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Abstract—This work proposes a novel mathematical approach
to accurately model data traffic for the Internet of Things (IoT).
Most of the conventional results on statistical data traffic models
for IoT are based on the underlying assumption that the data
generation follows standard Poisson or Exponential distribution
which lacks experimental validation. However, in some of the
use case applications a single statistical distribution is not
adequate to provide the best fit for the inter-arrival time of the
data packets generation. Based on the real data collected for
over 10 weeks using our customized experimental IoT prototype
for smart home application, in this paper we have established
this very fact, citing barometric air pressure as an example. The
statistical distribution of the inter-arrival time between the data
packets for a specified barometric pressure fluctuation threshold
is initially determined by approximating the best-fit with a
set of standard classical distributions. The goodness-of-fit with
the empirical data is numerically quantified using Kolmogorov-
Smirnov (KS) Test. Furthermore, it is observed that any single
standard distribution is unable to provide a good fit which is
at least less than 10%. Therefore, a novel weighted distribution
scheme is proposed that could provide an acceptable fit. The
weighing factor including the location, scaling and weighing
parameters of the best fitting distribution are estimated and
analyzed. The distribution parameters are finally expressed as
a function of the differential pressure value that can be used
for different theoretical analysis and network optimization.

Index Terms—KS-Kolmogorov Smirnov Test, IoT-Internet-of-
Things, D2D-Device-to-Device, 3GPP, Traffic Modelling.

I. INTRODUCTION

Next generation cellular communication standard under
development like 5G or LTE-m is based on the fundamental
premise that it has to support not just human centric com-
munication but also machine type communications like IoT
[1], [2]. This implies the future cellular standard must be
empowered to handle high volume of data generated by
these devices. At the same time it has to be designed taking
into account factors like scalability, robustness, energy and
spectrum efficiency, reliability and latency of the overall
network. IoT is the state of the art paradigm for such short
range machine type communication and extensive research
is currently under way to achieve an efficient convergence
of the IoT paradigm with emerging 5G standard [3], [4].
Novel protocol stacks like LoRaWAN are developed to be
integrated with IoT applications targeted towards industry,
the concept of Industrial-IoT (IIoT) [5].

This work focusses primarily on the estimation of ac-
curate Data Traffic Modelling (DTM) of specific IoT appli-
cation. An accurate prediction of the DTM is essential to
develop an efficient and optimised network. A detailed clas-
sification of the data traffic types for machine-to-machine
(M2M) communication including structured mathematical

modelling of the data traffic is explained in [6]. Based on
such traffic modelling, efficient Medium Access Control
(MAC) schemes are proposed in [7] for random access
satellite channel. In [8] two classes of M2M traffic generated
from smart metering and vehicular applications are investi-
gated where efficient data aggregation scheme is proposed
to mitigate the signaling overhead. Machine learning based
concepts like variant advanced forms of feature selection
to segregate IoT sensor data from the multimedia data
is proposed in [9], which is particulary very useful in
the industrial environments. So far most of the proposed
concepts are theoretical lacking experimental validation.
To overcome this challenge, we selected an IoT based
smart home application system as a user case scenario
to investigate the key challenges associated with DTM
based on real data. The motivation to select smart home
application is due to its relatively simplistic implementation
constrains and flexibility to work both with point source
and aggregate source data traffic. Furthermore, there are
few literatures available like [10], [11] where the authors
have successfully addressed the challenges of convergence
IoT based smart home applications with LTE-A and 5G
standard. To this end we developed a customized integrated
Raspberry Pi assisted IoT compliant smart home module
and tried to thoroughly investigate the aspects of IoT data
traffic modelling based on real data collected for over 10
weeks [12]. In the presence of a large number of IoT nodes
and aggregate data traffic scenario, the Palm-Khintchine
theorem holds true, which assumes that the data traffic is
generated following a Poisson distribution [13]. However, in
practical simple smart home scenario IoT nodes are limited
while data generation for specific application is bursty and
intermittent. Therefore, it is more realistic to model the
data traffic as a point source and estimate the DTM based
on this specific assumption. We have established in our
previous work in [14] that the assumption of Poissoness
for single source data is not valid. Detailed mathematical
framework is proposed and numerically quantified in [14]
to estimate the appropriate distributions for different ap-
plications based on real data collected using our home IoT
prototype. However, for some special application like the
reported barometric air pressure data it was not possible
to find a single standard statistical distribution that could
provide the best-fit. The main contribution of this paper is
the real data dependant proposed mathematical framework
based on sum of weighted distributions that could provide
best-fit for applications where a single distribution is not
adequate to capture and quantify the distribution of the
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Fig. 1. Raspberry Pi assisted proposed IoT subsystem [4]

inter-arrival time of data packet generation.
The remainder of this paper is as follows. Section II

contains the description of the experimental setup and
the methodology. Section III describes the techniques used
towards statistical fitting of the inter-arrival duration of the
data packets for the differential air pressure data. Section
IV contains the analysis of the empirical data and Section
V contains the conclusion.

II. EXPERIMENTAL PLATFORM AND METHODOLOGY

A. Experimental Setup

Detailed description of the individual components of
our custom made IoT smart home sensor node [12] is
shown in Fig. 1. The sensor node is equipped with six
sensor modules (Element 1 to 6). Element 7 labelled in
Fig. 1 is the Raspberry Pi minicomputer to which all the
sensor elements are connected. The Raspberry Pi module
is connected to the central processing unit through USB
WiFi adapter (Element 8). Details can be found in [12].

The data traffic analysis for the temperature, luminous
intensity and motion sensor data is already investigated
in our previous work [14]. Therefore, in this paper we
investigate the outcome of the barometric pressure data
obtained using Element 5 of the sensor node and propose
a mathematical framework to determine the best-fitting
distribution.

B. Differential Data Reporting scheme and Inter-arrival
Time estimation

The data traffic generated by the IoT system is strongly
dependant on the reporting strategy of the respective appli-
cation. The reporting strategy can be periodic in nature [13]
where the data packet is generated to be reported at every
predetermined time interval. However, this work is based
on a differential reporting strategy where the to be reported

data packets are generated only when the sensed physical
parameter fluctuates by a specified threshold denoted as
∆D. The elapsed time durations between the parameter
fluctuation exceeding ∆D is a non-deterministic parameter
and therefore a random variable. Therefore, the inter-arrival
time between the reported data packet generation is a
random variable. The key objective of this work is to
determine the statistical distribution of this inter-arrival
time which is a random variable because the data traffic is
generated in accordance with this estimated distribution.

In this work we have adopted the strategy to record
the parameter data at every 200 ms interval for over 10
weeks. The recorded data is stored at the CPU back-end.
Subsequently during post processing, the time durations
between the two parameter values whenever it exceeded the
parameter threshold ∆D is determined and this process is
repeated over the entire recorded data set to form a vector
of the inter-arrival time X . With changing ∆D values every
time a new vector X is generated for the overall analysis.
Since the physical parameter in this case is the barometric
air pressure therefore, ∆D is now renamed to be as ∆P. The
∆P is varied from 50 Pa to 400 Pa where Pa is Pascals (unit
of air pressure).

III. STATISTICAL FITTING OF THE INTER-ARRIVAL TIME

The observed inter-arrival times from the captured exper-
imental data were processed to calculate the ECDF and then
it was used to fit the distribution models. The inter-arrival
times are random variable as the time duration among the
parameter fluctuations are non-deterministic. One of the
most standard procedure to estimate the Empirical Cumu-
lative Distribution Function (ECDF) of the random variable.
It is the distribution related to the empirical measure of the
sample. Upon estimation of the ECDF, next step is to deter-
mine the statistical distribution which would provide best
fit to the ECDF. The shaping and scaling parameters of the
best fitted distribution is subsequently determined using
either Method-of-Moments (MoM) or Maximum Likelihood
Estimation (MLE) technique. The best fit is quantified in
terms of the Kolmogorov-Smirnov distance denoted as DK S
which is the maximum of the absolute difference value
between the empirical CDF and the fitted statistical CDF
estimated at each sample point and expressed as:

DK S = max
X

{
abs

(
F EC DF

X (x)−F f i t ted
X (x)

)}
(1)

Seven standard statistical distributions are considered for
our exhaustive investigation. They are exponential, gen-
eralized exponential, Pareto, generalized Pareto, gamma,
lognormal and Weibull distributions as per [15].

IV. MODELLING OF THE EMPIRICAL BAROMETRIC PRESSURE

DATA

Table I shows the KS distance for the distributions for
change in atmospheric pressure parameter ∆P from 50 to
400 Pascals. At ∆P= 50 Pa, gamma distribution under MoM
estimate gives the best fit with KS value of 0.0831. From
∆P= 100, 150 and 200 Pa, the generalized exponential dis-
tribution provides best fit with KS values at 0.1145, 0.1519
and 0.1670 respectively. At ∆P= 300 and 400 Pa, Weibull
distribution provides best fit with KS values at 0.1900 and
0.1608. Under generalized-exponential distribution, it can



Table I. KS Distances of different statistical distributions- Differential Pascals Reporting (in pascals) for 10 weeks duration

Distribu-
tions

∆P= 50 Pa 100 Pa 150 Pa 200 Pa 300 Pa 400 Pa
MoM ML MoM ML MoM ML MoM ML MoM ML MoM ML

Exp 0.1039 0.1039 0.1312 0.1312 0.2008 0.2008 0.2737 0.2737 0.3561 0.3561 0.4449 0.4449
G.Exp 0.0862 0.0862 0.1145 0.1145 0.1519 0.1519 0.1670 0.1670 0.2250 0.2250 0.2353 0.2353
Pareto 0.8905 0.4162 0.8695 0.4304 0.8153 0.3806 0.7748 0.3230 0.7217 0.2716 0.6673 0.2343
G.Pareto 0.1019 0.1033 0.1263 0.1336 0.1948 0.2023 0.2595 0.2710 0.3407 0.3557 0.4273 0.4195
Log-N 0.1524 0.2446 0.1705 0.3122 0.2388 0.2933 0.3094 0.2531 0.3886 0.2169 0.4684 0.1817
Gamma 0.0831 0.0845 0.1154 0.1360 0.1556 0.1904 0.1749 0.2261 0.2323 0.2847 0.2492 0.3291
Weibull 0.0911 0.1437 0.1184 0.2113 0.1675 0.2291 0.2043 0.2040 0.2811 0.1900 0.3316 0.1608

be observed that at ∆P= 50, 300 and 400 Pa, the KS values
are 0.0862, 0.2250 and 0.2353 marked underlined. Likewise
previous cases, these KS distances are not too far from
the minimum KS distance estimated for the specific ∆P
values under gamma and Weibull distribution. Therefore,
from Table I, generalized-exponential distribution could
be considered as best fit for the change in atmospheric
pressure data. However, it is clear that other than ∆P= 50
Pa where the KS distance under generalized exponential
distribution is 0.0862, for all the rest ∆P values the KS
distances are way above 10% which usually cannot be
considered in general as a favourable fit.

Therefore, to address this challenge in this case a single
distribution with different shaping and scaling parameter
is considered and weighted by a factor less than 1. For
example if FX (x,λ1,α1) and FX (x,λ2,α2) are two similar
distributions with different parameters, then the best fitting
CDF is expected to be achieved with the weighted combi-
nation of these two distributions with (0 < γ< 1)

F f i t
X (xi ) = γFX (xi ,λ1,α1)+ (

1−γ)
FX (xi ,λ2,α2) . (2)

Since generalized exponential distribution provided a
comparatively better fit relative to other distributions over
the range of ∆P values, in this work sums of weighted
exponential and generalized-exponential distributions are
considered. In case of exponential distribution only two
scaling parameters λ1 and λ2 and the weighting factor γ
are considered as exponential distribution does not have a
shaping parameter. The optimal values of the parameters
which would maximize the log-likelihood is considered as
the best fit under that particular distribution. The proba-
bility distribution function is now also a function of the
parameters λ1 and λ2 from [6]. The probability density
function is now estimated to be as

f f i t
X (xi ) = ∂FX (xi ,λ1,α1,λ2,α2)

∂xi
. (3)

Therefore, the Likelihood function becomes

L (x,λ1,λ2) =
N∏

i=1

{
γ fX (xi ,λ1,α1)+ (

1−γ)
fX (xi ,λ2,α2)

}
, (4)

where N is the number of data points. Taking logarithm
on both sides we get

logL =
N∑

i=1
log

{
γ fX (xi ,λ1,α1)+ (

1−γ)
fX (xi ,λ2,α2)

}
. (5)

We set the log-likelihood function as

L̃ = logL
(
x,λ1,α1,λ2,α2,γ

)
(6)

Now our objective is to maximize this log likelihood func-
tion for the weighted distribution with respect to λ1 and λ2.
This can be done analytically by solving for the ∂L̃

λ1
= 0 and

∂L̃
λ2

= 0 for a fixed value of γ. The process can be iterated over
a range of γ values ranging between 0 < γ≤ 1. The γ and its
corresponding optimal λ1 and λ2 are selected that would
minimize the KS distance with the empirical CDF. However,
it is worth to mention that this analytical treatment was
possible in the simulations presented for the change in
atmospheric pressure parameter ∆P because exponential
and generalized exponential distribution provided a good
fit. The estimation of the derivative of the Log-Likelihood
function for the weighted exponential and generalized ex-
ponential distributions are shown in the Appendix of the
paper. For other distributions, with increasing degrees of
freedom and with the inclusion of the shaping parameter,
the analytical calculation becomes highly non-trivial and it
may not be possible to obtain a unique maxima for the log-
likelihood function. In that case for the numerical analysis,
Optimization toolbox from MATLAB can be used to solve
the problem.

Upon numerical computation of the KS distances for
different pressure values for the sum of weighted expo-
nential distribution, the scaling parameters λ1, λ2 and the
weighing parameter γ are estimated for all the values from
150 to 500 Pa with an increase of 5 Pa. These values
are then interpolated with higher resolution. Subsequently,
conventional curve fitting technique is applied using MAT-
LAB curve fitting toolbox to obtain a generalized analytical
expression for the parameters as a function of pressure
fluctuation ∆P. From simulation, the best analytical fit
for λ1 and λ2 turns out be generalized Gaussian which
is simply sum of weighted Gaussian exponentials while
for the weighing parameter γ is Fourier series. Based on
these analytically calculated parameter values, the sum of
weighted exponential distribution over inter-arrival times
X is estimated for a specific ∆P. The KS distance is then
measured with respect to the empirical CDF of the X for
that given value of ∆P. The values of the scaling and the
weighing parameters are expressed as

λ (∆P ) =
K∑

i=1
ai e

−
(
∆P−bi

ci

)2

(7)



γ (∆P ) = a0 +
K∑

i=1
{ai cos(i .w)+bi sin(i .w)} , (8)

where a0= 0.3214 and w= 0.01421 are parameters for the
Fourier fitting and K = 8 is the number of terms.

In Fig. 2(a) and Fig. 2(b), two of the scaling parameters λ1
and λ2 are shown for the weighted exponential distribution
for ∆P= 160 to 500 Pa. Fig. 2(c), shows the weighing
parameter γ obtained numerically and analytically. Fig.
3 shows the KS distances with the empirical CDF esti-
mated using the shaping parameters obtained numerically
and analytically. It could be observed that using sum of
weighted exponential distribution for the atmospheric pres-
sure change parameter ∆P, the KS values are less than 10%
for almost all throughout the range of ∆P. This outperforms
the performance as quantified in the Table I with normal
generalized-exponential distribution which is way over 10%.
Both scaling parameters are analytically determined in
terms of ∆P which follows (7). Table II(a) provides the value
of the coefficients for λ1. However, while estimating λ2, (7)
is required to be scaled by a factor of 10−5. γ could be
obtained using (8) in order to have the analytical fit with
the numerical λ2 values. Table II(b) provides the value of
the coefficients for λ2. For the weighing parameter (γ), the
coefficients values are shown in Table II(c).

Interestingly, it is intuitive that with the increase in the
degree of freedom of the fitting distribution, there could
be improvement in the fit. Therefore, the case of weighted
exponential distribution is now extended to the case of
weighted generalized exponential distribution. As shown
in (15), the weighted generalized exponential distribution
has five degrees of freedom that includes the two scaling
and shaping factors λ1, λ2, α1 and α2 along with the
weighting factor γ. As it could be seen in Fig. 4, the KS
distance values obtained numerically for ∆P ranging from
160 to 500 Pa is less than 5% which is considered to be a
very good fit. With increase in the degree of freedom, the
sensitivity of curve fitting to obtain the analytical expression
for the parameters increases. Therefore, marginal fitting
error in any of the parameter usually could affect the
final KS distance estimation. This is the reason when the
parameters for the sum of weighted generalized exponential
distribution is estimated analytically and used to calculate
the KS distance, it is although lesser than 10% but it is more
than 5% for all the ∆P values as shown in Fig. 4.

Both in case of weighted exponential and weighted gener-
alized exponential distributions, the location parameter (µ)
for all values of the reported ∆P is interestingly same and
equals 0.2 corresponding to 200 ms which is the minimum
inter-arrival time. This is due to the fact that in general
the normal atmospheric pressure at mean sea level is 1
atm ≈ 105 kPa. For stationary indoor condition the rate
of air pressure fluctuation is relatively slower. Therefore
considering the time window of our entire data recording
which is for 10 weeks, fluctuation parameter threshold
∆P in the order of 1 atm or higher Pascal values was
unavailable. Within the scope of available data, analysis
of ∆P within an estimated range of 150 to 500 Pa was
feasible and for every ∆P value there has been at least
one single or multiple instances where the corresponding

parameter variation occurred within the minimum data
sampling interval.

Table II. Pressure-Scaling Parameter fitting parameter coefficients
with weighted exponential distribution

(a) λ1 parameter

ai bi ci
1.867 110.1 3.279
0.496 125.4 11.94
0.1904 155.8 3.046
0.2131 187.2 7.169
0.3252 166.2 17.06
2.816 -712.6 542.3
-0.2017 162.4 51.97
-0.3747 47.13 84.72

(b) λ2 parameter

ai bi ci
2.466 128.3 80.68
0.09805 190.2 2.401
0.1841 220.9 9.798
0.425 251.8 20.27
0.3819 288.6 17.57
0.1497 298.7 4.598
-0.1626 275.9 47.57
3.019 157.9 439.9

(c) γ parameter

ai bi
0.1114 -0.08738
0.06726 0.07031
-0.05857 0.08055
-0.04354 -0.02673
0.01242 -0.04226
0.02905 0.02265
-0.01407 0.0304
-0.01835 -0.01453

V. CONCLUSION

In this work we have established the fact that for few
specific IoT applications the distribution of the data traffic
generated by the single source cannot be modelled using a
single statistical distribution. For similar scenarios we have
proposed a comprehensive mathematical framework to de-
termine the distribution based on sum of weighted single
distributions. The parameters of the weighted distribution
is determined as expressed as a function of the reported
parameter difference threshold. Such analysis could be
useful in case of applications where the reported physical
parameter fluctuation is highly sensitive and required to be
quantified at greater order of resolution. The distribution
of the inter-arrival time of data generation could be used
to optimise the cellular network that envisages to support
large number of similar IoT based applications.

VI. APPENDIX

A. Likelihood maximization for the weighted exponential
distribution

From the case of weighted exponential distribution, from
(2) and (3)

FE
(
xi ,λ1,λ2,µ,γ

)= γ(
1−e−λ1(xi−µ)

)
+ (1−γ)

(
1−e−λ2(xi−µ)

)
(9)

Differentiating the CDF FE
(
xi ,λ1,λ2,µ

)
with respect to

xi , we get the Probability Density Function (PDF)

fE
(
xi ,λ1,λ2,µ,γ

)= γλ1e−λ1(xi−µ) + (
1−γ)

λ2e−λ2(xi−µ) (10)

The log-likelihood function turns out to be

L̃ =
N∑

i=1
log

{
γλ1e−λ1(xi−µ) + (

1−γ)
λ2e−λ2(xi−µ)

}
, (11)
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(c)Fig. 2. a. Scaling Parameter-1 (λ1) vs pressure difference b. scaling Parameter-2 (λ2) vs pressure difference c. numerically and analytically
computed weighing parameter (γ) vs Pressure Difference, all for weighted exponential distribution
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Fig. 3. Numerically and analytically computed KS distances vs
reported pressure difference (∆P), for weighted exponential dis-
tribution
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Fig. 4. Numerically and analytically computed KS distances vs
reported pressure difference (∆P), for weighted generalized expo-
nential distribution

where N is the total number of inter-arrival durations for
a specific parameter input difference ∆P.

In order to maximize the Log-Likelihood function, L̃ is
differentiated with respect to the two scaling parameters λ1

and λ2 and their partial derivatives are set to zero to find
the solution. Taking partial derivative of (11) we obtain,

∂L̃

∂λ1
=

N∑
i=1

γe−λ1(xi−µ) −γλ1
(
xi −µ

)
e−λ1(xi−µ){

γλ1e−λ1(xi−µ) + (
1−γ)

λ2e−λ2(xi−µ)
} , (12)

∂L̃

∂λ2
=

N∑
i=1

(
1−γ)

e−λ2(xi−µ) − (
1−γ)

λ2
(
xi −µ

)
e−λ2(xi−µ){

γλ1e−λ1(xi−µ) + (
1−γ)

λ2e−λ2(xi−µ)
} .

(13)

As explained in the earlier Section IV, the weighting pa-
rameter γ can be treated both as discrete ranging between
γ= {0,0.1,0.2, ...0.9} and continuous value ranging between
γ = [0,1]. In discrete case an exhaustive search technique
can be applied and for each value of γ, it corresponding
optimal λ1 and λ2 can be estimated which would maximize
the Log-Likelihood function. However, in case of γ as con-
tinuous it can be included as one of the decision variable
along with λ1 and λ2 and the corresponding maxima of the
Log-Likelihood function can be determined. In that case,

∂L̃

∂γ
=

N∑
i=1

{
λ1e−λ1(xi−µ) −γλ2e−λ2(xi−µ)

}
{
γλ1e−λ1(xi−µ) + (

1−γ)
λ2e−λ2(xi−µ)

} (14)

The maximum of the Log-Likelihood function L̃ can now
be easily obtained by solving for ∂L̃

∂λ1
= 0, ∂L̃

∂λ2
= 0 and ∂L̃

∂γ = 0.

B. Likelihood maximization for the weighted generalized-
exponential distribution

The CDF of the weighted generalized exponential distri-
bution

FGE = γ
[

1−e−λ1(xi−µ)
]α1 + (

1−γ)[
1−e−λ2(xi−µ)

]α2
. (15)

The PDF is given by

fGE = γλ1α1e−λ1(xi−µ)
[

1−e−λ1(xi−µ)
]α1−1+(

1−γ)
λ2α2e−λ2(xi−µ)

[
1−e−λ2(xi−µ)

]α2−1

(16)



The Log-Likelihood Function is given by

L̃ =
N∑

i=1
log

{
γλ1α1e−λ1(xi−µ)

[
1−e−λ1(xi−µ)

]α1−1+
(
1−γ)

λ2α2e−λ2(xi−µ)
[

1−e−λ2(xi−µ)
]α2−1

} (17)

Differentiating L̃ with respect to λ1, λ2, α1 and α2 we
get,

∂L̃

∂λ1
=

N∑
i=1

γα1

(
ζ
λ1(1)
i +ζλ1(2)

i

)
Di

, (18)

where ζ
λ1(1)
i , ζλ1(2)

i and Di are dummy variables as shown
in the numerator and denominator of (17) calculated to be
as

ζ
λ1(1)
i =

[
1−e−λ1(xi−µ)

](α1−1) {
e−λ1(xi−µ) −λ1

(
xi −µ

)
e−λ1(xi−µ)

}
, (19)

ζ
λ1(2)
i =λ1e−λ1(xi−µ)

{
(α1 −1)

[
1−e−λ1(xi−µ)

]α1−2 (
xi −µ

)
e−λ1(xi−µ)

}
,(20)

and

Di =
{
γλ1α1e−λ1(xi−µ)

[
1−e−λ1(xi−µ)

]α1−1+
(
1−γ)

λ2α2e−λ2(xi−µ)
[

1−e−λ2(xi−µ)
]α2−1

}
.

(21)

Similarly, for the shaping parameter α1, the derivative
turns out to be,

∂L̃

∂α1
=

N∑
i=1

γλ1e−λ1(xi−µ)
(
ε
α1(1)
i +εα2(2)

i

)
Di

, (22)

where

ε
α1(1)
i =

[
1−e−λ1(xi−µ)

]α1−1
(23)

ε
α1(2)
i =α1

[
1−e−λ1(xi−µ)

]α1−1
log

{
1−e−λ1(xi−µ)

}
. (24)

Based on the formulations as shown in (18) and (22),
∂L̃
∂λ2

and ∂L̃
∂α2

can be easily calculated just by replacing γ as(
1−γ)

, λ1 as λ2 and α1 as α2 respectively. Once the partial
derivatives of the Log-Likelihood function with respect to
all the scaling (λ1,λ2) and shaping (α1,α2) parameters are
obtained, it can be equated to zero to find the values of
the parameters which would maximize the log-likelihood
function.
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