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Abstract 

Vulcanised rubber is extensively used in many industrial sectors due to its good physical, mechanical and 

dynamic properties, as well as excellent durability, outstanding abrasive resistance and relatively low cost. 

Unfortunately, most post-consumer rubber-derived products are still discarded as waste, buried in landfills 

or incinerated. Such materials require many years to degrade naturally due to i) their complex cross-linked 

composition, and ii) the additives used during manufacturing to extend the lifespan of rubber. Extensive 

research has investigated the use of end-of-life rubber as binder (e.g. elastomers, bitumen), or as 

conglomerates (cement, gypsums) to produce innovative composites in construction. To improve the 

properties of composites made with recycled rubber, the surface of rubber has been treated with different 

costly processes to improve the Interfacial Transition Zone (ITZ). However, the results available in the 

literature are inconsistent and many technical and practical aspects remain unsolved, thus preventing the 

cost-effective use of rubber in the construction industry. This study provides a comprehensive review on 

rubber properties and surface treatments of rubber recycled from post-consumer components so as to 

identify potential applications in composites for construction. It is concluded that an understanding of the 

chemical, physical and mechanical properties of rubber, as well as a proper characterisation, are necessary 

to take full advantage of this high quality material. Future research needs in the field are also suggested. 
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1 Introduction 

Rubber (cured rubber compound or vulcanised rubber) has been used in various industrial applications since 

the Industrial Revolution. In particular, the development of the vulcanisation process [Goodyear, 1844] 

allowed the cost-effective production of large volumes of high-quality rubber. Current global rubber 

production is approximately 26.7M tons, of which 12.31M are natural and 14.46M synthetic rubber to 

produce tyres and other industrial and consumer products [Rubber Statistical Bulletin 2017]. Global tyre 

production is estimated at 1.5Bn units/year, and approximately the same number of tyres reach their service 

life every year [ETRA 2016]. End-of-life tyres contain up to 90% of vulcanised rubber which cannot be 

easily recycled due to the complex cross-linked structure achieved through vulcanisation [Adhikari 2000]. 

The inappropriate disposal of rubber from these tyres is hazardous to the environment [Zheng 2005] and, 

consequently, stringent EU directives prioritise the reuse and recycling of rubber and ban tyre landfilling 

(Directive 2008/98/EC and Landfill Directive 1991/31/EC, respectively). This has increased the efforts 

towards generating novel applications for all end-of-life tyre components in various industrial sectors. 

Vulcanised rubber is extremely durable, strong, flexible and can maintain its volume under loading, thus 

making it suitable to be used as aggregate for composites. However, to date most of the rubber recovered 

from tyres is burnt as fuel, a process which produces hazardous gases and only recovers 25% of the energy 

used to produce rubber [ETRMA 2010a]. More environmentally friendly processes have been developed 

to recover rubber, such as tribo-electric separation, froth flotation method or laser-induced breakdown 

spectroscopy [Adhikari 2000, Yi 2001, Singh 2016]. However, these are still expensive, and the recovered 

rubber varies considerably in cleanliness, size, shape and quality of surface finish. Recovery methods affect 

the suitability of recycled rubber for use in the manufacture of new composite products. For instance, small 

rubber granulates have more contact surface than large rubber chips, and therefore the former adhere better 

to a matrix [Herrero 2013, Su 2015, Flores 2016]. However, the associated costs of obtaining small rubber 

sizes also increase [Guoqiang Li 2004]. 

Over the last decades, extensive research has investigated the use of recovered rubber in composites 

[Adhikari 2000] and particularly in the construction industry, which is the main consumer of raw materials 

worldwide. The use of tyre rubber in concrete as a replacement of portions of the concrete mineral 
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aggregates has also been considered [Najim 2010, Thomas and Gupta 2016]. However, the addition of 

rubber reduces the workability and strength of concrete, and increases its micros-cracking and lateral 

expansion under compressive load. Consequently, the use of rubberised concrete in high-value structural 

concrete applications is very limited to date. Recent research by Raffoul (2016) identified a lack of 

consensus on how to quantify the influence of rubber on the physical and mechanical properties of fresh 

and hardened concrete. The insufficient understanding of the chemical and mechanical behaviour of rubber, 

combined with its adverse effect on some concrete properties has limited its widespread use in the 

construction industry. Moreover, the composition and fundamental behaviour of the different types of 

rubbers need to be understood to fully exploit their properties in high-value applications in construction. 

This article examines critically the current challenges and future potential applications of rubber in 

composites for construction, including composites with different binders and conglomerates. Based on a 

comprehensive literature review, Section 2 reviews the properties of different types of rubbers, their 

manufacturing and recycling processes, and discusses the feasibility of rubber characterisation before 

recovering/recycling. As the mechanical properties of rubberised composite depend heavily on the bond 

between aggregates and matrix at the Interfacial Transition Zone (ITZ), the different techniques used to 

treat the surface of rubbers (and other polymers) are critically revised in Section 3. Section 4 summarises 

the typical properties of composites used in the construction industry, with emphasis on the amount of 

reclaimed rubber and mix designs investigated in the literature. Finally, Section 5 gives new directions on 

potential high-value applications of rubber in construction, as well as recommendations for future research. 

2 Composition and properties of rubber 

The properties of rubber compounds depend directly on its microstructure, which is generally formed by 

elastomeric chains (also named as natural rubber, polymer or resin) and fillers/additions that in turn form a 

continuous and homogeneous polymeric composite. There are two main types of plastic products: 

thermoplastics and thermosettings [Greensmith 1963, Nakajima 1993]. Thermoplastics are polymers 

composed by monomers organised in independent large chains that change their properties with an increase 

in temperature without an associated phase change. The degree of polymerization DP (or molecular weight) 

of a rubber is determined by the number of monomeric units in a macromolecule. Higher density and 

https://en.wikipedia.org/wiki/Phase_transition
https://en.wikipedia.org/wiki/Structural_unit
https://en.wikipedia.org/wiki/Macromolecule
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mechanical strength of a thermoplastic correspond to higher values of DP. Whilst chemical covalent forces 

bond strongly a single chain, different chains are bonded with secondary (weak) ‘Van der Walls’ forces. 

The 3D zigzag molecular architecture of these chains has freely rotating bonds, which enable the rubber 

molecule to stretch and shorten without any change in its internal energy [Ponnamma 2014]. This gives 

thermoplastics a high deformability but low strength due to Van der Walls forces.  

To enhance rubber strength, sulphur (or other vulcanizing agents) is added to unsaturated rubbers to link 

the chains using primary (strong) bonds that create thermoset polymers. Unlike thermoplastics, the 

properties of thermosets do not change with temperature, and therefore, they are widely used to manufacture 

tyres that can resist harsh mechanical/environmental conditions. The vulcanisation process, curing time, 

temperature and type of filler can affect the chemical and physical properties of thermoset rubbers 

[González 2005; Heinrich 1993]. Nonetheless, the overall stress-strain behaviour and microstructural 

changes of thermosets subjected to tensile stress follow common patterns, as shown schematically in Figure 

1. Initially, strains develop quickly due to the weak Van der Waals bonding between the polymer and the 

filler (see stage 1 in Figure 1). After the Van der Waals bond is overcome, the response stiffens in the 

second stage due to i) the work of the covalent bonds of some aligned chains, and ii) the friction between 

the polymer chains and the fillers during the chains’ realignment in the direction of the applied tensile load. 

In the third (and final) stage, the response stiffens further as the majority of the polymer chains have been 

stretched and aligned with the direction of the applied force [Thomas 2013]. 
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Figure 1. Schematic representation of the microstructure and stress-strain behaviour of two thermoset rubbers with 

different amounts of filler subjected to tensile stress.  

The chemical composition of tyre rubber influences its mechanical behaviour, grip and lifespan. Whilst 

such composition varies from manufacturer to manufacturer, the raw materials used for tyre production in 

the EU are similar, as summarised in Table 1. In general, the properties of rubber are defined by the a) 

type/amount of elastomer used as binder, b) cross-linking process, and c) type, size and amount of filler. 

Table 2 summarises the available information in literature on rubber properties, including the type of 

elastomers, type and amount of fillers, tensile strength, elongation at rupture, Poisson’s ratio, as well as the 

elastic modulus of rubber at different tensile strains (shown as percentages of the elastic modulus M50%, 

M100% and M300% at 50%, 100% and 300% strain respectively). The following sections discuss the effect of 

the type of elastomers and fillers on the mechanical properties of rubber. 
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Table 1. Summary of raw materials used in tyre production according to the European Tyre and Rubber Manufacture´s 

Association [ETRMA 2011b]). 

Material Car (%Wt.) Trucks (%Wt.) RDV* 

Elastomer: Rubber/Elastomers 40-45 42 Yes 

Carbon black and Silica (fillers) 28 24 Yes 

Metal reinforcement 13 25 No 

Textile reinforcement 5 - No 

Zinc oxide 2 2 Yes 

Sulphur (crosslinker) 1 1 Yes 

Accelerators/Antidegradants 2.5 n.a. Yes/No 

Stearic acid 1 n.a. Yes 

Oils 7 n.a. No 

* Reacting during vulcanization (RDV) 
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Table 2. Summary of composition of different types of rubber and their main mechanical properties  

 
 

*Acronyms: Amount of filler is in parts per one hundred parts rubber (phr), HBNR (Hydrogenated Nitrile-Butadiene 

Rubber), NR (Natural Rubber), BR (Butadiene Rubber), SBR (Styrene-Butadiene Rubber), NBR (Nitrile Butadiene 

rubber), ENR (Epoxidised Natural Rubber), EPDM (ethylene/propylene/diene), MA (maleic Anhydride), RCN 

(Rubber/Clay Nanocomposites), CB (Carbon Black), FGS (Functionalized Graphene Sheets), NK (Nanokaolin), PS 

(Precipitated silica), HAF (high-abrasion furnace black). 

 

2.1 Microstructural composition 

2.1.1 Elastomers 

Natural Rubber (NR) is the most widely used elastomer in rubber production [ETRMA, 2010a] due to its 

high tensile strength and tear growth resistance (see Table 2). This behaviour is mainly attributed to its 

Author (year) Elastomer Filler Amount of Filler (phr) Tensile strength (MPa) Elongation at break (%) M 50%(MPa) M 100%(MPa) M 300%(MPa) M 500%(MPa) Poisson´s ratio

0 26,6 204 3,4 9,1

2.5 26,9 206 5,8 13,7

3.5 28,6 209 6,9 15,0

5 28,5 210 6,8 15,2

7.5 29,5 190 5,4 15,9

10 29,2 163 8,3 21,1

40  (Not treated) 26,7 460 * 2,9 3,6

40 (Surface treated) 26,6 390 * 14,9 18,9

0 1,5 1,8 0,499

2.4 1,8 1,9 0,499

6.8 2,3 2,4 0,498

12.8 3,7 4,3 0,498

18.0 5,3 6,5 0,497

0 1,5 1,8 0,499

2.4 1,6 1,9 0,499

6.8 2,2 1,9 0,498

12.8 3,2 3,6 0,498

18.0 4,4 4,8 0,497

no filler 0 16,0 1120 0,6 1,3

Organoclay 2 28,0 1220 0,9 2,1

CB 50 23,0 750 1,9 6,5

Silica 30 21,5 700 1,3 5,4

0 2,1 600 0,9 1,24 1,7

1 6,2 521 1,1 1,51 2,0

3 7,9 816 1,1 1,64 2,3

5 9,5 826 1,2 1,81 2,5

7.5 12,0 784 1,4 2,42 3,6

10 13,4 833 1,7 2,7 3,9

0/50 30,0 430 3,7

1/4 31,0 440 4,3

20/30 28,0 440 3,8

30/20 31,0 510 3,2

40/10 29,0 520 2,8

50/0 28,0 550 2,7

no filler 0 27,0 2,6

Clay 6 30,0 5,3

6 28,0 3,4

14 27,0 5,9

6 26,0 3,2

35 27,0 5,9

no filler 0 6,2 700

 FGS 4 11,5 250

CB 16 7,1 500

0 2,0 *

20 12,0 450

40 15,5 420

0 2,0 *

20 16,0 350

40 22,0 340

0 2,0 *

20 12,0 460

40 14,0 720

0 2 380 0,9 1,8

5 3,2 340 1,3 2,8

10 4,1 320 1,7 3,5

0 1,9 290

10 5,1 500

40 12,8 680

100 15 610

150 13,2 440

EPDM rubber 10  (20 ToC) 3,9 380 1,5 2,3 3,0

EPDM + 50wt%MA 10  (20 ToC) 6,6 395 2,0 3,3 4,9

EPDM rubber 10  (20
o
C) 5,2 495 1,6 2,3 2,9

EPDM + 50wt%MA 10 ( 20
o
C) 8,1 360 2,7 4,6 6,9

EPDM rubber 10  (20 ToC) 4,9 520 1,5 2 2,6

EPDM + 50wt%MA 10  (20 ToC) 10,5 321 3,9 7,3 9,9

EPDM rubber 10  (100oC) 7,1 645 1,6 2,3 3,0

EPDM + 50wt%MA 10 ( 100oC) 14,9 403 5,4 9,3 12,1

no filler 0 4,2 >700 0,6 1,33 2,6

Clay 10 3,6 555 0,5 1,38 2,9

Organoclay 10 15 >700 1,7 4,31 9,7

10 4,9 464 0,8 2,53 **

40 10,3 434 1,6 5,52 **

PS 50 17,6 740 4,23 8,5

NK 50 16,3 767 2,63 3,8

PS 45 16,8 561 6,31 13,7

NK 45 26,8 622 7,07 17,7

PS 60 5,8 261 ** **

NK 60 7,5 796 1,45 2,0

PS 60 13,3 446 8,8 **

NK 60 17,2 566 4,87 11,3

CB (N330)

CB (N650)

ENR-nanoclay

SBR Silica

Liqun Zhang (2000)

NR

SBR

SBR HAF CB

Rajasekar (2009) NBR

Clay

Clay

Clay

Bulent Ozbas (2012)

Rattanasom (2009) NR

Carbon Nanotube

J. Leopoldès (2003) NR CB

Teh (2004) NR+ENR

M.Cadambi (2011) HNBR

B. Omnès (2008)

 Organosilicates

Silica/Carbon BlackNRRattanasom (2007)

NR

WEI-GWO HWANG (2004) NBR

Quinfu Liu (2008)

SBR

NR

BR

EPDM

CB

Precipitated silica

CB

Arroyo (2003) Natural Rubber

Karger (2004)

 Organoclay internal 

mixer

 Organoclay open mill

Yong-Lai Lu (2007) SBR RCNs
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ability to crystallize rapidly during stretching, as well as to its high molecular weight and long branched 

chains [Gonzalez 2003, Nakajima 2000]. To improve further its properties in tyre manufacturing, NR is 

typically blended with other synthetic elastomers such as Butadiene Rubber (BR), Hydrogenated Nitrile-

Butadiene Rubber (HNBR), Nitrile Butadiene Rubber (NBR), Styrene Butadiene Rubber (SBR), and 

Ethylene Propylene Diene Monomer (EPDM). 

2.1.2 Fillers 

Rubber is often produced using fillers such as carbon black (CB), precipitated silica (PS), clay, calcium 

and/or carbonate [Liu 2008]. Fillers enhance the strength of polymers by forming a flexible filler network 

and a strong polymer-filler coupling [Thomas 2013]. Stiffening fillers (mainly CB and silica) increase 

entanglement and shear strength between polymer chains [Heinrich 1993], which in turn enhances rubber 

stiffness, as well as tensile and tear strength, abrasion resistance, hardness, thermal stability and rupture 

modulus [Rattanasom 2007, Liu 2008]. Whilst CB is the most commonly used strengthening filler in rubber 

production, alternative clay-based fillers (such as montmorillonite, synthetic mica, hectorite and saponite) 

have also been used. For instance, Okada (1995) showed that NBR containing 10% volume fraction of 

organoclay achieves similar tensile strengths as rubber with 40% CB. However, larger amounts of filler 

(>20% depending on filler type) result in higher rubber viscosity, which can complicate the rubber 

manufacturing process [Nakajima 2000].  

Fillers used in the manufacturing process also differ in size. For instance, Teh (2004) used organoclay, 

silica and Carbon Black 330 (CB330), with mean particle sizes of 4.43, 7.17 and 9.14 nm respectively. 

Nanofillers have also been used as fillers, e.g. Liu (2008) added nanokaolin of 300nm average diameter 

and 20-50nm average thickness. In general, the size of fillers used in rubber production has reduced in the 

last decades (from micrometres to nanometres) to increase the mechanical resistance and storage modulus 

(E´) of rubber. However, this is accompanied by higher production costs [Hu 2001]. To reduce polymer 

consumption, researchers have sought to increase the bulk volume of rubber. Likewise, production costs 

were reduced by adding fillers [Dai and Huang, 1999, Okel 1955, Nie 2004]. 

The size, shape and molecular structure of fillers can modify the behaviour of rubber microstructure when 

stressed. For example, layered silicate fillers can interact in the polymer structure as separated phases 

https://en.wikipedia.org/wiki/Styrene-butadiene
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(microcomposite), in the same way as an intercalated or exfoliated structure does [Alexandre 2000]. The 

use of nanoclay can also enhance rubber properties due to its better distribution in the rubber matrix 

compared to the common clay fillers [Rajaselar 2009]. To improve the rubber–filler interaction in a rubber 

composite, the filler’s surface can also be pre-treated [Leopoldes 2004]. Fillers have also been treated to 

improve the manufacturing process and the mechanical properties of the rubber composite. Leopoldes 

(2002) used oxidative gas at 40% relative humidity during several days on CB330. Arroyo (2003) obtained 

organoclay through the activation of montmorillonite with Na+ and dispersing it in hot water (80ºC) with 

continuous stirring and later with acids to yield after filtering the solution. Alexander (2000) used thermal 

treatments, methylaluminoxane or cations (Na+) when layered fillers were used as layered silicates so as 

to increase layer spacing. However, much of the existing literature do not provide the size of fillers or 

corresponding treatments, which hinders a proper characterisation of rubber. 

2.1.3 Other additives 

A variety of additives and solvents are often used to increase rubber durability and speed up sulphur 

interlinking reaction [ETRMA 2010a]. Zinc oxides are widely used as activators during vulcanization for 

tyre manufacturing (see Table 1). Mild extract solvate (MES), naphthenic oil, treated distillate aromatic 

extract (TDAE), and paraffinic oils are also used to improve the processability of compounds and to 

enhance mechanical endurance.  

2.2 Mechanical Properties of Rubber 

Previous studies have examined experimentally rubber properties used in tyre manufacturing, such as 

static/dynamic service life, traction, wear resistance and rolling resistance [Kohls 2002]. However, the test 

results depend heavily on the rubber free surface energy, distance between filler aggregates, and the effect 

of filler–rubber interactions on the rubber dynamic mechanical properties [Wang 1998 and 1999, Wolff 

1992]. 

The curing process also influences the mechanical properties of rubber. Karger (2004) studied EPDM 

rubber blended in an open mill, or in an internal mixer at either room temperature or at 100ºC. It was found 

that the tensile strength of rubber increased by up to 50 % when an internal mixer is used at 100ºC instead 

of open mill blending. Gonzalez (2005) reported that a curing process which generates over-crosslinked 
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domains in the network topology of rubber also increases its tensile strength, although the level of the 

increase depends on the curing temperature.  

2.2.1 Influence of elastomers on the rubber mechanical properties 

Liu (2008) studied the differences in SBR, NR, BR and EPDM elastomers with precipitated silica and 

nanokaolin (NK) as fillers. It was found that NR has the highest tensile strength among these elastomers 

when nanokaolin was used as filler, whereas BR had the lowest tensile strength (see column 5 in Table 2). 

Liu (2008) also reported that the highest tensile strength was obtained by using Styrene-Butadiene with 

precipitated silica. It should be noted that natural rubber has a higher strain capacity compared to other 

elastomers such as BR, SBR or EPDM. Blends of elastomers are used to improve the rubber mechanical 

characteristics, reduce cost and increase elongation capacity [Gil-Negrete N. 2013]. Teh (2004) reported 

the mechanical behaviour of NR blended with epoxidised Natural Rubber with different fillers, showing 

that blends can obtain better results. The data in Table 2 indicate that fillers enhanced the strength of rubber 

in all elastomers investigated in previous studies. 

2.2.2 Influence of fillers on the rubber mechanical properties  

The properties of rubber blends also depend on the type of filler and on their compatibility with the type of 

elastomer used. CB is by far the most used filler in rubber. The data by Rattanasom (2007) in Table 2 show 

that, for the same type of elastomer, the use of silica and CB fillers (e.g. 30% and 20%, respectively) led to 

a tensile strength up to 5% higher than in composites with CB fillers only. Arroyo (2003) also showed that 

organoclay fillers in NR enhanced the tensile strength by more than 300% when compared to NR with clay 

(15 MPa vs 3.6 MPa, respectively). This may be due to the free surface energy of the filler, which enhances 

its compatibility with the rubber. For instance, highly polar silica does not interact well with a non-polar 

elastomer [Kohls 2002]. The results of Liu (2008) also indicate that the use of precipitated silica (PS) 

increased the rubber tensile strength by 7.3% over the use of similar amounts of nanokaolin (NK) in SBR. 

Rattanasom. (2007) reported that NR with silica and carbon black as fillers combined in proportions of 10% 

to 40% was more resistant, thus concluding that filler blends generally lead to stronger rubber composites. 

However, the use of fillers can only increase the rubber tensile strength up to a point. For example, the 

tensile strength of NR reduced from 28 to 27 MPa when the proportion of CB filler increased from 6% to 

14% (see results by Liu (2008) in Table 2).  
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Fillers also increase the hardness and abrasion resistance of rubber composites, which is fundamental in 

tyre manufacturing. Hwang (2004) reported that, compared to a plain elastomer, NBR nanocomposites with 

organosilicates increased the hardness (obtained with a Shore durometer) by up to 24% when 10 phr of 

such filler was used. Zhang (2000) and Rajesar (2009) reported similar results from SBR with clay fillers 

and NBR with nanoclay fillers, respectively. 

2.2.3 Strain of rubber aggregates. 

Previous studies showed that the elongation capacity of NR reduces with the addition of fillers (see column 

6 in Table 2). Whilst NR without fillers had a rupture elongation of 700%, the addition of CB or 

functionalised graphene sheets (FGS) reduced this value to 500% and 250%, respectively [Bulent Ozbas 

2012]. The results of Rattanasom (2009) show that the elongation at rupture of NR reduced by 22% when 

CB was added to NR. Zhang (2000) also reported low rupture elongations when clay fillers were added to 

SBR. Rajaselar (2009) examined the mechanical performance of NBR with epoxidized natural rubber and 

nanoclay fillers. The addition of nanoclay (up to 10 phr) reduced the elasticity from 380% to 320%. 

Conversely, the use of organically modified clay (OMC) fillers in SBR enhanced the rupture elongation 

from 290% to 440% [Yong-Lai Lu 2007]. These results confirm that the increase of elongation and strength 

values are usually inversely proportional, and that the elastomer-filler interaction is of paramount 

importance to understand the final properties of rubber. 

Columns 7-10 in Table 2 summarise the elastic modulus of rubber at different tensile strains. The results 

indicate that the elastic modulus and tensile strains increase proportionally (see also Figure 1). The increase 

of filler additions can also increase the elastic modulus [e.g. Hwan 2004, Rattanasom 2009, Rajaselar  2009, 

Arroyo  2003]. These observations (and Figure 1) confirm that the stiffness of rubber varies considerably 

depending on the applied level of stress.  

Due to their incompressibility (i.e. Poisson’s ratio close to 0.5) and high damping coefficient, rubber 

composites have been widely used in vibration control and seismic isolation [Kelly 1997, Amin 2006, 

Bergström and Boyce 1998]. The results shown by Omnès (2008) indicate that the compressive strength of 

NR increases from 1.8 to 6.5 MPa with 0.18 volume fraction of CB with 29nm size and from 1.8 to 4.8 

MPa for a CB with 50nm size. However, the Poisson’s ratio reduced marginally from 0.499 to 0.497, which 
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can be attributed to the lower mobility of the rubber microstructure [Omnès 2008]. Recent research [Raffoul 

2017] showed that, under axial strain (εl), the high Poisson’s ratio of rubber leads to large lateral strains, 

which reduces the compressive strength of composites with a high stiffness matrix such as cement or 

gypsum. 

2.3 Thermal properties of rubber 

Thermal conductivity in polymers depends mainly on the lattice vibration/phonon (energy quanta of atomic 

lattice vibrations) mean free path, which is very small due to the scattering with other phonons, defects and 

grain boundaries in their microstructure [Chen 2016]. The thermal conductivity of most polymers is 0.1-

0.5 W/(m.K). However, the addition of fillers can change the thermal conductivity of a blended polymer. 

For example, the thermal resistance of a composite increases if the coupling at filler-polymer and filler-

filler interfaces is poor [Sadasivuni 2014, Seol 2010]. As mentioned in section 2.2, small (micro or nano) 

filler particles have large interfacial area, which can cause phonon scattering and hinders phonon transport, 

thus reducing the thermal conductivity of composites [Tsutsumi 1991]. Moreover, fillers such as CB (with 

a low thermal conductivity) can reduce further the conductivity of composites [Chen 2016, Samaca-

Martinez 2013].  

To date, information about the thermal behaviour of thermosetting rubber composites is limited as they are 

mainly used in mechanical applications. Conversely, the low thermal conductivity of other plastic 

composites such as polyethylene (PE), polystyrene PS and polyurethane (PUR) polymers with foamed 

microstructure (0.041, 0.032 and 0.025 W/m K, respectively) make them very suitable for thermal 

insulation [Al-Homoud 2005, Antunes and Valesco 2014]. 

Overall, the results in the literature indicate that the mechanical properties of rubber vary widely and depend 

heavily on its rubber chemical composition. However, the physical characteristics of rubber can also 

influence the properties of the composite. Consequently, and as discussed in the following section, a careful 

characterisation of the properties of recycled rubber is necessary before it can be used in practise. 
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3 Understanding rubber as aggregate in composites 

3.1 Reclaiming rubber from tyres 

Numerous reclaiming procedures exist to extract rubber from end of life tyres. Most tyre rubber is reclaimed 

by mechanical, cryo-mechanical or thermo-mechanical processes. Mechanical recovery is usually carried 

out in facilities such as grinding mills, rolling mills, or rotary crushing mills [Fang 2001]. The geometry, 

surface, and texture of the rubber aggregate depend heavily on the reclaiming process. These properties, in 

turn, determine the bonding of rubber aggregate to the matrix of the composite, which can also affect the 

mechanical properties of the composite. However, whilst several techniques exist for sorting out plastics 

[Singh 2016], only a few techniques for sorting out the rubber aggregates are found in the existing literature 

[Liang et al. 2015, Onyshchenko 2016].  

The full recovery of virgin rubber is also possible, although expensive. Thermoplastic rubbers can be 

recycled two or three times to obtain virgin rubber, but their mechanical properties degrade during the 

recycling process. Conversely, the recycling of thermosetting rubbers requires breaking the crosslinks of 

the microstructure, which involves a costly process known as ‘devulcanisation’. Rubber can be decomposed 

through chemical/thermal processes or microwaves to devulcanise the rubber or to produce crosslink 

scission [Rajalingam 1993]. Through this recycling process, the devulcanised rubber can be used again as 

raw material (blended with raw polymers) to vulcanise the composite again. Nevertheless, the new material 

will have lower mechanical properties as old chains of the recycled rubber cannot be restored to achieve 

continuity (or bond) with the matrix. Other methods of devulcanisation include pyrolysis, cracking, 

chemolysis and gasification [Singh 2016]. 

3.2 Rubber aggregate geometry 

The geometry, size and shape of rubber aggregates determine the possibilities of reusing granulated rubber 

as aggregate in composites. The aspect ratio (ratio of the largest to the smallest orthogonal dimension) of 

the aggregate is important for the manufacture of composites that need a specific rheology, such as concrete 

or asphalts [Banfill 1993]. Tyre treads have thicknesses of around 10-20 mm [ETRA 2016], and therefore, 

the aggregates with sizes smaller than 20 mm will be more spherical with an aspect ratio closer to one. 

Rubber can be also sliced to form fibres that can be used as internal reinforcement [Li 2011]. Small size 

https://en.wikipedia.org/wiki/Orthogonality
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powders can be blended with polymers to obtain regenerated rubber or blended with bitumen to produce 

asphalts [Rebala 1995]. 

Overall, previous research has shown that concrete with rubber granulates have better mechanical properties 

than those made of shred or chips [Siddique 2004, Papakonstantinou 2006, Hall 2014]. Therefore, the 

applications of shreds and chips have been limited mainly to ground refilling and overlays in covers of 

buildings instead of composite manufacturing [Rincon et al. 2014]. 

3.3 Bond at Interfacial Transition Zone (ITZ) 

Bond between recycled rubber and its composite matrix at the Interfacial Transition Zone (ITZ) depends 

on the chemical and physical properties of both components. Bonding can be achieved through mechanical 

coupling, molecular bonding, or thermodynamic adhesion. In these processes, physical, mechanical and 

chemical interactions between aggregate and matrix take place. The physical and mechanical interactions 

depend mainly on the roughness of the aggregate surface and on the refilling of voids by adsorption. 

Conversely, chemical bonding depends on molecular inter-forces, such as dipole-dipole interactions, Van 

der Waals forces and chemical interactions between the rubber and the composite matrix [Awaja 2009].  

Achieving a good bond in composites with rubber is challenging. The adhesion between rubber and binder 

depends on the surface properties of the rubber aggregate including: roughness, polarity, chemical 

composition and surface free energy [Poisson 2006]. Contaminants at the ITZ interface can also reduce 

adhesion [Comyn 2005]. Rubber is a cross-linked polymer with very low permeability and smooth surfaces 

at the microstructural scale [Awaja 2009]. For instance, the surface and interfacial region ranges are very 

small, typically over one polymer chain, and with a radius of gyration of the order of 3–30 nm as the 

polymer and the filler fill the microstructure. The low surface free energy and lack of polar functional 

groups on the surface of the recycled rubber may lead to poor adhesion [Awaja 2009]. Even after recycling, 

the chains of the rubber surface continue to be part of the cross-linked structure. The old chains of the 

recycled rubber cannot be reactivated to achieve continuity or bond with the matrix. Hence, weak interfacial 

adhesion develops between binder and rubber aggregate even if polymers of the same composition are 

vulcanised [Creton 2002]. In many cases, very finely ground rubber is melted with thermoplastics to 

increase the interaction with the matrix [Fang 2001]. Figure 2a shows schematically the adhesion of a 
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rubber grain to a polymeric matrix. Bond at the ITZ changes when rubber aggregates are subjected to high 

temperature (around 100ºC). As shown in Figure 2b, an interphase region (mixture of rubber and matrix) 

appears when polymers are melted at high temperatures, causing a migration of CB from the recycled rubber 

to the matrix, thus improving bonding [Yildirim 2007]. In asphalts, the most volatile components of 

bitumen can be transferred to the rubber, leading to a more viscous composite [López-Moro 2013]. 

 

Figure 2. Schematic representation of different types of bond in the ITZ.  

Unlike asphalts, the bonding of rubber to hydraulic binders (e.g. cements or gypsums) is less effective 

(Figure 2c). This is attributed to the hydrophobic nature of rubber, which causes a migration of hydraulic 

phases away from rubber and produces a less dense matrix at the ITZ [Naaman 1996]. Research on concrete 

with rubber aggregates show that calcium oxide crystals concentrate at the rubber-cement phase ITZ, while 

the amount of silicon and aluminium oxides is small [Hernández-Olivares 2002, Raffoul et al. 2016]. 

Furthermore, the intrinsic surface characteristics of the rubber aggregate (e.g. friction coefficient, adhesion 

and adsorption) can lead to a poor bond with the hydraulic binder [Myers 1999]. In this case, only physical 

and mechanical interactions form between the rubber aggregate and cement (i.e. chemical bonds do not 

exist) [Hernández-Olivares 2002, Hall 2014].  

Overall, the roughness of the rubber depends heavily on the utilised recovery/recycling technique [Adhikari 

2000]. Consequently, the tyre recycling industry should direct more effort towards specifying the recovery 

process for rubbers available in the market. However, even if good contact between the matrix and the 



16 

 

rubber aggregate can be achieved, the very different stiffness between recycled rubber and hydraulic 

binders [Naaman 1996] can hinder the development of strong bond.  

3.3.1 Methods to improve rubber aggregate bond  

Bond between rubber and binder can be improved by modifying the rubber surface, using activators for re-

vulcanisation, or using adhesives and additives [Najim 2013, Lee 1998]. The most common method 

involves the modification of the rubber surface by either increasing surface roughness and/or by chain 

scission within rubber particles. The increase of roughness produces a larger contact surface area and more 

friction between the matrix and the rubber aggregates, while the opening of chains and grafting obtained 

by chain scission facilitate new crosslinking with the matrix [Rajan 2006, Shanmugharaj 2005, Punnarak 

2006, Tan 2009]. Benazzouk (2003) compared the behaviour of concrete with expanded rubber aggregates 

(ERA) and compact rubber. It was found that, compared to concrete with compact rubber, the alveolar 

surface of ERA aggregates increased the compressive and flexural strength of concrete by up to 85% and 

11%, respectively, which was attributed to a better bond between rubber and cement matrix.  

Increasing the polarity of particles and adding a cross-linkable polymer can also increase the bond between 

the matrix and rubber aggregate at the ITZ [Fang 2001]. Available techniques include ionising irradiation 

[Ismail 2016], ultraviolet radiation  (UV) [Ossola 2014, Shanmugharaj 2006], desulfurisation [Fang 2001, 

Rajan 2006], oxidation through gamma irradiation or potassium permanganate [Sonnier 2006], surface 

treatment with chemical acids such as H2SO4, HNO3 and HClO4 [Colom 2006, 2007], NaOH [Najim 2013, 

Segre 2002, Chou 2007,  Li 2004], chlorination [Fang 2001, Tan 2009], as well as the use of solvents such 

as ethanol, acetone, and methanol [Rivas-Vázquez 2015]. A bath with saturated NaOH solution can increase 

rubber roughness and surface composition (rich in zinc stearate), thus resulting in low bond. However, this 

can be solved by a potentiometric titration of the suspension of powdered rubber in 0.1 M NaCl [Segre 

2002]. Surface coating with a silane coupling agent and a subsequent layer of cement was also proven 

effective at enhancing bond [Huang 2013]. Polymer degradation with acids can improve the compressive 

strength of concrete composites by up to 60% when rubber aggregates were used [Najim 2010]. The use of 

activators after the above mentioned treatments can also increase the success of re-vulcanisation. 

Regenerated rubber can be obtained using waste rubber or new rubber as elastomeric matrix, through 
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reactivating the polymeric surfactants for interface modification and inter-penetrating polymer networks 

[Fang 2001].  

Previous studies also indicate that the use of latex adhesive enhances bonding of rubber. Lee (1998) 

achieved a 16% compressive improvement in rubberised concrete when latex was added. Additives like 

silica fume or fly ash have been also used to enhance the bond between cement and rubber aggregates 

[Rafoul et al. 2017, Najim 2013]. Both silica fume and fly ash were proven effective at mitigating the loss 

of strength in rubberised concrete by replacing cementitious material, which in turn increased the concrete 

density [Onuaguluchi 2014]. Though it has been shown that the mechanical properties of composites with 

modified/treated rubber can be relatively improved, the cost-effectiveness of any of the above-mentioned 

treatments has not been proven yet. 

4 Composites with recycled rubber aggregates 

4.1 Composites based on polymeric binders 

4.1.1 Rubberised bitumen composites 

Bitumen is a thermoplastic polymer widely used to produce asphalt and waterproofing materials. In recent 

decades, asphalt rubber (AR) has been produced by blending plain bitumen, additives and recycled ground 

rubber (vulcanised or not). AR is an environmentally friendly and cost-effective material that outperforms 

traditional asphalt concrete and stone mastic asphalt (SMA) [Pasquini 2011, Yildirim 2007].  Rubber 

powder can be added to asphalt to partially replace bitumen (wet process) or mineral aggregates (dry 

process). Previous studies [Adhikari 2000] suggest that, compared to the dry process, the wet process is 

more effective as powder rubber melts for 2-3 hours at high temperatures in the hot bitumen, which transfers 

CB from the rubber to the bitumen. Moreover, the CB absorbs paraffin and maltenes from rubber, which 

are later transferred or diffused into the bitumen [López-Moro 2013]. The transfer of CB from the rubber 

increases the thickness of the ITZ, thus improving the bond between rubber and bitumen. In addition, 

depolymerisation/devulcanisation of rubber occurs at high temperatures (usually >75º C), which blends the 

polymers from rubber and bitumen [Karakurt 2015]. Wet-processed AR is less susceptible to temperature 

changes compared to traditional asphalt, and its fatigue and rutting behaviour is similar to SMA [Pasquini 

2011]. The addition of crumb rubber increases pavement service life and stiffness, as well as rutting and 



18 

 

cracking resistance [Fontes 2010, López-Moro 2013]. Moreover, compared to plain asphalt concrete, tyre-

rubberised asphalt generates less noise in service conditions [Paje 2008]. Blends of tyre rubber and recycled 

polyethylene have been used in bitumen blends to obtain better rheological behaviour [Zaman 1995]. The 

compatibility of rubber-bitumen and the rheology of the blend can be improved by using 

transpolyoctenamer rubber additives in the bitumen [Liu 2014].  

4.1.2 Other rubberised polymeric composites 

The composition and mechanical properties of different composites with polymeric matrix and recycled 

rubber aggregates have been studied in the past. Several techniques have been used to increase the 

compatibility of rubber with the matrix. For instance, peroxide and free radicals have been added to the 

blend to increase the elongation at rupture and impact energy absorption of rubber [Sonnier 2006]. Styrene-

ethylene-buthylene-styrene (SEBS) has also been used to enhance the compatibility of Polypropylene 

(PP)/waste rubber composites, which in turn increases the elongation at rupture of the composite [Lee 

1998]. Moreover, bitumen can be used to improve the bond of waste rubber in PP blends by increasing the 

devulcanising and plasticising effects [Zhang 2012]. 

Table 3 summarises the composition and mechanical properties of different composites with polymeric 

matrices and recycled rubber aggregates. The results in columns 5-6 of Table 3 indicate that the addition of 

rubber reduces the tensile strength and elongation at rupture of the composite, even if rubber is devulcanised 

or if another polymer (bitumen or SBS) is used as compatibiliser. For instance, the addition of rubber 

aggregates reduces the tensile strength and elongation at rupture of PP blends by 33% and 75%, 

respectively, as opposed to using PP only [Costa 2010]. Further reductions were observed in PP/EPDM 

blends when rubber aggregates were added [Costa 2010]. The data in Table 3 also indicate that the use of 

compatibilisers (such as SEBS) improved further the behaviour of rubberised polymeric composites. Zhang 

(2009) obtained higher elongations at break by improving the adhesion of rubber with bitumen and SEBS 

(+260% and +370% respectively), but with similar tensile strengths. The use of the pressure and 

temperature in the manufacturing process of composites with rubber can improve their final properties. For 

example, Scaffaro (2005) examined different properties of recycled PE blends with ground rubber from 

tyres, obtaining better results when the composite was manufactured through compression than through 

injection moulding. High temperature also promotes the destructuring of the 3D network of crosslinked 
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rubber, as well as its carbonization with a filler-like effect. Such effect can increase the composites’ 

viscosity, elastic modulus and tensile strength, thus reducing its elongation at rupture, as discussed in 

section 2.2.2.  

Table 3. Composition and mechanical properties of different composites with polymeric matrix and recycled rubber 

aggregates. 

 

Although recycled rubber reduces the strength of polymeric blends, it can be used as a toughening agent in 

stiff polymers such as PP [Tantayanon 2004]. Therefore, rubber aggregate can increase the energy 

absorption capacity of the composite during loading.  

Aliabdo (2015) investigated the compressive strength of rubber composites with an epoxy resin matrix. 

Overall, composites with fibrous-shaped rubber had higher strength than those with crumb rubber. This 

was attributed to the rubber acting as internal reinforcement, which in turn restrained crack development. 

An increase in fibre rubber length (from 2.36 to 4.75) also resulted in higher compressive strengths. 

Recycled rubber aggregates have been also added in PUR foams to manufacture floating water-cleaning 

trays, shock-absorbing marine buoys [Cachaço 2013], sound-proof polyurethane foamed panels [Zhang 

2012] and polyurethane resin-based sound absorbent foams [Maderuelo-Sanz 2013]. 

The studies summarised in this section confirm that bond in composites with rubber aggregates can be 

improved using several techniques. However, the chemical characteristics of the rubber and matrix need to 

be taken into account during the manufacturing process. Overall, recycled rubber aggregates can improve 

Author Elastomer Rubber aggregate type Recycled rubber (%) Tensile strength (MPa) Elongation at break (%)

H.M. da Costa (2010) PP Scrap Tyre 0-25 30 - 20 300 - <75

PP+EPDM (2:1) Scrap Tyre 0-25 20 - <5 375 - 75

H. Ismail (2002) NR Powder 0-10-50 20-22-17 1080-980

P. Phinyocheep (2002) Compatibilized PP Scrap Tyre (midsole) 0-25 33.8-21.9 581-19

Compatibilized PP Scrap Tyre (outsole) 0-25 33.8-19.4 581-10

 N. Rattanasom  (2005) NR P. conventional vulcanization 0-50 28-18 460-240

NR P. efficient vulcanization 0-50 26-17 500-320

R. Scaffaro (2005) Recycled PE Powder (compresion moulded) 25-75 6.2-3.2 70-52

Recycled PE Powder (injection moulded) 25-75 7.1-2.0 94-51

Shu Ling Zhang (2009) PP Powder 60 9,8 51,6

PP Powder + Bitumen 60 9,5 134,6

PP Powder + SEBS 40 9 190,6

X. Colom (2007) HDPE Powder 0-40 18-6.5 999-18

Powder + H2SO4 0-40 18-16 999-6

Powder + HNO3 0-40 18-8.7 999-12

Powder + HClO4 0-40 18-6.8 999-8

Aliabdo et al. (2015) Epoxy resin (0.42-2 mm)CR ** 3.62 (compression) **

Epoxy resin (1.18-2.36 mm)Fibrous rubber ** 5.66 (compression) **

Epoxy resin (1.18-4.75 mm)Fibrous rubber ** 6.11 (compression) **
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the behaviour of composites when their manufacturing processes involve high temperatures and pressures, 

although this does not necessarily enhance the mechanical properties of the composites. 

4.2 Composites based on conglomerates. 

4.2.1 Gypsum-based composites. 

Limited research exists on the use of rubber aggregates in plaster or gypsum. Serna (2012) reported 

reductions in both compressive strength (-18%) and bending strength (-16%) when rubber (1%-5% of the 

composite by volume) was added to gypsum. Herrero (2013) studied the influence of the size of rubber 

aggregate in gypsum-based composites. For the same volume fraction, it was found that the thermal 

conductivity dropped by up to 15% when finer rubber particles were used. However, the addition of 60% 

of fine rubber aggregate (0.0-0.6 mm diameter) in plaster enhanced the acoustic insulation of boards by up 

to 13% [Herrero 2013]. 

4.2.2 Cement-based composites. 

4.2.2.1 Fresh state  

Rubber has influences the fresh behaviour the cement-based composites [Najim 2010, Younis 2018]. The 

addition of rubber in concrete, especially in Self Compacting Concrete (SCC), worsens the fresh 

characteristics of the mix and reduces the compressive strength. Indeed, rubber modifies the rheology of 

concrete, thus limiting the amount of rubber that can be used in SCC to low volumes (unless plasticizers or 

superplasticizers are used) [Flores-Medina 2013]. Bignozzi (2006) showed that a SCC with up to 21% of 

rubber volume fraction (VF) maintained its rheology, while its viscosity increased. Meddah (2014) found 

that the consistency of RCC pavements improved by replacing 30% of gravel with rubber, which in turn 

reduced 30% the compaction time. 

Previous studies [Hall 2014, Siddique 2004] demonstrated that the air content in fresh rubberised concrete 

mixes is higher than in plain concrete. This can be attributed to the hydrophibicity and non-polar nature of 

rubber aggregates, which entraps air on the rubber surface [Siddique 2004]. However, silane coupling 

agents can be used to increase the water affinity at the rubber’s ITZ [Huang 2013]. 
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Compared to plain mortars, mortars with rubber shreds have lower plastic shrinkage cracking as the shreds 

limit crack propagation [Raghavan 1998]. A similar behaviour was observed in rigid pavements made of 

crumb rubberised concrete [Mohammadi 2015]. Conversely, other authors reported a higher free shrinkage 

in conventional concrete, self-compacting concrete and mortar specimens when rubber aggregates were 

used [e.g. Hall 2014, Turatsinze 2006]. Overall, rubberised concrete is expected to be more permeable (due 

to air entrapment) and experience a higher shrinkage (due to less resistance to strain), which can affect 

durability (see section 4.2.2.3) [Demir 2015, Sgobba 2015]. 

4.2.2.2 Mechanical behaviour 

Table 4 summarises the composition and compressive strength of different rubberised cement based 

composites. The results in Table 4 include the type of concrete, rubber aggregate type (fine or coarse) and 

size, treatment method (surface treatment or addition as pre-treatment), volume of replaced aggregate and 

drop in compressive strength. To allow for direct comparisons, Table 4 reports the total volume of rubber 

replacement considering both fine and coarse aggregates. 

Table 4. Summary of composition and compressive strength of different rubberised cement based composites. 
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Acronyms used in the table: CR Crumb Rubber, FCR (fiber coated with Rubber). “Recycled rubber volume*”  

Volume is a percent of the total aggregate volume.   

*variation between the reference rubberized concrete and rubberized concrete after the method or treatment. 

**not provided. 

 

Previous studies by Raffoul (2017) showed that the compressive strength of rubberised concrete is not 

affected by the specific physical characteristics of the rubber, the size of the rubber used or the type of 

aggregate replacement, but rather influenced by the total volume of aggregate replaced in the mix. Most 

studies on rubberised concrete do not mention the recovery process of rubber, even though such process 

affects the finishing of the rubber surface and hence the final bonding at the ITZ [Hernandez-Olivares 

2002]. As expected, the replacement of mineral aggregates with rubber resulted in a reduction of strength, 

but the loss of compression strength depends on the additives or pre-treatments. 

Table 4 also indicates that SCC exhibited smaller reductions in strength than conventional concrete for 

similar replacement fractions, which can be attributed to the lower amounts of water used in SCC, as well 

Author Concrete Type Rubber aggregate type Size(mm) Process/Method Recycled rubber Volume (%)* Max. Strength Variation (%)

None 2.8 -55

Latex 2.8 -46

F. Hernández-Olivares (2002) Self compacting CR from truck tire 02-08  None (PP fiber addition) 0-7.4 -27

M.C. Bignozzi Self compacting Scrap and CR (0.5-2) - (0.05-0.7) None 0-21 -39

Papakonstantinou CG (2006) Conventional Steel Beads 20-60 None 0-8 -26.5

None ** -32

Na(OH) pre-treatment ** -24

 Powder <2.6 None 0-20 -45

CR 42095 None 0-37.5 -53

Scrap 1.5-11.5 None 0-13 -26

CR 0.2-0.85 None 0-5 -40

K.B. Najim Self compacting CR 2-10 None 0-15 -52

Na(OH) pre-treatment 15 *5

cement paste precoating 15 *15

mortar precoating 15 *29

waterwashing 15 *6

CR 4-8 None 0-60 -85

CR 4-8 None 0-60 -92

None 0-65 -72

Emulsified asphalt 0-65 -69

None 0-7 -40

limestone precoated 0-7 -37

precoated + Silica Fume 0-7 -14

None 0-10 (fine agg.) -11

Acetone 0-10 (fine agg.) 16

Methanol 0-10 (fine agg.) 5

Ethanol 0-10 (fine agg.) -5

Conventional CR 0.42-2 Polivinil Acetate 0-40 -93.3

Paste cement Fibrous rubber 1.18-2.36 Polivinil Acetate ** *-5.5

Paste cement Fibrous rubber 1.18-4.75 Polivinil Acetate ** *+58

None 0-37 -71

Latex 0-37 -89

NaOH 0-37 -77

None (fly ash) 0-35 -76

None (slag) 0-35 -66

CR 3 None 0-10 -10.6

CR 0.5 None 0-6.5 -9.6

CR 0.3 None 0-6.5 -9.5

Fine Rubber 0-5 None 0-45 -85

CR 5-10 None 0-55 -86

Fine Rubber+CR (>0.5)+(5-10) None 0-60 -89

Fine Rubber 0-5 Silica Fume+Fly Ash 0-45 -88

CR 5-10 Silica Fume+Fly Ash 0-55 -86

Fine Rubber+CR (<0.5) + (5-10) Silica Fume+Fly Ash 0-60 -84

0.5

**

2-6

2.4-11.6

0.8-1.5

1.5-11.8

(3-10)+(25-30)

ConventionalRaffoul S. (2016)

Zheng et al. (2008)

Eshmaiel Ganjian (2009)

Sara Sgobba (2015)

Haolin Su (2015)

Conventional

Conventional

Conventional

Self compacting

Conventional

K.B. Najim (2013)

Flores-Medina et al. (2014) 

Chen Bing (2014)

Hee Suk Lee (1998) Conventional CR

Conventional

Conventional

Conventional

CR

CR + Chip

Conventional

Conventional

CR

CR

**

CR

Aliabdo et al. (2015)

Obinna Onuaguluchi (2014)

L. P. Rivas-Vázquez (2015)

Liang Hsing Chou (2007)
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as to the use of higher amounts of fillers and cement paste that can improve the packing of the binder 

material at the level of the rubber-matrix ITZ [Bignozzi 2006, Olivares 2002].  

Only a few studies [Su 2015, Li 2004] have examined the effect of rubber size and shape on concrete 

behaviour. Rubber aggregates can be round, flaky or fibrous, which can affect their aspect ratio (see section 

3.2). Small size ground rubber is typically round (Figure 3a), whereas shredded and scrap rubber (size>20 

mm) is generally flaky (Figure 3b) [Aliabdo 2015]. In general, rounder aggregates favour concrete packing 

and compactness and therefore they have been recommended for use in concrete [Mehta 2013]. Overall, 

for the same volume fraction of rubber, concrete with large rubber particles tends to be more workable than 

concrete with fine rubber, although the former has a lower strength and higher permeability [Su 2015].  

Figure 3, Crumb rubber and powder (3a) and shredded rubber with flaky shape and steel fibers (3b). 

To improve the flexural strength of rubberised concrete, Papakonstantinou (2006) used steel fibres coated 

with rubber (FCR) from recycled tyres with lengths from 20 to 60 mm. The use of FCR reduced the 

workability of the mix, while it also reduced the concrete strength by 27%. To limit the detrimental effect 

of the steel fibres on the compressive strength, Papakonstantinou recommended the use of a maximum 

amount of 2% of fibres. Flores-Medina (2013) showed that the use of FCR with sizes 4-8 mm led to higher 

compressive and flexural strength (up to 24% and 60%, respectively) when compared to concrete with 

similar volumes of crumb rubber. Other studies have proven the effectiveness of using industrial steel fibres 

[Turatsinze 2006] and polypropylene fibres [Hernandez-Olivares 2002] at controlling cracking and 

increasing the flexural strength of rubberised concrete components. Recent research has also investigated 

the combination of tyre steel fibres and rubberised concrete to produce flexible concrete roads [Alsaif et al. 

2018]. 
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Numerous studies have investigated the pre-treatment of recycled rubber before its addition to concrete to 

improve the bond at the ITZ between rubber particles and the cement matrix (see section 3.3.1). The pre-

treatment of rubber typically aims at increasing its roughness and reducing its hydrophobicity. Chou (2007) 

pre-treated rubber aggregates with a NaOH solution that led to lower strength losses (up to 8%) over control 

specimens with the same rubber content. Najim (2010) compared the effectiveness of several rubber pre-

treatment methods such as NaOH, water washing and cement mortar pre-coating (see Table 3). It was 

reported that mortar pre-coating was the most effective pre-treatment at improving rubberised concrete 

behaviour (compressive strength improved by 29% over a mix with untreated rubber). Rivas (2015) 

reported a 16% and 5% increase in rubberised concrete compressive strength when using methanol or 

acetone rubber pre-treatments, respectively. A double treatment method based on a KMnO4 solution (rubber 

oxidization) and a NaHSO3 solution can enhance the compressive strength of rubberised concrete by up to 

4*% over untreated counterparts [He et al. 2016]. To date, this pre-treatment is the most effective method 

reported in the literature for rubberised concrete. Unfortunately, the cost of the pre-treatments is not always 

reported so their cost-effectiveness is difficult to assess. 

The use of additives, such as polymeric adhesives (latex or emulsified asphalt) has also been studied for 

improving concrete strength, but with limited success as the interface was weak [Karakurt 2015, Shen 

2013]. Overall, the use of mineral additions such as metakaolin and nanosilica improves the concrete 

characteristics, and prevents strength reductions [Ismail 2015, 2016, Mohammed 2016].  

Compared to normal concrete, rubberised concrete is less brittle [Zheng 2008] and has higher damping 

coefficient [Hernandez-Olivares 2002] and impact energy absorption capacity [Sukontasukkul 2013, 

Atahan 2012, Liu 2012]. The concrete brittleness index decreases with increasing the rubber content, and 

can tend to zero for a concrete composite containing 40% rubber aggregate content [Topcu 2009, 

Hernandez-Olivares 2002]. Rubberised concrete subjected to flexural loads absorbs more energy, although 

its flexural strength reduces [Ismail 2016]. Rubber aggregates also increase the concrete toughness up to a 

certain rubber content, after which the concrete toughness decreases due to the very low compressive 

strength [Hernandez-Olivares 2002]. The above properties make rubberised concrete attractive for 

applications such as slabs [Holmes 2014, Najim 2010], columns under seismic loads [Son 2011, Youssf 

2014], precast lightweight blocks [Sukontasukkul 2009], pavements [Tian 2011, Ho 2012, Meddah 2014], 

http://www.sciencedirect.com/science/article/pii/S0950061816307462
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and bullet-proof panels [Sukontasukkul 2013]. The toughness and ductility of rubberised concrete with low 

rubber volume fraction (1-3%) can be further improved by adding steel fibres [Jian-He 2015]. Similarly, 

rubber can also increase the strain capacity of mortar before macro-cracking occurs [Nguyen 2010]. 

Recent research has examined the use of external confinement to recover the compressive strength of 

rubberised concrete and exploit its deformation capacity. The confinement controls the volumetric 

expansion of rubberised concrete, as its lateral deformations and Poisson’s ratios are larger than 

conventional concrete [Khaloo 2008, Raffoul 2017]. The confinement systems investigated include 

Glass/Carbon/Aramid Fibre-Reinforced Polymer (FRP) sheets [ElGawady 2010, Youssf 2014, Raffoul 

2017], vinylester wetted E-glass [Li 2011], and steel tubes [Duarte 2015,2016]. The test results indicate 

that while such confined rubberised concrete can be used for structural applications (strength of up to 112.5 

MPa for three Carbon FRP layers), the use of low rubber contents prevents developing the full deformability 

potential that rubberised concrete can offer.  

4.2.2.3 Durability 

Compared to conventional concrete, rubberised concrete with rubber volume fractions over 40% has been 

found to have higher water penetration depth (+675%), water absorption coefficient (+61%), and chloride 

ion penetration depth (+63%) [Hall 2014]. Compared to normal concrete counterparts, water permeability 

is 2.5 times higher in rubberised concrete with a 10% of chipped rubber, and 2 times higher for rubberised 

concrete with a 10% of crumb rubber [Ganjian 2009]. The higher permeability and porosity of rubberised 

concrete is mainly attributed to rubber hydrophobicity [Demir 2015].  

Rubber aggregates also tend to swell in an alkaline environment (which can increase cracking and 

permeability), although the swelling can be reduced by adding latex to the mix [Sgobba 2015]. 

Experimental evidence indicates an increase in cracking and spalling in rubberised concrete cured in moist 

conditions [Sgobba 2015]. Such behaviour can reduce the final service life of concrete pavements [Ho 

2012, Hernandez-Olivares 2002] and rubberised asphalts [Lei 2016]. 

Hernandez-Olivares (2004) used a low amount of 2-8 mm rubber (3% aggregate volume fraction) to reduce 

spalling in concrete under fire, without evident reductions in concrete strength. The reduction in spalling 
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was attributed to the presence of voids left by burnt rubber particles, which allowed the release of pressure 

from gas/water vapours.  

4.2.2.4 Thermal and acoustic properties 

The polymeric characteristics, low density and thermal conductivity of rubber aggregates have been shown 

to reduce the thermal conductivity of rubberised concrete composites [Hall 2012, Flores 2016] and mortars 

[Corinaldesi 2011]. Aliabdo (2015) studied the thermal conductivity (k) of non-structural concrete with 

rubber aggregates. He reported a 57% reduction of k when 100% of the concrete sand was replaced with 

ground rubber. The reduction in thermal conductivity can be partly attributed to the lower thermal 

conductivity of rubber, as well as to the increase of air entrapped during mixing. The entrapped air also 

causes a higher moisture-dependent effect on thermal conductivity, which increases in saturated state [Hall 

2012]. 

The damping properties of rubber contribute to an increase in the sound absorption of rubberised concrete. 

Therefore, rubberised concrete has been used in noise absorbing panels for motorways [Ekopan, Insul-eco, 

Ruconbar, Pfretzschner 1996], and noise-blocking blocks in buildings [Sukontasukkul 2009, Turgut 2008, 

Meshgin 2012]. Research suggests that the sound absorbing properties of rubberised concrete depend on 

the sound frequency, with up to 37% sound absorption observed for concrete with 20% CR volume fraction 

in the range over 500Hz [Sukontasukkul 2009, Flores-Medina 2016]. Rubberised concrete panels have been 

used for building facades to absorb (instead of reflecting) traffic noise [Crocker 2007].  

5 Conclusions and further research needs 

From the comprehensive literature review summarised in this article, the following conclusions are drawn: 

Currently a large variety of rubbers are commercially available. Rubbers are made with different 

elastomers, fillers and manufacturing processes, all of which affect the final properties of a rubber 

composite. The mechanical behaviour of rubber depends heavily on the matrix and fillers used for its 

manufacturing. Several methods exist to sort rubbers with different elastomers before recycling, but it is 

still challenging to sort them according to their fillers or amount of fillers. The nature and amount of filler 

added to the rubber blend defines its physical and mechanical properties. However, the mechanical 
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properties of recycled rubber are generally not provided by tyre manufacturers and/or tyre recyclers, which 

increases the chances of failures of composites made with recycled rubber. Consequently, it is necessary to 

characterise rubber before it can be used in composite manufacturing. Current trends include some efforts 

towards the use of advanced chemical, physical and mechanical methods to characterise recycled rubbers, 

but more work is deemed necessary to develop cost-effective characterisation methods suitable to process 

large volumes of recycled rubbers as those required by the construction industry.  

The manufacturing process of a composite made with reclaimed rubber also modifies its final 

characteristics. Processes involving high temperatures and pressures provide the best results. Rubber can 

be also finely ground and added to a melted mass to produce extruded composites. Future research should 

focus on the inclusion of fine rubber aggregates in products manufactured at melting temperature and high 

pressure. Under these conditions, the high temperature is expected to “swell” the recycled aggregate, thus 

allowing the diffusion of fillers into the new composite and improving bond at the ITZ. Thermosetting 

rubber is hard to decompose or devulcanise and, although the recovered raw material can be reused, the 

final mechanical properties of the composite are negatively affected. Given the high cost of devulcanisation, 

the use of this process to produce composites in construction does not seem to be feasible.  

A correct understanding of the bond mechanism at the Interfacial Transition Zone (ITZ) between rubber 

and matrix is of critical importance in composite manufacturing. Major issues to address include the 

smoothness and hydrophobicity at the rubbers surface, as these reduce the bond with the matrix. Current 

efforts in research aim at improving the bond between rubber and matrix using mechanical and chemical 

pre-treatments. However, pre-treatments increase the cost of rubber and, in most cases, the behaviour of 

the composite is only slightly improved. Accordingly, future research should investigate how to enhance 

bond at the ITZ using cost-effective techniques suitable for the construction industry where rubber is 

currently mainly used in low-value applications (e.g. traffic barriers, thin overlays, concrete panels, paving 

blocks, thermal and acoustic insulators, and elements able to resist vibrations, impact and cyclic loads). 

Rubber aggregates perform well in bitumen matrix-based composites for roads, as the high temperature 

used during casting increase the carbon black diffusion from CR to bitumen, thus improving bond at the 

ITZ. 
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Small volume fractions (VF) of rubber (10-20%) can increase the toughness and the fire spalling resistance 

of concrete. Larger VF of rubber reduce the concrete strength, but this can be slightly enhanced with the 

use of fibres, latex, or fillers. Externally bonded FRP confinement was found to be very effective at 

restoring the strength of rubberised concretes (112.5 MPa for three CFRP layers) and can reach strains up 

to 8%. Current research is investigating the use of this innovative concrete in structural applications that 

require large deformability, such as seismic isolators and plastic hinges of columns. Potential future 

applications of this concrete include integral bridges and coupling beams of multi-storey buildings.  

Promising potential applications of recycled rubber aggregates in concrete also include the construction 

thermal and acoustical insulators, which are currently manufactured with polymeric binders. To date, 

however, the use of rubber as a construction material is limited since fire protection measures should be 

employed to reduce the fire risk. Nevertheless, rubber is a durable material that can be used in external 

walls and covers with insulation properties. The reduction of thermal conductivity of composites such as 

non-structural concrete with rubber can be a good way of using a high volume of recycled rubber. Moreover, 

the increased damping of rubber composites reduces noise in buildings. 
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