
Fast source camera identification using matching signs
between query and reference fingerprints

Yongjian Hu & Chang-Tsun Li & Zhimao Lai

Published online: 22 May 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Fast camera fingerprint search is an important issue for source camera identification in
real-world applications. So far there has been little work done in this area. In this paper, we propose a
novel fast search algorithm. We use global information derived from the relationship between the
query fingerprint/digest and the reference fingerprints/digests in the database to guide fast search.
This information can providemore accurate and robust clues for the selection of candidate matching
database fingerprints. Because the quality of query fingerprints may degrade or vary in realistic
applications, the construction of robust search clues is significant. To speed up the search process, we
adopt a lookup table that is built on the separate-chaining hash table. The proposed algorithm has
been tested using query images from real-world photos. Experiments demonstrate that our algorithm
can well adapt to query fingerprints with different quality. It can achieve higher detection rates with
lower computational cost than the traditional brute-force search algorithm and a pioneering fast
search algorithm in literature.

Keyword Source camera identification . Fast search algorithm . Camera fingerprint digest .

Robustness . Search Priority Array (SPA)

1 Background

There have been a number of forensic methods proposed for establishing the relationship and
linkage between digital images/videos and the imaging devices responsible for their creation (e.g.,
[4, 8, 18, 22]). Lukas et al. [18] first proposed to use the imaging sensor pattern noise (SPN) such as
the Photo-Response Non-Uniformity (PRNU) of imaging sensors as camera/camcorder finger-
print for source camera/camcorder identification. Since then, a variety of SPN-based algorithms
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have been presented. Some explore new ways of extracting camera fingerprints and extending
fingerprint applications from source camera identification to image forgery detection (e.g., [4,
8]), while others pay attention to improving quality of fingerprints (e.g., [1, 12, 14]) and the
detection effectiveness (e.g., [11, 15–17]). In the meantime, the issues relating to SPN-based
camera identification are raised, for example, the robustness of SPN-based camera identifica-
tion [21], the trustworthiness of device SPNs [3, 6, 18], and the feasibility and reliability of
applying SPN-based identification to a sizable fingerprint database [9].

Although remarkable progress has been made in developing source camera identification for
real-world applications, some areas such as fast camera identification still need further research.
Anticipating future use of camera identification from sensor fingerprint by law enforcement and
government, fast camera identification plays an important role in two typical scenarios: (i) for a large
database of N reference camera fingerprints, forensic analysts may want to determine whether it
contains the fingerprint of the camera that took a given query/test image; (ii) given tens of thousands
of query images, forensic analysts may want to search through a small or moderate-size reference
fingerprint database for the identification of source cameras of those query images and group those
query images according to their source cameras. The solutions to (i) and (ii) are basically the same.
Therefore we do not distinguish these two application scenarios in this paper. The search for amatch
between the query and the database fingerprints can be formulated as a multiple-hypothesis testing
problem with a cross correlation detector applied to each fingerprint in the database. The sequential
search/brute-force search is a simple and traditional method. Given a database of N fingerprints, the
average number of search rounds for the brute-force search algorithm (BFSA) is N/2. Since current
commercial cameras are with the resolution of several megapixels, the search process may be
intractably long if a large number of correlation-based comparisons have to be made. How to
accurately and efficientlymatch query fingerprint and reference fingerprints in the database is thus of
paramount importance in this application.

Few papers have been published in this area. References [2] and [10] are two early works in
literature. In [2], a tree structured vector quantization-based fast search algorithm is presented.
Considering that each camera has a unique SPN fingerprint and each SPN fingerprint can be
modeled as an independent and identically distributed noise signal additive to an image, this tree
structured algorithm does fingerprint matching on a group rather than individual basis. Before the
search starts, the reference fingerprints in the camera database are evenly divided into two groups.
The sum of fingerprints of each group is viewed as a composite fingerprint and becomes a node of
the binary tree. Each group is further divided into two subgroups, and the composite fingerprint of
each subgroup is calculated and treated as a node at a new level of the binary tree. Such a binary
division continues until no division is possible. Finally, each subgroup consists of only one reference
fingerprint. Given a query fingerprint, the search starts from top to bottom by picking the node that
yields the higher correlation value between the query and the composite fingerprints at each level. It
is reported that the logarithmic decrease in the search complexity is achieved. However, when
applying this scheme to the identification of source camera in a reference camera fingerprint
database, the following problem will be raised: if a query image is not taken by any reference
camera in the database (i.e., the fingerprint of the query image does not reside in the database), no
matter which tree branch is chosen, the decision is wrong. One solution to this dilemma is to
introduce a decision threshold to let the algorithm proceed along the node where the correlation
value is greater than the threshold. But query images of various contents from different cameras or
even from the same camera often produce query fingerprints with different levels of quality. This
gives rise to increased correlation variances, making the thresholding solution almost infeasible in
practical applications.

Another early fast search algorithm is the Approximate Rank Matching Search (ARMS) [10].
The large number of correlation computations is thought of as amajor obstacle to efficient search. To
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overcome this problem, the ARMS takes two measures: (i) introduce fingerprint digests to reduce
the complexity of cross correlation computation and (ii) select candidate matching database digests
(i.e., reference digests in the database) before computing every correlation value. The latter can
reduce the number of correlation computations in the search process. A digest is a compact subset of
the original fingerprint that can sufficiently characterize the original fingerprint. The elements of the
digest are called large-magnitude components or significant components of the fingerprint in [11]
and [16]. In [10], the fingerprint digest is explicitly defined as the subset that consists of an ordered
list of the k (≪n) largest components of the n-component fingerprint. Practically, some digest
elements are probably defective pixels like hot pixels (with large positive values) or dead pixels
(with large negative values) on the camera sensor. The ARMS is inspired by Spearman Rank
Correlation [5]. The digest elements that contributemost to the Spearman rank correlation coefficient
between the query and database digests are defined as the most influential indices/elements. A fast
match between the query and database digests relies on the rank information derived from the most
influential elements. Those elements are more likely located in the beginning of the digests, so the
ARMS starts the search process from the first largest element of the query digest. Using coordinates
of the current element, the ARMS looks for the digest elements at the same spatial locations on
database fingerprints. The database digests with non-zero elements are thought of as potential
candidate matching digests. These potential candidates are further selected by the inner-loop
operations. Finally, a priority is given to the selected ones during the search. If the first search round
fails (i.e., the correlation values between the query and the selected database digests are less than a
predefined decision threshold), the ARMS goes to the second element of the query digest and
repeats the search steps. This process proceeds until a match is found or the predefined search time
limit is exceeded. Since the search clue for each search round is derived from one element of the
query digest a time, we call the ARMS a local information-based fast search algorithm. Usually,
local information is sensitive to noise. In [10], Goljan et al. only gave the results of the ARMS under
the assumption that both query and reference fingerprints are good quality fingerprints. However, the
quality of query fingerprints cannot be guaranteed in real-world applications due to different image
sources and device-dependent properties.

In this paper, we propose a new fingerprint digest-based fast search algorithm. To better
handle practical query images, we propose to use global information for guiding fast search. In
general, global features are more robust than local features against noise. During experiments,
we observed the following phenomenon: when comparing the elements/components at the
same spatial locations from a pair of camera fingerprints (i.e., SPN signals), the pair from the
same camera has more elements with matching signs (“+” or “−”) than the pair from different
cameras. This phenomenon becomes more apparent with the increase of fingerprint quality.
Such observation motivates us to use the number of elements with matching signs between the
query fingerprint and the database fingerprints for fast search clues.

The rest of the paper is organized as follows. Section 2 analyzes the problemwhichwe facewhen
designing fast search algorithms and describes our initial idea of improving the search order.
Section 3 introduces our fast search algorithm. We elaborate on the measurement of search priority,
the lookup table and the construction of the Search Priority Array (SPA). In Section 4, we use
experiments to demonstrate the performance and advantages of the proposed algorithm. In
Section 5, we draw conclusions.

2 Problem statement and motivation

To increase search efficiency, current SPN-based fast search algorithms focus on devising
a data structure which can select the most likely matching reference fingerprints from the
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database without resorting to a large amount of correlation computations. The major
attention of [2] and [10] is paid to the construction of this data structure. For realistic
applications, however, there is another challenge, i.e., robustness. We use a simple
example to explain the impact of fingerprint quality on search results. Suppose a database
consists of nine reference camera fingerprints {Wi},i=1,2…,9. For a given query finger-
print X, we further assume that W7 corresponds to the camera which is responsible for X.
That is, W7 is the correct matching database fingerprint. Let ρi be the cross correlation
between X and Wi (i=1,2…,9). If a correlation value is greater than the decision
threshold tk, a matching database fingerprint is found. We assume that there are two
cases which will occur to the database: (a) ρi≤tk, if i≠7; otherwise, ρi>tk. (b) ρi≤tk, i≠2,
7,9; otherwise, ρi>tk. In case (a), the statistical detector can readily make a correct
decision as there is only one correlation value greater than the threshold. In case (b),
however, the situation is more complex since there are three correlation values which
exceed the threshold, even though ρ2 and ρ9 are marginally greater than tk. In this case,
the search order becomes significant because it affects the output of the search. For a
sequential search algorithm, its detector may choose W2 as the matching fingerprint rather
than W7. A wrong decision is thus made. In fact, the poor signal quality of fingerprints
often results in large variances of correlation values even for the fingerprints that come
from the images taken by the same camera. We can readily make database fingerprints
have high quality and be at the same quality level (e.g., the same signal-to-noise ratio
(SNR)), but in real-world application scenarios, however, we can hardly do the same
thing to query fingerprints as they are usually extracted from the images which come
from miscellaneous sources and most probably have quite different contents. Apparently,
the situation described in case (b) occurs to the database more frequently. This analysis
implies that we must consider the requirement of robustness when we design fast search
algorithms. This challenge was not given enough attention in previous works (e.g., [2]
and [10]).

In the above example, ρ2 and ρ9 are often not as large as ρ7. This is because ρ2 and ρ9 are caused
by the effect of noise. Therefore, one solution to case (b) is to increase the decision threshold from tk
to tk’, which only allows ρ7 to exceed tk’. Unfortunately, such a solution can be hardly put into use in
a large camera fingerprint database or a database which is searched through with the query
fingerprints of different SNRs. Making the search algorithms more intelligent seems to be a more
promising solution. For example, if a search algorithm has the capability to prioritize the candidate
matching database fingerprints before the correlation-based comparison (e.g., one gives preference
toW7 in the above example), it canwisely avoidmakingwrong decisions. In otherwords, the search
order is very important. This work makes efforts in this direction. Such intelligence is essentially a
kind of robustness against the noise interference. Since the ARMS also has the capability to give
preference to the candidate matching database digests in the search process, we will use it as the
basis of the comparison in our simulations.

3 Fast search algorithm

Throughout this paper, vectors and matrices are written in bold upright font. We may index a
matrix with one-dimensional index, in which case it is assumed that the matrix has been
converted to a vector, for example, by rows. For image I, the noise residual X is calculated as
follows:

X ¼ I−F Ið Þ ¼ IK þΞ ð1Þ
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whereK refers to the PRNU factor andΞ is the sum of independent randomnoise components from
the camera imaging procedure and the noise component introduced by the denoising filter F (e.g.,
[20]). X contains both the PRNU signal IK and the noise item Ξ, and thus can be thought of as a
coarse camera fingerprint. According to the analysis in [18], the averaging operation can effectively
suppress the noise item in Eq. (1). So the average of multiple difference images from the images
taken by the same camera can well play the role of the reference fingerprint of the camera. The
average ofM Xs from the same camera,W, is calculated as follows:

W ¼ 1

M

X
m¼1

M

Xm ¼ 1

M

X
m¼1

M

ImKm þ 1

M

X
m¼1

M

Ξm ð2Þ

A better approximate version of the true camera fingerprint is expected from Eq. (2) when the
image number M is greater than 50 [18]. In this work, we use Eq. (2) with a large M to estimate
reference camera fingerprints. We also use the same denoising filter in Eq. (1) as in [18]. Note that

some articles (e.g., [4, 10]) used the estimated PRNU factor bK as camera fingerprint, but these two
forms of fingerprints have no fundamental differences. The presence of IK in the noise residual of I
can be interpreted as evidence that Iwas taken by an imaging sensor withK. In order to remove the
Non-Unique Artifacts (NUAs) that exist in the imaging sensors from different cameras of the same
brand or model, we use the zero-meaning (ZM) operation proposed in [4] to preprocess X and
Wi(i=1,2…,N). The main ingredients of NUAs are caused by color interpolation and the row-wise
and column-wise operations of digital imaging sensors and/or image processing circuits. To remove
the NUAs on the noise residual, the ZM operation subtracts the column average from each pixel in
the column and then subtracts the row average from every pixel in the row. To simplify notation, we
still writeX andWi rather than ZM(X) and ZM(Wi). For color images, this work separately extracts
the noise residual from each color band, and then integrates them into a synthetic signal using the
standard luminance formula:

X ¼ 0:299Xr þ 0:587Xg þ 0:114Xb ð3Þ

where Xr, Xg and Xb are red, green and blue components of X, respectively.
For each search round in this work, the decision is made based on the following normalized

cross correlation ρ:

ρ ¼ corr X;Wð Þ ¼

X
i¼1

n

X i½ �−X̄
� �

W i½ �−W̄
� �

X−X̄
��� ��� W−W̄

��� ��� ð4Þ

where X and W denote the query fingerprint and the reference fingerprint, respectively. ‖⋅‖ is
the L2 norm and the bar “-” refers to the mean. To simplify the discussion, we assume perfect
synchronization between the two signals (i.e., no geometrical distortion of images/
fingerprints). Since a two-dimensional matrix can be easily transferred to a vector by
rearranging the elements, say, from left to right and from top to bottom, this work does not
distinguish whether an image or its fingerprint is represented by a matrix or by a vector except
specific indication, as the reference [10] did. If ρ is greater than the decision threshold tk, the
detector decides H1 (the query fingerprint and the reference fingerprint are responsible for the
same camera); otherwise, the detector decides H0 (the query fingerprint and the reference
fingerprint are responsible for two different cameras). It is worth mentioning that more
sophisticated detectors like the PCE (Peak to Correlation Energy ratio) [7, 8] can also be used
to improve the detection rates, but such complicated detectors may extremely slow down the
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search process. Alternatively, these detectors can be used in the after-search validation, that is,
for double-checking the results from fast search algorithms.

3.1 The measurement of search priority

This subsection elaborates on the most important concept of this work, i.e., the measurement of
search priority ns. This measurement is the basis of our Search Priority Array. Assume
P1 and P2 are two PRNU fingerprints. n=|P1|= |P2|, where | ⋅ | refers to the length of a
fingerprint sequence. Let the search priority measurement ns denote the number of
elements with matching signs that are located at the same spatial locations in P1 and
P2 (see Fig. 1). Here we count zero elements, but zero elements have no real effect
on the correlation value.

To reveal the property of ns, we calculate ns values between the two fingerprints from the
same camera and from different cameras, respectively. The images come from 12 commonly
used digital cameras Ci (i=1,2…,12). Table 1 lists each camera represented by Ci (i=
1,2…,12). The correspondent camera reference fingerprint is denoted as Wi (i=1,2…,12).
In this work, instead of extracting the fingerprint from the full-size image, we only crop a block
of 1024×1024 pixels from the central part of the image and use the fingerprint extracted from
this block in our experiments. This processing not only ensures the synchronization of
signals but also reduces the chance of encountering saturated or distorted regions [14].
Note that the training image sets are solely used for estimating the reference camera
fingerprints. To increase the quality of reference signals, each reference camera
fingerprint is estimated from 100 training images using Eq. (2). On the other hand,
the test image sets only act as the source of query images. Query images are never
used for the estimation of reference camera fingerprints. The number of photos
captured by each individual camera is listed in Table 1.

We randomly choose a camera fingerprint, say W1, as the reference signal and calculate ns
values between it and query fingerprints from Ci (i=1,2...,12). The results are shown in Fig. 2.
For convenience of display, we use Ps instead of ns for the vertical axis, where Ps=ns/n.
Figure 2 shows that the intra-class (i.e., intra-camera) Ps values scatter around 51.8 % while
most of the inter-class (i.e., inter-camera) Ps values fluctuate around 50 %. The intra-class
values are obviously higher than the inter-class values, and the two types of data are visibly
separated.

To uncover the relationship between our measurement of search priority and the correlation
value, we calculate correlation values between two fingerprints from the same camera and from
different cameras, respectively. The results are shown in Fig. 3. It can be seen that the intra-class
correlation values scatter around 0.058 while the inter-class correlation values fluctuate around
0. Clearly, the intra-class values are higher than the inter-class values, and the two types of data
are visibly separated too. By examining Figs. 2 and 3, we can easily find that the ns values and
the correlation values ρ are higher for the two fingerprints from the same camera than from
different cameras. Moreover, ns and ρ tend to change in the same direction.

0.135 -7.376 0 -6.013 0.009 -2.381 -0.982 0.500

-0.301 -8.002 0 -4.276 -0.011 -5.107 0.202 0.704

P1

P2

Fig. 1 Illustration of the measurement of search priority ns. Here ns=5
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Our fast search algorithm will be based on fingerprint digests, so we repeat the above
experiments on digests. We set the length of digest k as 10,000 for the images of 1024×
1024 pixels. Similar to [10], the elements of a fingerprint are first permuted in a descending
order by magnitude, and then the first 10,000 elements constitute the fingerprint digest. The ns

Table 1 Cameras used in experiments. The first 12 cameras are our own. We downloaded the photos of the rest
58 cameras from http://www.flickr.com/

No. Model Training
set size

Test set
size

No. Model Training
set size

Test set
size

C1 Canon PowerShot A620 100 100 C36 KODAK DX6490 ZOOM 100 95

C2 Canon IXY Digital 500 100 100 C37 Canon PowerShot ELPH
300 HS

100 49

C3 Canon Digital IXUS 850 IS 100 100 C38 Canon EOS 450D 100 35

C4 Canon PowerShot A400 100 100 C39 Canon EOS REBEL T3 100 29

C5 Canon EOS 450D 100 100 C40 Canon EOS REBEL T3i 100 27

C6 Fujifilm FinePix S602 ZOOM 100 100 C41 Canon 8800 F 100 25

C7 Panasonic DMC-LX2 100 100 C42 Canon PowerShot G11 100 24

C8 Nikon CoolPix L3 100 100 C43 PENTAX K-x 100 23

C9 Nikon D90 100 100 C44 Canon EOS 400D 100 19

C10 Olympus u820 100 100 C45 Leica M8 100 20

C11 Olympus C730UZ 100 100 C46 Canon EOS REBEL T2i 100 11

C12 Sony DSC-S40 100 100 C47 Olympus E-500 100 5

C13 Canon EOS 60D 100 149 C48 PENTAX K-x 100 8

C14 Sony DSLR-A900 100 135 C49 Nikon D200 100 142

C15 Panasonic DMC-TZ7 100 119 C50 Canon EOS REBEL T1i 100 59

C16 Olympus E-P2 100 66 C51 Panasonic DMC-FX100 100 199

C17 Canon PowerShot SD300 100 70 C52 Canon Digital IXUS 80 IS 100 114

C18 Canon PowerShot S95 100 63 C53 Panasonic DMC-FZ7 100 146

C19 Panasonic DMC-TZ3 100 59 C54 Casio EX-Z1080 100 22

C20 Samsung Digimax A7/
Kenox D7

100 50 C55 Nikon D90 100 182

C21 Canon PowerShot S90 100 196 C56 Canon EOS 7D 100 99

C22 Canon PowerShot A400 100 190 C57 Panasonic DMC-G1 100 200

C23 Canon PowerShot A720 IS 100 100 C58 Canon PowerShot A40 100 100

C24 Casio EX-Z2000 100 118 C59 Canon PowerShot G5 100 34

C25 Canon EOS Kiss X3 100 104 C60 Canon PowerShot SD800 IS 100 5

C26 Canon EOS 40D 100 98 C61 Nikon D300 100 176

C27 Canon PowerShot SD1000 100 53 C62 Nikon E8800 100 132

C28 Nikon D40X 100 190 C63 Canon EOS 7D 100 97

C29 Nikon D60 100 11 C64 Fujifilm FinePix HS20EXR 100 229

C30 Canon PowerShot SX200 IS 100 172 C65 Nikon D3100 100 79

C31 Sony DSC-H70 100 58 C66 Canon PowerShot SD880 IS 100 99

C32 Nikon D90 100 200 C67 Canon EOS 40D 100 96

C33 Canon EOS 30D 100 200 C68 Fujifilm FinePix S4000 100 100

C34 Olympus E-30 100 100 C69 Nikon D90 100 79

C35 Nikon D90 100 153 C70 Nikon D300 100 83
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values and the correlation values are shown in Figs. 4 and 5, respectively. The letters capped
with “~” denote digests in this work. We can observe that the relationship between ns and ρ
remains unchanged. The big difference is that both the variances of the ns values and the
correlation values increase. According to our experiments, the shorter the digests are, the larger
the variances. We repeat the same experiments on other test data and have observed the similar
phenomena. Based on these observations, we propose our heuristic search scheme as follows:
for a given query digest, the most likely matching database digest is the one which possesses
the highest ns value. Therefore, the higher priority should be given to the database digest with
the higher ns value. It is impossible to quantify the relationship between ns and ρ. In essence,
our search scheme is based on the high probability between them. That is why we cannot
directly replace ρ with ns during the search. We also emphasize that our discussion about the
relationship between ns and ρ is limited to the PRNU fingerprints of imaging devices, and we
have no intention to obtain a general conclusion about the relationship between ns and ρ. Since
the counting of ns involves every element within the two fingerprints, our measurement
explicitly reflects the global relationship between these two signals.

3.2 The lookup table

In order to determine the search priority order, we have to calculate ns values between the given
digest and every reference digest in the database. We save the resulting N ns values in array Ns.
By sortingNs in a descending order, we obtain the SPAwhich gives the search priority order. To
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Fig. 2 The Ps values between W1 and Xs from 12 cameras, respectively. Ps=ns/n
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Fig. 3 The correlation values between W1 and Xs from 12 cameras, respectively
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accelerate the calculation of ns between the given query digest and each database digest, this
work proposes a new date structure. As shown before, when calculating ns, we do not need to
know the real number of the element but its sign and location. Therefore, instead of directly
visiting the database, we introduce a lookup table in which we only save necessary information
of all the digests in the database, i.e., the sign and location of each digest element. Assume there

are N reference cameras. The digest database is composed of fWi

n o
, i=1,2…,N. To extract the

sign and location of each digest element, we define two functions as follows:

S i; dð Þ ¼ sgn fWi d½ �
� �

⋅i; 1≤ i≤N ; 1≤d≤k ð5Þ

l i; dð Þ ¼ L fWi d½ �
� �

; 1≤ i≤N ; 1≤d≤k ð6Þ

where sgn(⋅) refers to the sign function. Given a digest i, sgn(⋅) extracts the sign of the element
located in d on the digest. As a result, Eq. (5) can map digest i into a sequence of “+i” and “−i”.
L(⋅) makes the digest element in location d correspond to an element/component in its full-
length fingerprint. In other words, for fingerprint i, L(⋅) returns the original coordinate of a
fingerprint element which corresponds to a digest element in location d. More information
about Eq. (6) can be found in [10]. We save the S(i,d) value in the linked list at entry l(i,d) of
lookup table H. Hash tables are efficient structures to represent large arrays. They need less
memory for storage and are easy to manage. A separate-chaining hash table is a good structure
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Fig. 4 The Ps values between fW1 and eXs from 12 cameras, respectively. k=10,000. Ps=ns/k
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Fig. 5 The correlation values between fW1 and eXs from 12 cameras, respectively. k=10,000
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resolving hash collisions. So we use a separate-chaining hash table to build H. The
detailed information of how to program the separate-chaining hash table can be found
in [13]. An example of H is shown in Fig. 6. To help readers better understand its
structure, we purposely show entries l(i,d) (i=1,2,…N,d=1,2,…k) and let column i
correspond to digest i. In practical programming, we do not need to save the value of
l(i,d). Note that "+" is omitted here. Using the separate-chaining hash table, we can
efficiently calculate the N ns values by one-layer loop with k×N operations instead of
the traditional two-layer loops with k×n operations. The pseudo code of calculation of
ns is given in the next subsection.

3.3 The search priority array

The ns values between eX andfWi i ¼ 1; 2;…;Nð Þ are saved in arrayNs.Ns[i] is used to reflect

the degree of correlation between eX andfWi . We sort the elements of Ns in a descending order
and save the indices of the sorted elements in array Nsp. The array Nsp is the so-called Search
Priority Array. Obviously, its first element corresponds to the largest ns value and it is the index

of the database digest which is most likely to be correlated with eX . Likewise, its second element
corresponds to the second most likely matching database digest, and so on. The SPA gives the
search priority order with respect to a given query digest because it reflects a global relationship
between the query digest and the digest database from the perspective of ns.

When a candidate database digestfWi; i∈ 1;N½ � is chosen, the normalized correlation value
ρi is calculated as follows:

ρi ¼ corr X L fWi d½ �
� �h i

;fWi

� �
ð7Þ

1 l(1,1) -1

2

3

4

5

6

7

8

l(1,2) 1

l(1,3) -1

l(1,4) -1

...

n-2

n-1

n

l(1,k) -1

l(2,2) -2

l(2,3) 2

l(2,4) -2

l(2,5) -2

l(2,k) -2

l(2,1) -2

... ...

l(3,1) 3

l(3,2) -3

l(3,4) -3

l(3,k) 3

l(N,1) N

l(N,2) N

l(N,3) -N

... ... ...

l(N,k) -N

l(3,3) -3

l(N,20) -N

...

...

...

...

...

...

...

List heads

Fig. 6 An example of the lookup table. Each column in the dash block represents a fingerprint digest
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where L fWi d½ �
� �

(d=1,2...,k) represents the locations of elements offWi . In other words, we only

choose the elements ofX at L fWi d½ �
� �

for the correlation computation [10]. For simplicity, wewill

use L fWi

� �
in the rest of the paper.

The following pseudo codes describe the implementation of the above procedures
in details. The complete flowchart of the proposed fast search algorithm can be found
in Fig. 7. For convenience of discussion, we divide our search algorithm into two
phases: offline and online. Steps 1–8 below constitute the offline phase, which
consists of the calculation of database fingerprints/digests, the construction of the

Construct
query digest

No

Yes

Output the matching digest index

Extract query
fingerprint

1jj

X

X
~

LCorr ii t)
~

)],
~

([( WWX

Create the lookup table

Obtain SPA Nsp by sorting Ns.
Let j=1, i=index(Nsp[j])

i=index(Nsp[j])

Reference/training images

Query image

Calculate camera reference fingerprints

},...,,{ 21 NWWW

Construct the database of reference
digests

}
~

,...,
~

,
~

{ 21 NWWW

H

Compare the signs of the elements
of the query digest with the signs

stored in H to obtain Ns

Nj

Yes

No

+=

>

No match and stop

X

Fig. 7 The flowchart of our fast search algorithm. The operations above the dash line belong to the offline phase
while the operations below the dash line belong to the online phase
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digest database and the construction of the lookup table. Steps 9–27 constitute the
online phase, which consists of the calculation of query digest, the construction of the
SPA, and the search loop.

% Calculate the full-length database fingerprints and then their correspondent
digests

1. For i=1 to N

2. Calculate iW and then iW
3. End for
% Construct lookup table H .
4. For i=1 to N
5. For d=1 to k
6. Save S(i,d) in the l(i,d)th linked list in H .
7. End for
8. End for

% For a given query digest, calculate Ns. Sort its elements in a descending order and save
the indices of the elements in Nsp to obtain the SPA.

9. Calculate X and then X
10. For d=1 to k

11. If [ ] 0dX && i in the ( [ ])L dX th linked list

12. [ ] [ ] 1s si iN N ;

13. Else if [ ] 0dX && -i in the ( [ ])L dX th linked list

14. [ ] [ ] 1s si iN N ;

15. End if
16. End for

17. spN =Index(Sort( sN , N));

% Carry out the search based on the search priority order determined by the SPA.

18. For j=1 to N

19. [ ]spi jN ; 

20. ( [ ( )], )iii corr LX W W ;

21. If i kt
22. Output “The matching database digest is i ”;
23. break; 

24. Else if j=N & i kt
25. Output “No match”;
26. End if
27. End for
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4 Experiments and discussions

The ROC (receiver operating characteristic) analysis provides an unbiased description of
algorithm performance without suffering from the arbitrary selection of a decision threshold
[19]. So the ROC curves are used to describe the overall performance of our algorithm. We
also evaluate its performance by the missed detection rate (equivalent to the false negative rate)
and the false positive rate (equivalent to the false alarm rate). The false positive rate is defined
as [No. False Positive decisions]/[No. actually negative cases] while the missed detection rate
is defined as 1-[No. True Positive decisions]/[No. actually positive cases] [19]. In addition, we
give the average number of search rounds, and the average search time at significant decision
thresholds. To demonstrate the advantages of our algorithm, we compare it with the early fast
search algorithm ARMS and the traditional sequential search algorithm BFSA. The authors of
[10] gave two sets of parameters for the ARMS: Mode A with parameters w=1,000 and
tcand=

ffiffiffiffi
w

p
=31.623, and Mode B with w=1,000 and tcand=0.2

ffiffiffiffi
w

p
=6.3246. The parameter w

is used to control the window of the outer-layer/outer search loop. The parameter tcand is the
threshold for the accumulated evidence, which is introduced to control the inner-layer/inner
search loop. When the digest length k=10,000, the time for performing one cross correlation
computation on our computer is about 1.8×10−4 s. Hence the upper limit of search time for the
ARMS is set to 1.8×10−4×2×(N/2). The reader is referred to [10] for more detailed informa-
tion about the ARMS.

Our simulations involve 13,696 images captured by 70 cameras, as shown in Table 1. The
first 60 cameras (i.e., C1-C60) constitute the reference camera database. To evaluate the missed
detection rate and the false positive rate, we use query fingerprints that come from all the 70
cameras (i.e., C1-C70). In order to simulate a more challenging environment, we intentionally
include some images which come from the same camera model or make but from different
people. For example, we have five Nikon D90 models in the database. As stated before, C1-
C12 are our own cameras. And the images captured by our own cameras are with the native
resolution. Most of those images are scenic photos captured under daylight. On the other hand,
the images taken by C13-C70 are downloaded from a public website http://www.flickr.com/.
We have no control over the resolution, content, quality and sources of the downloaded
images. All the images are saved in JPEG format. Our simulations are conducted on the
platform of an Intel i5-2410 M CPU, 2.30GHz with 4G RAM. All the three search algorithms
are implemented using Visual C++ 2008.

4.1 Performance evaluation - scenario I

In Scenario I, each query fingerprint is extracted from one test image using Eq. (1). Such query
fingerprints are of very poor signal quality due to the effects of image content (e.g., edge and
texture), image storage format (e.g., JPEG compression and with JPEG compression factors),
and denoising filtering. In total, we have 6,696 query fingerprints. The digest length k is set as
10,000, about 1 % of the full-length fingerprint (1024×1024 pixels). In Fig. 8, we give the
decision threshold versus the missed detection rate curves. The missed detection rate reflects
the capability of an algorithm to detect query images whose camera fingerprint digests indeed
reside in the database. When the decision threshold tk is 0.01, the missed detections are serious.
The BFSA has the highest missed detection rate, reaching about 0.91; at the same time, our
algorithm has the lowest rate, which is about 0.42. Such high rates of missed detections are
mainly caused by noise interference. For example, the NUAs from the imaging sensors of the
same camera brand or model might not be completely removed from query fingerprints,
resulting in a high proportion of correlation values exceeding this low decision threshold.
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With a small increase of decision thresholds, however, the detection results of all three
algorithms become much better. When tk=0.03, the missed detection rates of our algorithm
and the ARSM-B drop to the lowest points, 0.155 for our algorithm, and 0.196 for ARMS-B.
Whereas, the ARMS-A and BFSA respectively touch their bottoms of the missed detection
rates at tk=0.04, 0.242 for ARMS-A and 0.254 for BFSA. Here ARMS-A and ARMS-B
correspond to the ARMS with Mode A and Mode B, respectively. So our algorithm has the
lowest bottom among the four decision threshold versus missed detection rate curves. After
reaching the valley bottoms, the missed detection rates of all three algorithms climb with the
increase of decision thresholds. The explanation for this phenomenon is that even for the query
and the database digests from the same camera, some noise components, in particular, those
caused by image content and denoising filtering, weaken their correlations. From tk=0.15, all
three algorithms have the same missed detection rate. When tk=0.8, the missed detection rates
exceed 0.999 for all three algorithms. Figure 9 gives the decision threshold versus the false
positive rate curves. The false positive rate describes how a search algorithm reacts to query
images whose fingerprint digests do not reside in the database. It can be observed that all
curves are overlapped. So all three algorithms have the same false positive rates under the
same thresholds, meaning that this type of error is not caused by the search schemes employed
but results from the setting of decision thresholds. Looking at Figs. 8 and 9, we can find that
the lowest missed detection rates and the lowest false positive rates cannot be obtained
simultaneously. Interestingly, for many practical applications, it is not necessary to have a
low false alarm rate because more sophisticated detectors can be run as a double check on all
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Fig. 8 The decision threshold versus missed detection rate curves of the three algorithms. k=10,000
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Fig. 9 The decision threshold versus false positive rate curves of the three algorithms. k=10,000
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the fingerprints identified as candidates by the search. Too many candidate fingerprints,
however, would slow down the search [10]. We call the threshold at which the decision
threshold versus the missed detection rate curve reaches its bottom the significant threshold.
For different algorithms, the significant thresholds may be different. The selection of good
decision thresholds for fast search algorithms is a complex problem. Further discussions are
beyond the scope of this paper. The reader is referred to related references (e.g., [10]) for more
information.

In Fig. 10, we draw the ROC curves of the three algorithms. The true positive rate is equal
to [No. True Positive decisions]/[No. actually positive cases]. Better decision or detection
performance is indicated by an ROC curve that is higher and to the left in the ROC space [19].
Apparently, our algorithm outperforms the other two algorithms. Figure 10 also
demonstrates that the ARMS is very sensitive to the setting of operational parameters
because the curves of the ARMS-A and the ARMS-B have obvious differences. The
setting of those parameters is related to the reference digest database. And the
optimization of those parameters requires prior knowledge of the database. Goljan
et al. gave detailed analysis of their effects and showed how to set them in [10]. In
general, those parameters are mutually dependent, making it difficult to find a good
combination. This is an apparent drawback of the ARMS.

In Fig. 11, we can observe that the average number of search rounds is proportional to
decision thresholds. Our algorithm requires the least search rounds before all three algorithms
reach the same value. The BFSA does not employ any apriori knowledge and only carries out
a sequential search, so it needs more search rounds than the others. The ARMS makes use of
the approximate ranking information of the influential elements, which reduces the number of
search rounds. But such local information is not as robust against the artifacts from poor
quality query digests as the global information provided by the SPA of our algorithm.
This explains why our algorithm requires even less search rounds than the ARMS. It
is worth mentioning that our algorithm requires impressively less search rounds at
those significant thresholds (i.e., 0.03 and 0.04) where the missed detection rates of
the three algorithms are at their bottoms, respectively. Table 2 gives the average
search time of the three algorithms at these significant thresholds. Our algorithm runs
fastest among the three algorithms, which verifies that our algorithm is also the most
efficient algorithm to deal with poor quality query images. Note that, in either Table 2
or Tables 3 and 4 which will appear in the next two subsections, the search time for
our algorithm covers all the online operations like the generation of query fingerprint
digest, the SPA construction as well as the digest comparison.
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Fig. 10 The ROC curves of the three algorithms. k=10,000
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4.2 Performance evaluation - scenario II

In Scenario II, we evaluate the performance of our search algorithm using a little better quality
query fingerprints and examine the trend of performance change. In particular, we use five test
images from the same camera instead of one and average their image noise residuals in a
manner of Eq. (2). Such an average value is used as a query fingerprint. In this way, 1,316
query fingerprints from 70 cameras are obtained. Figure 12 shows the missed detection rates of
the three algorithms. Evidently, the behavior of all three algorithms becomes better. The initial
missed detection rates of all the algorithms except the BFSA are greatly lower than their
counterparts in Fig. 8. As for the valley bottoms, our algorithm has the missed detection rate as
low as 0.035 (tk=0.04) while the ARMS has 0.141 (tk=0.04) for Mode-A and 0.064 (tk=0.04)
for Mode-B, respectively. The BFSA has the highest value, i.e., 0.198 (tk=0.06). After passing
the valley bottoms, the missed detection rates climb with the increase of decision thresholds.
But compared with the curves in Fig. 8, these curves have much smoother slopes. From tk=
0.23, the missed detection rates of the three algorithms tend to be the same. As for the false
positive rates, Fig. 13 shows that all three algorithms have identical performance. In compar-
ison with the curves in Fig. 9, the sharpness of these curves is reduced. We examine the
thresholds that correspond to the bottoms of the missed detection rates and find that the false
positive rates in Scenario I and Scenario II change little for all three algorithms. This joint
information of the missed detection rates and the false positive rates demonstrates that the
search algorithms achieve better results with the improved quality of query digests. In fact, by
comparing Fig. 14 with Fig. 10, we can easily see that all the ROC curves move higher and
further to the left in the ROC space, meaning that all the three algorithms perform better. Still
the ROC curve of our algorithm is the highest, indicating that our algorithm retains the best
overall performance among the three algorithms.
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Fig. 11 The decision threshold versus average number of search rounds curves of the three algorithms. k=
10,000

Table 2 The average search time at significant thresholds

Algorithm tk Our algorithm ARMS-A ARMS-B BFSA

0.03 6.833 14.066 9.588 8.013

0.04 8.220 14.766 10.491 9.581

k=10,000. Time unit: milliseconds
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Figure 15 exhibits the average number of search rounds. The slopes of all the
curves become much smoother than their counterparts in Fig. 11, meaning the
matching between query digests and database digests often requires less search rounds
for the same threshold. When tk<0.6, the curve of our algorithm is the lowest,
showing that our algorithm has the best accuracy in selecting the candidate matching
database digests. Table 3 gives the average search time of the three algorithms at
significant thresholds. Our algorithm runs faster than the ARMS. But it runs a little
slower than the BFSA at tk=0.04. This is attributed to the fact that erroneous detections make
the BFSA break its search loop earlier than normal. In fact, the missed detection rate of our
algorithm is lower than its counterpart of the BFSA by 0.216 at tk=0.04 (see Fig. 12).
According to the results in this subsection, we can easily find that the quality of query images
can greatly affect the performance of fast search algorithms. Our algorithm has the best
flexibility among the three algorithms.

4.3 Performance evaluation - scenario III

In Scenario III, we investigate the effect of the digest length on the performance of the
proposed algorithm. We extend k from 10,000 to 50,000 and use the same query fingerprints
as those in Section 4.B. Hence, the number of fingerprints is still 1,316. When k=50,000, the
time for performing one cross correlation computation on our computer is longer than 1.8×
10−4 s. Normally, the upper limit of search time for the ARMS should be increased. For
simplicity of comparison with the results in the last two subsections, however, we do not
change it.

In Fig. 16, the initial missed detection rates of all three algorithms are further lowered
compared to those in Fig. 12, but such an improvement is greater for the BFSA than
for our algorithm and the ARMS. When investigating the valleys of the curves, we
find that both our algorithm and the BFSA only slightly lower their bottoms, 0.033
(tk=0.03) for our algorithm and 0.185 (tk=0.04) for the BFSA; whereas the ARMS
surprisingly has slightly higher bottoms, 0.156 (tk=0.04) for ARMS-A and 0.098 (tk=
0.04) for ARMS-B. After passing the bottoms, the curves even climb faster with the
increase of thresholds than those in Fig. 12. With respect to the false positive rates,
Fig. 17 shows that the curves move moderately lower and further to the left compared

Table 3 The average search time at significant thresholds for query digests with better signal quality

Algorithm tk Our algorithm ARMS-A ARMS-B BFSA

0.04 5.737 11.121 6.525 4.859

0.06 6.488 11.719 7.141 8.908

k=10,000. Time unit: milliseconds

Table 4 The average search time at significant thresholds

Algorithm tk Our algorithm ARMS-A ARMS-B BFSA

0.03 41.471 22.366 16.635 37.872

0.04 43.829 24.755 18.083 42.947

k=50,000. Time unit: milliseconds
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with Fig. 13. But in Fig. 18, the ROC curves of all three algorithms are not as high
in the left space as those in Fig. 14, which indicates that the overall performance of
all three algorithms degrades. When looking at Fig. 19, we can observe that the
curves of all three algorithms become a little steeper than their counterparts in
Fig. 15, meaning more search rounds are often required for the same thresholds
before reaching the stable value. Table 4 shows that all three algorithms require
extraordinarily longer search time.

The use of long digests can reduce the variances of both ns and the correlation. This
conclusion can be easily inferred by comparing Fig. 2 with Fig. 4 and Fig. 3 with Fig. 5. This
seemingly implies that we could improve the performance of fast search algorithms by
increasing the length of digests. According to the results in this subsection, however, the
benefits of using longer digests are only limited to the missed detection rates for very small
decision thresholds, say, tk<0.03. Taking the increased computational cost into consideration,
we now find that the use of long digests is not a recommendable approach. Specifically, for our
algorithm, long digests result in a large separate-chaining hash table, and thus require more
time on the calculation of ns and the construction of the SPA. These computational costs
greatly harm the search speed of our algorithm, as shown in Table 4. On the other hand,
because the ARMS is based on local information, the increase of digest length does not have
much positive impact on its performance. As for the BFSA, the good effect of using longer
digests is also limited to the performance for very small thresholds.
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Fig. 12 The decision threshold versus missed detection rate curves of the three algorithms. k=10,000
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Fig. 13 The decision threshold versus false positive rate curves of the three algorithms. k=10,000
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4.4 Comparison of computational complexity

The computational complexity of the three algorithms at significant decision thresh-
olds has been compared using the average search time in Section 4.1–4.3 In this
subsection, we briefly compare their practical search manipulations. For the BFSA, its
offline process includes Step 1 to Step 3 of the pseudo codes of our algorithm in
Section 3.3. If the digest of a query image resides in the reference digest database, the
average online computational load is N/2 times of computing Eq. (7); otherwise, the
online computational load is N times of computing Eq. (7). Here we assume that there
is no erroneous detection; otherwise, the BFSA may terminate its search process
earlier than normal. We also assume that the time for memory access and comparison
operations is trivial compared with the time for correlation computation.

For the ARMS, the first three steps of the offline process are also the same as
ours. The ARMS then builds a sparse n×k matrix S that plays a role similar to our
lookup table H. The elements of S are the database digest indices, i∈{1,2…,N}. In
the online phase, the ARMS selects the candidate matching database digests based on
the most influential elements. Potentially, every element of the query digest can
generate a round of search. Note that such a search round corresponds to the outer
loop in the ARMS. The average number of search rounds is equivalent to the average
number of iterations in the outer loop in this paper. Each outer loop includes an inner
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Fig. 14 The ROC curves of the three algorithms. k=10,000
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Fig. 15 The decision threshold versus average number of search rounds curves of the three algorithms.
k=10,000

Multimed Tools Appl (2015) 74:7405–7428 7423



loop which is used to further determine the candidate matching digests before
performing Eq. (7). As mentioned before, the parameter w corresponds to the size
of search window of the outer loop. The inner-loop parameter tcand controls whether
to carry out the correlation computation. A lower tcand allows more correlation
computations. Not only the number of iterations in the outer loop but also the number
of iterations in the inner loop relies on the quality of digests. Therefore, the number
of search rounds is dynamic. If the quality of query digest is high, the matching
database digest would be found in the first few search rounds; otherwise, more search
rounds are required. In the worst case, the ARMS requires more search rounds than
the BFSA. The authors of [10] switched the ARMS to the BFSA to avoid this
situation. The reader is referred to [10] for more information.

As for our algorithm, it builds hash table H in the offline phase. Since a sparse
matrix is usually realized with a hash table, the offline computational load of our
algorithm is similar to that of the ARMS. In the online phase, however, our algorithm
needs to construct the SPA, which includes the calculation of the N elements of Ns

and the sorting of Ns. Although the calculation of N ns is not complex and only
involves comparisons of signs and addition operations, the sorting operation is often
time-consuming for a large array. Due to this online cost, our algorithm may run
slower if the digest is too long (e.g., in Section 4.3). For short digests, however, our
fast search scheme is very efficient, as shown in Section 4.1 and 4.2.
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Fig. 16 The decision threshold versus missed detection rate curves of the three algorithms. k=50,000
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Fig. 17 The decision threshold versus false positive rate curves of the three algorithms. k=50,000
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5 Conclusion

In this paper, we have proposed a simple and effective fingerprint search algorithm
for fast source camera identification in real-world applications. Considering the quality
problem of practical query fingerprints, we have proposed to improve the fast search
algorithm by enhancing the robustness. Previous algorithms did not pay enough
attention to this aspect. The major contribution of this work is the introduction of
the Search Priority Array. The robustness of the Search Priority Array is based on the
global information derived from the relationship between the query digest and all the
reference digests in the database. Another contribution is that we introduce the
separate-chaining hash table as the look-up table which can facilitate the construction
of the Search Priority Array. As shown in experiments, our algorithm can better adapt
to query images in practical applications. Experimental results have demonstrated
obvious improvement over the ARMS in [10] and the BFSA in terms of the correct
detection rates and the computational complexity at significant thresholds. Another
advantage over the ARMS is that our algorithm does not rely on any operational
parameters except the threshold, which make it behave consistently. In future, we will
focus on how to extract a more accurate fingerprint and construct the digest which
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Fig. 18 The ROC curves of the three algorithms. k=50,000
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Fig. 19 The decision threshold versus average number of search rounds curves of the three algorithms. k=
50,000

Multimed Tools Appl (2015) 74:7405–7428 7425



can better reflect the characteristics of the fingerprint. Such an effort can further reduce the
computational complexity of our fast fingerprint search algorithm.
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