multi-threading.

Although the proposed concepts of this paper are independent of the dock- 285

ing software used, their evaluation via a prototype implementation requires a
particular docking tool. There are more than 50 different docking solutions
that may be used for this purpose [30]. Besides AutoDock Vina these include,
for example, DOCK [31], GOLD [32], and FlexX (now part of LeadIT) [33].
Sousa et al., [34] have analysed the number of citations of 22 different molecu- 290

lar docking tools and concluded that AutoDock is the most cited docking tool.
AutoDock Vina is the latest version of this popular software family. Addition-
ally, AutoDock Vina is embedded into the powerful desktop environment of
Raccoon2 making it a suitable candidate to prove our concepts when extending
molecular docking desktop applications with cloud computing support. It is 295

still worth emphasising that the concepts are tool independent and can also be
applied with different docking software.

4.1.3. WS-PGRADE/gUSE

WS-PGRADE/gUSE [35] is a workflow-based science gateway framework.
WS-PGRADE workflows are dataflow directed acyclic graphs where nodes rep- 300

resent execution blocks which can be executed in parallel, and edges correspond
to data flow between input and output ports. WS-PGRADE workflows support
parameter sweep applications, where a workflow node can be executed many
times for multiple input data sets.

A WS-PGRADE portal is an e-science web portal for development of paral- 305

lel applications using WS-PGRADE workflows and executed on various DCIs.
It allows creating, configuring and executing workflows using gUSE (grid and
cloud User Support Environment) services. The gUSE is a service stack that
can form the back-end of science gateways. It provides well-defined services for
workflow management and supports parallel execution on service grids, desktop 310

grids, clusters, and clouds. A gUSE internal component called DCI Bridge [36],

9

provides a well-defined communication interface enabling access to many differ-
ent DCIs, including clouds [37].

The gUSE RemoteAPI is an API that allows remote submission and man-
agement of WS-PGRADE workflows. With it, existing applications can use315

gUSE services over HTTP(S) without requiring a WS-PGRADE portal. The
RemoteAPI requires a valid and well-parameterised WS-PGRADE workflow.
It submits this workflow as a temporary user and once downloaded, the work-
flow output files and all information about this user are deleted from the gUSE
server.320

4.1.4. CloudBroker Platform

The CloudBroker Platform [38] is a cloud computing middleware and an
application store developed by CloudBroker GmbH. It provides a web interface
which can be used to deploy and execute an application in a cloud, and mon-
itor its behaviour. The CloudBroker Platform is connected to various types325

of clouds, including public (e.g. CloudSigma, Amazon Web Services) and pri-
vate (e.g. based on OpenNebula or OpenStack). The CloudBroker Platform
has been integrated with gUSE’s DCI Bridge, providing access to various cloud
computing resources.

4.2. Extending Raccoon2 with Cloud Support330

As described in Section 3.1, the extension of a desktop application has two
major steps: configuration of the CAS (1) and modification of the desktop GUI
(2). First, the CAS is prepared to execute the VS experiment which includes
creating the required WS-PGRADE workflow and configuring the CloudBroker
Platform. When accessing gUSE through the RemoteAPI, a valid and well-335

configured WS-PGRADE workflow needs to be attached. This can be simplified
by creating the workflow using a WS-PGRADE portal, testing and then export-
ing it. The exported workflow files can be manipulated programmatically and
attached to a RemoteAPI call. To conclude step 1, the executable files that are
needed to run the workflow should be deployed to the cloud, using the Cloud-340

Broker Platform. In step 2, the source code of Raccoon2 is extended, in order
to configure the workflow and make the appropriate RemoteAPI calls.

4.2.1. Creating the WS-PGRADE Workflow

The execution steps of Raccoon2 are recreated using a WS-PGRADE work-
flow. In this particular case a simple one-node workflow with four input (ligand345

files, receptor file, docking configuration file, and an additional file to overcome
an output names issue) and one output (the compressed results from the mul-
tiple docking runs) ports were created.

Once submitted, the workflow invokes CloudBroker’s execution script which
runs AutoDock Vina for each ligand it receives as input. In order to run this350

workflow on many cloud instances, the code of the extended Raccoon2 splits the
set of ligands into as many cloud instances as needed, and submits a separate
workflow to each instance.

10

Figure 3: Cloud-enabled Raccoon2 using WS-PGRADE/gUSE, CloudBroker, and two clouds.

4.2.2. Deployment on the CloudBroker Platform

The CloudBroker deployment process requires a deployment script and an 355

execution script. They need to be uploaded and executed on the CloudBroker
Platform. The deployment script is run only once, to prepare the Operating
System (OS) and install any required dependencies. A snapshot of the pre-
pared OS image is then used for future jobs, when the execution script is called.
The execution script validates inputs, executes the application and stores the 360

outputs. In our example, the deployment script creates the appropriate folder
structure and installs the required tools: vina, zip, and unzip. After validat-
ing the input files, the execution script runs AutoDock Vina with appropriate
parameters for each ligand.

4.2.3. Extending Raccoon2 with the RemoteAPI 365

In order to use the deployed docking tool on a cloud, the WS-PGRADE work-
flow should be submitted via the gUSE RemoteAPI. A WS-PGRADE workflow
consists of an XML file (workflow.xml) which describes the workflow, the in-
put files, and contains meta-information, such as which types of cloud instances
should be used. 370

To configure this XML file correctly, the Raccoon2 GUI has been extended
to allow users to select the number of cloud instances, their size, the name of
the cloud, and the region. As in the original Raccoon2 GUI, the user can attach
a set of ligands and a receptor. In the back-end, the attached files are grouped
in as many folders as the number of selected cloud instances. On submission, 375

one workflow will be run for each folder.
The updated workflow.xml is compressed along with the rest of the input

files, following WS-PGRADE naming conventions. Apart from the attached

11

workflow, the RemoteAPI method requires authentication - a password set by
the gUSE server administrator, and user credentials. In the current implemen-380

tation, the end-user is asked to provide these. In line with gUSE conventions,
the credentials file should be named x509. credentialsID (even if the X.509
standard is not used). The credentialsID should be replaced with the name
of the middleware. This file is then compressed and along with the RemoteAPI
password and the WS-PGRADE workflow, sent to the gUSE server. The Re-385

moteAPI method returns a workflowID.
Monitoring the VS simulation is done by polling the status of the workflow

using this workflowID. The status is displayed to the user and if there were
errors they can re-submit the workflows. Once a workflow has finished, a final
RemoteAPI call retrieves the output. When the workflows complete successfully,390

their output is downloaded and only the relevant AutoDock Vina result files are
extracted into a result folder. This folder can be directly used by the Analysis
tab of Raccoon2 to view the docking results sorted by the AutoDock Vina score.
The filtering and visualisation features can be used, exactly as in the original
Raccoon2.395

4.3. Implementation of Scenario 4

The implementation of Scenario 4 is based on the generic concept described
in Section 3.2 and Figure 2. All the elements in the implementation are ac-
cessible via a RESTful API implemented using the minimalist web framework
“Bottle” [39]. This implementation of Scenario 4 groups the MDRR and DM in400

a single server (Server 1), and uses a separate server for the ATs for receptor sim-
ilarity (Server 2), ligand similarity (Server 3), and comparison of configuration
files (Server 4), as shown in Figure 4.

If the user has allowed storing the docking results in Raccoon2, they are
sent to the MDRR which inserts them in a MongoDB database. The MDRR405

then sends the target receptor, all other receptors, and a user-provided thresh-
old to the AT DeepAlign on Server 2. Another AT called AssessDeepAlign is
responsible for filtering the results of DeepAlign based on the threshold.

Following this, the MDRR selects the ligands and configuration files of pre-
vious docking results where the receptor is one of the similar receptors. These410

ligands will be compared to the target ligand by the AT LIGSIFT. The user-
provided threshold value is used by the AT AssessLIGSIFT to determine if two
ligands are similar. All configuration files that have been used in a previous
docking with a similar ligand and a similar receptor, are sent to the custom-
made AT CompareConfig for comparison with the target configuration file. The415

DM processes the results of all the ATs into one list with all the needed infor-
mation, ready to be presented to the user.

4.3.1. Implementation of the MDE

The cloud-enabled version of Raccoon2 (as described in Section 4.2) requires
some small additions to enable the user to provide the threshold values and select420

whether the docking results should be stored in the MDRR.

12

Figure 4: Communication between servers used in the implementation of Scenario 4.

4.3.2. Implementation of the MDRR

This implementation uses PyMongo[40], the Python driver for MongoDB,
and PyBel/OpenBabel [41], the libraries for calculating molecular properties.
There were several reasons for choosing MongoDB as the underlying database 425

engine:

1. The schema-less design is ideal for polymorphic data.

(a) Ligand and receptor structures can be stored in a collection regardless
of the file format.

(b) Docking results can be stored in a single collection regardless of the 430

docking tool and file format of the result files.

(c) One collection can be used for keeping track of all activities (prove-
nance information) regardless of the type of activity, AT or decision
made.

2. MongoDB scales very well for large amounts of data, provided it is well 435

designed and features such as sharding and indexing are utilised.

3. It is well-suited for prototyping because it is easier to alter what is stored
during development.

After considering the feedback from life scientists, a number of molecular
properties are calculated and stored alongside the molecular structure. There 440

are a total of 4 collections: ligands - ligand structure and properties calculated
using PyBel/OpenBabel, receptors - receptor structure, results - values parsed
from the docking result file, and analysis - all steps taken to make the final
decision.

The MDRR receives three user-input thresholds - for DeepAlign, LIGSIFT, 445

and the custom-made CompareConfig. The MDRR will search the database

13

for previous docking results that have similar input files (receptor, ligand, and
docking configuration) to the currently used one.

4.3.3. Implementation of the ATs

AT DeepAlign and AT AssessDeepAlign. In this implementation we have cho-450

sen to use DeepAlign, although using several structural alignment tools and
combining the results can be beneficial [42]. A new thread, composed of a part
that runs DeepAlign and part that compares the DeepScore value from the
DeepAlign result to the user-provided threshold, is launched for each receptor
pair. If the DeepScore value is greater, the receptors are deemed “similar”.455

AT LIGSIFT and AT AssessLIGSIFT. Similarly, when comparing ligands, a
thread is launched for each pair of ligands. Each thread is composed of a part
that runs LIGSFIT and a part that compares the value of ShapeSim to the
user-provided threshold. If the threshold is greater than ShapeSim, the ligands
are “similar”.460

AT CompareConfig. An AutoDock Vina configuration file can describe several
parameters including the coordinates of a cuboid which should surround the
binding site of the receptor. The cuboid is described by two 3-dimensional
points, the centre of the cuboid and the “size” of the cuboid (represented by
the coordinates of a vertex, relative to the centre). The similarity value we
use is the mean of the distances between two 3-dimensional points of the two
configuration files:

DC =
√

(Cx −OCx)2 + (Cy −OCy)2 + (Cz −OCz)2 (1)

DS =
√

(Sx −OSx)2 + (Sy −OSy)2 + (Sz −OSz)2 (2)

where Cx, Cy, Cz are the coordinates of the centre of a cuboid from a candidate
configuration file; OCx, OCy, OCz are the analogous coordinates from the file
originally used by the user; Sx, Sy, Sz are the coordinates of the vertex repre-
senting the size of the cuboid; and OSx, OSy, OSz are the analogous coordinates
from the file originally used by the user.465

We call the mean of the two distances, DC and DS, the comparison value.
If this value is less than the user-provided threshold, then the two cuboids, thus
the two configuration files are “similar”. The conclusion of this comparison is
strictly geometrical, and may not always be biologically correct.

4.3.4. Implementation of the DM470

The DM receives the assessed similar receptors, ligands, and configuration
files. It loops through all receptors to find similar ligands for that receptor, then
for each similar ligand it checks if there were similar configuration files. When
these conditions are fulfilled, it adds meta-information such as the similarity re-
sults, similarity values, and thresholds. This list is sorted based on the receptor475

similarity and then based on the ligand similarity value. This is returned to the
user, and visualised.

14

5. Results and Evaluation

5.1. Running VS experiments on multiple heterogeneous clouds from Raccoon2

To test the implementation of the cloud-enabled Raccoon2, we identified 480

biochemically relevant input data. The chosen receptor was ribokinase of the
protozoan parasite Trichomonas vaginalis (TV). TV causes trichomoniasis, a
very common sexually transmitted infection in humans. A subset of 130,216
ligands have been obtained from the ZINC [43] database of drug-like small
molecules. It is a diverse subset of ligands that may bind and antagonise the 485

receptor. We tested the extended Raccoon2 using these input files, conducting
three runs of 130,216 docking simulations each. The UoW cloud was used to
prove that the approach works, and two runs on the commercial CloudSigma
cloud were conducted to show the use of different clouds.

Figure 5: Execution times, mean, and standard error of the mean (x-axis) of the 29 jobs on
the three clouds (y-axis).

There are several types of instances that can be used in the UoW cloud: small 490

(1-core 2GB RAM), medium (2-core 4GB RAM), large (4-core 8GB RAM),
and extra-large (8-core 16GB RAM), all 64-bit. Because this experiment was
allocated a maximum capacity of 29 instances and 29 processor cores, we tested
our implementation on 29 UoW small instances. The mean execution time
was 26h 35min 52s (Figure 5). The CloudSigma cloud had 32-bit or 64-bit 495

CloudSigma small (1-core 1GB RAM) instances - note that they have only
1GB RAM. Two experiments were run using these instance types. The mean
execution time was 19h 55min 59s for the 64-bit and 17h 21min 23s for the
32-bit instances (Figure 5).

AutoDock Vina has been developed for 32-bit processors, but it can be 500

run on 64-bit processors as noted on their official website4. However, it seems
that the overhead produced is significant and we would recommend using 32-
bit cloud instances for this kind of VS experiments since the average execution
time decreased by 12.92%. Furthermore, although the CloudSigma instances
had half the memory, they finished the docking significantly faster, possibly due 505

to performance optimisations by CloudSigma (on average the 32-bit CloudSigma
run was 34.74% faster than the 64-bit UoW run).

4http://vina.scripps.edu/manual.html

15

http://vina.scripps.edu/manual.html

Table 1: Execution times when improving instance type.

Cloud Instances Mean Execution Time
7 UoW small 123h 12min 01s
7 UoW medium 75h 35min 16s
7 UoW large 51h 47min 29s

Table 2: Execution times when increasing instance number.

Cloud Instances Mean Execution Time
7 UoW small 123h 12min 01s
14 UoW small 61h 31min 01s
28 UoW small 31h 29min 14s

As of May 2018, CloudSigma’s cloud computing prices are $0.0195 per hour
for 1-core CPU, $0.007 per GB RAM, $0.1329 per GB SSD storage, and $0.04
per GB of outbound data transfer [27]. Running the VS experiment on 29 small510

instances would cost $15.83.

5.1.1. Scalability Tests on the UoW Cloud

In order to show the scalability of this solution we ran several experiments
using the same input files described in Section 5.1. Firstly, we ran the VS
using the cloud-enabled Raccoon2, selecting 7 small instances on the UoW515

cloud. Then, we increased the instance type to medium and finally to large
while keeping the number of instances to 7. The results in Table 1 show the
performance when increasing the number of cores per instance. The left panel
of Figure 6 demonstrates the scale-up when compared to an ideal proportional
scale-up (where doubling the cores = halving the time).520

In a second set of experiments the instance type was kept the same while
increasing the number of instances. Namely, the VS was run on 7, 14, and
28 UoW small instances (Table 2). The right panel of Figure 6 shows that
these results are almost identical to the ideal proportional scale-up. It is clear
that although AutoDock Vina has multi-threading capabilities, it is faster to525

run 28 small instances than 7 large. Therefore, to maximise efficiency, using
more but less powerful instances, rather than less but more powerful instances
is recommended.

5.2. Analysing Previous Docking Results with Similar Input

In order to test the implementation of Scenario 4 (Section 4.3), a number of530

docking simulations were conducted and their results were stored in a sample
repository of previous docking results. The extended version of Raccoon2 and
the UoW cloud were used to fill this repository.

The repository contains 70 receptors, 7 of them (10%) a priori similar to
the TV ribokinase due to homology, and 63 (90%) other random receptors. A535

total of 7 structures of other ribokinase receptors from 7 different species were

16

Figure 6: Our experiment compared to a proportional (left, changing instance type, right,
changing instance number: y-axis shows execution time in hours, x-axis the cloud instance
configuration.

chosen from the PDB 5. To confirm structural alignment, DeepAlign was run,
resulting in high DeepScore values between 975.47 and 1,491.79.

The 63 random receptors were obtained from the RCSB “molecule of the
month” series [44] for the months Dec 2012 through Feb 2018. When select- 540

ing molecules, the first PDB molecule mentioned in the text was identified,
downloaded, converted to .pdbqt, and a test AutoDock Vina docking with a
reference ligand was conducted. If any errors appeared in this process, the next
PDB molecule mentioned was considered.

Raccoon2 was used to create configuration files for the receptors, with the 545

cuboid covering a part of the receptor which may or may not be biologically
important.

Finally, to obtain a large number of ligands, a set of molecules from ZINC was
identified: 2,376 molecules approved as drugs in a jurisdiction in the world [45]
were downloaded as one .mol2 file, split and converted to .pdbqt. 550

The number of docking results stored in the MDRR was 166,320 (70×2, 376).
A total of 80 runs and 393 jobs were executed for this exercise, with a mean
execution time of 2h 23min 23s. This concluded the preparation of the docking
repository which was used as the MDRR element for our proof-of-concept of
Scenario 4. 555

To test the proof-of-concept of Scenario 4, a small group of 10 ligands were
chosen from the set of 130,216 (Section 5.1) to be docked with the TV riboki-
nase using the extended Raccoon2 as MDE. The threshold values used for this
scenario were 777.0 (DeepAlign), 0.5 (LIGSIFT), and 40.0 (CompareConfig).

5PDB IDs: 1RKA, 1VM7, 5BYD, 3GO6, 3I3Y, 3RY7, and 4X8F

17

The four required servers for the MDRR and the ATs were deployed on a local560

computer with 2.50GHz 4-core CPU and 8GB RAM. The docking on the cloud
(2 UoW small instances) lasted 07min 21s, while the entire scenario completed
in 2h 18min 5s. Following this, previous docking results with similar input files
can be viewed in the Raccoon2 GUI as shown in Figure 7. The pane on the
left-hand side shows the results, and the right-hand side pane shows additional565

information upon selecting an item.

Figure 7: Extended Raccoon2 GUI: Results of Scenario 4.

5.3. Assessment of data access and data sharing

If implemented in a large-scale setting, a scenario should provide an efficient
way to access and share data. In particular, it should be easy to access the
docking results stored in the MDRR by other tools and other scenarios. In our570

current implementation, the Python web framework Bottle is used to create a
minimal working prototype-level RESTful API which is used to transfer data to
and from the MDRR. For instance, when the MDE completes the docking ex-
periment, it uses an API method defined within the MDRR to insert the docking

18

results (and corresponding ligands, receptors, and configuration files) into the 575

database. In order to show the results of Scenario 4 to the user (Figure 7), the
MDE utilises API methods of the MDRR to retrieve details about a docking
result, ligand, receptor, or configuration file, based on their IDs. The communi-
cation between the MDRR, ATs, and DM is also done using API calls through
HTTP. In this prototype implementation, the API is flexible, but somewhat 580

basic. Additional methods for authentication and detailed data management
could be included in future implementations.

In general, the efficiency of data access is particularly important as the size
of the data could be a bottleneck and data transfer over the cloud can incur
large costs. However, in our example we see that the total size of input and 585

output files of a VS simulation composed of 1 receptor and 130,216 ligands
(which produces 130,216 docking results and which we regard as a typical VS
simulation) is only 670.1 MB, once compressed. In the current implementation
of Scenario 4, all APIs support compressed (.zip) or uncompressed files. The
size of the example docking results is relatively small for modern networks and 590

we do not expect this to be a practical bottleneck in terms of bandwidth or
time to upload/download. On the other hand, transferring this data on the
cloud will incur financial costs which sometimes may be unexpected. Therefore,
we recommend having all elements of a scenario and the software that executes
the docking on the same cloud. If such an implementation is not feasible, then 595

we suggest using solutions such as the Data Avenue [46] which allows for an
efficient transfer of data between different cloud environments. When the MDE
is a desktop application that runs the docking simulations on a cloud, like in
the example shown in this article, some amount of data has to be transferred
between the cloud and the desktop computer. Taking steps, such as compressing 600

the data and transferring only necessary data, minimise the costs due to data
transfer.

6. Conclusion and Future Work

This article presented a generic approach to extend domain-specific desktop
applications, enabling the execution of simulations on different clouds. By using 605

this approach, existing desktop applications which run on the local machine or
expensive compute clusters requiring significant IT support, can be extended to
use cloud computing. This makes them more accessible to prospective users who
lack the needed funds or expertise to use clusters. Furthermore, unlike existing
approaches which require scientists to become familiar with a new custom-made 610

GUI, this approach uses the same familiar GUI of a popular domain-specific
application.

We have also explored ways to store and further analyse docking results,
easing access to them, and facilitating sharing. While existing systems lack the
ability to use the previous docking results of another user, our approach is based 615

around a shared repository of docking results which enables scientists to make
conclusions based on the previous results of others.

19

As future work, we are currently working on the formal description and
further generalisation of such molecular docking scenarios. Our aim is to develop
a methodology based on this formalism that enables application developers to620

more efficiently create such extended environments.

Acknowledgments

The research leading to these results has received funding from the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement №608886 (CloudSME) and from the H2020 Programme under Grant625

Agreement No. 731574 (COLA). The authors would also like to acknowledge
funding from the University of Westminster Research Studentship 2014.

References

[1] Z. Xiang, Advances in homology protein structure modeling, Curr Protein
Pept Sci 7 (3) (2006) 217–227. doi:10.2174/138920306777452312.630

[2] P. Mell, T. Grance, The NIST definition of cloud computing, Commun.
ACM 53 (6) (2010) 50.

[3] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhaj-
jame, F. Bacall, A. Hardisty, A. N. de la Hidalga, M. P. B. Vargas, S. Sufi,635

C. Goble, The Taverna workflow suite: designing and executing workflows
of web services on the desktop, web or in the cloud, Nucleic Acids Res.
41 (W1) (2013) W557–W561. doi:10.1093/nar/gkt328.

[4] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the Kepler640

system, Concurrency Computat Pract Exper. 18 (10) (2006) 1039–1065.
doi:10.1002/cpe.994.

[5] P. Kacsuk, K. Karoczkai, G. Hermann, G. Sipos, J. Kovacs, WS-PGRADE:
Supporting parameter sweep applications in workflows, in: 2008 Third
Workshop on Workflows in Support of Large-Scale Science, IEEE, 2008,645

pp. 1–10. doi:WORKS.2008.4723955.

[6] M. M. Jaghoori, A. J. Altena, B. Bleijlevens, S. Ramezani, J. L. Font,
S. D. Olabarriaga, A multi-infrastructure gateway for virtual drug screen-
ing, Concurrency Computat Pract Exper. 27 (16) (2015) 4478–4490. doi:
10.1002/cpe.3498.650

[7] J. Krüger, R. Grunzke, S. Gesing, S. Breuers, A. Brinkmann, L. de la
Garza, O. Kohlbacher, M. Kruse, W. E. Nagel, L. Packschies, R. Müller-
Pfefferkorn, P. Schäfer, C. Schärfe, T. Steinke, T. Schlemmer, K. D.
Warzecha, A. Zink, S. Herres-Pawlis, The MoSGrid science gateway–a com-
plete solution for molecular simulations, J. Chem. Theory Comput. 10 (6)655

(2014) 2232–2245. doi:10.1021/ct500159h.

20

http://dx.doi.org/10.2174/138920306777452312
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/WORKS.2008.4723955
http://dx.doi.org/10.1002/cpe.3498
http://dx.doi.org/10.1002/cpe.3498
http://dx.doi.org/10.1002/cpe.3498
http://dx.doi.org/10.1021/ct500159h

[8] T. Kiss, P. Greenwell, H. Heindl, G. Terstyanszky, N. Weingarten, Pa-
rameter sweep workflows for modelling carbohydrate recognition, J. Grid
Comput. 8 (4) (2010) 587–601. doi:10.1007/s10723-010-9166-8.

[9] S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, A. J. Olson, 660

Computational protein–ligand docking and virtual drug screening with the
autodock suite, Nat. Protoc. 11 (5) (2016) 905. doi:10.1038/nprot.2016.
051.

[10] P. D’Ursi, F. Chiappori, I. Merelli, P. Cozzi, E. Rovida, L. Milanesi, Virtual
screening pipeline and ligand modelling for H5N1 neuraminidase, Biochem. 665

Biophys. Res. Commun. 383 (4) (2009) 445–449. doi:10.1016/j.bbrc.

2009.04.030.

[11] D. Temelkovski, T. Kiss, G. Terstyanszky, Molecular docking with Rac-
coon2 on clouds: extending desktop applications with cloud computing,
in: Proceedings of the 9th International Workshop on Science Gateways 670

(IWSG 2017), 2017, to be published.

[12] R. De Paris, F. A. Frantz, O. Norberto de Souza, D. D. Ruiz, wFReDoW:
A cloud-based web environment to handle molecular docking simulations
of a fully flexible receptor model, BioMed Res. Int. 2013. doi:10.1155/

2013/469363. 675

[13] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S.
Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: Automated dock-
ing with selective receptor flexibility, J Comput Chem 30 (16) (2009) 2785–
2791.

[14] Amazon Web Services, Amazon EC2, https://aws.amazon.com/ec2/, 680

Online; Accessed 10 May 2018.

[15] H. Berman, K. Henrick, H. Nakamura, J. L. Markley, The worldwide Pro-
tein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data,
Nucleic Acids Res. 35 (suppl 1) (2006) D301–D303. doi:doi.org/10.

1093/nar/gkl971. 685

[16] S. R. Ellingson, J. Baudry, High-throughput virtual molecular docking with
AutoDockCloud, Concurrency Computat Pract Exper. 26 (4) (2014) 907–
916. doi:doi.org/10.1002/cpe.2926.

[17] N. Huang, B. K. Shoichet, J. J. Irwin, Benchmarking sets for molecu-
lar docking, J. Med. Chem. 49 (23) (2006) 6789–6801. doi:10.1021/ 690

jm0608356.

[18] T. Kiss, P. Borsody, G. Terstyanszky, S. Winter, P. Greenwell, S. McEl-
downey, H. Heindl, Large-scale virtual screening experiments on Windows
Azure-based cloud resources, Concurrency Computat Pract Exper. 26 (10)
(2014) 1760–1770. doi:10.1002/cpe.3113. 695

21

http://dx.doi.org/10.1007/s10723-010-9166-8
http://dx.doi.org/10.1038/nprot.2016.051
http://dx.doi.org/10.1038/nprot.2016.051
http://dx.doi.org/10.1038/nprot.2016.051
http://dx.doi.org/10.1016/j.bbrc.2009.04.030
http://dx.doi.org/10.1016/j.bbrc.2009.04.030
http://dx.doi.org/10.1016/j.bbrc.2009.04.030
http://dx.doi.org/10.1155/2013/469363
http://dx.doi.org/10.1155/2013/469363
http://dx.doi.org/10.1155/2013/469363
https://aws.amazon.com/ec2/
http://dx.doi.org/doi.org/10.1093/nar/gkl971
http://dx.doi.org/doi.org/10.1093/nar/gkl971
http://dx.doi.org/doi.org/10.1093/nar/gkl971
http://dx.doi.org/doi.org/10.1002/cpe.2926
http://dx.doi.org/10.1021/jm0608356
http://dx.doi.org/10.1021/jm0608356
http://dx.doi.org/10.1021/jm0608356
http://dx.doi.org/10.1002/cpe.3113

[19] O. Trott, A. J. Olson, AutoDock Vina: Improving the speed and ac-
curacy of docking with a new scoring function, efficient optimization,
and multithreading, J. Comput. Chem. 31 (2) (2010) 455–461. doi:

10.1002/jcc.21334.

[20] Z. Farkas, P. Kacsuk, T. Kiss, P. Borsody, Á. Hajnal, Á. Balaskó,700

K. Karóczkai, AutoDock gateway for molecular docking simulations in
cloud systems, in: O. Terzo, M. Lorenzo (Eds.), Cloud Computing with
E-science Applications, Vol. 1, Boca Raton, Florida : CRC Press, 2015,
Ch. 10, pp. 217–237.

[21] I. Sánchez-Linares, H. Pérez-Sánchez, J. M. Cecilia, J. M. Garćıa, High-705

throughput parallel blind virtual screening using BINDSURF, BMC Bioin-
formatics 13 (14) (2012) S13. doi:10.1186/1471-2105-13-S14-S13.

[22] N. D. Prakhov, A. L. Chernorudskiy, M. R. Gainullin, VSDocker: a tool
for parallel high-throughput virtual screening using AutoDock on Windows-
based computer clusters, Bioinformatics 26 (10) (2010) 1374–1375. doi:710

10.1093/bioinformatics/btq149.

[23] X. Jiang, K. Kumar, X. Hu, A. Wallqvist, J. Reifman, DOVIS 2.0: an
efficient and easy to use parallel virtual screening tool based on AutoDock
4.0, Chem. Cent. J. 2 (1) (2008) 18. doi:10.1186/1752-153X-2-18.

[24] X. Zhang, S. E. Wong, F. C. Lightstone, Toward fully automated high per-715

formance computing drug discovery: A massively parallel virtual screening
pipeline for docking and molecular mechanics/generalized born surface area
rescoring to improve enrichment, J. Chem. Inf. Model 54 (1) (2014) 324–
337. doi:10.1021/ci4005145.

[25] L. Xie, T. Evangelidis, L. Xie, P. E. Bourne, Drug discovery using chemical720

systems biology: Weak inhibition of multiple kinases may contribute to the
anti-cancer effect of Nelfinavir, PLOS Comput. Biol 7 (4) (2011) e1002037.
doi:10.1371/journal.pcbi.1002037.

[26] E. Glaab, Building a virtual ligand screening pipeline using free software: a
survey, Brief. Bioinform 17 (2) (2015) 352–366. doi:10.1093/bib/bbv037.725

[27] Cloudsigma Holding AG, Cloud servers & Hosting, https://www.

cloudsigma.com, Online; Accessed 10 May 2018.

[28] S. Wang, J. Ma, J. Peng, J. Xu, Protein structure alignment beyond spatial
proximity, Sci. Rep. 3 (2013) 1448. doi:10.1038/srep01448.

[29] A. Roy, J. Skolnick, LIGSIFT: an open-source tool for ligand structural730

alignment and virtual screening, Bioinformatics 31 (4) (2014) 539–544.
doi:10.1093/bioinformatics/btu692.

22

http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1186/1471-2105-13-S14-S13
http://dx.doi.org/10.1093/bioinformatics/btq149
http://dx.doi.org/10.1093/bioinformatics/btq149
http://dx.doi.org/10.1093/bioinformatics/btq149
http://dx.doi.org/10.1186/1752-153X-2-18
http://dx.doi.org/10.1021/ci4005145
http://dx.doi.org/10.1371/journal.pcbi.1002037
http://dx.doi.org/10.1093/bib/bbv037
https://www.cloudsigma.com
https://www.cloudsigma.com
https://www.cloudsigma.com
http://dx.doi.org/10.1038/srep01448
http://dx.doi.org/10.1093/bioinformatics/btu692

[30] Z. Vincent, D. Antoine, Click2Drug: Directory of in silico drug design tools,
http://www.click2drug.org/index.html#Docking, online; Accessed 22
Nov 2018 (Sep 2017). 735

[31] W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas,
P. T. Lang, D. A. Case, I. D. Kuntz, R. C. Rizzo, DOCK 6: impact of
new features and current docking performance, J. Comput. Chem. 36 (15)
(2015) 1132–1156.

[32] M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray, R. D. Tay- 740

lor, Improved protein–ligand docking using GOLD, Proteins: Structure,
Function, and Bioinformatics 52 (4) (2003) 609–623.

[33] B. Kramer, M. Rarey, T. Lengauer, Evaluation of the FlexX incremen-
tal construction algorithm for protein–ligand docking, Proteins: Structure,
Function, and Bioinformatics 37 (2) (1999) 228–241. 745

[34] S. F. Sousa, P. A. Fernandes, M. J. Ramos, Protein-ligand docking: Current
status and future challenges, Proteins: Structure, Function, and Bioinfor-
matics 65 (1) (2006) 15–26, 00513. doi:10.1002/prot.21082.

[35] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko,
K. Karoczkai, I. Marton, WS-PGRADE/gUSE generic DCI gateway frame- 750

work for a large variety of user communities, J. Grid Comput. 10 (4) (2012)
601–630. doi:10.1007/s10723-012-9240-5.

[36] M. Kozlovszky, K. Karóczkai, I. Márton, P. Kacsuk, T. Gottdank, DCI
bridge: Executing WS-PGRADE workflows in distributed computing in-
frastructures, in: Science Gateways for Distributed Computing Infrastruc- 755

tures, Springer, 2014, pp. 51–67. doi:10.1007/978-3-319-11268-8_4.

[37] S. J. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, N. Fantini, Cloud com-
puting for simulation in manufacturing and engineering: introducing the
CloudSME simulation platform, in: Proceedings of the 2014 Annual Sim-
ulation Symposium, Society for Computer Simulation International, 2014, 760

p. 12.

[38] C. GmbH., CloudBroker Platform, http://cloudbroker.com/platform/,
Online; Accessed 10 May 2018.

[39] M. Hellkamp, Bottle: Python Web Framework - Bottle 0.13-dev docu-
mentation, https://bottlepy.org/docs/dev/, Online; Accessed 10 May 765

2018.

[40] M. Dirolf (mdirolf), et al., PyMongo 3.6.1 Documentation - PyMongo
3.6.1 documentation, https://api.mongodb.com/python/current/, On-
line; Accessed 10 May 2018.

23

http://www.click2drug.org/index.html#Docking
http://dx.doi.org/10.1002/prot.21082
http://dx.doi.org/10.1007/s10723-012-9240-5
http://dx.doi.org/10.1007/978-3-319-11268-8_4
http://cloudbroker.com/platform/
https://bottlepy.org/docs/dev/
https://api.mongodb.com/python/current/

[41] N. M. O’Boyle, C. Morley, G. R. Hutchison, Pybel: a Python wrapper for770

the OpenBabel cheminformatics toolkit, Chem. Cent. J. 2 (1) (2008) 5.
doi:10.1186/1752-153X-2-5.

[42] R. Kolodny, P. Koehl, M. Levitt, Comprehensive evaluation of protein
structure alignment methods: Scoring by geometric measures, J. Mol. Biol.
346 (4) (2005) 1173–1188. doi:10.1016/j.jmb.2004.12.032.775

[43] J. J. Irwin, B. K. Shoichet, Zinc–a free database of commercially available
compounds for virtual screening, J. Chem. Inf. Model. 45 (1) (2005) 177–
182. doi:10.1021/ci049714+.

[44] D. S. Goodsell, S. Dutta, C. Zardecki, M. Voigt, H. M. Berman, S. K. Bur-
ley, The RCSB PDB “molecule of the month”: Inspiring a molecular view780

of biology, PLoS biology 13 (5) (2015) e1002140. doi:10.1371/journal.

pbio.1002140.

[45] ZINC15, Subset of approved molecules approved in major jurisdictions
including the FDA, http://zinc15.docking.org/substances/subsets/
world/, Online; Accessed 10 May 2018.785

[46] Á. Hajnal, Z. Farkas, P. Kacsuk, Data avenue: Remote storage resource
management in WS-PGRADE/gUSE, in: Proceedings of the 6th Interna-
tional Workshop on Science Gateways (IWSG 2014), IEEE, 2014, pp. 1–5.

24

http://dx.doi.org/10.1186/1752-153X-2-5
http://dx.doi.org/10.1016/j.jmb.2004.12.032
http://dx.doi.org/10.1021/ci049714+
http://dx.doi.org/10.1371/journal.pbio.1002140
http://dx.doi.org/10.1371/journal.pbio.1002140
http://dx.doi.org/10.1371/journal.pbio.1002140
http://zinc15.docking.org/substances/subsets/world/
http://zinc15.docking.org/substances/subsets/world/
http://zinc15.docking.org/substances/subsets/world/

