
Brief Announcement: Fast Approximate
Counting and Leader Election in Populations?

Othon Michail1, Paul G. Spirakis1,2, and Michail Theofilatos1

1 Department of Computer Science, University of Liverpool, UK
2 Computer Engineering and Informatics Department, University of Patras, Greece
Email: {Othon.Michail, P.Spirakis, Michail.Theofilatos}@liverpool.ac.uk

Keywords: population protocol · epidemic · leader election · counting · approx-
imate counting · polylogarithmic time protocol.

1 Introduction

Population protocols [2] are networks that consist of very weak computational
entities (also called nodes or agents), regarding their individual capabilities and
it has been shown that are able to perform complex computational tasks when
they work collectively. Leader Election is the process of designating a single
agent as the coordinator of some task distributed among several nodes. The
nodes communicate among themselves in order to decide which of them will get
into the leader state, starting from the same initial state q. An algorithm A
solves the leader election problem if eventually the states of agents are divided
into leader and follower, a unique leader remains elected and a follower can never
become a leader. A randomized algorithm R solves the leader election problem if
eventually only one leader remains in the system w.h.p.. Counting is the problem
where nodes must determine the size n of the population. We call Approximate
Counting the problem in which nodes must determine an estimation n̂ of the
population size, where n̂

a < n < n̂. We call a the estimation parameter. Consider
the setting in which an agent is in an initial state a, the rest n − 1 agents are
in state b and the only existing transition is (a, b)→ (a, a). This is the one-way
epidemic process and it can be shown that the expected time to convergence
under the uniform random scheduler is Θ(n log n) (e.g., [3]), thus parallel time
Θ(log n).

2 Related Work

The framework of population protocols was first introduced by Angluin et al. [2]
in order to model the interactions in networks between small resource-limited
mobile agents. There are many solutions to the problem of leader election, such as
in networks with nodes having distinct labels or anonymous networks [1,5,4]. In a
recent work, Gasieniec and Stachowiak [5] designed a space optimal (O(log log n)
states) leader election protocol, which stabilizes in O(log2 n) parallel time. They

? All authors were supported by the EEE/CS initiative NeST. The last author was
also supported by the Leverhulme Research Centre for Functional Materials Design.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/189233563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 O. Michail, P. G. Spirakis, M. Theofilatos

use the concept of phase clocks (introduced in [3] for population protocols), which
is a synchronization and coordination tool in distributed computing. Regarding
the counting problem, in a recent work, Michail [6] proposed a terminating pro-
tocol in which a pre-elected leader equipped with two n-counters computes an
approximate count between n/2 and n in O(n log n) parallel time w.h.p..

3 Contribution

In this work we employ the use of simple epidemics in order to provide efficient
solutions to approximate counting and also to leader election in populations.
Our model is that of population protocols. Our goal for both problems is to get
polylogarithmic parallel time and to use small memory per agent. (a) We start
by providing a protocol which provides an upper bound n̂ of the size n of the
population, where n̂ is at most na for some a > 1. This protocol assumes the
existence of a unique leader in the population. The runtime of the protocol until
stabilization is Θ(log n) parallel time. Each node except the unique leader uses
only a constant number of states. However, the leader is required to use Θ(log2 n)
states. (b) We then look into the problem of electing a leader. We assume an
approximate knowledge of the size of the population and provide a protocol
(parameterized by the size m of a counter for drawing local random numbers)

that elects a unique leader w.h.p. in O(log2 n
logm) parallel time, with number of

states O(max{m, log n}) per node. By adjusting the parameter m between a
constant and n, we obtain a leader election protocol whose time and space can
be smoothly traded off between O(log2 n) to O(log n) parallel time and O(log n)
to O(n) states.

4 The model

In this work, the system consists of a population V of n distributed and anony-
mous (i.e., do not have unique IDs) agents, that are capable to perform local
computations. Each of them is executing as a deterministic state machine from a
finite set of states Q according to a transition function δ : Q×Q→ Q×Q. Their
interaction is based on the probabilistic (uniform random) scheduler, which picks
in every discrete step a random edge from the complete graph G on n vertices.
When two agents interact, they mutually access their local states, updating them
according to the transition function δ. The transition function is a part of the
population protocol which all nodes store and execute locally. The time is mea-
sured as the number of steps until stabilization, divided by n (parallel time).

5 Fast Counting with a unique leader

Our probabilistic algorithm for solving the approximate counting problem re-
quires a unique leader who is responsible to give an estimation on the number of
nodes. There is initially a unique leader l and all other nodes are in state q. The
leader l stores two counters in its local memory, initially both set to 0, and after
the first interaction it starts an epidemic by turning a q node into an a node.
Whenever a q node interacts with an a node, its state becomes a. Whenever the
leader l interacts with a q node, the value of the counter cq is increased by one

Fast Approximate Counting and Leader Election in Populations 3

and whenever l interacts with an a node, ca is increased by one. The termination
condition is cq = ca and then the leader holds a constant-factor approximation
of log n. Chernoff bounds then imply that repeating this protocol a constant
number of times suffices to obtain n/2 ≤ ne ≤ 2n w.h.p..

Analysis.

Theorem 1. Our Approximate Counting protocol gives a constant-factor
approximation of log n in O(log n) parallel time w.h.p..

Proof. We divide the process into two phases, with the first phase starting
when the unique leader initiates the spreading of an epidemic, and the second
phase starting when half of the agents become infected. During the first phase,
cq reaches O(log n), while ca is increased by a small constant number w.h.p..
This means that our protocol does not terminate w.h.p. until more than half of
the population has been infected. During the second phase, when the infected
agents are in the majority, cq is increased by a small constant number, while ca
eventually catches up the first counter. The termination condition (cq = ca) is
satisfied and the leader gives a constant-factor approximation of log n. Finally,
our protocol terminates after Θ(log n) parallel time w.h.p.. After half of the
population has been infected, it holds that |cq − ca| = Θ(log n). When the
a nodes are in the majority, this difference reaches zero after Θ(log n) leader
interactions. Thus, the total parallel time to termination is Θ(log n).

6 Leader Election with approximate knowledge of n

We assume that the nodes know an upper bound on the population size nb,
where n is the number of nodes and b is any big constant number. All nodes
store three variables; the round e, a random number r and a counter c and
they are able to compute random numbers within a predefined range [1,m] (m
is the maximum number that the nodes can generate). We define two types of
states; the leaders (l) and the followers (f). Initially, all nodes are in state l,
indicating that they are all potential leaders. The protocol operates in rounds
and in every round, the leaders compete with each other trying to survive (i.e.,
do not become followers). During the first interaction of two l nodes, one of them
becomes follower, a random number in [1,m] is being generated, the leader enters
the first round and the follower copies the tuple (r, e) from the leader to its local
memory. The followers are only being used for information spreading purposes
among the potential leaders and they cannot become leaders again.

Information spreading. All leaders try to spread their tuple (r, e) throughout
the population, but w.h.p. all of them except one eventually become followers.
We say that a node x wins during an interaction with node y if: (a) ex > ey or
(b) if (ex = ey), rx > ry. One or more leaders L are in the dominant state if their
tuple (r1, e1) wins every other tuple in the population. Then, the tuple (r1, e1)
is being spread as an epidemic throughout the population, independently of the
other leaders’ tuples (all leaders or followers with the tuple (r1, e1) always win
their competitors). We also call leaders L the dominant leaders.

4 O. Michail, P. G. Spirakis, M. Theofilatos

Transition to next round. After the first interaction, a leader l enters the
first round. As long as a leader survives (i.e., does not become a follower), in
every interaction it increases it’s counter c by one. When c reaches b log n, where
nb is the upper bound on n, it resets it and round e is increased by one. Finally,
the followers can never increase their round or generate random numbers.
Stabilization. Our protocol stabilizes, as the whole population will eventually
reach in a final configuration of states. To achieve this, when the round of a leader

l reaches d 2b logn−log(b log2 n)
logm e, l stops increasing its round e, unless it interacts

with another leader. This rule guarantees the stabilization of our protocol.

Analysis. The protocol proceeds by monotonously reducing the set of possible
leaders, until only one candidate for a leader remains. There are initially k0 = n
leaders in the population (round e = 0) and between successive rounds, the
number of the dominant leaders is given by ke = n

me .

Theorem 2. Our Leader Election protocol elects a unique leader in O(log2 n
logm)

parallel time w.h.p..

Proof. During a round e, the dominant tuple spreads throughout the pop-
ulation in Θ(log n) parallel time. No leader can enter to the next round if their
epidemic has not been spread throughout the whole population before, thus, for

m = b log n the overall parallel time is O(log2 n
log logn). Finally, during an execu-

tion of the protocol, at least one leader will always exist in the population (i.e.,
a unique leader can never become follower) and a follower can never become
leader again. The rule which says that leaders stop increasing their rounds if

e >= 2b logn−log (b log2 n)
logm , unless they interact with another leader, implies that

the population stabilizes in O(log2 n
logm) parallel time w.h.p. and when this happens,

there will exist only one leader in the population and eventually, our protocol
always elects a unique leader.

References

1. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: 42nd International Colloquium on Automata, Languages, and Program-
ming (ICALP). Lecture Notes in Computer Science, vol. 9135, pp. 479 – 491.
Springer, Berlin, Heidelberg (2015)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–
253 (2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

4. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state
anonymous agents. OPODIS 2006: International Conference on Principles of Dis-
tributed Systems vol 4305 (2006)

5. Gasieniec, L., Stachowiak, G.: Fast space optimal leader election in population pro-
tocols. In: SODA 2018: ACM-SIAM Symposium on Discrete Algorithms. pp. 265–
266 (2018)

6. Michail, O.: Terminating distributed construction of shapes and patterns in a fair
solution of automata. In: Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing. pp. 37–46 (2015)

	Brief Announcement: Fast Approximate Counting and Leader Election in Populations

