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Abstract—We investigate noise floor (NF) estimation for FFT-
ED (Energy Detection based on FFT)-based spectrum usage
measurement in the context of smart spectrum access (SSA), in
which spectrum usage information of primary users (PUs), such
as channel occupancy rate (COR), will be exploited by secondary
users (SUs). In FFT-ED, the NF has to be estimated to set a
decision threshold for ED appropriately. In general, the NF is
frequency-dependent and its level changes with time leading to
the need of estimating the NF regularly while performing the
spectrum usage measurement. In this paper, we propose an NF
estimation method which exploits prior information regarding
the shape of NF and forward consecutive mean excision (FCME)
algorithm. Numerical and experimental evaluations show the
proposed method enables an accurate NF estimation considering
the time and frequency dependencies of the NF. Moreover,
we show the proposed method can obtain the almost desired
detection performance, but can not the comparative method (the
original FCME method).

I. INTRODUCTION

Due to the fixed spectrum assignment policy and increasing
demand for wireless communications, spectrum is a scarce
natural resource and there is little room to accommodate new
wireless systems [1]. However, several spectrum measurement
campaigns around the world have shown that almost all the
spectrum is under-utilized in terms of time and space [2]. It
means that there is a lot of unused spectrum, which is called
white space (WS).

For this issue, dynamic spectrum access (DSA) has been
investigated [3]. In DSA, there are primary users (PUs), which
have priority regarding spectrum usage, and secondary users
(SUs), which can opportunistically access the vacant spectrum
as long as the spectrum usage by SUs does not cause any
harmful interference to PUs.

In DSA, SUs have to detect WS to protect PUs from
the harmful interference and gain the spectrum access op-
portunities. Moreover, instantaneous information of the target
spectrum, either vacant or occupied, is necessary to share
the spectrum with PUs whose spectrum usage may change
dynamically. To this end, spectrum sensing is an important
technique [4]. However, requirements of spectrum sensing,
such as accuracy, latency and implementation cost in DSA
are substantially high [4].
　 Not only to resolve the issue of spectrum sensing but

also to provide other benefits to DSA, advanced DSA, known

as smart spectrum access (SSA), has been investigated [5],
[6]. SSA exploits useful statistical information in terms of
PU’s spectrum usage such as channel occupancy rate (COR).
This information can be obtained by long-term, broadband
and wide area spectrum usage measurements and it can be
used to achieve spectrum sharing smartly. In fact, it has
been shown that COR information can enhance spectrum
sensing performance [7], [8]. It can also enhance spectrum
management, channel selection, MAC protocol for DSA [9],
[10].

In this paper, we focus on the spectrum usage measure-
ment part for realizing SSA. In general, the spectrum usage
measurement consists of acquisition of the data (e.g., I/Q
data), processing the obtained data such as spectrum analysis,
spectrum usage detection and estimation of statistical informa-
tion. Many spectrum usage measurement campaigns have been
carried out during the last decade and most of the campaigns
utilize frequency-domain energy detection (ED) as a spectrum
usage detection method [2].

In the frequency-domain ED, the noise floor (NF) estimation
is an important functionality because the detection perfor-
mance of ED is affected by the accuracy of NF estimation [11].
Erroneous NF estimation can lead to missed detections causing
harm to PUs or too many false alarms harming communication
by SUs. Most of previous spectrum usage measurements utiliz-
ing ED exploited a fixed NF information which is obtained by
switching the receiver input to a matched load or is measured
in an anechoic chamber before starting the measurements.
However, the NF should be estimated periodically due to
its time dependency [12]. Moreover, the shape of the NF
has frequency dependency and it is equipment-specific [13].
There are several works considering the time dependency of
the NF. In [14], the NF estimation method applying forward
consecutive mean excision (FCME) algorithm is proposed. It
can estimate the NF accurately while carrying out the spectrum
usage measurement. However, this method assumes flatness of
the noise and thus cannot be directly applied to estimate the
frequency-dependent NF.

In this paper, we propose an NF estimation method con-
sidering both the time and frequency dependencies of the
NF. We assume the NF variation in time and frequency are
independent. Under this assumption, the proposed method
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Fig. 2. Block diagram of the spectrum usage measurement process

equalizes the NF in frequency domain by a noise-only ref-
erence measurement enabling appropriate operation of FCME
algorithm. In addition, the method applies the FCME algo-
rithm twice, i.e., along with the axes of time and frequency
for increasing efficiency of the NF estimation. Numerical
evaluations show the proposed method enables an accurate NF
estimation considering the time and frequency dependencies of
the NF.

The rest of the paper is organized as follows. In Sect. II,
system model and assumptions are described and probabilities
of detection and false alarm are analytically derived. A new
NF estimation method is proposed in Sect. III. In Sect. IV, the
results by means of computer simulation as well as verification
experiment are provided. Finally, Sect. V summarizes and
concludes this paper.

II. SYSTEM MODEL AND ASSUMPTIONS

Configuration of time frames for the spectrum usage mea-
surement is shown in Fig. 1. One continuous spectrum usage
measurement (data acquisition) consists of N I/Q baseband
samples and is indexed by t.

The block diagram of the signal processing used for spec-
trum usage measurement is shown in Fig. 2. The first process is
the power spectrum estimation with Welch FFT [15] using I/Q
baseband samples yt. Then, the NF estimation is performed
using yt, the power spectrum estimate P(t) and a reference
NF µref , where we will explain µref in details in Sect. III.
After that, the threshold setting for ED is performed using
the estimated NF Ût. Finally, the ED with the set threshold
τ̇PFA is performed to obtain the spectrum usage decisions Dt.
Below is the more detailed explanation for the process.

Now let us focus on the tth data acquisition time (t ∈
{0, 1, · · · , T − 1}). At first, the acquired I/Q baseband signal
yt = [yt[0], yt[2], · · · , yt[N − 1]]T is divided into K Welch
FFT blocks with Ns samples. Thus, the I/Q baseband signal
y
(t)
k , k ∈ {0, 1, · · · ,K − 1} in the kth Welch FFT block is

given by y
(t)
k = [yt[(k−1)Ns+1], · · · , yt[(k−1)Ns+Ns]]

T .
The power spectrum estimation with Welch FFT and ED are

performed to obtain spectrum usage decisions for every Welch
FFT block.

The power spectrum estimation with Welch FFT consists
of three steps: segmentation of y

(t)
k with a specific FFT size

and an overlap ratio, calculation of multiple power spectra and
averaging of the power spectra [15]. The I/Q baseband signal
y
(t)
k,l, l ∈ {0, 1, · · · , L − 1} at lth segment and kth Welch

FFT block is given by

y
(t)
k,l = yt[(k − 1)(l − 1)(1− ρ)NFFT + 1], · · · ,

yt[(k − 1)(l − 1)(1− ρ)NFFT +NFFT ]]
T .

(1)

where NFFT and ρ ∈ [0, 1) indicate the FFT size and the
overlap ratio between the adjacent segments, respectively. In
the rest of the paper, we assume ρ = 0.5 because it has been
confirmed to be appropriate choice for good signal detection
performance [16]. Moreover, Ns and NFFT are assumed to
be powers of two. In this case, the number of segments L is
given by L = 2Ns/NFFT − 1.

After the segmentation, normal FFT is performed with
respect to each segment. The result of FFT operation of y

(t)
k,l

is given by

Y
(t)
k,l =

1√
NFFT

FWy
(t)
k,l

= [Y
(t)
k [l, 0], · · · , Y (t)

k [l, f ], · · · , Y
(t)
k [l, NFFT − 1]]T , (2)

where F = (exp(−j2πmf/NFFT ))m,f=0,1,··· , NFFT−1 is
the discrete Fourier transform matrix. The diagonal matrix
W = diag(w0, w1, · · · , wNFFT−1) is a matrix where its
diagonal elements are coefficients wm of the utilized FFT
window. It is assumed that

∑NFFT−1
m=0 w2

m = 1. The type of
window function also affects the detection performance [17].
Here, we use Hamming window because it has been shown
that it can achieve slightly better performance compared to
other window functions in [14].

Finally, power spectrum estimation is performed by aver-
aging the power spectra. Thus, the averaged power spectrum
estimate P

(t)
k at kth Welch FFT block is given by

P
(t)
k =

1

L

L−1∑
l=0

|Y (t)
k [l, f ]|2

= [P
(t)
k [0], · · · , P

(t)
k [f ], · · · , P

(t)
k [NFFT − 1]]T , (3)

where f = 0, 1, · · · , NFFT −1 indicates the index number of
frequency bin. We define a matrix Pt = [P

(t)
1 P

(t)
2 · · ·P(t)

K ].
The detection result at the kth Welch FFT block and the

f th frequency bin is obtained by the ED as

Dt[k, f ] =

{
1 (P

(t)
k [f ] > τ̇PFA

)
0 (otherwise)

(4)

where 1 and 0 correspond to the decisions of occupied
spectrum (H1) and vacant spectrum (H0), respectively. The
occupied spectrum (H1) indicates that PU signal exists in
the frequency bin partially or completely and vacant spec-
trum (H0) indicates otherwise (no signal present). The de-
tection threshold τ̇PFA

is set based on NF estimate Ût =



[Û [t, 0], Û [t, 1], · · · , Û [t, f ], · · · , Û [t,NFFT − 1]]T so that
τ̇PFA

satisfies constant false alarm rate (CFAR) criterion.
Threshold setting and NF estimation are explained in Subsect.
II-A and Sect. III, respectively.

A. Derivation of Detection and False Alarm Probabilities

From (2), the result of FFT operation of r
(t)
k,l at the lth

segment and the kth Welch FFT block is given by

Y
(t)
k [l, f ] =

{
Z

(t)
k [l, f ] (H0)

X
(t)
k [l, f ] + Z

(t)
k [l, f ] (H1),

(5)

where Z
(t)
k [l, f ] indicates the result of FFT operation for the

noise-only samples z
(t)
k,l at lth segment and it is assumed its

distribution has a complex Gaussian distribution with mean 0

and variance U [t, f ]. On the other hand, X(t)
k [l, f ] indicates

the result of FFT operation for the signal samples x
(t)
k,l at lth

segment and it is assumed its distribution has a complex Gaus-
sian distribution with mean 0 and variance Q[t, f ]. Moreover,
we assume that Z

(t)
k [l, f ] and X

(t)
k [l, f ] are independent of

each other and the spectrum occupancy pattern is constant
during one Welch FFT block. Then, the averaged spectrum
P

(t)
k [f ] at f th frequency bin follows a Gamma distribution

with shape parameter L and scale parameter U [t, f ]/L (H0)
or (U [t, f ]+Q[f ])/L (H1)1 and its complimentary cumulative
distribution function (CCDF) F (τ) assuming x = P

(t)
k [f ] is

given by

F (τ) =

∫ ∞

τ

f(x) =

 Γ̃
(
L, τ

U [t,f ]/L

)
: H0

Γ̃
(
L, τ

(U [t,f ]+Q[f ])/L

)
: H1.

(6)

where f(x) means the probability density function of x.
Γ̃(α, θ) = 1

Γ(α)

∫∞
θ

xα−1exp(−x)dx indicates a normalized
incomplete Gamma function and Γ(·) is a Gamma function.

Next, we derive the detection threshold satisfying CFAR
criterion and the detection and false alarm probabilities. The
detection threshold satisfying CFAR criterion τ̇PFA satisfies
the following equation,

ṖFA = Prob(P
(t)
k [f ] > τ̇PFA |H0) = Γ̃

(
L,

τ̇PFA

U [t, f ]/L

)
, (7)

where ṖFA is a target false alarm probability. Therefore, τ̇PFA

is given by

τ̇PFA =
U [t, f ]

L
Γ̃−1

(
L, ṖFA

)
, (8)

where Γ̃−1 indicates the inverse of a normalized incomplete
Gamma function. Then, the detection probability is given by

PD = Prob(P
(t)
k [f ] > τ̇PFA |H1) = Γ̃

L,
Γ̃−1

(
L, ṖFA

)
1 + SNR[f ]

 ,

(9)
where SNR[f ] = Q[f ]

U [f ] is the received signal-to-noise ratio
(SNR). Eq. (8) indicates an accurate NF information U [t, f ]
is required to set an appropriate detection threshold.

1Equivalently, if a random variable X follows a Gamma distribution with
shape parameter L and scale parameter θ, Y = X/θ follows a Chi-squared
distribution with 2L degrees of freedom.
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III. NOISE FLOOR ESTIMATION

A. Time Variation Model of Noise Floor Level

In this work, we model the NF variation in time as a
following relationship

U [j, f ] = γjµref [f ], (10)

where γj and µref [f ] indicate the NF level variation factor and
the NF at a reference time instant denoted by the reference NF,
respectively. This relationship means the the NFs between the
reference time instant and any data acquisition times (t = j)
does not depend on frequency and its variation is multiplicative

Furthermore, we assume the NF and the noise power (σ2
z,t)

at least do not change with time during one data acquisition
time.

B. Proposed Noise Floor Estimation Method

In this work, we assume the observation equipment has a
radio frequency (RF) terminator to provide noise-only sam-
ples. Then, the proposed NF estimation estimates a reference
NF µref [f ] based on noise-only samples. The reference NF
µref [f ] is calculated by time averaging of power spectrum and
it is given by

µref [f ] =
1

M

M−1∑
m=0

Pm,ref [f ], (11)

where M and Pm,ref [f ] indicate the number of time averaging
and power spectrum of noise-only samples, respectively. We
define µref = [µref [0], µref [1], · · · , µref [NFFT − 1]]T as a
reference NF estimate vector.

Now, our NF estimation problem is equivalent to the estima-
tion of γj given the reference NF µref [f ] while carrying out
spectrum usage measurements. The issue in this problem is to
estimate γj in an environment where both spectrum occupancy
states H0 and H1 exist. γj can be estimated appropriately if
the power spectrum samples with state H0 can be identified.
In this work, we apply FCME algorithm to discriminate the
power spectrum samples with state H0 from the one with state
H1.

Block diagram of proposed NF estimation method is shown
in Fig. 3. The initial process of proposed method is time-
domain ED for I/Q baseband signal y(t) to identify the Welch
FFT blocks assumed being state H0 across the measurement
bandwidth. More specifically, time-domain ED detects state
for each Welch FFT block by comparing the energy T

(t)
k =



(y
(t)
k )Hyk for each Welch FFT block with the threshold ν. The

set of Welch FFT blocks decided as state H0 by time-domain
ED, Θ is given as

Θ = {k|T (t)
k < ν}, (12)

where the cardinality of Θ is defined as |Θ| and the threshold
ν is set to satisfy CFAR criterion. The threshold ν depends
on the noise power σ2

z,t according to (8) in Subsect. II-A. For
this reason, the noise power is estimated by applying FCME
algorithm and it is denoted by σ̂2

z,t. The estimation method
and threshold setting are explained in Subsect. III-C.

Next step of the proposed method is equalizing process.
Thus, the NF is flattened over all frequency bins exploiting
the reference NF µref . Specifically, the process is given by

v
(t)
k∈Θ[f ] =

P
(t)
k∈Θ[f ]

µref [f ]
. (13)

As a result, the power spectrum under state H0 has an identical
distribution．Thus, the CCDF of v(t)k∈Θ[f ] is given as

F
v
(t)
k∈Θ[f ]

(y) =

 Γ̃
(
L, y

γj/L

)
: H0

Γ̃
(
L, y

(γj+Q[f ]/µref [f ])/L

)
: H1.

(14)

We define a matrix Vt in which the vectors
v
(t)
k∈Θ are stacked along with column, where

v
(t)
k∈Θ = [v

(t)
k∈Θ[0], · · · , v

(t)
k∈Θ[NFFT − 1]T．

After that, the proposed method calculates the average of
v
(t)
k∈Θ[f ] denoted as δt[f ]. Thus,

δt[f ] =
1

|Θ|
∑
k∈Θ

v
(t)
k [f ]. (15)

We denote δt as δt = [δt[0], δt[1], · · · , δt[NFFT − 1]]T =
diag(VtV

T
t )/|Θ|. If the state for the index number of Welch

FFT blocks specified in the set Θ is truly state H0, the mean
of δt is an appropriate estimate of γj．However, γj may be
overestimated when the state for the index number of Welch
FFT blocks specified in the set Θ contains the state H1.
Therefore, the effect of samples which are affected by power
spectrum samples with the state H1 should be excluded before
averaging of δt. Therefore, FCME algorithm is applied to
δt. FCME algorithm identifies the frequency bins in which
the state is decided as H0 and then averages δt[f ] at only
frequency bins which are decided as H0. This average value
corresponds to the estimate of γj denoted as γ̂j . The averaged
value is calculated as

γ̂j =
1

|C|
∑
f∈C

δt[f ], (16)

where the set C contains the index number of frequency bins
which are decided as H0 by FCME algorithm and |C| indicates
the cardinality of C. Specifically, the set C is given as

C = {f |δt[f ] < η}. (17)

The estimation of γj based on FCME algorithm is explained

in Subsect. III-C.
Finally, the NF estimate by the proposed method is given

by
Û [j, f ] = γ̂jµref [f ]. (18)

C. Estimation of σ2
z,t and γt based on FCME algorithm

FCME algorithm is an iterative method which separates
signal samples or noise samples from given samples in an
environment that signal samples and noise samples are mixed
[18]．Now, let us consider to separate noise samples from
power spectrum samples P [n] with N samples exploiting
FCME algorithm, where we assume a noise sample follows
Gamma distribution with the shape parameter α and the scale
parameter θ, where FCME algorithm attempts to estimate θ.

FCME algorithm first sorts the power spectrum samples in
an ascending order in terms of power. After that, it calculates
the mean of the power spectra using S smallest samples which
are assumed to be noise samples. In general, S = ⌈0.1N⌉,
where ⌈·⌉ is the ceiling function. By assuming that the
calculated mean value P̄ is correct, the first threshold that
attains the target false alarm rate PFA,FCME such as 0.01
with the calculated mean is obtained based on the assumed
distribution of noise samples, which corresponds to Gamma
distribution in this paper. Specifically, the threshold τFCME

can be set based on (8) in Sect. II-A. Thus,

τFCME = P̄ TCME , (19)

where TCME = Γ̃−1 (α, PFA,FCME) is a parameter and it
can be set in advance [18]. Obviously, the appropriate NF
estimate is more than the NF estimate from the first iteration
since it is mean of the S smallest samples. Then, the threshold
is updated based on the mean value P̄ which is calculated
by exploiting updated noise samples. The updating of noise
samples continues as long as new samples are added from the
set of signal samples obtained with the latest threshold.

Now, we describe the estimation method of σ2
z,t based

on FCME algorithm, where σ2
z,t corresponds to the scale

parameter θ in Gamma distribution. The energy T
(t)
k for each

Welch FFT block under the state H0 can be approximated by
Gamma distribution [17]．Thus, the CCDF of T (t)

k under the
state H0 is given by

F
T

(t)
k

(y) = Γ̃

h′

2
,
( 2y
σ2
z,t

− c1)
√

h′

c2
+ h′

2

 , (20)

where h′ = c32/c
2
3 and cj = 2

∑Ns

i=1 λ
j
i . The symbol

λi indicates the ith eigenvalue of the correlation matrix
C

(t)
z of a noise sample vector z

(t)
k . Therefore, the threshold

for FCME algorithm τFCME has a same form as (19) be-
cause both (6) and (20) follow Gamma distribution. Here,
P̄ = 1

NsS

∑S
k=1 T

(t)(k), where T (t)(k) indicates the or-
dered version of T

(t)
k and S is the number of Welch FFT

blocks satisfying T
(t)
k < τFCME. Moreover，TCME =

1
2{

√
c2
h′ (2Γ̃

−1
(

h′

2 , PFA,FCME

)
−h′)+ c1}. Finally, the esti-



Table I
PARAMETER SET

Parameter name Parameter
Welch FFT block size Ns 210

FFT size NFFT 28

M 10000
σ2
z -86dBm

SNR [dB] [-4 10]
γ [dB] -0.5

Measurement bandwidth 40MHz
Center frequency 2.437GHz
Signal bandwidth 20MHz

ṖFA 0.01

mated noise power σ̂2
z,t corresponds to P̄ at the final iteration.

Based on this, the threshold ν for time-domain ED in the
proposed NF estimation is given by

ν = σ̂2
z,tTCME . (21)

Next, we describe the estimation method of γj based on
FCME algorithm, where γj corresponds to the scale parameter
θ in Gamma distribution. In this case, FCME algorithm can
also be applied directly because δt[f ] under the state H0

follows Gamma distribution. Thus, the CCDF of δt[f ] under
the state H0 is given by

Fδt[f ](y) = Γ̃

(
L,

y

|Θ|γj/L

)
, (22)

where the set Θ is given by (12). Therefore, the threshold for
FCME algorithm τFCME has a same form as (19)．Here, P̄ =
1
S

∑S
f=1 δt(f), where δt(f) indicates the ordered version of

δt[f ] and S is the number of frequency bins satisfying δt[f ] <

τFCME. Moreover，TCME = |Θ|
L Γ̃−1 (L,PFA,FCME). Fi-

nally, the estimated NF level variation factor γ̂j corresponds
to P̄ at the final iteration.

IV. NUMERICAL EVALUATIONS

A. Computer simulations

In this section, we evaluate the NF estimation performance
of the proposed method based on computer simulations as well
as experiment. As a comparative method, we apply the original
FCME algorithm-based NF estimation method, which does
not consider the frequency dependency of the NF. Common
parameters are summarized in Table I, where σ2

z indicates the
total noise power in the measurement bandwidth with 40MHz.
Figure 4 shows the assumed reference NF in the computer

simulations. The true NF corresponds to the reference NF
minus γ = 0.5 in dB.

Figure 5 shows RMSE (Root Mean Squared Error) in terms
of NF estimate as a function of SNR．From this figure, the
proposed method can improve the NF estimation performance
compared with the FCME method since the proposed method
can consider both time and frequency dependencies of the
NF. Furthermore, we evaluate the estimation accuracy of the
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reference NF. As appreciated, the RMSE performance of the
proposed method with the known reference NF is better than
than the one with the estimated reference NF.

Figure 6 evaluates the RMSE in terms of the detection
and false alarm probabilities as a function of SNR. The
RMSE means the error between the ideal method and the
proposed method or FCME method, where the ideal method
knows the true NF and SNR, and the detection and false
alarm probabilities can be calculated by Eq. (9) and (7),
respectively. The target PFA is set to 0.01. From Fig. 6,
totally the proposed method has a better RMSE performance
than the FCME method. This means the proposed method can
achieve accurate NF estimation performance as confirmed in
Fig. 5 and set the detection threshold for ED appropriately
considering both time and frequency dependencies of the NF.
Moreover, the difference of RMSE performance between the
proposed method with the known reference NF and that with
the estimated reference NF is marginal. This indicates the
number of time averaging for obtaining the reference NF,
M = 10000 is the appropriate value.
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B. Experiments

We performed a spectrum usage measurement using a real-
time spectrum analyzer (Tektronix RSA306) in the 2.4 GHz
WLAN band in our laboratory. Measurement parameters are
same as in Table I. Figure 7 shows the experimental results: (a)
power spectrum, (b) the estimated NF, (c) ED result for the
FCME method and (d) ED result for the proposed method.
Comparing the results of (c) and (d) in Fig. 7, there are
excessive false alarms in (c), for example the frequencies
around 2.41GHz and 2.43GHz. In fact, Most of the Welch FFT
blocks in their frequencies do not contain signal components
as confirmed in (a). Thus, the proposed method can estimate
the NF properly and this aspect can also be confirmed in (b).

V. CONCLUSION

In this work, we propose the NF estimation method consid-
ering both the time and frequency dependencies of the NF
for spectrum usage measurements. Assuming the NF level
variation in time does not depend on frequency, the proposed
method equalizes the NF enabling appropriate operation of
FCME algorithm in both time and frequency domains. Numer-
ical and experimental evaluations show the proposed method

enables an accurate NF estimation considering the frequency-
dependency and time-varying characteristics of the NF.
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