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Highlights

• Compared with previous works that studied the effect of concentration and size ratio on

jamming separately, we combine the effect of φ0 and R on the jamming probability Pjam. We

plot the jamming probability on the φ0-R plane and match the different ranges of φ0 and R

to three different jamming states. Accordingly, we explain the coupled effect of φ0 and R on

jamming from the view of the maximum particle discharge capacity of the orifice.

• Another quantity of interest that we studied is the complex influence of the fluid velocity Uf

on jamming. It is found that the influence of the fluid velocity on jamming differs in different

range of solid concentration, e.g., the ”sequential bridging” jamming only occurs in low-speed

and low-solid concentration flow. Moreover, for the ”multi-particle” fluid-driven jamming,

the jamming probability increases with the fluid velocity because the particle discharge rate

increases with the fluid velocity. However, it is noted that when the fluid velocity Uf is high,

Uf has little effect on the particle discharge rate and therefore the insignificant influence on

the jamming probability.

• We also investigate the particle discharge properties and relate the particle discharge rate to

the occurrence of jamming under different conditions. It is found that for a given size ratio

R, the orifice has a maximum discharge capacity, and once the particle discharge rate reaches

to the maximum particle discharge capacity of orifice, jamming is possible to happen.

• Because of the ability of the coupled CFD–DEM method to calculate the particle motion and

contact force, the shape of the three-dimensional particle jamming dome and the force chain

of clogged particles are investigated. For the first time, we find that the jamming arch that is

formed under a higher flow velocity has a larger curvature due to the greater fluid drag acted

on the jammed particles.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Investigating the jamming of particles in a three-dimensional fluid-driven
flow via coupled CFD–DEM simulations

Honglei Suna, Shanlin Xub, Xiaodong Panc,∗, Li Shic, Xueyu Gengd, Yuanqiang Caib

aInstitute of Disaster Prevention and Reduction Engineering and Protective Engineering, College of Civil
Engineering and Architecture, Zhejiang University, Hangzhou 310027, PR China

bResearch Center of Coastal and Urban Geotechnical Engineering, College of Civil Engineering and Architecture,
Zhejiang University, Hangzhou, PR China

cInstitute of Geotechnical Engineering, College of Civil Engineering and Architecture, Zhejiang University of
Technology, Hangzhou 31000, PR China

dSchool of Engineering, University of Warwick, Coventry, UK

Abstract

The clogging of a dense stream of particles when passing through an orifice occurs ubiquitously

in both natural and industrial fields. Since most of the jamming phenomena lead to the negative

effects, studying and preventing jamming is of great importance. There are two typical types of

jamming due to different types of driving force: (a) gravity-driven jamming and (b) fluid-driven

jamming. Among these two types of jamming, the fluid-driven jamming occurs in fluid-driven

particle flows, and the initial solid concentration, the fluid velocity, and the orifice-particle size

ratio has been demonstrated to have effects on the occurrence of this jamming. Although the

individual influence of the initial solid concentration and orifice-particle size ratio on jamming has

been studied, the coupled effects of these two factors on jamming are little known. In addition, the

complex effects of the fluid velocity on jamming have not been fully discussed. To address these

problems, this work performs a three-dimensional simulation of the fluid-driven jamming using the

coupled Computational Fluid Dynamics–Discrete Element Method (CFD–DEM) model. At first,

the jamming probability under different initial conditions is studied. The jamming probability is

displayed on the solid concentration–orifice size ratio plane to illustrate the coupled effects of these

two factors on jamming. The simulation results show that the critical solid concentration, at which

the jamming probability increases to 1, increases with the orifice-particle size ratio. This is because

an orifice with a larger orifice size ratio has a greater particle discharge capacity, which allows more

particles to pass through without jamming. Then, we reveal the influence of fluid velocity over

a wide range on the fluid-driven jamming type, jamming probability and shape of the jamming

dome. To the author’s knowledge, this is the first time that the shape of the jamming dome has
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been related to the fluid velocity. The jamming dome formed in the higher-speed flow has a greater

curvature due to the greater fluid drag acting on the particles.

Keywords: Jamming, CFD–DEM, Fluid-driven particle flow, Multi-particle bridging, Jamming

arch, Force chain

1. Introduction

The jamming phenomena of particulate flow systems occur ubiquitously in both natural and

industrial processes. When a dense stream of particles competitively flows through an orifice,

the solid particles sometimes clog at the orifice and stop flowing. For example, wheat and other

grains jam a hopper or silo, preventing the flow (Mondal et al., 2016), powdered raw materials clog

conduits and cease their conveyance (Liu and Nagel, 1998), and the clogging occurs in the transport

and retention of sand in downhole completions in oil and gas wells (Mondal, 2013). To prevent

the jamming phenomena in granular flows, most of which lead to the negative or hazardous effects,

considerable research has been conducted on the formation and underlying factors of jamming.

Based on previous works, there are two types of particle jamming from the view of driving force:

(a) gravity-driven jamming and (b) fluid-driven jamming. The gravity-driven jamming usually

occurs in silos and hoppers under the effect of gravity and has been extensively studied through

experimental and numerical methods (To et al., 2001; Zuriguel et al., 2005; Hilton and Cleary,

2011; Janda et al., 2012). The other type of particle jamming, which is called fluid-driven jamming,

happens in the fluid-driven granular flows (Guariguata et al., 2012). The particles transported by

a fluid flow sometimes clog at the orifice due to the balance of the frictional force and drag force.

For both types of jamming, the major contributing factor is the orifice-particle size ratio R, which

is defined as a ratio of the orifice size Do to the particle diameter dp (R = Do/dp). With increasing

orifice size ratio R, the jamming probability decreases (Zuriguel et al., 2005; Lafond et al., 2013;

Mondal et al., 2016).

Although these two types of jamming share some commonalities, they also have their distinct

characteristics. Compared with gravity-driven jamming, fluid-driven jamming is influenced by

more factors, such as the initial solid concentration φ0 and the fluid velocity Uf . For most of the

gravity-driven jamming that occurs in the silo or the hopper, since the particles are initially packed

in the silo or hopper, the initial solid concentration φ0 is usually defined as the particle natural

packing density (Hilton and Cleary, 2011). The value of φ0 does not vary significantly at different

gravity-driven jamming, and Zuriguel et al. (2005) gave φ0 a small range 0.52 ∼ 0.64. However,

for fluid-driven jamming, the particles keep buoyant and are entrained by the flows. The initial

solid concentration of the fluid-driven flow can vary over a great range. Hence, the study of the

influence of the initial solid concentration φ0 on the fluid-driven jamming is of great importance.

Mondal et al. (2016) found that the occurrence of the fluid-driven jamming is strongly dependent

on φ0. The jamming probability Pjam increases with the solid concentration of the particle flow
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φ0 until φ0 reaches to a critical value φcritical. When φ0 > φcritical, the jamming phenomenon

definitely occurs (Pjam = 1). Apart from the initial solid concentration, as the fluid velocity Uf

determines the hydrodynamic interaction force between the fluid and particles, the fluid velocity also

influences the jamming probability. However, the effect of Uf on jamming is not very clear. From

the experiments of Dai and Grace (2010) on the nonspherical particle jamming (Uf = 0.59 ∼ 1.04

m/s, Re = 21800 ∼ 38100), Dai and Grace (2010) proposed that the jamming probability increases

with the fluid velocity, and this increase is because a higher velocity causes more particles passing

through the constriction simultaneously. Mondal et al. (2016) also observed the same influence of

the fluid velocity on the jamming of the spherical particles (Uf = 0.01 ∼ 0.1 m/s, Re = 15 ∼ 150).

However, in the work of Guariguata et al. (2012)(Uf = 0.14 ∼ 0.3 m/s, Re = 2940 ∼ 6300), it is

found that the jamming probability is weekly dependent on the fluid velocity. As the studies on

the effect of Uf on jamming are conflicting, the further investigation about the influence of Uf is

necessary.

In this work, we aim to systematically study the influences of the above three different underlying

factors, φ0, Uf , and R on the fluid-driven jamming, and the coupled Computational Fluid Dynamics

and Discrete Element Method (CFD–DEM) is employed to simulate the three-dimensional jamming

phenomenon. The DEM part simulates the particle motion by solving Newton’s second law, the

CFD part solves the fluid motion based on the Navier-Stokes equation, and the coupled CFD–DEM

part is utilized to calculate and exchange the fluid–particle interaction force. This method has been

widely employed for simulating the fluidization, sediment transport, sand/silt sedimentation, and

many other particle flow problems. This method is considered to be advanced because of its

superior computational convenience to that of LBM and its greater capability of elaborating the

particle motion than TFM (Zhu et al., 2007). Mondal et al. (2016) studied the two-dimensional

fluid-driven jamming problem by the coupled CFD–DEM and demonstrated the viability of this

method in studying jamming. However, the simulations of three-dimensional fluid-driven jamming

are lacking, and the controlling parameters of jamming still need further investigation. Therefore,

this work aims to address the shortage of simulations of three-dimensional fluid-driven jamming and

improve the understanding of the effect of these controlling factors on the jamming. The novelties

of this work are presented below.

1. Compared with previous works that studied the effect of concentration and size ratio on

jamming separately, we combine the effect of φ0 and R on the jamming probability Pjam. We

plot the jamming probability on the φ0-R plane and match the different ranges of φ0 and R

to three different jamming states. Accordingly, we explain the coupled effect of φ0 and R on

jamming from the view of the maximum particle discharge capacity of the orifice.

2. Another quantity of interest that we studied is the complex influence of the fluid velocity Uf

on jamming. It is found that the influence of the fluid velocity on jamming differs in different

range of solid concentration, e.g., the ”sequential bridging” jamming only occurs in low-speed

and low-solid concentration flow. Moreover, for the ”multi-particle” fluid-driven jamming,
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the jamming probability increases with the fluid velocity because the particle discharge rate

increases with the fluid velocity. However, it is noted that when the fluid velocity Uf is high,

Uf has little effect on the particle discharge rate and therefore the insignificant influence on

the jamming probability.

3. We also investigate the particle discharge properties and relate the particle discharge rate to

the occurrence of jamming under different conditions. It is found that for a given size ratio

R, the orifice has a maximum discharge capacity, and once the particle discharge rate reaches

to the maximum particle discharge capacity of orifice, jamming is possible to happen.

4. Because of the ability of the coupled CFD–DEM method to calculate the particle motion and

contact force, the shape of the three-dimensional particle jamming dome and the force chain

of clogged particles are investigated. For the first time, we find that the jamming arch that is

formed under a higher flow velocity has a larger curvature due to the greater fluid drag acted

on the jammed particles.

The rest of paper is organized as follows. Section 2 presents the methodology of the CFD–DEM

model. Section 3 introduces the simulation cases used to study the three-dimensional jamming

and provides validations of the current simulations. Section 4 shows the simulation results. In this

part, the coupled effect of the solid concentration and R on jamming probability are studied. In

addition, various ways that the fluid velocity influences jamming at different solid concentrations

and different ranges of Uf are systematically investigated. Then, the shape of the jamming dome

is discussed and explained based on the force chain figure. Section 5 concludes the paper.

2. Methodology

In the coupled CFD–DEM method, the particle motion is calculated with the DEM approach

based on Newton’s second law (Cundall and Strack, 1979), and the fluid flow is simulated using the

CFD program based on the Navier-Stokes equations (Anderson and Jackson, 1967). The key to the

coupling method between CFD and DEM is a proper consideration of the fluid-particle interaction

forces (Zhao and Shan, 2013) and the exchange of the interaction forces between the fluid and the

particles. In this section, the specific formulas of the particle motion, fluid flow, and fluid-particle

interaction force are detailed.

2.1. Mathematical model of particle motion

By employing the DEM method, the particle motions, including translation and rotation, are

governed by Newton’s second law (Cundall and Strack, 1979):

m
du

dt
= f con + ffp +mg,

I
dΨ

dt
= Tcon,

(1)
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where, m is the particle mass, u and Ψ is the particle’s velocity and angular velocity, respectively,

and I represents the moment of inertia. f con is the contact force during particle–particle or particle–

wall collision, and ffp denotes the fluid-particle interaction force. Tcon represents the torque due to

the particle-particle/wall collision, caused by the tangential contact force, that acted on the contact

interface of two particles.(Sun et al., 2007). The normal/tangential contact forces f conn,ij/f cont,ij that

act on the particle i are as follows (Silbert et al., 2001):

f conn,ij = f(δij/d)(knδijnij − γnmeffVn,ij),

f cont,ij = f(δij/d)(−kt∆st − γtmeffVt,ij),
(2)

where kn/kt are the normal/tangential elastic stiffness constants, and γn/γt are the normal/tangential

viscoelastic damping coefficients for collisions. δij is the overlap distance of two particles in contact,

namely i and j. nij is the unit vector of rij , which is the direction vector that connects the centres

of two particles. meff = mimj/ (mi +mj) is the effective mass of the spheres with masses mi and

mj . Vn,ij and Vt,ij are the normal and tangential components, respectively, of the relative velocity

of the two particles. ∆st is the tangential displacement vector between the two spherical particles,

which is truncated to satisfy a frictional yield criterion. This yield criterion is characterized by fric-

tional coefficient µ. The tangential force between the two particles grows according to a tangential

spring and dash-pot model until f cont,ij /f
con
n,ij = µ and is then held at f cont,ij = µf conn,ij until the particles

lose contact. When employing the linear Hookean model, the function f(δij/d) is equal to 1.

2.2. Mathematical model for fluid flow

In this work, the fluid flow is solved based on the locally averaged Navier–Stokes equations

(Anderson and Jackson, 1967; Xiao and Sun, 2011):

∇ · (φsUs + φfUf ) = 0,

∂(φfUf )

∂t
+∇ · (φfUfUf ) =

1

ρf
(−∇p+∇ · τ + φfρfg + Ffp),

(3)

where φs and φf are the solid and fluid-phase volume fractions of a fluid cell, and φs+ φf = 1.

Us and Uf are the solid- and fluid-phase velocities, respectively. On the right-hand side of the

momentum conservation equation, ∇p is the fluid pressure gradient, τ denotes the stress tensor,

and Ffp represents the fluid-particle interaction force per unit fluid cell volume Vc, obtained by

summing up the fluid forces acting on all the particles in a fluid cell and dividing by Vc (Kafui

et al., 2002; Xiao and Sun, 2011):

Ffp
k =

np,k∑

i=1

ffpi /Vc,k, (4)

with

ffpi = −Vp,i∇p+ Vp,i∇ · τ + f ′fpi , (5)

6
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where k is the cell index, np,k is the number of the particles in the cell with index k, ffpi denotes

the fluid–particle interaction acting on the particle with index i. Vp,i represents the volume of the

particle i. The term −Vp,i∇p + Vp,i∇ · τ is due to the macro-scopic variations of the fluid stress,

and the component f ′fpi comes from the detailed variations of the point stress tensor in the fluid

flow field around a particle, such as the drag force fdragi , added mass force faddi and lift force f lifti .

Substituting Eq. (5) into Eq. (4) leads to:

Ffp
k = −φs∇p+ φs∇ · τ +

np,k∑

i=1

f ′fpi /Vc,k. (6)

It is noteworthy that the solid volume fraction φs, solid phase velocity Us, and fluid-particle

interaction force Ffp in Eq. 3 are the Eulerian fields, obtained by implementing a diffusion-based

averaging method from discrete particle data (Sun and Xiao, 2015a,b, 2016). This method shows

the great robustness and validity to obtain these Eulerian fields, especially when the particle size is

closer to or greater than the fluid cell size. The detailed implementation of this method is presented

in Appendix A.

2.3. Fluid–particle interactions

In general, the fluid–particle interaction force ffpi (see Eq. (5)) consists of the pressure gradient

force, the drag force, the added mass, and the lift force. Based on our preliminary study of the

influence of added mass and lift force on the number of discharged particles Np, the effect of these

two forces on Np can be neglected. Moreover, the simulation results of Np without considering

these two forces agree well the experimental results of Lafond et al. (2013). Thus, only the drag

force and fluid pressure gradient are considered in the fluid–particle interaction force ffp in this

work. The formula of the drag force, fdragi , employed in our simulations is corrected experimentally

by considering the hindered settling effect (Syamlal et al., 1993; Sun and Xiao, 2016):

fdragi =
πd3

p,i

6

1

φf,iφs,i
βi(Up,i −Uf,i), (7)

where Up,i denotes the velocity of particle i. Uf,i, φs,i, and φf,i represents the fluid velocity,

the solid volume fraction, and the fluid volume fraction interpolated at the center of particle i,

respectively. βi is the drag correlation which accounts for the presence of other particles.

βi =
3

4

Cd,i

V2
r,i

|Up,i −Uf,i|
dp,i

φf,iφs,i,with Cd,i = (0.63 + 4.8
√
Vr,i/Rep,i)

2, (8)

where the particle Reynolds number, Rep,i, is equal to ρfdp,i|Up,i −Uf,i|/µ. Vr,i is the ratio of the

terminal velocity of a group of particles to the terminal velocity of a single particle.

Vr,i = 0.5
(
A1,i − 0.06Rep,i +

√
(0.06Rep,i)2 + 0.12Rep,i (2A2,1 −A1,i) +A2

i,j

)
, (9)

7
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with

A1,i =φ4.14
f,i

A2,i =

{
0.8φ1.28

f,i , if φf,i ≤ 0.85

φ2.65
f,i , if φf,i > 0.85

(10)

In this work, we use a four-way coupled CFD–DEM solver, SediFoam, to simulate the jamming

phenomenon. This solver was developed by Xiao and Sun (2011) based on two open-source codes:

(a) the CFD toolbox OpenFOAM (OpenCFD, 2013) and (b) the molecular dynamics simulator

LAMMPS (Plimpton, 1995). SediFoam has been demonstrated to be a capable tool in simulating

many particle flow problems, e.g., a fluidized bed (Xiao and Sun, 2011; Gupta, 2015), sediment

transport (Sun and Xiao, 2016), and sedimentation (Xu et al., 2018; Sun et al., 2018), etc. In

these areas, the mathematical models mentioned above for the particle motion, fluid flow, and the

interaction force have been verified and extensively validated.

3. Implementations and numerical models

3.1. Numerical setup

The geometry of the simulation domain is shown in Fig. 1, in which the x-, y- and z- coordinates

represent the length, width, and height directions, respectively. The fluid domain is a square pipe

Figure 1: Schematic diagram of the jamming simulation.

connected to a pipe with a smaller diameter. Along the x-direction, the fluid flow enters the

domain with a constant velocity from the ”inlet” patch and flows out at the ”outlet” patch with a

zero-gradient velocity. The fluid velocity profile on the ”inlet” patch is set as parabolic to ensure

that the fluid that enters the pipe is a fully developed laminar flow. Additionally, the ”inlet” and

”outlet” patches are set as periodic boundaries for the particles in the DEM. As the particles flow

out through the ”outlet” patch, they enter the simulation domain again from the ”inlet” patch.

It is noted that when employing the periodic boundary condition, the particles exiting from the

”outlet” patch enter the domain with the higher velocity than the fluid velocity on ”inlet” patch.

To guarantee this entry effect caused by the periodic boundary does not influence the occurrence
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of jamming, the particles should decelerate to the fluid velocity before entering the constriction. In

our simulations, we observed the variation of averaged solid-phase velocity along the flow direction

and set the current length of the square pipe longer than the decelerating distance of the particles.

Thus, the entry effect of periodic boundary dissipates and does not influence the jamming behavior.

In the y- and z- directions, the ”wall” boundary is employed for both the fluid and the particles.

The other detailed boundary conditions are presented in Fig. 1. The circular pipe starts from x =

0.05 m (the location of the orifice) and ends at the ”outlet” patch, x = 0.072 m. In some previous

works on the particle flow, it has been demonstrated that the static particles fixed on the inner

surface of a wall could provide a higher effective wall friction than a flat wall (Gupta et al., 2016;

Weinhart et al., 2012). For this reason, in the DEM simulation domain, we model the boundary

wall of the circular pipe and the patch at the pipe conjunction as the fixed spherical particles, as

shown in Fig. 2. It is noteworthy that these added fixed particles are used only to model a flat

Figure 2: Schematic illustration of fixed and moving particles in simulation domain. The small blue spheres represent

the fixed particles that constitute the wall boundary (dpf = 0.45 mm), and the large red spheres represent the moving

particles.

wall and to restrict the particle motion, which means that they should not have any extra effect on

the fluid flow. Thus, the solid concentration and the fluid-particle interaction force of these fixed

particles are not considered in the Navier-Stokes equations (Eq. 3). Furthermore, this work aims to

study the jamming that occurs in the fluid-driven particle flows. It is the fluid-particle interaction,

not the gravity, determining the particle motions and the occurrence of the jamming. Thus, the

gravity of the particle and fluid, of which the direction is perpendicular to the flow direction, is not

considered here. This neglect corresponds to the physical condition that the particles are neutrally

buoyant in the fluid. It is noted that the time spent observing the entire jamming phenomenon

T ∗observation is defined as four times the journey time Tjourney that a particle travels from the inlet

patch to the orifice, which is equal to lx/Uf .

There are two series of cases. Case 1 aims to study the coupled effect of solid concentration φ0

and the particle-orifice size ratio R. The particle-orifice size ratio varies from 1.2 to 3.2 by changing

the diameter of the moving particles. At different orifice size ratio R, we study the influence of the

solid concentration φ0 on jamming probability and find the two characteristic concentrations for

9
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Table 1: Parameters of the numerical simulations.

Case 1 Case 2

(The coupled effect of φ0 −R) (The effect of Uf )

Geometry

width, height, thickness of the
50× 7.2× 7.2

square pipe lx × ly × lz [mm]

length, diameter of the circular
22× 2.4

orifice lo ×Do [mm]

orifice-particle size ratio R 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.8, 3.2

Mesh resolutions

width, height, thickness of the
50× 9× 9

square pipe Nlx , Nly , Nlz

length, diameter of the circular
22× 3

pipe Nlo ×NDo

Fluid properties and flow conditions

kinetic viscosity ν [×10−6 m2/s] 1.0

density ρf [×103 kg/m3] 1.0

mean flow velocity Ub [m/s] 0.2 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

Reynolds number Re 1440 360, 720, 1080, 1440, 1980, 2160

Particle properties

fixed particle diameter dpf [mm] 0.45

moving particle diameter dpm [mm] 0.75, 0.86, 1, 1.09, 1.2, 1.33, 1.6, 2 1

initial solid particle concentration φ0 [0.05–0.60] [0.05–0.40]

density ρs [×103 kg/m3] 2.65

stiffness coefficient kn/kt [N/m] 5000/1428

damping coefficient γn/γt [N/m] 99200/49600

normal restitution coefficient 0.1

coefficient of friction 0.4
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the occurrence of jamming. The initial solid concentration of the particle flow varies from 0.05 to

0.6, with the initial locations of the particles being randomly generated within the entire square

pipe. Case 2 aims to investigate the influence of the fluid velocity on jamming. The mean fluid

velocity in Case 2 varies from 0.05 m/s to 0.3 m/s (Re = 360 ∼ 2160), and the particle velocity is

set as the mean fluid velocity of the driven flow. The other parameters of the simulations, including

the physical properties of the fluid and particles, are detailed in Tab. 1. It is noted that every

simulation case as shown in Tab. 1 is repeated at least ten times, with different random particle

seeds, to study the stochastic nature of the jamming problem (Mondal et al., 2016).

3.2. Validation case of the fluid-driven jamming

To validate our model simulating the fluid-driven jamming, we compare the simulation results

of fluid pressure drop due to the particle jamming ∆Pjamming with the results obtained by Ergun’s

equation (Ergun, 1952); and the number of particles discharged before jamming Np with Lafond’s

experimental results (Lafond et al., 2013), as shown below. Moreover, the gravity-driven jamming

is also simulated to validate the utilization of the fixed particles that construct the orifice, as

presented in Appendix B.

3.2.1. Fluid pressure drop caused by the jammed particles

As we know, when fluid flows through a column packed with granular material, the fluid pressure

drops due to the kinetic and viscous energy loss (Ergun, 1952). After the particles start to clog

the orifice, the particles gradually backlog and form a packed particle column that leads to a fluid

pressure drop, ∆Pjamming. In our simulations, apart from the pressure drop due to the fluid flows

across the abrupt contraction area (orifice), ∆Porifice, the fluid pressure drop, ∆Pjamming, caused

by jammed particles is observed, as shown in Fig. 3. In addition, accompanying the accumulation

of particles, the fluid pressure drop ∆Pjamming increases with the length of the packed particle

column. Based on previous works that study the value of ∆Pjamming, the widely accepted pressure

loss equation was proposed by Ergun (1952) with considering the flow rate, fluid properties, fluid

volume fraction, and the parameters of the particle, as shown below:

∆Pjamming

L
= 150

(1− φf )2

φ3
f

µfUf

d2
p

+ 1.75
1− φf
φ3
f

ρfU
2
f

dp
, (11)

where Uf is the mean velocity of the fluid, µf is the dynamic viscosity of the fluid, and L and

φf are the length and the fluid volume concentration of the packed particles, respectively. From

our simulations, we obtain the averaged solid concentration of the stable packed particle column

and the averaged fluid pressure on the y-z planes along the x-direction when the particles are in

a stable jammed state. The fluid volume concentrations of the packed particle column φf , in our

simulations, range from 0.475 to 0.490 (see Fig. 4), which are very close to the value obtained

by Mondal et al. (2016), φf = 0.49. More importantly, the simulation results of ∆Pjamming/L in

different fluid flows are in good agreement with the results calculated by Eq. 11, as shown in Fig. 4.
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Figure 3: Fluid pressure drop. Case parameters are: Uf = 0.1 m/s, φ0 = 0.28, dp = 1 mm. t∗ represents the

dimensionless simulation time, defined as tsimulation/Tjourney, where Tjourney is the time of a particle travelling from

the inlet patch to the orifice.
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Figure 4: Validation of the pressure loss ∆Pjamming at different fluid velocities. The initial solid volume fraction in

these cases is φ0 =0.28, and the orifice-particle size ratio R is 2.4.
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The mean mutual deviations of ∆Pjamming/L between the above two methods are 2.73%, 2.47%,

and 0.54%, when Uf = 0.1, 0.2, and 0.3 m/s, respectively. This good match of ∆Pjamming/L

between our simulation results and the Ergun equation’s results validates our numerical models

in simulating the particle jammed state at different fluid velocities. Additionally, our simulation

model is viable to simulate the jamming that occurs in different fluid velocity flows.

3.2.2. The number of particles discharged before jamming Np

For the fluid-driven jamming, the number of particles discharged before jamming Np increases

rapidly with the orifice-particle size ratio R. In Lafond’s experiments (Lafond et al., 2013) study-

ing the three-dimensional jamming phenomenon, it is found that the logarithm of Np is linearly

dependent on the size ratio R. To validate our simulations, we obtain the Np and R from simula-

tions and compare them with the experimental results (Lafond et al., 2013). The constriction in

Figure 5: The log-linear relationship between Np and R. The simulation results of Lafond’s experiment are based on

the exactly same initial conditions of the experiments ”Composition ID: 1-3”. The simulations results of Case 1 are

fitted by a least squares approach, and the coefficient of determination, also called R-squared, is denoted by R2.

Lafond’s experiments is constructed by the wire mesh, and the long channel flume has the same

diameter downstream the constriction. Hence, we firstly run the simulations based on the exactly

same initial conditions of his experiments (Composition ID: 1-3), including the particle diameter,

the number of particles, and the physical properties of the fluid and particles. As shown in Fig. 5,

the simulations results based on the Lafond experiment setup agree very well with the experimental

results, which demonstrate the capacity and accuracy of our CFD–DEM simulations. Moreover, we

present the results of ”Case 1” with different initial solid concentrations in Fig. 5. The log-linear

relationship between Np and R at different solid concentration can be observed. Furthermore, it is
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found that the slope of the log-linear relationship increases with the rise of solid concentration φ0.

4. Simulation results

4.1. The influence of the particle concentration

4.1.1. The dependence of jamming probability on solid concentration and orifice size

ratio

The jamming phenomena have a stochastic nature. Based on previous studies concerning

gravity-driven jamming, the jamming probability Pjam is mainly controlled by the orifice size

ratio R (To et al., 2001; Guariguata et al., 2012). As for the fluid-driven jamming, apart from R,

the solid concentration of particle flow φ0 also has a great influence on the jamming probability

(Mondal et al., 2016). Hence, the dependence of the jamming probability on solid concentration

φ0 and orifice size ratio R is studied in this work, and the simulation results are shown in Fig.

6 (a) and (b). The jamming probability defined here is the number of trials in which jamming

occurs divided by the total number of trials (Guariguata et al., 2012). For a better illustration of

the effect of the solid concentration on jamming probability, we define the two characteristic initial

solid concentrations: φthreshold and φcritical to distinguish the jamming state as shown below.

Pjam =





0, when φ0 ≤ φthreshold
0 ∼ 1, when φ0 ∈ (φthreshold, φcritical)

1 when φ0 ≥ φcritical

(12)

where φthreshold represents the threshold solid concentration for the occurrence of jamming. Once

φ0 > φthreshold, jamming is possible to happen. φcritical represents the critical concentration for

jamming. If φ0 > φcritical, jamming definitely occurs. From Fig. 6 (a), the jamming probability

increases with the solid concentration φ0 when φ0 ∈ [φthreshold, φcritical] at different R. Moreover, as

shown in Fig. 6 (b), the jamming probability is determined both by the solid concentration and the

orifice-particle size ratio. The value of threshold and critical solid concentration, represented by two

white dashed lines in Fig. 6 (b), divide the figure into the three parts: (1). non-jamming zone; (2).

definite jamming zone; and (3). uncertain jamming zone. If φ0 and R belong to the non-jamming

zone, jamming is unlikely to happen; As φ0 and R are in the ”definite jamming zone”, the jamming

occurs (Pjam = 1). And when φ0 and R belong to the uncertain jamming zone, Pjam increases

with φ0 and decreases with R. Furthermore, the values of the threshold and critical concentration

φthreshold and φcritical increase with the orifice size ratio R, as shown in Fig. 7. This means that

the initial solid concentration at which the jamming is possible to occur is higher at the orifice

with larger R, which will be explained in Sec. 4.1.2. Notably, it is found that the critical orifice

size ratio Rcr also exists in fluid-driven jamming. Once the R is larger than Rcr, even though the

solid particle concentration is very high, the particle jamming does not occur, e.g., when R = 3.2,

the maximum value of solid concentration φ0 = 0.64, while Pjam = 0. Guariguata et al. (2012)
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The orifice-particle size ratio R
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Figure 6: Dependence of the jamming probability on solid concentration and orifice size ratio. The fluid velocity Uf

is 0.1 m/s.
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Figure 7: The characteristic solid concentrations φthreshold and φcritical versus R
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also demonstrated the existence of critical orifice size ratio Rcr in the two-dimensional fluid-driven

jamming.

4.1.2. The effect of solid concentration on particle discharge properties

The solid concentration φ0 influences not only the jamming probability but also the particle

discharge properties, including the particle discharge rate dn/dt on the ”outlet” patch and the total

number of particles discharged prior to jamming Np. From our simulations, we find that the vari-

ation of particle discharge property can also be distinguished by the characteristic concentrations.

Figure 8 illustrates that the value of the discharged particles Np (represented by the red triangu-

lar dot) first increases and then decreases with φ0. Np reaches to its maximum value at a solid

concentration that is close to the critical concentration φcritical. The particle discharge rate dn/dt,

which is denoted by the blue circular dot in Fig. 8, also increases with φ0 at a low concentration

range. However, when φ0 is greater than a specific concentration that is close to φthreshold, dn/dt

does not increase further and remains almost constant with the solid concentration φ0 (see also Fig.

14). This result is attributed to the fact that the orifice has a maximum particle discharge capacity

dn/dtmax which limits the particle discharge rate dn/dt. When φ0 is greater than φthreshold, the

particle discharge rate dn/dt has reached to the value of discharge capacity of the orifice dn/dtmax;

Although φ0 increases, the dn/dt will keep at the value of dn/dtmax and do not increase. In other

word, when dn/dt reaches to the maximum discharge capacity of the orifice, it can be inferred the

φ0 is greater than φthreshold, and the jamming is possible to occur. Furthermore, it is found that

(a) R = 2, Uf = 0.2 m/s (b) R = 2.4, Uf = 0.2 m/s

Figure 8: The influence of solid concentration on particle discharge properties. The dots and error bars represent

the mean value and standard deviation of quantities of different simulation trials. When φ0 is greater than the

φthreshold, the error bars become larger. This is because when jamming does not occur, the particle discharged

number and discharge rate is easy to determine with low noise. As the opening size increases, the jamming is possible

to happen, the sample standard deviations of Np and dn/dt rapidly increase because of the stochasticity of the

jamming phenomenon.
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the maximum discharge capacity of an orifice dn/dtmax is dependent on the orifice-particle size

ratio R. Lafond et al. (2013) proposed the equation of the maximum discharge rate by substituting

the acceleration scales of fluid-driven flow d2
p/d

3
p into Beverloo’s equation (Beverloo et al., 1961),

as shown below:

dn

dt max
= Cd−3

p (Do − dp)2

√
d2
p

d3
p

(Do − dp) = C(
Do

R
)−3(Do −

Do

R
)2
√

(R− 1), (13)

where C ∝ Uf , which is independent of the particle size and orifice size. Hence, the relevant

quantity to collapse the data is (Do
R )−3(Do − Do

R )2
√

(R− 1). We obtain the simulation results of

dn/dtmax at different orifice-particle size ratio R (see Fig. 9 (a)) and plot the relationship between

the quantity dn/dtmax and (Do
R )−3(Do − Do

R )2
√

(R− 1), as shown in Fig. 9 (b). From this figure,
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Figure 9: The simulation results of particle discharge capacity dn/dtmax when φ0 = 0.6, Uf = 0.2 m/s.

the linear relationship between dn/dtmax and (Do
R )−3(Do−Do

R )2
√

(R− 1) proposed by Lafond et al.

(2013) can be observed, supporting our analysis of the particle discharge properties. It’s shown in

Fig. 9 (a) that with the growth of orifice size ratio R, dn/dtmax increases significantly. An orifice

with a larger size ratio has a greater particle discharge capacity, which can explain why the value of

φthreshold and φcritical increase with the orifice size ratio R (see Fig. 7). The jamming is possible to

occur when φ0 > φthreshold, which corresponds to dn/dt = dn/dtmax. With the increase of R, the

orifice’s discharge capacity dn/dtmax increases. Accordingly, the particle discharge rate dn/dt at

φ0 = φthreshold increases, which means the value of φthreshold rise up. On the other hand, with the

decrease of the size ratio R, the value of dn/dtmax decreases. The discharge rate dn/dt as jamming

occurs becomes lower, and thus φthreshold decreases.

Apart from Pjam and dn/dt, the solid concentration also influences the time T ∗jam when jamming

occurs. When φ0 > φcritical, the time before the particles jam at the orifice decreases with increasing
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φ0, as shown in Fig. 10. This change can also be illustrated by the fact that when φ0 > φcritical,

the number of discharged particles Np decreases as the solid concentration φ0 increases, while the

value of dn/dt remains almost constant (see Fig. 8). Therefore, when φ0 > φcritical, T
∗
jam decreases,

and the jamming occurs more quickly at higher solid concentrations.

Figure 10: The influence of solid concentration on dimensionless jamming time T ∗
jam, where T ∗

jam = Tjam/Tjourney.

4.2. The influence of the fluid velocity

For the fluid-driven jamming, the fluid velocity Uf also has an important effect on the jamming

probability and the particle discharge property. In this part, the influence of Uf over a range

(0.05 ∼ 0.3 m/s) on jamming is investigated. Firstly, we observe two typical types of jamming in

our simulations, referred to as: (a). sequential bridging and (b). multi-particle bridging by Mondal

(2013) respectively. Sequential bridging emerges only in low-speed flows with Uf = 0.05 m/s and

low-solid concentration flow (φ0 < 0.14), as shown in Fig. 11. During this jamming process, the

first particle is stopped on the pipe wall due to the wall friction, and subsequent particles are

captured sequentially by the previously deposited particles until the particles clog the pipe and

refuse to flow out. The onset of this type of jamming depends on the value of the fluid-driven force

acting on the particles. In low-speed and low-solid concentration particle flows, the fluid drag that

drives the particles to move is small and can be balanced by the friction force. Thus, the friction

force dominates the particles’ motion and impedes the particles’ motion. This type of jamming can

occur anywhere in the pipe of small diameter and does not have the noticeable ”jamming dome”,

as shown in the profile of simulation domain (see Fig. 11). The other type of jamming, called

”multi-particle bridging”, occurs in the other cases of our simulation. In this type of jamming,

many particles flow through the orifice simultaneously. A particle bridge is gradually formed across
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the orifice, which results in the jamming phenomenon. The profile of the jamming dome can be

observed clearly in Fig. 12.

(a) φ0 = 0.08

(b) φ0 = 0.10

Figure 11: Sequential jamming occurs in low-speed and low-solid concentration flows. The fluid velocity Uf = 0.05

m/s, orifice-particle size ratio R = 2.4.

(a) φ0 = 0.28

(b) φ0 = 0.40

Figure 12: Multi-particle bridging. The fluid velocity Uf = 0.05 m/s, orifice-particle size ratio R = 2.4.

In addition, the fluid velocity Uf influences the jamming probability. According to the previous

studies (Mondal et al., 2016), jamming probability Pjam increases with the number of particles that

pass through the pipe constriction Np. Before studying the influence of Uf on Pjam, we utilize the

dimensionless observation time T ∗observation to exclude the interference of Uf on Np. The value of

T ∗observation is set as four times Tjourney at different velocity flows (Tjourney = 4 lx
Uf

) to allow the same

number of particles Np passing through the constriction. Besides, the initial locations of particles

are set as the same at different velocities, so the jamming probability is influenced only by the

fluid velocity but not by the initial particle positions. From Fig. 13, when solid concentration φ0

is smaller than 0.14, Pjam = 0.1 only when Uf = 0.05 m/s. This is because ”sequential bridging”

occurs at the low-concentration and the low-fluid velocity flow. While, when the solid concentration

φ0 is greater than 0.14, ”multi-particle” bridging occurs. For this type of jamming, the value of

Pjam at Uf = 0.3 m/s is the maximum, and the Pjam at Uf = 0.05 m/s is minimum. With the

increase of the fluid velocity, the jamming probability Pjam increases, especially when Uf < 0.2

m/s. However, there is a singularity at φ0 = 0.18, where Pjam at Uf = 0.2 m/s is smaller than

that at Uf = 0.1 m/s. This may come from the stochastic property of the jamming. Dai and
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Grace (2010) proposed that the reason why Pjam increases with the Uf is that more particles pass

through the orifice simultaneously at the higher Uf . Hence, we obtain the particle discharge rate

dn/dt at different fluid velocities.

Figure 13: Dependence of jamming probability on the solid concentration φ0 and the fluid velocity Uf . The orifice-

particle size ratio R is 2.4.

As is shown in Fig. 14, when φ0 > φthreshold, the particle discharge rate dn/dt reaches to the

maximum value dn/dtmax, and the jamming is possible to happen (Pjam > 0). More importantly,

the value of maximum discharge rate dn/dtmax is greater at the higher fluid velocity; Accordingly,

the value of Pjam is higher (see Fig. 13). It has been demonstrated the Np is not the reason

that Pjam increases with the increase of the Uf . From Fig. 13 and Fig. 14, the reason that

the Pjam increases with Uf is that dn/dtmax increases with Uf . In the flow with the higher

velocity, more particles are passing through the orifice per unit time, hence the jamming probability

increases. Furthermore, we acquire the dn/dtmax over a wide range of the fluid velocity to discuss

the dn/dtmax–Uf relationship, as shown in Fig. 15. We find that the dn/dtmax–Uf correlation is

different at different range of fluid velocity. When Uf is lower than 0.15 m/s, the value of dn/dtmax

is proportional to the Uf , which is the same as the assumption C ∝ Uf in Eq. 13 proposed by

Lafond et al. (2013). However, when Uf is high, the slope of the dn/dtmax–Uf correlation decreases.

And when Uf is higher than 0.25 m/s, dn/dtmax–Uf lines become almost flat. The low-gradient

part of dn/dtmax–Uf relationship indicates that the fluid velocity has the relatively small effect on

the maximum particle discharge rate dn/dtmax when Uf is high. Since the Pjam is related to the

dn/dtmax, the effect of Uf on dn/dtmax also can be presented on the effect of Uf on Pjam. For

example, at R = 2.4, when Uf > 0.2 m/s, dn/dtmax increases slightly with the Uf ; Accordingly, the

jamming probability does not increase significantly with the fluid velocity (see Fig. 13). Guariguata
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Figure 14: The maximum discharge rate of particles under different fluid velocities. The orifice-particle size ratio in

these cases is 2.4.
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Figure 15: The simulation results of particle discharge rate at different fluid velocities.
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et al. (2012) also did not observe the apparent influence of the fluid velocity Uf on the jamming

probability Pjam. This may attribute that the fluid velocity Uf in his experiments is relatively high

(Uf = 0.14∼ 0.3 m/s), which has the insignificant effect on dn/dt. Therefore, in this small range

of fluid velocity, the variation of Pjam with Uf is invisible.

4.3. Jamming dome

For the ”multi-particle bridging” case, a three-dimensional jamming dome forms at the orifice.

We can track every particle’s motion, location and the contact force from the DEM simulations.

Therefore, the shape of the jamming dome and the factors that contribute to it are first inves-

tigated here. Because of the rotational symmetry of the three-dimensional dome, we plot the

two-dimensional profile of it for a direct and visualized observation. As is shown in Fig. 16, the

jammed particles of which the z-coordinate ∈ (0.00355,0.00365) m are presented by the hollow cir-

cles, which forms an obvious jamming arch near the orifice. In this work, we consider the jamming

(a) Uf = 0.05 m/s

(b) Uf = 0.1 m/s

(c) Uf = 0.2 m/s

(d) Uf = 0.3 m/s

Figure 16: Middle cross-section of the three-dimensional jamming dome. The initial solid volume φ0 = 0.28, and the

orifice-particle size ratio R = 2.4.

arch as the most common parabolic arch (Vaidyanathan and Perumal, 2004) and fit the locations of
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the bridged particles with a parabolic function, x = Ay2 +By+C, where x and y here represent the

x- and y- coordinate of the particle location; And A represents the curvature of the arch. Figure 17

shows that the curvature of the arch A increases with fluid velocity Uf , which means the jamming

arch formed in the higher-speed particle flow bends more sharply.
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Figure 17: The parabolic jamming arch. The initial solid volume φ0 = 0.28, and the orifice-particle size ratio R =

2.4.

We infer that the influence of the fluid velocity on the shape of the arch is due to different fluid

drag exerted on the jammed particles. With increasing the fluid velocity Uf , the fluid drag acting

on the clogged particles rises, and the inter-particle contact force grows. From our simulation, the

value of the inter-particle contact force can be presented by the force chain figure of the particles,

as is shown in Fig. 18. The value of the inter-particle contact force is larger in the higher-speed

flow, represented by the larger-diameter cylinder with the darker colour. Moreover, we calculate

the value of averaged contact stress σcon on the y-z planes proposed by Xu et al. (2018), which

increases obviously with the fluid velocity, as shown in Fig. 19. The value of contact force between

particles, whether in the bulk of the packed column or in the jamming arch, is both greater in

the higher-speed flow due to the greater fluid drag force. The drastic increase of contact stress at

x = 0.0475 ∼ 0.0485 m is attributed to the existence of the jamming arch, which decreases the

effective contacted area of packed particles.

Furthermore, the force acting on the particles influences the shape of the jamming dome. The

particle jamming dome can be stable only when the tangential contact force satisfies the frictional

yield criterion σcont <= µσconn . The dome with a larger curvature can resolve more fluid drag into

a normal direction, and, in turn, eliminate the tangential contact force. Thus, the jamming dome

with a larger curvature can bear a greater fluid drag and remain stable in a higher-speed flow. In

contrast, if the jamming dome has the small curvature, the tangential contact force resolved from
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(a) Uf = 0.05 m/s

(b) Uf = 0.1 m/s

(c) Uf = 0.2 m/s

(d) Uf = 0.3 m/s

Figure 18: Force chain among particles obtained at different fluid velocity when φ0 = 0.28, R = 2.4. The spheres

represent the particles, of which the sizes are scaled by a factor of 0.15. The diameters and the colour of the cylinders

indicate the value of contact force among particles.
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the fluid drag is larger and cannot be balanced by the maximum frictional force, and thus, the

jamming arch with a small curvature can not form in the high-speed flow. In summary, with the

increase of the fluid velocity, the curvature of the jamming arch increases.
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Figure 19: The averaged contact stress σcon between particles along the x-direction when φ0 = 0.28 and R = 2.4.

5. Conclusion

By employing the coupled CFD–DEM, this work investigates the three-dimensional fluid-driven

jamming phenomenon. The simulation model is firstly validated by the Np–R relationship and the

pressure loss ∆Pjamming. The close match between our simulation results and the results of previous

works demonstrates the validity and capacity of the current model. Then, we discuss three critical

factors that influence the occurrence of the fluid-driven jamming, i.e., the orifice-particle size ratio

R, the initial solid concentration φ0, and the fluid velocity Uf . The concluding effects of these

factors are detailed as follows:

1. When the initial solid concentration φ0 is greater than φthreshold, the jamming is possible

to occur, and the jamming probability increases with the φ0. Once the φ0 is greater than

φcritical, the jamming definitely occurs (P = 1). Furthermore, the occurrence of jamming is

related to the particle discharge rate dn/dt. When dn/dt reaches to the maximum discharge

capacity of the orifice dn/dtmax, the jamming is possible to happen (P > 0). In addition, the

time when jamming occurs is influenced by the solid concentration φ0. When φ0 ≥ φcritical,

jamming occurs more quickly in the higher solid concentration flow.

2. The coupled effect of the solid concentration and the orifice size ratio on jamming probability

is also studied here. It is found that with the increase of the orifice size, the value of φthreshold

and φcritical increases. This is because the maximum discharge capacity of the orifice dn/dtmax
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increases with the orifice size ratio R. An orifice with a larger size ratio has a greater

discharge capacity that allows more particles to flow through. Therefore, the maximum value

of the particle discharge rate dn/dt is higher, and accordingly the value of φthreshold is higher.

For an orifice with a larger size ratio R, jamming is possible to happen in the higher solid

concentration flow. However, there is a critical orifice size ratio at which the jamming is

impossible to happen even if φ0 is very high.

3. The influence of the fluid velocity on jamming is complex and varies with the solid concentra-

tion and the fluid velocity. It is found that Uf influences the type of jamming, the jamming

probability, and the shape of the jamming dome. The sequential jamming without a jam-

ming dome occurs in the particle flow with the low solid concentration and the low speed.

Otherwise, the multi-particle bridging occurs. For the multi-particle bridging, the jamming

probability increases with the fluid velocity due to the increase of the maximum particle dis-

charge rate dn/dtmax. However, when the fluid velocity is high, the effect of the fluid velocity

on jamming probability becomes insignificant because the dn/dtmax is not significantly influ-

enced by the fluid velocity. Additionally, the fluid velocity has the effect on the shape of the

jamming dome. With the increase of the fluid velocity, the fluid drag exerted on the clogged

particles increases, and thus the curvature of the jamming arch grows.
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Appendix A. Diffusion-based averaging method

The solid volume fraction φs, solid phase velocity Us, and fluid-particle interaction force Ffp

is obtained by implementing a robust diffusion-based averaging method from discrete particle data
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(Sun and Xiao, 2015a,b, 2016). The first step of this method is averaging these fields, e.g. the solid

volume fraction φs, based on the particle centroid method (PCM):

φs,k =

np,k∑
i=1

Vp,i

Vc,k
, (A.1)

where k is the fluid cell index. φs,k is the solid volume fraction of cell k and Vc,k is the volume

of cell k. np,k denotes the number of particles in fluid cell k, Vp,i is the volume of particle i. The

obtained φs,k by using PCM method is served as the initial condition φs,k|t=0 for the following

diffusion equation (Sun and Xiao, 2015a,b):

∂φs
∂τ

= ∇2φs for x ∈ <3, τ > 0, (A.2)

where x is spatial coordinate; ∇2φs =∂2φs/∂x
2 + ∂2φs/∂y

2 + ∂2φs/∂z
2. Integrating the above

diffusion equations (Eq. A.2) with the initial conditions (Eq. A.1) and zero-gradient condition at

the physical boundary until time τ = T , the obtained φs(x, T ) is the averaged field to be used

in our simulations. The similar diffusion based coarse graining method is implemented to acquire

Us and Ffp in Eq. 3. It is noteworthy that Us and Ffp is not calculated directly, while the

quantities φsUs, and φfFmfp are chosen to solve in the diffusion equations due to the conservation

requirements, i.e.,

particle momentum: ρs

Nc∑

k=1

φs,kVc,kUs,k =

Np∑

i=1

ρsVp,iUp,i (A.3)

fluid–particle interaction force:

Nc∑

k=1

(1− φs,k)ρfVc,kFmfp
k =

Np∑

i=1

ffpi (A.4)

where Nc and Np represents the total number of fluid cells and particles in system. Us,k is the

Eulerian solid phase velocity in cell k, and Fmfp
k denotes the fluid-particle interaction force per unit

fluid mass in cell k. Finally, divide the diffusion-based averaged quantity φsUs(x, T ) by φs(x, T ),

and multiply the quantity φfFmfpk(x, T ) by ρf , to obtain Us and Ffp, respectively. This method

has been demonstrated to be equivalent to the statistical kernel method with a Gaussian kernel

(i.e., the bandwidth of Gaussian kernel b =
√

4T ) (Sun and Xiao, 2015a,b) but is more convenient

to implement in CFD–DEM simulations.

Appendix B. Validation case of the gravity-driven jamming

Before validating the fluid-driven jamming cases, we first performed a simulation of gravity-

driven jamming to validate our DEM model. Same as Zuriguel’s experimental setup (Zuriguel

et al., 2005), a cylindrical silo has the diameter of 30 cm. The flat base of the silo with a circular

hole is also modeled by the fixed particles. Besides, the particle properties are based on the ”Set
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1” experiment of Zuriguel et al. (2005), where dp = 0.001 m and ρp = 2200 kg/m3. In place of the

jet of pressurized air from beneath the orifice that triggered the avalanche in the experiments, we

utilized a frictional wall to accumulate the packed particles and then unfixed the wall to release

the particles. As proposed by Zuriguel et al. (2005), when the orifice-particle size ratio R is smaller

Figure B.20: The number of discharged particles at different R

than a critical size ratio Rcr, the particles clog the silo’s outlet, and the particle jamming occurs.

On the otherwise, once the orifice-particle size ratio exceeds the critical size ratio, the particles fall

continuously from the silo without jamming. In our simulations, we found that when orifice-particle

size ratio R is smaller than 4.85, the particle jamming occurs. The number of discharged particles

is very small, which is in the range of [24, 38] when R ∈ [4.70, 4.85]. However, when R >= 4.88, the

particles fall continuously without jamming, the number of discharged particles increases sharply

from 24 (R = 4.85) to 13078 (R = 4.88), as shown in Fig. B.20. This means that the critical

size ratio obtained in our simulation is in the range of [4.85, 4.88], which is very close to the value

of Rcr, 4.94 ± 0.03, obtained in Zuriguel’s experiment (2005). This close agreement validates our

model for simulating the gravity-driven jamming and demonstrates the validity of the utilization

of the fixed particles that constructs the hole/orifice.

30


