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Abstract. Rare transitions in stochastic processes can often be rigorously described

via an underlying large deviation principle. Recent breakthroughs in the classification

of reversible stochastic processes as gradient flows have led to a connection of large

deviation principles to a generalized gradient structure. Here, we show that, as a

consequence, metastable transitions in these reversible processes can be interpreted as

heteroclinic orbits of the generalized gradient flow. This in turn suggests a numerical

algorithm to compute the transition trajectories in configuration space efficiently, based

on the string method traditionally restricted only to gradient diffusions.
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1. Introduction

Meta-stability frequently occurs in nature. A complex stochastic dynamical system

often has multiple locally stable fixed points close to which it spends the majority of

its time. Rarely, and on a much longer time-scale, fluctuations push the system from

one such state to another. Typical examples include chemical reactions under thermal

noise [1], nucleation [2], crystal deformation [3], etc. Another common setup is the

coarse-graining of microscopic models in statistical mechanics, where effective dynamics

can be derived including noise terms as fluctuating hydrodynamics [4]. If the effective

limiting dynamics have multiple fixed points, such as for phase transitions, or when

conditioning on rare observables, the intrinsic stochastic noise induced by the finiteness

of the number of particles will trigger the rare event, a situation that is quantified by

macroscopic fluctuation theory [5].

In all these cases, the computation of the most likely transition pathway is

practically achievable if a large deviation principle (LDP) holds [6]. Whenever

present, the LDP demands that the least unlikely of all transition scenarios will

exponentially dominate all others, reducing the original stochastic sampling problem to

a deterministic optimization problem. The analytical computation of the corresponding

minimizers (maximum likelihood pathways, MLPs) is often impossible, and their

numerical computation leads to a high-dimensional optimization problem, which for

systems with a large number of degrees of freedom is hard to solve. The computation

of the MLP is significantly simplified for a specific sub-class of stochastic processes:

Whenever the dynamics is a diffusion in a potential landscape with small noise, the

invariant measure of the process is explicitly known from the potential itself, and

MLPs become minimum energy paths. The computation of transition trajectories is

then simplified to the computation of heteroclinic orbits of the gradient flow, which is

numerically achieved by the string method [7, 8].

An evolution driven by a negative gradient of a potential is a straightforward

example of a gradient flow. Recent breakthroughs allowed phrasing many more

reversible systems as (generalized) gradient flows, starting with recognizing the

Wasserstein gradient structure of the Fokker-Planck equation of Itô stochastic

differential equations (SDEs) [9]. The relation to large deviation principles of

microscopic particle systems is by now well understood [10]. The resulting class of

dynamics is no longer restricted to diffusions or even the Gaussian case, but applicable

e.g. to jump processes, lattice gas models or interacting particle systems. The main

point of this paper is to show that under certain conditions, transition trajectories

in reversible stochastic processes are heteroclinic orbits (or their time-reverse) of the

associated generalized gradient flow. This allows us to derive a generalized string method

for the efficient and robust computation of the MLPs.
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2. Main results

Let Xε
t ∈ Eε be a family of continuous time Markov jump processes (MJPs) in the state

spaces Eε. If Xε
t

(i) fulfills a pathwise LDP in the limit ε→ 0 with rate function

IT (φ) =
∫ T

0
L(φ, φ̇) dt

for Lagrangian L, and corresponding Hamiltonian H given by the Fenchel-

Legendre transform

H(ψ, θ) = sup
η

(〈θ, η〉 − L(ψ, η)) ,

and

(ii) obeys detailed balance,

then the transition trajectory {φ(τ)} between two fixed points a and b in the limit ε→ 0

fulfills

φ̇ = −∂θH(φ, 0)

between a and the “relevant saddle” z, and

φ̇ = ∂θH(φ, 0)

between z and b. In particular, the transition trajectory, i.e. the trajectory φ(t) and

corresponding T that minimize IT (φ), is described by the heteroclinic orbits (and

their time-reverse) of the generalized gradient flow field ∂θH(φ, 0). This includes the

previously known case of diffusions in a potential U(φ), where φ̇ = ±∇U(φ).

The main result of the paper is that we can then numerically compute the transition

trajectory with the generalized string method, which, starting from an initial guess φ0
i ,

where i ∈ {1, . . . , N} enumerates system copies along the trajectory, iterates only two

simple steps until convergence:

(i) Update to temporary states φ̃i,

φ̃i = φki + ∆t ∂θH(φki , 0) .

(ii) Reparametrize φ̃i to obtain next iterates φk+1
i that fulfill,

‖φk+1
i+1 − φk+1

i ‖ = cst. ∀ i ∈ {1, . . . , N} .
The knowledge of the transition trajectory yields not only information about the

most likely transition in the large deviation limit, but furthermore allows one to estimate

the exponential scaling of its probability. Additionally, it yields the relevant saddle point

(transition state) of the limiting dynamics, i.e. the points where the trajectory crosses the

separatrix between one basin of attraction and another, and can be used as a ‘reaction

coordinate’ as a basis for more sophisticated sampling techniques, such as forward flux

sampling [11], cloning or splitting algorithms [12, 13, 14] or importance sampling.
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In what follows, we will first derive the main results of the paper in section 3.

Subsequently, in section 4, the connection to the mathematical literature on generalized

gradient flows is made. In section 5, the numerical computation of limiting trajectories

is discussed, and the full string method for generalized gradient flows is introduced.

Finally, its capabilities are demonstrated in section 6 on several examples, including a

bi-stable reaction network, a zero range lattice gas model exhibiting condensation, and

the hydrodynamic limit of interacting particles.

3. Transition Trajectories in Reversible Markov Jump Processes

3.1. Large deviation principles and transition trajectories

Let Xε
t ∈ Eε be a family MJPs in the state spaces Eε with generators Lε and unique

invariant measures µε∞. We say that Xε
t fulfills a pathwise large deviation principle

(LDP) if, for δ > 0 sufficiently small, the probability to observe a sample path close to

a given trajectory φ(t) fulfills

P( sup
t∈[0,T ]

|Xε
t − φ(t)| < δ) � exp(−ε−1IT (ψ)) . (1)

Here, the sign � stands for asymptotic logarithmic equivalence, i.e. that for ε→ 0, the

logarithm of both sides has the same limit, and

IT (ψ) =
∫ T

0
L(ψ, ψ̇) dt .

The quantity L(ψ, ψ̇) is called the Lagrangian, which admits a corresponding

Hamiltonian as its Fenchel-Legendre transform

H(ψ, θ) = sup
η

(〈θ, η〉 − L(ψ, η)) .

The probability to observe a transition starting in a neighborhood of a point a ∈ E
to a neighborhood of a point b ∈ E can be obtained by a minimization over suitable

trajectories ψ,

P(a→ b) � exp(−ε−1 inf
ψ∈C b

a

IT (ψ)) (2)

with C b
a = {ψ(t) ∈ D[0, T ]|ψ(0) = a, ψ(T ) = b}, E denoting the limiting state

space, and D[0, T ] the Skorokhod space on [0, T ]. For a precise definition of large

deviation principles for stochastic processes, see e.g. [15]. In the course of this paper,

we are interested in finding explicitly the minimizer (or instanton) φ that solves the

minimization problem (2) for given endpoints a, b,

IT (φ) = inf
ψ∈C b

a

IT (ψ) ,

when additionally minimizing over the transition time T . This minimizer (φ(t), T )

describes the most likely transition trajectory in the limit ε→ 0. It can equivalently be

described as a solution to the Hamilton’s equations

φ̇ = ∂θH(φ, θ), θ̇ = −∂φH(φ, θ) . (3)
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Figure 1. The minimizing trajectory between two fixed points of a gradient flow

φ̇ = ∂θH(φ, 0) is a heteroclinic orbit connecting each stable fixed point to the relevant

saddle point on the separatrix.

A special case is the situation of a trajectory φ(t), such that IT (φ) = 0. Since L ≥ 0,

these trajectories are necessarily (global) minimizers, and are called zero action pathways

or relaxation dynamics. The equivalent dynamics define a deterministic dynamical

system as limit of the original stochastic process which can be interpreted as a law of

large numbers (LLN) or hydrodynamic limit of the MJP. In terms of the Hamiltonian,

they correspond to solutions of (3) with θ = 0, θ̇ = 0, and therefore

φ̇ = ∂θH(φ, 0) .

In the situation where the relaxation dynamics have a unique and stable fixed point a,

i.e. ∂θH(a, 0) = 0, and we only consider trajectories starting from that fixed point, we

can define the quasipotential V (x) by

V (x) = inf
T>0

inf
φ∈Cxa

IT (φ) . (4)

The quasipotential loosely quantifies the difficulty of reaching a point x via the

stochastic process and generalizes the notion of a free energy to non-equilibrium

systems. It is connected to the invariant measure µε∞ of the MJP through the relation

limε→0 ε log µε∞(A) = − infx∈A V (x) (see [6, Chpt 4, Thm 4.3] for details).

For transition trajectories between two fixed points a and b, as depicted in figure 1,

we realize that the definition of the quasipotential (4) holds true locally in each basin of

attraction. A restriction of the arguments to single basins, and subsequent ‘stitching’ of

V (x) to neighboring basins [16], proves to be sufficient to describe bi-stable transitions

of the form of figure 1, as we will see in the next section.

3.2. Adjoint Process and Reversibility

For a reversible MJP Xt ∈ E , the adjoint process, generated by the L2(E , µ∞)-adjoint

of L is equal to the process itself, i.e. for ρ∞ being the density of µ∞ with respect to

counting or Lebesgue measure,

L = ρ−1∞ L†ρ∞ ,
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where L† is the usual L2(E)-adjoint of L. Intuitively, the probability of starting at a

and observing the trajectory ψ(t) is equal to the probability of observing the reverse

trajectory ψ∗(t) = ψ(T − t) starting at b. For a family of reversible MJPs (Xt)
ε, with

LDT Lagrangian L and Hamiltonian H, this can be expressed as

V (a) +
∫ T

0
L(ψ, ψ̇) dt = V (b) +

∫ T

0
L(ψ,−ψ̇) dt , (5)

for any trajectory {ψ}t∈[0,T ] with ψ(0) = a, ψ(T ) = b (compare [10, Thm 3.3]).

Written in terms of the Hamiltonian, this translates to

H(ψ, θ) = H(ψ,∇V − θ). (6)

This is a consequence of (5), which implies

L(ψ, ψ̇) = L(ψ,−ψ̇) +
d

dt
V (ψ) = L(ψ,−ψ̇) + 〈∇V, ψ̇〉 (7)

and therefore

H(ψ, θ) = sup
η

(〈η, θ〉 − L(ψ, η))

= sup
η

(〈η, θ〉 − 〈η,∇V 〉 − L(ψ,−η))

= sup
−η

(〈η,∇V − θ〉 − L(ψ, η))

= H(ψ,∇V − θ) .
Defining an entropy function S(x) = 2V (x), this equation can be rewritten [10, Prop 2.1]

as

H(ψ,∇S − θ) = H(ψ,∇S + θ) . (8)

3.3. Minimizing Trajectories of the Action of Reversible Processes

We now want to focus on the minimizing trajectories of the action for reversible

processes, i.e. the solutions (φ, T ) to the minimization problem (4) under the assumption

that the process is reversible.

Consider first the case that we start at a point a that is a fixed point of the

limiting dynamics, i.e. ∂θH(a, 0) = 0. We want to investigate the minimizing transition

trajectory to a point b within the same basin of attraction. Denote by (φ, T ) the

minimizing pair for the quasipotential, equation (4). Since a is a fixed point, this

necessitates V (a) = 0 and T = ∞. Then, equation (4) becomes V (b) =
∫∞
0 L(φ, φ̇) dt.

By plugging this into equation (5), this shows that φ(t) is also a trajectory that has

L(φ,−φ̇) = 0 . (9)

In other words, minimizers originating at the fixed point are time-reversed relaxation

trajectories. More precisely, combining equations (7) and (9), we have

L(φ, φ̇) = 〈∇V (φ), φ̇〉 (10)
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and therefore θ = ∂L
∂φ̇

= ∇V = 2∇S. For this trajectory, the equation of motion thus

reads

φ̇ = ∂θH(φ,∇V (φ)) . (11)

On the other hand, by differentiating (6) with respect to θ, and setting θ = 0, we obtain

∂θH(φ,∇V (φ)) = −∂θH(φ, 0) . (12)

We therefore arrive at following the proposition:

Proposition 1. For reversible processes, minimizers φ(t) of the large deviation rate

function starting at a fixed point a of the limiting dynamics, and ending at any point b

within the same basin of attraction, fulfill

φ̇ = −∂θH(φ, 0) . (13)

Next, we want to consider the case where both initial and final points a and b are

fixed points with neighboring basins of attraction that together cover the whole state

space. The flow ∂θH(φ, 0) then defines a separatrix C in a dynamical systems sense

that separates the two basins of a and b. This separatrix possibly contains multiple

saddle points zi with ∂θH(zi, 0) = 0. Denote by z the relevant saddle point, i.e. the

point on the separatrix which attains the minimal quasipotential, V (z) ≤ V (x)∀x ∈ C.

This point necessarily is also the point through which the most likely transition between

a and b traverses from one basin of attraction to the other: A transition from a to b

must leave the basin of attraction of a, which must happen at z since z minimizes the

quasipotential on C. The remaining portion between z and b on the other hand can be

achieved with zero cost: Since z is on the separatrix, there exists a relaxation trajectory

from z to b, i.e. a trajectory φ connecting z and b such that

φ̇ = ∂θH(φ, 0) . (14)

Alluding to the case of a diffusion in a potential, this portion of the trajectory is often

called the downhill portion, as it coincides in this case with the direction of maximally

decreasing potential. On the other hand, for the portion between a and z, proposition 1

applies, i.e. here

φ̇ = −∂θH(φ, 0) . (15)

With the same intuition, we call this portion of the trajectory the uphill portion,

as the dynamics occur along directions of maximally increasing potential in the case

of diffusion in a potential. Note though that this intuition breaks down for general

reversible processes. In particular, even though the notion of the quasipotential replaces

the potential, it is not true that relaxation paths are obeying φ̇ = −∇V (φ). Instead,

relaxation paths are generalized gradient flows in the quasipotential, and uphill paths are

time reversed generalized gradient flows in the quasipotential. Both are not necessarily

aligned with the direction of maximal increase or decrease of the quasipotential.

For the complete transition trajectory, we therefore have, under the above

assumptions (a and b being neighboring fixed points, with basin of attraction covering

the complete state space):
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Proposition 2. For reversible processes, minimizers φ(t) of the large deviation rate

function connecting two fixed points a and b fulfill

φ̇ = ∂θH(φ, 0) (16)

in the uphill portion from a to the relevant saddle point z, and

φ̇ = −∂θH(φ, 0) (17)

for the downhill portion from z to b.

Note that both up- and downhill portion of the transition trajectory are readily

available by simple integration, and no reference is made to the quasipotential. This

generalizes the known case of diffusions in a potential U(φ), where the minimizers of

the rate function fulfill either

φ̇ = −∇U(φ) or φ̇ = ∇U(φ) .

Intuitively, proposition 2 states the unsurprising fact that time-reversal symmetry is

obeyed for transition trajectories in reversible processes. At the same time, it implies

that all minimizing trajectories are heteroclinic orbits or time-reversed heteroclinic orbits

of the generalized gradient flow induced by the large deviation principle of Xε
t . It

therefore allows for an extension of the string method [7] to more general situations,

which is the main contribution of this paper. This will be discussed in section 5.

4. Connection to generalized gradient flows

To make the connection to the mathematical literature, we want to highlight here

the relation of the above considerations to generalized gradient flows and their

connection to large deviation theory. This is of particular importance in the context of

statistical mechanics and stochastic thermodynamics, where the connection between

large deviations and hydrodynamic limits [5], statistical mechanics [17] and non-

equilibrium thermodynamics [18] is known in considerable detail.

Consider the space E to be a Riemannian manifold, with tangent bundle TE and

cotangent bundle T ?E . Define on E a convex, continuously differentiable function

ψx(v) : TE → R+ and its Legendre-dual ψ?x(w) : T ?E → R+,

ψ?x(w) = sup
v∈TxE

(〈v, w〉 − ψx(v))

ψx(v) = sup
w∈T ?

xE
(〈v, w〉 − ψ?x(w)) .

Additionally we demand ψx(0) = ψ?x(0) = 0. Then, (ψ, ψ?) are called dissipation

potentials in the context of thermodynamics.

Furthermore, consider a continuously differentiable function S : E → R. Then, any

evolution on E according to ẋ = F (x) that fulfills

ψx(F (x)) + ψ?x(−∇S(x)) + 〈F (x),∇S(x)〉 = 0
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is called a generalized gradient flow with respect to (E , ψ, S) [10]. This is equivalent to

saying

ẋ = ∂wψ
?
x(−∇S(x)) . (18)

In the case of a gradient diffusion, the dissipation potential ψ?x(w) is quadratic in w (the

quadratic dependence being a consequence of the Gaussianity of the noise, the metric

implied by its covariance). In that case, ∂wψ
?
x(w) is linear in its argument, and thus

the flow (18) is a traditional gradient flow proportional to ∇S(x). Allowing for generic

dissipation potentials ψ?x(w) explains why the flows (18) are called generalized gradient

flows.

The connection to large deviations is made when taking

ψ?x(θ) = H(x, θ +∇S(x))−H(x,∇S(x)) , (19)

for a large deviation Hamiltonian H(ψ, θ) of a reversible process. The choice (19)

fulfills the assumptions of (ψ, ψ?) to be dissipation potentials, and a gradient flow can

be constructed out of the large deviation principle, or, equivalently, the optimization

problem of large deviations can be interpreted as the variational formulation of a

generalized gradient flow.

Finally, equation (18) with the choice (19), leads to

ẋ = ∂θH(x, 0)

as gradient flow. As we will see in the examples in section 6, non-Gaussian stochastic

processes lead to Hamiltonians that are not quadratic in their conjugate momentum,

and therefore to generalized instead of traditional gradient flows.

5. Numerical Computation of the Transition Trajectory

With the realization of proposition 2, implementing a string method for generalized

gradient flows in the spirit of the original string method [7, 8] becomes straightforward.

Consider a reversible MJP Xε
t ∈ Eε with limiting state space E that obeys a LDP

with Lagrangian L and Hamiltonian H. Following [8], denote by φ(τ), τ ∈ [0, 1] a string,

i.e. a candidate limiting transition trajectory connecting two fixed points a, b ∈ E . A

heteroclinic orbit of the flow ∂θH(φ, 0) then obeys the relations

φ(0) = a, φ(1) = b, (∂θH(φ(τ), 0))⊥ = 0 , (20)

where for a vector field v(φ(τ)) along the string φ(τ), the notation v⊥ describes the

component in the plane perpendicular to the string,

v(φ(τ))⊥ = v(φ(τ))− 〈v(φ(τ)), γ(τ)〉γ(τ) ,

γ(τ) = |φ̇(τ)|−1φ̇(τ) ,

and γ(τ) corresponds to the unit tangent vector along φ. Denote by φkn, n ∈ {1, . . . , N},
the k-th approximation of the n-th image along the discretized string. One iteration,

then consists of two steps.
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(i) Following proposition 2, integrate the forward gradient flow (16), φ̇(τ) =

∂θH(φ(τ), 0) for every image along the string via an appropriate integration

scheme. For example, when choosing forward Euler, set the temporary result

φ̃n = φkn + ∆t ∂θH(φkn, 0) . (21)

More sophisticated and higher order time integration schemes are similarly viable,

including implicit ones. In particular, if the operator with the tightest stability

restrictions is linear, it is generally a good idea to consider exponential time-differencing

schemes [19]. In general, all considerations that are valid for the integration of the

limiting dynamics also apply to the string update step. After applying (21), the images

along the string are no longer distributed in an equidistant way, and would accumulate

at the fixed points a or b if (21) would be repeated indefinitely. Therefore, as a second

step,

(ii) obtain the next iterate φk+1
n by reparametrization of φ̃n by arc-length. The arc-

length parameter of the n-th image is given by the recursive relation

s0 = 0, sn = sn−1 + ‖φ̃n − φ̃n−1‖ .
This information can then be used to re-interpolate the images φ̃n to φk+1

n at the

positions

s̃n = nsN/N .

This ensures that now

‖φk+1
n+1 − φk+1

n ‖ = cst.

The re-parametrization step moves points only along the string φ(τ) (up to the accuracy

prescribed by the interpolation scheme). Therefore, after convergence of the algorithm,

the remaining change that occurs in step (i), is necessarily parallel to the string, or

in other words, at the fixed point of the iteration the orthogonality condition (20) is

fulfilled.

Remark 1. All results regarding computational complexity and order of convergence of

the original ‘simplified and improved string method’ [8] apply also here.

Remark 2. The implementation difficulty of the string method is roughly equal to that

of the limiting dynamics. Furthermore, we can solve the minimization problem with

the computational cost of the forward integration of the equation, multiplied by the

number of copies N . This is in stark contrast to the full optimization problem (2)

posed by minimizing the original rate function, as the corresponding Euler-Lagrange

equation is second order (in time), the highest order operator of which will be the original

order squared. For example, if the stochastic PDE in question was the stochastic heat

equation,

ρ̇ = ∂2xρ+ η, E (ηη′) = δ(t− t′)δ(x− x′) ,
then the corresponding Lagrangian is

L(ρ, ρ̇) =
1

2

∫
|ρ̇− ∂2xρ|2 dx
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and the Euler-Lagrange equation, to be solved with suitable boundary conditions, is

0 =
∂L

∂ρ
− d

dt

∂L

∂ρ̇
= ρ̈+ ∂4xρ .

For the string method, one only needs to integrate

0 = ρ̇− ∂2xρ .
Consequently, implementation simplicity and efficiency of the string method always

exceeds more complex generic optimization methods such as the MAM [2] or gMAM [20,

21], and should be preferred whenever the reversibility condition holds.

6. Examples

6.1. Diffusion in a gradient potential

As a reminder of the standard setup for which the string method was originally devised,

consider the case of diffusion in a gradient potential. Let the configuration space

Eε = Rd, ∀ε > 0, and the system state Xt ∈ E evolve according to the Itô SDE

dXε
t = −∇U(Xε

t ) dt+
√
ε dWt . (22)

Then necessarily S(x) = U(x) = 1
2
V (x), and from Freidlin-Wentzell theory it follows

that

L(ψ, ψ̇) =
1

2
|ψ̇ +∇U(ψ)|2 , H(ψ, θ) = −〈θ,∇U〉+

1

2
|θ|2 . (23)

It is easy to check that indeed the reversibility condition (8) is fulfilled, i.e. H(ψ,∇U −
θ) = H(ψ,∇U + θ). The minimizers therefore follows

φ̇ = ±∇U(φ) . (24)

Numerous applications for this setup exist, most importantly for chemical systems

and molecular dynamics, including Lennard-Jones clusters, clusters of water molecules,

peptides [1], crystal deformations [3], and quantum mechanics/molecular mechanics

simulations [22]. A straightforward and well-known generalization of the flow (22) is to

choose an additional mobility matrix M(x) ∈ Rd×d which is symmetric and divergence

free (i.e.
∑
i ∂xiM(x) = 0), so the evolution equation becomes

dXε
t = −M(Xε

t )∇U(Xε
t ) dt+

√
εM1/2(Xε

t ) dWt , (25)

where M1/2(M1/2)T = M . Then it still holds that 1
2
V (x) = U(x) = S(x), and

Lagrangian and Hamiltonian of equation (23) are modified by choosing the appropriate

inner products 〈u, v〉M = 〈u,M−1v〉 and |u|M = 〈u, u〉1/2M , with

L(ψ, ψ̇) =
1

2
|ψ̇ +M(ψ)∇U(ψ)|2M , H(ψ, θ) = −〈θ,M(ψ)∇U〉+

1

2
|M(ψ)θ|2M .

In this case, the minimizer obeys the modified relation

φ̇ = ±M(φ)∇U(φ) , (26)
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Figure 2. Comparison of the gradient of the quasipotential, ∇V , with the actual

generalized gradient drift, ∂pH(x, 0) = ∂pψ
?
x(−∇S(x)) for the chemical reaction

network of section 6.2. Even though both disappear at the two stable fixed points,

they disagree in magnitude elsewhere.

and the reversibility condition H(ψ,∇U−θ) = H(ψ,∇U+θ) is fulfilled. Equations (25)

and (26) are still within the realm of classical gradient flows (with mobility). In the next

section we will encounter examples that cannot be phrased even in this form, in general

because the associated Hamiltonian is non-quadratic, corresponding to a non-Gaussian

large deviation principle.

Remark 3. If M(x) is not divergence free, the reversibility condition is still applicable

if equation (25) additionally is extended by the deterministic drift ε divM(x) dt, while

the LDP remains unchanged [23].

Remark 4. If M(x) is not symmetric, the reversibility condition is violated. In this case

though, the adjoint dynamics can be written down explicitly. Decompose M = S + A,

with S = ST and A = −AT . Then the adjoint dynamics are

dXε
t = −(S − A)∇U(Xε

t ) dt+
√
εS1/2 dWt ,

and a modified string method can be built. This is a special case of the traverse

decomposition [6, Chpt 4, Thm 3.1].

6.2. Chemical Reaction Network

In the context of chemical reactions and birth-death processes, one considers networks

of several reactants in a container of volume D which is well-stirred. Take for example

the reaction network

A
k0→ X , X

k1→ A , 2X +B
k2→ 3X , 3X

k3→ 2X +B ,

where each process is Poisson with rates ki > 0, and where the concentrations of the

reactants A and B are held constant. This system was introduced in [24]. Even though it

can be considered unrealistic for practical purposes, in particular because of the presence
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of ternary reactions, it serves as a toy model to understand bi-stable reaction networks.

Its dynamics can be modeled as a MJP on Z+ with generator

(Lf)(n) = A(n) (f(n+ 1)− f(n)) +B(n) (f(n− 1)− f(n)) (27)

and with the propensity functions

A(n) = k0D + (k2/D)n(n− 1)

B(n) = k1n+ (k3/D
2)n(n− 1)(n− 2) .

The model above satisfies a large deviation principle in the following scaling limit:

Denote by c = n/D the concentration of X, and normalize it by a typical concentration

c0, so that x = c/c0. Now, for a large number of particles per lattice site c0D = ε−1, we

obtain to leading order

(Lεf)(x) = ε−1
(
a(x) (f(x+ ε)− f(x)) + b(x) (f(x− ε)− f(x))

)
, (28)

on Eε = εZ+, where we defined ki = λi(c0)
1−i, and

a(x) = λ0 + λ2x
2 , b(x) = λ1x+ λ3x

3 .

The large deviation principle for (28) can be formally obtained via WKB analysis which

gives a Hamilton-Jacobi operator associated with a Hamiltonian that is also the one

rigorously derived in LDT [25],

H(x, p) = a(x) (ep − 1) + b(x)
(
e−p − 1

)
.

Note that this Hamiltonian is not quadratic in its conjugate momentum, implying that

no Gaussian SDE exists (including no diffusion in a potential) with the same large

deviation principle. Detailed balance is nevertheless fulfilled, by realizing that

∇V (x) = log
b(x)

a(x)
, (29)

under which the reversibility condition H(x, p) = H(x,∇V − p) is confirmed. The large

deviation minimizers can therefore explicitly be computed to be

ẋ = ±∂pH(x, 0) = ±(a(x)− b(x)) .

This precisely corresponds to the law of mass-action of the reaction network, as well as

its time-reversed variant.

The generalized gradient flow for this system is explicitly given by

ẋ = ∂pψ
?
x(−∇S) ,

with ∇S = 1
2
∇V given by (29) and

ψ?x(p) =
√
ab (ep − 1) +

√
ab
(
e−p − 1

)
.

Figure 2 highlights the fact that these dynamics are very different from the gradient

of the potential itself: Even though both disappear at the fixed points, their behavior

away from the fixed points does not agree.



String Method for Generalized Gradient Flows 14

0 10 20 30

site index

0.0

0.2

0.4

0.6

0.8

1.0

s
saddle point

0 10

‖∂θH(φ, 0)‖

Figure 3. String of the zero-range process towards condensation in a single lattice

site i = 8 (left): For each s ∈ [0, 1] along the string, the configuration ~ρ(s) is depicted,

starting from a constant density at s = 0 and reaching a condensate at i = 8 for s = 1.

The corresponding strength of the generalized gradient flow (right), identifying the

critical nucleus at the saddle, where ‖∂θH(φ, 0)‖ = 0.

6.3. Zero-range process

Consider a lattice gas on a one dimensional lattice with L ∈ N sites, where on each

lattice site i there are ni particles. The system state is described by ~n ∈ ZL+. Particles

can hop to neighboring sites on the left or right with a rate γ(ni) depending only on

the local occupation number, so that the total number of particles N is conserved,

N =
∑L
i=1 ni. Such a system is called a zero-range process (ZRP), which is a MJP with

generator

Lf(~n) =
L∑
i=1

γ(ni)
(
f(~n+ ~e+i ) + f(~n+ ~e−i )− 2f(~n)

)
,

where ~e±i is the vector with zero entries everywhere, except −1 at i and 1 at i± 1. For

finite L, a large deviation principle can be obtained for this MJP in ε = N−1 → 0 by

considering the rescaled quantity ρi = ρ̄ni/N = εni, ρ̄ > 0, for Eε = εZL+ and E = RL
+.

After furthermore rescaling time, the generator then reads

Lεf(~ρ) = ε−1
L∑
i=1

γ(ρi)
(
f(~ρ+ ε~e+i ) + f(~ρ+ ε~e−i )− 2f(~ρ)

)
,

where the jump rates γ have been rescaled appropriately [15, 5]. The large deviation

Hamiltonian reads

H(ρ, θ) =
∑
i

γ(ρi)
(
eθi−1−θi + eθi+1−θi − 2

)
. (30)
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Note again that the Hamiltonian is non-quadratic in the conjugate momentum, meaning

that no Gaussian SDE can be found with large deviation Hamiltonian (30). The system

is not in detailed balance in general, but one can choose the rates γ(x) in order to

enforce reversibility. The reversibility condition amounts to

P (~ρ→ ~ρ+ ε~e+i )

P (~ρ+ ε~e+i → ~ρ)
=
ρ∞(~ρ+ ε~e+i )

ρ∞(~ρ)
(31)

i.e. the ratio of forward and backward reaction rates has to correspond to the

relative probability of the respective states. Since the density ρ∞ is connected to

the quasipotential via ρ∞(~ρ) � exp(−ε−1V (~ρ)) as per section 3.1, and furthermore

P (~ρ→ ~ρ+ ε~e+i ) = γ(ρi), and P (~ρ+ ε~e+i → ~ρ) = γ(ρi+1), the reversibility condition (31)

for ε→ 0 translates to

γ(ρi+1)

γ(ρi)
= exp(−(∇iV (~ρ)−∇i+1V (~ρ))) .

A possible choice to fulfill this constraint is

∇iV (~ρ) = ln γ(ρi) + C , (32)

where the constant C is fixed by the conserved mean density ρ̄ = L−1
∑
i ρi via

C = − ln γ(ρ̄). We therefore obtain

V (~ρ) =
∑
i

∫ ρi

0
(ln γ(y) + C) dy ,

which is the correct potential for the ZRP [26]. In particular, for non-interacting

particles, we have γ(x) = x and

V (~ρ) =
∑
i

(ρi ln

(
ρi
ρ̄

)
− ρi) .

For general γ(x) obeying the reversibility condition, the transition trajectories now

follow

ρ̇i = ±∂θiH(~ρ, 0) = ±(γ(ρi−1) + γ(ρi+1)− 2γ(ρi)) . (33)

To highlight that this flow again is a generalized gradient flow, note that (33) is of the

form

ρ̇i = ∂θiψ
?
ρ(−∇S(~ρ)) ,

with ∇S(ρ) = 1
2
∇V (ρ) given by (32) and

ψ?ρ(
~θ) =

∑
i

√
γiγi−1

(
eθi−1−θi − 1

)
+
∑
i

√
γiγi+1

(
eθi+1−θi − 1

)
,

where γi = γ(ρi).

Notably, for specific choices of γ(x), this system has multiple stable fixed points.

For example, taking γ(x) = D + exp(−x), for D = 1
10

and ρ̄ = 1 provides two stable

fixed points, one being a constant solution at ρi = ρ̄ and one being a condensate, where

a macroscopic fraction of the density is concentrated in a single lattice site. This setup

is metastable in that fluctuations from the finiteness of the number of particles will
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Figure 4. String of the interacting particle system, where the cluster of attractive

particles performs one revolution around the periodic domain (left). For each s ∈ [0, 1],

the configuration ρ(s, x) is depicted. The corresponding strength of the Wasserstein

gradient flow identifies the relevant saddle point (right).

eventually force the system from one fixed-point to the other, the transition happening

along the heteroclinic orbits of equation (33) in the limit N → ∞. The corresponding

transition trajectory is depicted in figure 3 (left). Here, the x-axis represents the site

index, in this particular case from 0 to 30 with L = 31. The y-axis represents the

parameter s along the string. The shading of the contour plot depicts each configuration

~ρ(s) along the string, starting at the constant density at s = 0, and transitioning into

the condensate at s = 1. The relevant saddle is reached at s = 0.5, marked as a dashed

line in the contour plot, and identified through the point at which ‖∂θH(φ, 0)‖ = 0,

depicted in figure 3 (right). Notably, a spatially extended condensate forms into a

critical nucleus, which is reached at the saddle point.

6.4. Interacting particle system

On a periodic domain Ω = [0, 1], consider a system of N interacting Brownian particles

at Xi ∈ Ω, i ∈ {1, . . . , N}, in a potential U(x) : Ω → R and with interaction potential

K(x). Each particle is modeled by its own Itô diffusion,

dXi(t) = −∇U(Xi(t)) dt−
1

N

N∑
j=1

∇K(Xi(t)−Xj(t)) dt+
√

2 dWi(t) .

The hydrodynamic limit of this system is

∂tρ = ∂2xρ+ ∂x (ρ∂xU + ∂x(ρ ? K)) .
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As discussed in [27], this can be interpreted as a generalized gradient flow in the (ρ-

dependent) Wasserstein metric, evolving according to

∂tρ = −M(ρ)∇ρV, M(ρ)ξ = −∇ · (ρ∇ξ)
with

V (ρ) =
∫ (

ρ log ρ− ρ+ ρU +
1

2
ρ(K ? ρ)

)
dx .

On the other hand, from a large deviation perspective, the Hamiltonian of this system

reads

H(ρ, θ) =
∫ 1

0

(
θ∂2xρ+ θ∂x(ρ∂xU + ∂x(ρ ? K))− ρ(∂xθ)

2
)
dx

= 〈−M(ρ)∇ρV (ρ), θ〉+ 〈θ,M(ρ)θ〉 ,
where the inner product and norm are L2. As concrete demonstration of our algorithm,

we take a periodic potential U(x) = α cos(2πx), which has a unique minimum at the

center of the domain. As interaction potential, we pick K(x) such that ∂xK(x) =

w(x− δ), with

w(x) =

 βx exp
(
− 2x2

1−2x2
)

x ≤ 1
2

0 else,

which results in a locally parabolic interaction which tapers off to 0. Notably, for δ 6= 0,

the interaction potential is not symmetric, resulting in an effective net force, e.g. to the

right for δ > 0. In total, particles tend to stick together and try to move right, but

collect within the basin of the potential. As a consequence, the system is not meta-

stable, and the unique fixed point is a cluster of particles slightly off x = 1
2
. We can

nevertheless compute an interesting transition trajectory: We can force the particle

cloud to revolve once around the periodic domain, i.e. ask for the most likely trajectory

that leads to the particles collectively traveling up the barrier of U(x) towards x = 1,

and down again from x = 0 towards the fixed point. The resulting string is depicted

in figure 4 (left). Again, the contour plot represents the configurations ρ(x) along the

string parameter s ∈ [0, 1], starting and ending at the same (fixed point) configuration,

but wrapping around the periodic domain once. The corresponding strength of the

gradient drift is depicted in figure 4 (right), which identifies the relevant saddle for the

transition. Concretely, we choose α = 0.5 · 103, β = 0.5 · 102, and δ = 5 · 10−2.

7. Concluding remarks

In this paper, we showed how the fact that a large deviation principle induces a

generalized gradient flow for reversible processes can be used to obtain geometric

properties of limiting transition trajectories between fixed points. In particular, we

showed that under suitable conditions every minimizer of a large deviation principle of

a reversible process can be interpreted as a heteroclinic orbit (or its time-reverse) in a

generalized gradient flow.
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This fact has important consequences for the numerical computation of the most

likely transition trajectories. In particular, the string method, originally devised to

effectively compute minimizing trajectories for diffusions in a potential landscape, can

be adapted to the wider class of generalized gradient flows.

We demonstrated the feasibility of this approach by computing transition

trajectories for the condensation of a zero range process, a particular lattice gas model,

as well as the hydrodynamic limit of interacting particles, in all cases computing the

most likely trajectory realizing a certain event, and identifying the saddle point along

the transition, at which the dynamics cross between the different basins of attraction.
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