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Bayesian Updating for Real-Time Crack Detection
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Fatigue 1s the most dangerous failure mode for mechanical components subject to alternating loads. Due to repeated loading and unloading, one or several cracks can be initiated and propagated through the cross section of
the structure. Once a critical crack length 1s exceeded, fracture may occur and the structure will catastrophically fail even for stress level much lower than the design stress limit. Non-destructive inspections may be performed
at predetermined time intervals in order to detect the cracks (e.g. Magnetic particle inspections, ultrasonic inspection). Continuous monitoring of the dynamic response of the structure can allow real-time cracks detection and
corrective maintenance procedures might be taken in case the monitoring procedure 1dentifies a crack. In the proposed work, Bayesian model updating procedures 1s adopted for the detection of crack location and length on a
suspension arm, normally used by automotive industry and subject to fatigue stress. Experimental data of the damaged structure (frequency response function) are simulated using a high-fidelity numerical finite element (FE)
model of the arm. Surrogate models have been calibrated and selected based on their capability of represent the FE results. The idea underlining the approach is to identify the most probable model consistent with the observa-
tions. The likelihood 1s the key mathematical formulation to include the experimental knowledge in the updating of the probabilistic model. Three empirical likelihood functions have considered and results compared to verify
the capability of Bayesian procedure in monitoring the system health state.

1) Objective:

- Framework for real-time identification of cracks in mechanical components subject to fatigue;

2) Challenges:

- Evaluation of the posterior distribution given the observed data, exploration of different empirical
likelihood functions;
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- Computational tractability to meet Real-Time detection requirement;
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3) Proposed Methodology:
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ions obtained with two different likelihood functions, synthetic experimental data of crack in position 6 of length 8.04 mm,
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