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Abstract

We look at decompositions of perpetuities and apply them to the study of the distribu-
tions of hitting times of Bessel processes of two types of square root boundaries. These
distributions are linked giving a new proof of some Mellin transforms results obtained
by DeLong [6] and Yor [17]. Several random factorizations and characterizations of
the studied distributions are established.
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1 Introduction

Let R := ((Rt)t=0, P
(µ)
x ) be a Bessel process of index µ ∈ R, or dimension δ = 2(1+µ),

started at x. Assume that R is killed when it hits 0 so that the life time ζ of R equals
the first hitting time TR

0 of 0 by R, i.e. TR
0 = inf{s > 0;Rs = 0}. Here and below, unless

otherwise specified, we assume that inf ∅ = +∞. Recall that if µ = 0 then 0 is polar
(entrance-not-exit) for R and hence ζ = +∞ a.s. If either −1 < µ < 0 (0 is non-singular)
or µ ≤ −1 (0 is exit-not-entrance), see ([4], P.133), then ζ < ∞ a.s. Thus, we have

ζ =

{
TR
0 if µ < 0;

+∞ if µ = 0.

Next, for b and c > 0, we consider the first hitting times σ± of the square-root boundaries
s 7→

√
(b± s)/c, defined by

σ+ = inf{s > 0 ; Rs =
√
(b+ s)/c} (1.1)

and

σ− = inf{s < b ; Rs =
√
(b− s)/c}, inf ∅ = b. (1.2)
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Further studies on square-root boundaries for Bessel processes

The Mellin transform of the distribution of σ+ has been computed in [17] and reads, with
µ = ±ν for ν > 0, as

E(−ν)
[(

1 +
σ+

b

)−a]
=

bνΛ(ν + a, ν + 1, 1
2b )

c−νΛ(ν + a, ν + 1, 1
2c )

(1.3)

and

E(ν)
[(

1 +
σ+

b

)−a]
=

Λ(a, ν + 1, 1
2b )

Λ(a, ν + 1, 1
2c )

(1.4)

where E(±ν) := E±ν
1 is the expectation with respect to P

(±ν)
1 and Λ is the confluent

hypergeometric function Ψ when b < c and is Φ when b > c; Ψ and Φ have the integral
representations

Ψ(α, β, z) =
1

Γ(α)

∫ ∞

0

e−zttα−1(1 + t)β−α−1dt, α > 0, (1.5)

and

Φ(α, β; z) =
Γ(β)

Γ(α)Γ(β − α)

∫ 1

0

tα−1(1− t)β−α−1eztdt, 0 < α < β, (1.6)

found in ([13], p.266, (9.11.1) and p.268, (9.11.6)).
Formulae (1.3) and (1.4) are probabilistically proved in [8], in case b < c, by using

Lamperti’s relation to relate σ+ to the first passage times at constant levels of the
diffusion (

e−2B
(−ν)
t (b+A

(−ν)
t ), t = 0

)
,

where (B
(−ν)
t , t = 0) is a Brownian motion with constant drift −ν and

A
(−ν)
t =

∫ t

0

eB
(−ν)
s ds, t = 0. (1.7)

The aim of this article is to provide characterizations of the distributions of σ−
and σ+ through Mellin transforms and some random factorizations. We establish the
analogues of the results in [8] for the distribution of σ−. Then, exploiting ideas of
[1], we give a relationship that relates the distributions of σ− and σ+. This is applied
to get a new proof of a result which appeared in ([5], [6], [17]) that gives the Mellin
transform of the distribution of σ+ in case b > c and δ = 2. Various random equations and
characterizations are given for σ± by considering separately four cases corresponding
to the different possible signs of ν and b− c; see ([10], [12]) for random affine equations.
For simplicity, we worked with Bessel processes but some of our results extend readily
to spectrally one sided self-similar Markov processes, see Remark 2.5.

2 Characterization of the distribution of σ−

Let B(−ν) = ((B
(−ν)
t )t=0, P

(−ν)) be a Brownian motion with constant drift −ν starting

at 0. Recall that A(−ν)
t , t = 0, is the exponential functional defined by (1.7). Then, by

Lamperti’s relation, there exists a Bessel process R starting at 1 such that

eB
(−ν)
t = R

A
(−ν)
t

, t = 0. (2.1)

In particular, the life time of R is given by ζ = TR
0 = A

(−ν)
∞ . In the sequel, we suppose

that ν = 0 and −ν will always refer to a non-positive constant drift for Brownian motions
and non-positive index for Bessel processes. A variant of Dufresne’s identity states that

A(−ν)
∞ := lim

t→∞
A

(−ν)
t

(law)
=

1

2Γν
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Further studies on square-root boundaries for Bessel processes

for a gamma random variable Γν with parameter ν. A variable Z such that Z
(law)
= A

(−ν)
∞

having the distribution

P (−ν)(Z ∈ dx) =
1

2

1

Γ(ν)

( 1

2x

)ν−1

e−
1
2x dx, x > 0,

represents the present value of a perpetuity, see ([7]); Z will always be distributed as
above even when defined under P (ν). To start with, we look at the Mellin transform of
the distribution of σ− and related random factorizations.

Theorem 2.1. The distribution of σ− under P
(−ν)
1 is characterized by the following

random equations. We have(Z
b
− 1

)
+

(law)
=

(
1− σ−

b

)
(
Z

c
− 1)+ (2.2)

if b > c and (
1− Z

b

)
+

(law)
=

(
1− σ−

b

)
(1− Z

c
)+ (2.3)

if b < c, where (x)+ stands for the positive part of x ∈ R and the variables σ− and Z on
the right hand sides are independent. Furthermore, for a < ν, we have

E(−ν)
[(

1− σ−

b

)a]
=

b−νe−
1
2bΛ(a+ 1, ν + 1; 1

2b )

c−νe−
1
2cΛ(a+ 1, ν + 1; 1

2c )
, (2.4)

where, as in the previous section, Λ = Ψ when b < c and Λ = Φ when b > c.

Proof. Let us prove (2.2) and (2.3). Set

τb,c := inf{s > 0 ; e−2B(−ν)
s (b−A(−ν)

s ) = c}, inf ∅ = C
(−ν)
b ,

where C
(−ν)
t :=

∫ t

0
R−2

s ds stands for the inverse of A(−ν)
t , t > 0. Write simply τ for τb,c

where there is no risk of confusion. Because

τ = inf
{
s > 0 ; (R

A
(−ν)
s

)2 =
b−A

(−ν)
s

c

}
,

we see that A(−ν)
τ = σ−. Next, on the event τ < C

(−ν)
b , we have

A(−ν)
∞ − b = A(−ν)

τ + e2B
(−ν)
τ (Z̃ − c) + ce2B

(−ν)
τ − b = e2B

(−ν)
τ (Z̃ − c) (2.5)

where Z̃ :=
∫∞
0

e2(B
(−ν)
τ+s −B(−ν)

τ )ds. Observe that, by the strong Markov property, Z̃ is

distributed as (2Γν)
−1 and is independent of (B(−ν)

s , s ≤ τ).

Suppose that b > c. On the event {τ = C
(−ν)
b }, we have b−A

(−ν)
s > ce2B

(−ν)
s , s > 0, and

hence, since B(−ν) drifts to −∞, by letting s tend to +∞, we get that A(−ν)
∞ 5 b. Thus,

by using (2.5) and the fact that {τ < C
(−ν)
b } = {σ− < b}, we obtain

(A(−ν)
∞ − b)+ = (A(−ν)

∞ − b)+1{τ<C
(−ν)
b } + (A(−ν)

∞ − b)+1{τ=C
(−ν)
b }

= e2B
(−ν)
τ (Z̃ − c)+1{τ<C

(−ν)
b }

= (
b−A

(−ν)
τ

c
)(Z̃ − c)+1{τ<C

(−ν)
b }

= (
b− σ−

c
)(Z̃ − c)+1{σ−<b}.
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The proof of (2.2) is now complete because σ− ≤ b holds P (−ν) a.s.

Suppose that b < c. On the event {τ = C
(−ν)
b }, we have b−A

(−ν)
s < ce2B

(−ν)
s , s > 0, and

hence, by letting s tend to +∞, we obtain A
(−ν)
∞ = b. Hence, by using (2.5) and the fact

that {τ < C
(−ν)
b } = {σ− < b}, we obtain

(b−A(−ν)
∞ )+ = (b−A(−ν)

∞ )+1{τ<C
(−ν)
b } + (b−A(−ν)

∞ )+1{τ=C
(−ν)
b }

= e2B
(−ν)
τ (c− Z̃)+1{τ<C

(−ν)
b }

= (
b−A

(−ν)
τ

c
)(c− Z̃)+1{τ<C

(−ν)
b }

= (
b− σ−

c
)(c− Z̃)+1{σ−<b}.

The proof of (2.3) is complete because σ− ≤ b holds P (−ν) a.s.
By taking the Mellin transform of both sides of (2.2) and using

E(−ν)[(Z − b)a+] =

∫ 1
2b

0

1

Γ(ν)

( 1

2x
− b

)a

xν−1e−xdx

=
ba−ν

2νΓ(ν)
e−

1
2b
Γ(a+ 1)Γ(ν − a)

Γ(ν + 1)
Φ(a+ 1, ν + 1;

1

2b
),

(2.6)

we obtain

E(−ν)
[(b− σ−

c

)a]
=

E(−ν)
[
(A

(−ν)
∞ − b)a+

]
E(−ν)

[
(A

(−ν)
∞ − c)a+

]
=

ba−νe−
1
2bΦ(a+ 1, ν + 1; 1

2b )

ca−νe−
1
2cΦ(a+ 1, ν + 1; 1

2c )
,

which implies (2.4) in case b > c. The proof of (2.4) in case b < c is obtained similarly
using

E(−ν)[(b− Z)a+] =

∫ ∞

1
2b

1

Γ(ν)

(
b− 1

2x

)a

xν−1e−xdx

=
ba−ν

2νΓ(ν)
e−

1
2bΓ(a+ 1)Ψ(a+ 1, ν + 1;

1

2b
).

(2.7)

The proof is complete since the Mellin transform (2.4) in the interval [0, ν) characterizes
the distribution of σ−.

Remark 2.2. Let us note that by letting a tend to 0 in (2.4), we obtain that

P (−ν)(σ− < b) =


b−νe−

1
2b

∫ ∞
0

e−
t
2b (1+t)ν−1dt

c−νe−
1
2c

∫ ∞
0

e−
t
2c (1+t)ν−1dt

if b < c;

b−νe−
1
2b

∫ 1
0
e

t
2b (1−t)ν−1dt

c−νe−
1
2c

∫ 1
0
e−

t
2c (1−t)ν−1dt

if b > c.
(2.8)

In fact, τ is the first hitting time of c by the diffusion η(−ν) = {η(−ν)
t }t=0 defined by

η
(−ν)
t = e−2B

(−ν)
t (b−A

(−ν)
t ), t = 0, (2.9)

killed when it first hits 0. A scale function and speed measure of η(−ν) are given,
respectively, by

s(x) =

∫ x

1

y−ν−1e−
1
2y dy, m(dx) =

1

2
xν−1e

1
2x dx, x ∈ R.
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Since the boundary ∞ is natural, (2.8) is easily checked using diffusion theory, see ([16],
Proposition (3.2), P.301), since

P (−ν)(σ− < b) = P (−ν)(τ < C
(−ν)
b ) =

{
limx→0

s(b)−s(x)
s(b)−s(x) if b < c;

limx→∞
s(x)−s(b)
s(x)−s(c) if b > c,

with

b−νe−
1
2b

∫ ∞

0

e−
t
2b (1 + t)ν−1dt =

∫ b

0

ξ−ν−1e−
1
2ξ dξ = s(b)− s(0).

and

b−νe−
1
2b

∫ 1

0

e
t
2b (1− t)ν−1dt =

∫ ∞

b

ξ−ν−1e−
1
2ξ dξ = lim

x→∞
(s(x)− s(b)).

For completeness, we provide an explanation of what happens when we let c tend to
0 or ∞ in the equalities in distribution (2.2) and (2.3). For convenience, we write τ(c)

and σ−(c), respectively, for τ and σ−.

Corollary 2.3. The convergence σ−(c) → b ∧ ζ holds P (−ν) a.s. as c → ∞. Furthermore,
(b − σ−)/c → R2

b holds P (−ν) a.s. as c → 0. As a consequence, there is the following
identity in distribution

(Z − b)+
(law)
= ZR2

b (2.10)

where Z is independent of R.

Proof. As c → ∞, we have σ−(c) → inf{s < b ; Rs = 0} = b∧ ζ since inf ∅ = b in this case.

Next, because σ−(c) = A
(−ν)
τ(c) and τ(c) → C

(−ν)
b , we get that σ−(c) → b a.s., as c → 0.

Hence by continuity of R, we get that Rσ−(c) → Rb a.s. Formula (2.10) follows from (2.2)
by letting c tend to 0.

Remark 2.4. We present here yet another way of proving (2.10). Recall that the semi-
group of a Bessel process of index −ν, ν > 0, when 0 is a killing boundary, is given
by

p
(−ν)
t (x, dy) =

y

t

(y
x

)−ν

e−
x2+y2

2t Iν(
xy

t
)dy,

see for example [4]. By using the expansion

Iν(z) =

∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
(2.11)

found in ([13], P.108), we can evaluate the positive real moments of R2
b to get

E
[
R2a

b

]
= (2b)a−νe−

1
2b
Γ(a+ 1)

Γ(ν + 1)
φ(a+ 1, ν + 1,

1

2b
), a < ν. (2.12)

On the other hand, it is easy to see that

E [Za] = 2−aΓ(ν − a)

Γ(ν)
, a < ν. (2.13)

Combining (2.6), (2.12) and (2.13), yields that the Mellin transforms of the two sides of
(2.10) are equal.
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Remark 2.5. The results of Theorem 2.1 and Corollary 2.3 extend to positive spectrally
one sided (spectrally negative when b > c and spectrally positive when b < c) self-similar
Markov processes. That is, we replace B(−ν) by a Lévy process ξ := (ξt, t = 0). If we
define At(ξ) =

∫ t

0
eξs ds, t = 0, then A∞(ξ) < ∞ a.s. if and only if limt→∞ t−1ξt := −ν < 0,

see ([3], Thm 1). Next, we replace R by the self-similar image X of ξ by the Lamperti
transform (2.1). If b > c and ξ is spectrally negative (thus X also does not have positive
jumps), consider the first hitting time σ−(X) of the square-root boundary s 7→

√
(b− s)/c

with inf ∅ = b. Repeating the arguments of the proof of (2.2), we see that an identity
of that type holds, where σ− and Z are replaced by σ−(X) and a copy Ã∞(ξ) of A∞(ξ)

which is independent of (ξs, s = 0), respectively. By letting c tends to 0 (the trajectories
of X are not continuous but we can still get the limits in distribution), we obtain the
following generalization of (2.10),

(A∞(ξ)− b)+
(law)
= X2

b Ã∞(ξ). (2.14)

In the same spirit of the special functions introduced in [15], the analogue of (2.6) gives
an extension of the confluent hypergeometric function Φ for non local type operators.
The factorization of (2.14) is of different type than the factorizations of the exponential
distribution discovered in [2]. The study of these identities in distribution and their
consequences, in the jumping setting, is a an interesting future research project.

Recall the absolute continuity of the probability laws P (±ν) of Bessel processes

dP (ν)
x

∣∣∣
Ft

=
(Rt∧σ−

x

)2ν

dP (−ν)
x

∣∣∣
Ft

(2.15)

found for instance in [16]. It follows, by combining (2.4) and (2.15), that

E(ν)
[(

1− σ−

b

)a

I{σ−<b}

]
= E(−ν)

[
(Rσ−)

2ν
(
1− σ−

b

)a

I{σ−<b}

]
= E(−ν)

[(b− σ−

c

)ν(
1− σ−

b

)a

I{σ−<b}

]
=

e−
1
2bΛ(a+ ν + 1, ν + 1; 1

2b )

e−
1
2cΛ(a+ ν + 1, ν + 1; 1

2c )
.

It is obvious that if b > c then σ− < ∞ holds P (ν) a.s. This is confirmed, by letting a ↓ 0

in our calculations, because in this case Φ(ν + 1, ν + 1; z) = ez. Hence, we obtain the
following result.

Theorem 2.6. For a > 0, we have

E(ν)
[(

1− σ−

b

)a]
=

e−
1
2bΛ(a+ ν + 1, ν + 1; 1

2b )

e−
1
2cΛ(a+ ν + 1, ν + 1; 1

2c )
, (2.16)

where Λ = Ψ when b < c and Λ = Φ when b > c. Note that, P (ν)(σ− < b) = 1 if b > c.

3 Characterization of the distribution of σ+ reviewed

Our aim is to establish a connection between the distributions of σ− and σ+. We do
this by combining our results for σ− with results in [1]. Then, this is applied to give a
new probabilistic proof of formulae (1.3) and (1.4) in case b > c, which case was not
dealt with in [8].

Theorem 3.1. The probability distributions of σ− and σ+ under P (ν) are related as
follows

P (ν)
( b

b+ σ+
∈ dt

)
= t−ν−1e

1
2b−

1
2cP (ν)

((
1− σ−

b

)
∈ dt

)
, t < 1. (3.1)

As a consequence, formulae (1.3) and (1.4) hold true.
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Proof. We shall first prove that, for a > ν + 1, we have

E(ν)
[(

1 +
1

b
σ+

)−a]
= e

1
2b−

1
2cE(ν)

[(
1− σ−

b

)a−ν−1

I{σ−<b}

]
(3.2)

which, clearly, is equivalent to (3.1). We use the following relationship which is obtained
from Theorem 2.6,

e
1
2b−

1
cE(ν)

[(
1− σ−

b

)a−ν−1]
=

Λ(a, ν + 1; 1
2b )

Λ(a, ν + 1; 1
2c )

. (3.3)

To proceed, following [1], we introduce the probability measure P
(ν,β)
x , β ∈ R, by

dP (ν,β)
x

∣∣∣
Ft

=
1

(1 + βt)ν+1
e

βR2
t

2(1+βt)
− βx2

2 dP (ν)
x

∣∣∣
F

t∧ζ(β)

,

where, as before, P (ν)
x is the probability law of the Bessel processes with index ν starting

from x and

ζ(β) =

{
1/|β|, if β < 0,

+∞, if β = 0.

We consider the path transform S(β) given by

S(β)(R)t = (1 + βt)R t
1+βt

, t < ζ(β).

Then, it is shown in Lemma 3.4 of [1] that the induced measure of P (ν)
x by S(β) is P (ν,β)

x .
We take β = − 1

b . Then, we have

β(Rσ−)
2

1 + βσ−
=

− 1
b
b−σ−

c

1− σ−
b

= −1

c

and

e
1
2b−

1
cE(ν)

[(
1− σ−

b

)a−ν−1

I{σ−<b}

]
= E(ν)

[
e

β(Rσ− )2

2(1+βσ−)
− β

2

(
1− σ−

b

)a−ν−1

I{σ−<b}

]
= E(ν,β)

[(
1− σ−

b

)a

I{σ−<b}

]
.

Since the probability law of S(β)(R(ν)) is P (ν,β)
1 , the probability law of σ− under P (ν,β)

1

is that of

σ̃ := inf
{
s > 0 ; (1 + βs)2(R s

1+βs
)2 =

b− s

c

}
under P (ν)

1 and we have

e
1
2b−

1
cE(ν)

[(
1− σ−

b

)a−ν−1

I{σ−<b}

]
= E(ν)

[(
1− σ̃

b

)a

I{σ−<b}

]
.

Moreover, noting b−s
c = b

c (1 + βs), we see

σ̃ = inf
{
s > 0 ; (R s

1+βs
)2 =

b

c

(
1− βs

1 + βs

)}
.

Since

σ+ = inf
{
u > 0 ; (Ru)

2 =
b

c
(1− βu)

}
,

we obtain
σ̃

1 + βσ̃
= σ+ and σ̃ =

σ+

1− βσ+
=

σ+

1 + σ+

b

< b.

ECP 23 (2018), paper 39.
Page 7/9

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP139
http://www.imstat.org/ecp/


Further studies on square-root boundaries for Bessel processes

Hence, we have

E(ν)
[(

1− σ̃

b

)a

I{σ̃<b}

]
= E(ν)

[(
1 + β

σ

1− βσ

)a]
= E(ν)

[(
1 +

1

b
σ
)−a]

.

Thus, we have proved (3.2). Combining this with (3.3), we obtain (1.4).
Formula (1.3) follows from (1.4) and the absolute continuity (2.15). In fact, we deduce

from them

E(−ν)[(b+ σ+)
−a] = E(ν)[(Rσ+

)−2ν(b+ σ+)
−a]

= E(ν)
[(b+ σ+

c

)−ν

(b+ σ+)
−a

]
= cνb−a−ν Λ(a+ ν, ν + 1; 1

2b )

Λ(a+ ν, ν + 1; 1
2c )

,

which is exactly (1.3).

Our aim now is to establish the random factorizations satisfied by σ+ under P (−ν).
For completeness, we include the case b < c which was treated in [8], where (3.4) was
first proved.

Theorem 3.2. Let σ∗
+ be equal to σ+ conditioned on σ+ < ∞. Then, under P (−ν) we

have the following identities in distribution which characterize the distribution of σ+.

(1) If b < c then

1 +
Z

b

(law)
=

(
1 +

σ+

b

)(
1 +

Z

c

)
(3.4)

where σ+ and Z on the right-hand side are independent.

(2) If b > c then
Z(b)

b
− 1

(law)
=

(
1 +

σ∗
+

b

)−1(Z(c)

c
− 1

)
(3.5)

where Z(α), for α > 0, is a random variable with distribution

P (−ν)
(
Z(α) ∈ dz

)
=

(z − α)ν−1

E(−ν)
((

Z − α
)ν−1

;Z > α
)P (−ν)(Z ∈ dz), z > α,

and Z(c) and σ∗
+ on the right hand side are independent.

Proof. We refer to [8] for a proof of (3.4). To prove (3.5), observe that combining (1.3)
and (2.6) we obtain for a < 1,

E(−ν)
[(
b+ σ+

)−a
]
E(−ν)

[(
Z − c

)ν+a−1
, Z > c

]
=

cν+a−1

bν+2a−1
e

1
2b−

1
2cE(−ν)

[(
Z − b

)ν+a−1
, Z > b

]
.

Now, letting a tend to 0 yields

P
(
σ+ < ∞

)
E(−ν)

[(
Z − c

)ν−1
, Z > c

]
=

cν−1

bν−1
e

1
2b−

1
2cE(−ν)

[(
Z − b

)ν−1
, Z > b

]
.

Hence,

E(−ν)
[(
b+ σ+

)−a|σ+ < ∞
]E(−ν)

[(
Z − c

)ν+a−1
, Z > c

]
E(−ν)

[(
Z − c

)ν−1
, Z > c

] =
ca

b2a

E(−ν)
[(
Z − b

)ν+a−1
, Z > b

]
E(−ν)

[(
Z − b

)ν−1
, Z > b

] .

We get (3.5) by the injectivity of Mellin transform. Equations (3.4) and (3.5) imply (1.3)
and hence characterize the distribution of σ+.
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