Environmental Research Letters

ACCEPTED MANUSCRIPT • OPEN ACCESS

Drought cuts back regeneration in logged tropical forests

To cite this article before publication: Lan Qie et al 2019 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab0783

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2018 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

1 2		
3 4	1	Drought cuts back regeneration in logged tropical forests
5 6 7	2	Lan Qie ^{1,2} , Elizabeth M. Telford ^{1,a} , Mike R. Massam ^{1,b} , Hamzah Tangki ³ , Reuben Nilus ⁴ , Andy Hector ⁵ ,
8 9 10	3	Robert M. Ewers ¹
11	4	¹ Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, UK, ² School of Life
12	5	Sciences, University of Lincoln, Lincoln, LN6 7TS, UK, ³ Conservation & Environmental Management Division,
13	6	Yayasan Sabah, 88817 Kota Kinabalu, Sabah, Malaysia, ⁴ Sabah Forestry Department Forest Research Centre, 90175
14 15	7	Sandakan, Sabah, Malaysia, ⁵ Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
16 17 18	8	Keywords
19 20	9	Forest disturbance, forest recovery, community assembly, leaf trait, plant strategy, plant functional
21 22 23	10	types
24 25 26	11	Abstract
27 28	12	Logged tropical forests represent a major opportunity for preserving biodiversity and sequestering
29 30	13	carbon, playing a large role in meeting global forest restoration targets. Left alone, these ecosystems
31 32 33	14	have been expected to undergo natural regeneration and succession towards old growth forests, but
34 35	15	extreme drought events may challenge this process. While old growth forests possess a certain level of
36 37	16	resilience, we lack understanding as to how logging may affect forest responses to drought. This study
38 39 40	17	examines the drought-logging interaction in seedling dynamics within a landscape of logged and
40 41 42	18	unlogged forests in Sabah Malaysia, based on 73 plots monitored before and after the 2015-16 El Niño
43 44	19	drought. Drought increased seedling mortality in all forests, but the magnitude of this impact was
45 46	20	modulated by logging intensity, with forests with lower canopy leaf area index (LAI) and above ground
47 48	21	biomass (AGB) experiencing greater drought induced mortality. Moreover, community traits in more
49 50 51 52 53 54	22	heavily logged forests shifted towards being more ruderal after drought, suggesting that the trajectory
55 56 57 58		 ^a Current address: School of GeoSciences, University of Edinburgh, Edinburgh EH9 8XP, UK ^b Current address: Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
59		

 of forest succession had been reversed. These results indicate that with reoccurring strong droughts under a changing climate, logged forests that have had over half of their biomass removed may suffer permanently arrested succession. Targeted management interventions may therefore be necessary to lift the vulnerable forests above the biomass threshold. Introduction More than half of the world's tropical forests now exist in various disturbed states due to historical or ongoing human activities, such as logging and shifting agriculture. While old growth tropical forests are important in conserving species diversity(Gibson et al., 2011) and helping to take CO₂ out of the atmosphere (Qie et al., 2017), logged tropical forests are increasingly recognized as harbouring great potential for providing much of the same benefits, especially if they recover from past disturbance and progress towards older growth states. Regenerating tropical forests have the potential to provide carbon sinks on par with, or even greater than, intact tropical forests (Rutishauser et al., 2015). The political and public wills for greater and denser forest cover are also growing ever stronger, driven by global scale forest restoration goals (Holl, 2017; Pistorius and Freiberg, 2014). The field of tropical forest regeneration and restoration thus has gained tremendous momentum and become a priority research area. Natural regeneration, in which species assembly and ecological processes progress towards pre-disturbance state through secondary succession, may be the most cost-effective route of forest regeneration (Chazdon and Guariguata, 2016). The forest succession pathways, however, depend on land-use history, soil conditions, seed pool and dispersal processes often mediated by animals (Arroyo -Rodrí guez et al., 2015). Selectively logged forests represent better opportunities for regeneration compared to previously clear-cut forests, because of their greater resemblance of old growth forests in

1 2		
2 3 4	46	structure and species pools (Crouzeilles et al., 2016; Gibson et al., 2011; Lewis et al., 2015). Importantly,
5 6	47	logged forests likely retain a seedling and sapling pool consisting of late succession species potentially
7 8	48	allowing for faster regeneration, which served as the basis for traditional silvicultural management (Van
9 10 11	49	Gardingen et al., 1998). Indeed low impact logging combined with improved tropical production forest
12 13	50	management may achieve rapid carbon stock recovery (Sasaki et al., 2016) and encourage forest
14 15	51	regeneration (O'Brien et al., 2019). It has also been shown that a range of abiotic and biotic processes
16 17	52	may be sustained in logged forests at levels similar to unlogged forest (Ewers et al., 2015), indicating
18 19 20	53	substantial ecosystem resilience and potentially facilitating natural regeneration. Biomass carbon
20 21 22	54	accumulation rate, a strong indicator of forest regeneration, can be two- to five- folds faster in logged
23 24	55	forests, as shown by multiple long-term studies in Borneo (Berry <i>et al.</i> , 2010; Sist and Nguyen-Thé,
25 26	56	2002), the Amazon (Rutishauser et al., 2015) and tropical Africa (Gourlet-Fleury et al., 2013), giving hope
27 28 29	57	for the regeneration capacity of logged forests.
30 31	58	Forest regeneration is nevertheless a lengthy process that even in the best cases can take multiple
32 33 34	59	decades (Curran et al., 2014), and climate change effects at this time scale could pose significant
35 36	60	challenges for forests undergoing dynamic transition. Global warming is expected to increase the
37 38	61	frequency of extreme drought events, particularly through intensified El Niño Southern Oscillation cycles
39 40	62	(Wang et al., 2017). El Niño is known to negatively impact forest ecosystem through increasing tree
41 42 43	63	mortality, suppressing gross primary production, altering phenology and shifting species composition
43 44 45	64	(Bonal et al., 2016; Corlett, 2016). These effects could be exacerbated in logged forests, especially in the
46 47	65	understorey and at ground level, where lower canopy cover in these forests provides less protection
48 49	66	from water stress compared to closed canopy forests. The 1997-1998 El Niño drought caused high
50 51	67	mortality in logged forests in Borneo and dramatically increased the dominance of pioneer species in
52 53 54	68	post drought seedling and sapling population (Slik, 2004). However, drought impact on logged forest
54 55 56	69	dynamics and their regeneration process likely depend on the degree of historical logging intensity.
57 58		2

70	Understanding this drought x logging interaction will allow us to identify potential threshold in the level
71	of biomass harvest beyond which natural regeneration may become hindered by climate change.
72	We focus on seedlings as they provide us foresight on the trajectory of forest succession (or lack of).
73	Seedlings represent a bottleneck stage of tree demographic dynamics, subjected to strong
74	environmental selection pressure and sensitive to microclimatic changes. Both the direction and
75	magnitude of seedling dynamics in response to drought will serve as indicators of forest resilience. In
76	addition to analyzing stem level dynamics in terms of mortality and recruitment rates, we assess
77	community level trait shifts. We used a set of simple and informative trait measures based on the CSR
78	plant functional attributes (Pierce et al., 2013). Competitors (C) are selected to survive in relatively
79	stable, productive habitats and invest in continued vegetative growth; stress-tolerators (S) are favoured
80	in resource-poor environments and are characterized by dense, persistent tissues; ruderalism (R) is a life
81	strategy of investing a large proportion of resources in propagules to ensure regeneration in repeated
82	severe environmental disturbances. This method allows effective positioning of a plant in a triangular
83	CSR trait space representing its strategy trade-off based on three leaf trait measures: leaf dry matter
84	content (LDMC; as an index of conservatism in life history), specific leaf area (SLA; indicative of
85	acquisitive economics) and leaf area (LA; photosynthetic organ size) (Pierce et al., 2013). We specifically
86	assess the succession trajectories of these forests by tracking the community mean R metric. Pioneer
87	vegetation is expected to exhibit an R-selected strategy, and as forest regeneration progresses the
88	community mean R value should decrease. We hypothesized that drought increases both seedling
89	mortality and ruderalism, and that these impacts are stronger in forests with greater historical logging
90	intensity.
91	Methods
00	The CASE superimental formet landesupe
92	The SAFE experimental forest landscape
	4
	7

2		
3 4	93	This study is part of the long-term ecosystem monitoring at the Stability of Altered Forest Ecosystem
5 6 7	94	(SAFE) Project (4° 38' N to 4° 46' N, 116° 57' to 117° 42' E). The SAFE landscape consists of a broad
7 8 9	95	gradient of forest disturbance from unlogged tropical lowland forest through to severely logged forest
9 10 11	96	and oil palm plantations(Ewers <i>et al.</i> , 2011). Forests within the 80,000 ha logged forest landscape
12 13	97	represent a range of historical harvest intensity, from once (lightly) logged, twice logged and salvage
14 15	98	logged (prior to conversion to plantation therefore with no harvest restriction). Forests in unlogged
16 17	99	control site are part of the 58,840 ha Maliau Basin Conservation Area. The region has a tropical climate
18 19 20	100	with rainfall >2000 mm/year and varying terrain topography. Vegetation monitoring is carried out
20 21 22	101	through a network of permanent tree plots measuring 25 x 25 m designed to systematically capture the
23 24	102	appropriate spatial variation, with varying terrain topography and all below 800 m altitude.
25 26 27 28	103	Seedling dynamics monitoring
20 29 30	104	Seedling monitoring was carried out in 84 selected tree plots in sites ranging from 1028 down to 0.22
31 32	105	Mg ha ⁻¹ of AGB, reflecting a gradient from primary through to heavily logged forest (Pfeifer <i>et al.</i> , 2016).
33 34	106	A seedling plot of 5 x 5 m was established within each of the tree plots in June 2012. Woody seedlings,
35 36 37	107	including both trees and lianas, with height > 50 cm and diameter at breast height < 1 cm were tagged
38 39	108	and mapped. Within a 2 x 2 m subplot in the centre of the seedling plot smaller woody seedlings with
40 41	109	height > 10 cm were also included in measurement. Species identification was assisted by local botanical
42 43	110	experts, with 84.3 % of stems identified to genus level. Three re-measurements of the seedling plots
44 45 46	111	were carried out since establishment, with mean dates in December 2012, May 2015 (before drought)
46 47 48	112	and June 2017 (after drought). In this study we compared seedling dynamics before and after drought
49 50	113	using the last two census intervals of similar length, 2.4 and 2.1 years respectively. We excluded 11 plots
51 52	114	that were disturbed by logging roads, landslide, or had too few stems (< 3) alive pre-drought, and
53 54	115	therefore based our analysis on 73 seedling plots.
55 56	7	
57 58		5

We derived seedlings dynamics separately for all woody seedlings and all tree seedlings following Delissio and Primack (2003). Seedling mortality rate r_m and recruitment rate r_r were estimated as: $r_m = 1 - (\frac{N_s}{N_0})^{\frac{1}{t}}$ (1) $r_r = (\frac{N_r}{N_0})^{\frac{1}{t}} - 1$ (2) where N_s is the number of seedlings that survived over the census interval, N_r is the number of recruited seedlings, N_0 is the number of seedlings at the start of the interval and t is interval length measured in decimal years. During the 2015 and 2017 censuses, we conducted additional rapid counts of newly germinated seedlings < 10 cm in height within the 2 x 2 m subplot, with no tagging, mapping or identification. These were used as proxies for seedling germination rates before and after drought. Leaf trait measurement Measurement of three leaf traits, leaf area (LA), leaf fresh weight (LFW) and leaf dry weight (LDW), were collected during the 2017 census. For seedlings with more than five leaves on the main stem, we collected the fifth youngest leaf counting from the apical meristem. If the leaf was damaged (e.g. by herbivory), we took the nearest alternative. We stored leaves in sealed plastic bags for LFW measurement within 24 hours. Fresh leaves were photographed during the same period with a white background and a calibration scale. Leaves were then oven dried at 80°C till constant weight and measured for LDW. Both LFW and LDW were measured to 1 mg. Leaf area was measured using the ImageJ software (Schneider et al., 2012). Seedling CSR values were calculated at stem level using LA (mm²), LFW (mg) and LDW (mg) using the CSR calculator tool, 'StrateFy', produced by Piece et al. (2017), available online in Microsoft Excel format in the paper's Supporting Information. The StrateFy tool converts LA, LFW and LDW to three standard leaf traits, LA, leaf dry matter content (LDMC) and specific leaf area (SLA), then derives the CSR values using

1		
2 3	136	automatic formulae. For stems with no leaf collected, including those which died before the 2017
4		
5 6	137	census, we applied mean CSR values at genus level where possible. We then derived community mean
7 8 9	138	CSR value for each plot, each census. One plot had no available CSR data for at least one census and was
10 11	139	excluded from the trait analysis.
12 13 14	140	Data analysis
15 16 17	141	We tested the difference in seedling mortality and recruitment rates before and after drought using
18 19	142	Wilcoxon signed-rank test. Change in mortality rate from pre-drought period was termed "drought
20 21	143	mortality". When there was significant drought induced change, we tested how different forest habitat
22 23	144	variables influenced the magnitude of the drought impact using a linear mixed effects (LME) modeling
24 25 26	145	framework and multi-model inference with information theoretic approaches. We first constructed a
27 28	146	global model which included as predictors two measures of forest structural conditions likely to have
29 30	147	causal effects on seedling dynamics: 1) aboveground live tree biomass (AGB) which reflects the historical
31 32 33	148	logging intensity and overall forest quality, and 2) canopy leaf area index (LAI), i.e., total leaf surface
33 34 35	149	area projected on the local horizontal datum, which relates closely to microclimatic conditions,
36 37	150	especially daily maximum temperature and daily minimum humidity (Hardwick et al., 2015). Both were
38 39	151	measured at the vegetation plot level across the SAFE landscape, with AGB showing greater
40 41 42	152	heterogeneity within unlogged forests compared to the canopy measure (Pfeifer <i>et al.</i> , 2016). As the
43 44	153	latter resulted in a strong positively skewed distribution of the variable we applied log10-transformation
45 46	154	on AGB values. Additional predictors consisted of plot mean slope and pre-drought mortality, and for
47 48 49	155	the latter, including both its linear and squared terms. Pre-drought mortality rate was included because
49 50 51	156	initial data exploration revealed a negative, non-linear dependence of post-drought mortality change on
52 53	157	pre-drought mortality. This was likely related to the highly dynamic nature of disturbed forests and the
54 55	158	fundamental central limit theorem: if the initial observed value for a plot represented a large departure
56 57 58	159	from the mean, subsequent observations were therefore more likely to move towards the mean than 7
20		

3 4	
5	
5 6 7	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39	
9 10	
11	
12 13	
14	
15 16	
17	
18 10	
19 20	
21	
22 23	
24	
25 26	
27	
28 29	
30	
31 32	
32 33	
34 25	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50	
51 52	
53	
54 55	
56	
57 58	
58 59	
60	

160	further away from it. Because mortality rate is bounded at zero, extreme pre-drought mortality values
161	had strong effects, hence the non-linear pattern. We included forest block (8 blocks in total) as a
162	random effect to account for the spatially nested variance structure. We generated all nested models of
163	the maximum model described above using the <i>dredge</i> function in the R package MuMIn, then
164	evaluated the subset of models that meet the principle of marginality, i.e., the squared term of pre-
165	drought mortality is allowed only if its linear term is present. We then based our inference on the top
166	model set with Δ AIC<2 (Grueber <i>et al.</i> , 2011). All analyses were conducted in the R statistical computing
167	environment (R Core Team, 2016).
168	Community mean CSR values, as well as changes in these during pre-drought period 2012-2015 and
169	drought period 2015-2017, were tested against forest AGB (log10-transformed) and LAI using linear
170	models. We employed a ternary plot to visualize the positioning of community mean trait in the
171	triangular CSR trait space for all plots and the overall trajectory of trait shifts.
172	Results
173	Across the study landscape woody seedling mortality rate over the drought interval during 2015-2017
174	was 26.0 % yr ⁻¹ (bootstrapped confidence interval 23.2-29.3), on average 10.3 % yr ⁻¹ higher compared to
175	the pre-drought interval 2012-2015 (15.7 % yr ⁻¹ , Cl 13.7-18.1, p<0.001). For tree seedlings (excluding
176	liana), mortality rate increased from the pre-drought level of 15.3 % yr ⁻¹ (Cl 13.1-18.2) to 23.8 % yr ⁻¹ (Cl
177	20.7-27.1) after drought. For drought mortality of all woody seedlings, the top model set with Δ AIC<2
178	consisted of four models (Supplementary Table S1) which did not include the variable LAI, and the effect
179	of plot mean AGB was relatively weak with low variable importance value (Table 1). For drought
180	mortality of tree seedlings, the top model set consisted of three models (Supplementary Table S2) and
181	all variables except for slope had high variable importance values (Table 2). The best model contained

1 2	
2 3 4	182
5 6	183
7 8 9	184
9 10 11	185
12 13	186
14 15 16	187
10 17 18	188
19 20	189
21 22 23	190
23 24 25	191
26 27	192
28 29 30	193
30 31 32	194
33 34	195
35 36 37	196
37 38 39	197
40 41	198
42 43	199
44 45 46	200
47 48	201
49 50	202
51 52 53	203
54 55	
56 57	
58	
59	

LAI, pre-drought mortality and AGB, all with negative effects on the drought mortality of tree seedlings 32 33 (Figure 1). Woody seedling recruitment rate was not significantly higher over the drought interval (11.1 % yr¹, Cl. 34 8.1-15.8) compared to pre-drought interval (8.3 % yr⁻¹, Cl 6.8-10.8). Increase in tree seedling recruitment 35 was similarly non-significant, from pre-drought 10.2 % yr⁻¹ (CI 7.7-15.1) to 10.7 % yr⁻¹ (CI 7.8-13.9) over 36 37 the drought interval. On the other hand, rate of new germinations significantly increased after drought (before drought 16.1 % yr⁻¹, Cl 12.5-21.2; after drought 36.2 % yr⁻¹, Cl 28.6-48.8). 38 39 During the non-drought interval between 2012 and 2015, across the study landscape seedling 90 community mean CSR values did not show significant changes. Variations in CSR values between plots were not correlated with forest AGB or LAI. Over the drought interval between 2015 and 2017, however, 91 mean seeding community ruderalism (R value) across the landscape significantly increased (p = 0.001, t-92 93 test, df = 71; Figure 2). This can be attributed to the fact that seedlings recruited over the drought 94 interval had significantly higher ruderalism values (mean 17.3, CI 15.7-19.0) compared to those that died over the same period (mean 14.4, Cl 13.9-15.0). Furthermore, ruderalism of recruited seedlings was 95 higher in forests with lower AGB, though not significantly so ($F_{1,53}$ = 3.75, p = 0.058). Consequently, the 96 97 observed change in community ruderalism showed a significant dependency on forest AGB, with lower AGB forests experiencing a greater shift towards ruderal species composition (F_{1,70} = 17.28, p < 0.001; 98 99 Figure 3). In 2012 and 2015, community ruderalism was not significantly correlated with forest AGB, but)0 this association became significant after drought in 2017 (Supplementary Figure S1). Our regression model predicts, however, that in forests with AGB > 219 Mg ha⁻¹ (Figure 3; CI 137-644), woody seedling)1)2 communities are more likely to shift towards less ruderal species. Discussion

Understanding the response of woody seedling communities in tropical forests to climatic events can provide us important insights on the climate resilience of these ecosystems (Whitmore, 1998). Studies monitoring seedlings over climate disturbances in their natural environment remain uncommon in Southeast Asia, with many focusing on selected species, such as the dipterocarp trees (Bebber et al., 2004; Delissio and Primack, 2003). Our study documented the dynamics of whole woody seedling communities across a logging intensity gradient, before and after the strong 2015-16 El Niño drought. We quantified functional changes at community level using the novel CSR leaf trait measure, providing a new way to track the forest regeneration process and its sensitivity to supra-annual droughts. Drought cuts back natural regeneration in the most heavily logged forests The natural regeneration process of tropical forests critically depends on the seedling pool in the understorey. Seedlings of canopy tree species in Borneo's lowland rainforest typically need to survive a long period of time, sometimes over ten years, to eventually emerge from the understorey (Delissio et al., 2002). We show here that drought resulted in substantially higher mortality in all woody seedlings than the pre-drought period across a logged forest landscape. The drought mortality of tree seedlings, in particular, varied according to logging intensity. Forests with more canopy foliage (measured by canopy leaf area index) and less historical logging (greater above ground biomass) experienced lower drought mortality. Our model predicts that, other things being equal, increasing the forest canopy leaf area index from 2 (representing the most heavily logged forests in the study landscape) to 4 (median value in the study landscape) will reduce the drought mortality of tree seedlings from 20 % to 8 %. Similarly, increasing plot AGB from severely logged state with 1 Mg ha⁻¹ to median level of forest AGB of 78 Mg ha⁻¹ ¹ is expected to reduce the drought mortality of tree seedlings from 17 % to 8 %. These results lend further support to improved tropical production forest management recommendations (Sasaki et al., 2016), with reduced biomass impact harvesting being the key to achieving not only faster biomass recovery, but also increased drought resilience of logged forests.

1 2	
2 3 4	228
5 6	229
7 8	230
9 10 11	231
11 12 13	232
14 15	233
16 17 18	234
19 20	235
21 22	236
23 24	237
25 26	238
27 28 29	239
30 31	240
32 33 34	241
35 36	242
37 38	243
39 40 41	244
41 42 43	245
44 45	246
46 47	247
48 49	248
50 51 52	249
52 53 54	240 2 <u>5</u> 0
54 55 56	230
57	
58 59	

When non-tree woody seedlings were considered, drought mortality was less sensitive to logging intensity (Table 1) compared to tree seedlings only (Table 2). This suggests the compounding impact of logging and drought may provide a relative advantage for the regeneration of lianas over trees. Indeed liana cutting has been used as a management practice to encourage tree seedling regeneration in logged tropical forests, but new evidence suggested that the benefits of lianas cutting were reduced during the 2015-16 El Niño drought (O'Brien *et al.*, 2019).

We found a negative effect of pre-drought mortality on drought mortality, and this was primarily driven by the extreme high pre-drought mortality values in a few plots in logged forests (Figure 1b). This reflects the temporally and spatially dynamic nature of disturbed forest – at any time there may be individual locations experiencing extreme mortality events, but the mortality rates over the subsequent period are more likely to return closer to the mean level. Our results also suggest that drought mortality may increase on steeper terrain. This may be an indirectly effect as steeper terrain can affect soil and microclimate conditions (Arroyo - Rodríguez *et al.*, 2015), and fallen trees and branches during drought can lead to greater disturbance in the forest understorey in steep areas.

More importantly, species turnover driven by the drought resulted in a clear shift in the seedling
functional traits. During the non-drought period, seedling community composition represented in the
competitor/stress-tolerator/ruderal (CSR) trait space were relatively stable across the landscape, but
after drought there was a collective movement up the ruderal dimension. This change, albeit relatively
small (Figure 2), was driven by the most heavily logged forests (Figure 3b), suggesting that seedling
communities in these forests were more sensitive to the drought stressor. The drought itself has,
therefore, acted as a climate filter favouring species with a more ruderal life strategy, typically pioneer
species (Pierce *et al.*, 2017). On the other hand, community level seedling traits were more stable in less
intensely logged and old growth forests with AGB above 219 Mg ha⁻¹, where predicted trait shift in

response to drought was close to zero (Figure 3b). This equates to logging having removed approximately 51 % of tree biomass (mean AGB = 449 Mg ha⁻¹ in unlogged forests). These results point to the alarming consequence of overharvesting compounded by climate change, that at least for the short term, severe drought can reverse the successional trajectory of these heavily logged forests. Microclimate and recruitment pool Microclimatic conditions such as light, temperature and moisture in the tropical forest understorey may affect seedling establishment, survival and competition (Baraloto and Goldberg, 2004). Across our study landscape, changes in microclimate due to forest disturbance were closely correlated with canopy leaf area index (Hardwick et al., 2015). Our results showed that drought induced seedling mortality was modulated by microclimatic conditions. On the other hand, drought induced seedling community trait shift was strongly associated with forest AGB, that is, historical logging intensity, but not with microclimatic conditions. This suggests that the maturity of the surrounding forests, in terms of number of big trees and presumably, the intactness of forest structure and composition, plays a central role in maintaining the trait stability of seedling communities. Drought conditions may present recruitment opportunities for pioneer species. It is likely that pioneer seed and seedling pools were more available in logged forests, and indeed post-drought seedling recruits were more strongly ruderal in these forests. This drought selection effect may be exacerbated by the fact that seed production of pioneer species is better sustained during El Niño drought than late succession species (O'Brien et al., 2018), possibly creating a positive feedback that could further push these logged forests towards a reversal of the succession trajectory. Lifting logged forests out of arrested succession It has long been recognized that forest management needs to plan for the interactive effect of

anthropogenic disturbance and climate change, and efforts need to focus on the forest regeneration

1		
2 3 4	274	stage (Whitmore, 1998). Our results show that tropical seedling communities are sensitive to drought,
5 6	275	rapidly responding with elevated mortality and a functional shift towards more pioneer-like
7 8	276	composition. Given that natural regeneration of tropical forest requires decades even in the best cases,
9 10 11	277	and strong El Niño drought is becoming more frequent with a return period of less than a decade (Wang
12 13	278	et al., 2017), it is a real concern that these drought-susceptible logged forests will remain in arrested
14 15	279	succession or face further degradation. We also find, however, that seedling communities were more
16 17	280	resilient to drought where surrounding forests have above ground biomass >219 Mg ha ⁻¹ . This biomass
18 19	281	density is around half that of intact forests in our study landscape and in this region (Avitabile <i>et al.</i> ,
20 21 22	282	2015), and not substantially higher than the average of 134.2 \pm 6.1 Mg ha $^{-1}$ estimated in severely
23 24	283	degraded forests in Borneo (António et al., 2018). Therefore efforts should be invested in active forest
25 26	284	restoration aiming at lifting the biomass of the vulnerable forests above this threshold, at which point
27 28	285	their succession trajectories should become self-sustaining and resilient to future drought events. Our
29 30 31	286	knowledge is accumulating on how forest regeneration may be assisted (Chazdon and Guariguata, 2016)
32 33	287	and practices such as enrichment planting and pioneer removal have shown some initial success in this
34 35	288	region (Swinfield <i>et al.,</i> 2016).
36 37 38 39	289	Conclusion
40 41	290	Our study show that tropical forest seedling communities are sensitive to drought. The 2015-16 strong
42 43	291	El Niño drought not only increased seedling mortality rate but also resulted in a shift in community
44 45	292	functional traits towards more ruderal, pioneer-like composition. The drought impact, however,
46 47	293	interacted with logging intensity, and was buffered in areas with higher canopy leaf index and forest
48 49 50	294	above ground biomass. We suggest that in order to increase the drought resilience of the most
51 52	295	disturbed forests in a changing climate, active regeneration management should be considered in order
53 54	296	to lift these forests out of arrested succession.
55 56	7	
57 58 59		13
60		IF

Acknowledgments

This research was funded by a Natural Environment Research Council grant (NE/P00363X/1). We thank the Sabah Biodiversity Council, Yayasan Sabah, Maliau Basin Conservation Area, and SEARRP for providing research permission for field work in Sabah. We thank Ferry Slik for ideas about the seedling trait assessment. We are grateful for Edgar Turner and the SAFE project field staff for providing support with data collection. References António F, Sassan S, Liang X, Stephen H, Jerome C, Yifan Y, Victoria M, Mariano G, Carlos S, Orbita R, Ari S, Plinio S, Sarah W, Timothy R H P, Arief W, Franklin B S, Ervan R, Dirk H and Sangram G 2018 Carbon storage potential in degraded forests of Kalimantan, Indonesia Environ. Res. Lett. 13 Arroyo - Rodríguez V, Melo F P L, Martínez - Ramos M, Bongers F, Chazdon R L, Meave J A, Norden N, Santos B A, Leal I R and Tabarelli M 2015 Multiple successional pathways in human - modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research *Biological Reviews* **92** 326-40 Avitabile V, Herold M, Heuvelink G B M, Lewis S L, Phillips O L, Asner G P, Armston J, Asthon P, Banin L F, Bayol N, Berry N, Boeckx P, de Jong B, DeVries B, Girardin C, Kearsley E, Lindsell J A, Lopez-Gonzalez G, Lucas R, Malhi Y, Morel A, Mitchard E, Nagy L, Qie L, Quinones M, Ryan C M, Slik F, Sunderland T, Vaglio Laurin G, Valentini R, Verbeeck H, Wijaya A and Willcock S 2015 An integrated pan-tropical biomass map using multiple reference datasets Global Change Biology 1406-20 Baraloto C and Goldberg D E 2004 Microhabitat associations and seedling bank dynamics in a neotropical forest Oecologia 141 701-12 Bebber D P, Brown N P and Speight M R 2004 Dipterocarp seedling population dynamics in Bornean primary lowland forest during the 1997-8 El Nino-Southern Oscillation Journal of Tropical Ecology **20** 11-9 Berry N J, Phillips O L, Lewis S L, Hill J K, Edwards D P, Tawatao N B, Ahmad N, Magintan D, Khen C V, Maryati M, Ong R C and Hamer K C 2010 The high value of logged tropical forests: lessons from northern Borneo Biodiversity and Conservation 19 985-97 Bonal D, Burban B, Stahl C, Wagner F and Hérault B 2016 The response of tropical rainforests to drought-lessons from recent research and future prospects Annals of Forest Science 73 27-44 Chazdon R L and Guariguata M R 2016 Natural regeneration as a tool for large - scale forest restoration in the tropics: prospects and challenges Biotropica 48 716-30 Corlett R T 2016 The Impacts of Droughts in Tropical Forests Trends in Plant Science Crouzeilles R, Curran M, Ferreira M S, Lindenmayer D B, Grelle C E V and Rey Benayas J M 2016 A global meta-analysis on the ecological drivers of forest restoration success Nature Communications 7 Curran M, Hellweg S and Beck J 2014 Is there any empirical support for biodiversity offset policy? Ecological Applications 24 617-32

2		
3	336	Delissio L J and Primack R B 2003 The impact of drought on the population dynamics of canopy-tree
4	337	seedlings in an aseasonal Malaysian rain forest <i>Journal of Tropical Ecology</i> 19 489-500
5	338	Delissio L J, Primack R B, Hall P and Lee H S 2002 A decade of canopy-tree seedling survival and growth in
6	339	two Bornean rain forests: persistence and recovery from suppression <i>Journal of Tropical Ecology</i>
7 8	340	18 645-58
9	341	Ewers R M, Boyle M J W, Gleave R A, Plowman N S, Benedick S, Bernard H, Bishop T R, Bakhtiar E Y, Chey
10	342	V K, Chung A Y C, Davies R G, Edwards D P, Eggleton P, Fayle T M, Hardwick S R, Homathevi R,
11	343	Kitching R L, Khoo M S, Luke S H, March J J, Nilus R, Pfeifer M, Rao S V, Sharp A C, Snaddon J L,
12	344	Stork N E, Struebig M J, Wearn O R, Yusah K M and Turner E C 2015 Logging cuts the functional
13	345	importance of invertebrates in tropical rainforest <i>Nature Communications</i> 6
14	346	Ewers R M, Didham R K, Fahrig L, Ferraz G, Hector A, Holt R D, Kapos V, Reynolds G, Sinun W, Snaddon J
15	347	L and Turner E C 2011 A large-scale forest fragmentation experiment: the Stability of Altered
16 17	348	Forest Ecosystems Project Philosophical Transactions of the Royal Society B: Biological Sciences
18	349	366 3292-302
19	350	Gibson L, Lee T M, Koh L P, Brook B W, Gardner T A, Barlow J, Peres C A, Bradshaw C J A, Laurance W F,
20	351	Lovejoy T E and Sodhi N S 2011 Primary forests are irreplaceable for sustaining tropical
21	352	biodiversity Nature 478 378
22	353	Gourlet-Fleury S, Mortier F, Fayolle A, Baya F, Ouédraogo D, Bénédet F and Picard N 2013 Tropical forest
23	354	recovery from logging: a 24 year silvicultural experiment from Central Africa Philosophical
24 25	355	Transactions of the Royal Society B: Biological Sciences 368 20120302
26	356	Grueber C E, Nakagawa S, Laws R J and Jamieson I G 2011 Multimodel inference in ecology and
27	357	evolution: challenges and solutions Journal of Evolutionary Biology 24 699-711
28	358	Hardwick S R, Toumi R, Pfeifer M, Turner E C, Nilus R and Ewers R M 2015 The relationship between leaf
29	359	area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives
30	360	changes in microclimate Agricultural and Forest Meteorology 201 187-95
31	361	Holl K D 2017 Restoring tropical forests from the bottom up Science 355 455-6
32	362	Lewis SL, Edwards DP and Galbraith D 2015 Increasing human dominance of tropical forests Science 349
33 34	363	827-32
35	364	O'Brien M J, Aviles D P and Powers J S 2018 Resilience of seed production to a severe El Niño - induced
36	365	drought across functional groups and dispersal types Global Change Biology
37	366	O'Brien M J, Philipson C D, Reynolds G, Dzulkifli D, Snaddon J L, Ong R and Hector A 2019 Positive effects
38	367	of liana cutting on seedlings are reduced during El Niño-induced drought Journal of Applied
39	368	Ecology
40 41	369	Pfeifer M, Kor L, Nilus R, Turner E, Cusack J, Lysenko I, Khoo M, Chey V K, Chung A C and Ewers R M 2016
41	370	Mapping the structure of Borneo's tropical forests across a degradation gradient Remote
43	371	Sensing of Environment 176 84-97
44	372	Pierce S, Brusa G, Vagge I and Cerabolini B E L 2013 Allocating CSR plant functional types: the use of leaf
45	373	economics and size traits to classify woody and herbaceous vascular plants Functional Ecology
46	374	27 1002-10
47	375	Pierce S, Negreiros D, Cerabolini B E, Kattge J, Díaz S, Kleyer M, Shipley B, Wright S J, Soudzilovskaia N A
48 49	376	and Onipchenko V G 2017 A global method for calculating plant CSR ecological strategies applied
49 50	377	across biomes world - wide Functional Ecology
51	378	Pistorius T and Freiberg H 2014 From Target to Implementation: Perspectives for the International
52	379	Governance of Forest Landscape Restoration Forests 5 482-97
53	380	Qie L, Lewis S L, Sullivan M J P, Lopez-Gonzalez G, Pickavance G C, Sunderland T, Ashton P, Hubau W,
54	381	Abu Salim K, Aiba S-I, Banin L F, Berry N, Brearley F Q, Burslem D F R P, Dančák M, Davies S J,
55	382	Fredriksson G, Hamer K C, Hédl R, Kho L K, Kitayama K, Krisnawati H, Lhota S, Malhi Y, Maycock
56 57	383	C, Metali F, Mirmanto E, Nagy L, Nilus R, Ong R, Pendry C A, Poulsen A D, Primack R B,
58		15
59		
60		ч Ч

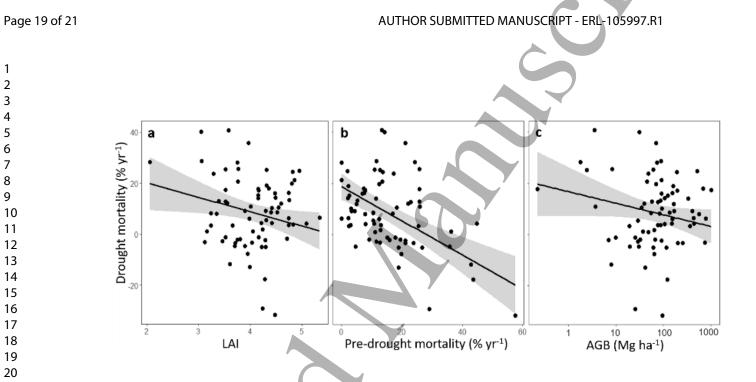
1		
2		
3	384	Rutishauser E, Samsoedin I, Saragih B, Sist P, Slik J W F, Sukri R S, Svátek M, Tan S, Tjoa A, van
4	385	Nieuwstadt M, Vernimmen R R E, Yassir I, Kidd P S, Fitriadi M, Ideris N K H, Serudin R M,
5	386	
6		Abdullah Lim L S, Saparudin M S and Phillips O L 2017 Long-term carbon sink in Borneo's forests
7	387	halted by drought and vulnerable to edge effects Nature Communications 8 1966
8	388	R Core Team 2016 R: A language and environment for statistical computing. R Foundation for Statistical
9	389	Computing, Vienna, Austria <u>https://www.R-project.org/</u>
10	390	Rutishauser E, Hérault B, Baraloto C, Blanc L, Descroix L, Sotta E D, Ferreira J, Kanashiro M, Mazzei L,
11	391	d'Oliveira M V N, de Oliveira L C, Peña-Claros M, Putz F E, Ruschel A R, Rodney K, Roopsind A,
12	392	Shenkin A, da Silva K E, de Souza C R, Toledo M, Vidal E, West T A P, Wortel V and Sist P 2015
13	393	Rapid tree carbon stock recovery in managed Amazonian forests Current Biology 25 R787-R8
14	394	Sasaki N, Asner G P, Pan Y, Knorr W, Durst P B, Ma H O, Abe I, Lowe A J, Koh L P and Putz F E 2016
15	395	Sustainable Management of Tropical Forests Can Reduce Carbon Emissions and Stabilize Timber
16	396	Production Frontiers in Environmental Science 4
17		
18	397	Schneider C A, Rasband W S and Eliceiri K W 2012 NIH Image to ImageJ: 25 years of image analysis
19	398	Nature Methods 9 671-5
20	399	Sist P and Nguyen-Thé N 2002 Logging damage and the subsequent dynamics of a dipterocarp forest in
21	400	East Kalimantan (1990–1996) Forest Ecology and Management 165 85-103
22	401	Slik J W F 2004 El Niño droughts and their effects on tree species composition and diversity in tropical
23	402	rain forests Oecologia 141 114-20
24 25	403	Swinfield T, Afriandi R, Antoni F and Harrison R D 2016 Accelerating tropical forest restoration through
25 26	404	the selective removal of pioneer species Forest Ecology and Management 381 209-16
20 27	405	Van Gardingen P, Clearwater M, Nifinluri T, Effendi R, Rusmantoro W, Noor M, Mason P, Ingleby K and
27	406	Munro R 1998 Impacts of logging on the regeneration of lowland dipterocarp forest in Indonesia
29	407	The Commonwealth Forestry Review 71-82
30	408	Wang G, Cai W, Gan B, Wu L, Santoso A, Lin X, Chen Z and McPhaden M J 2017 Continued increase of
31		
32	409	extreme El Niño frequency long after 1.5 °C warming stabilization Nature Climate Change 7 568-
33	410	
34	411	Whitmore T C 1998 Potential Impact of Climatic Change on Tropical Rain Forest Seedlings and Forest
35	412	Regeneration Climatic Change 39 429-38
36	413	
37	415	
38		
39	414	
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50		
51 52		
52 53		
55 54		
54 55		
56		
57		
58		16
59		
60		

AUTHOR SUBMITTED MANUSCRIPT - ERL-105997.R1

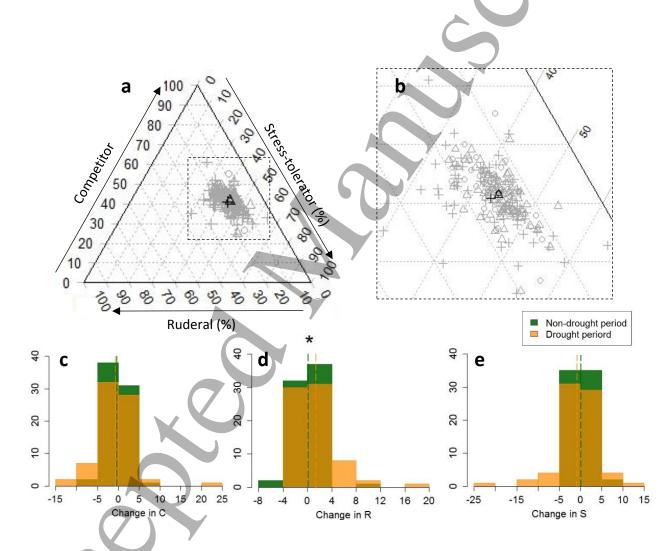
Table 1. Model averaged estimates of effects of pre-drought mortality (mort), plot above-ground biomass (AGB, log10-transformed) and plot mean slope on the 2015-16 El Niño drought mortality of all woody seedlings. Estimates were based on the top model set with Δ AlC<2. The relative importance of a variable was calculated by summing the AlC weights across all the models in the set where the variable occurred.

Parameter	Estimate	SE	CI lower	Cl upper	Relative importance			
(Intercept)	6.90	9.22	-11.17	24.97				
mort	0.78	0.52	-0.23	1.80	1.00			
mort ²	-0.03	0.01	-0.06	-0.01	1.00			
slope	0.38	0.22	-0.05	0.81	0.57			
log(AGB)	-3.13	2.60	-8.24	1.97	0.38			

AUTHOR SUBMITTED MANUSCRIPT - ERL-105997.R1


Table 2. Model averaged estimates of effects of canopy leaf area index (LAI), pre-drought mortality (mort), plot above-ground biomass (AGB,

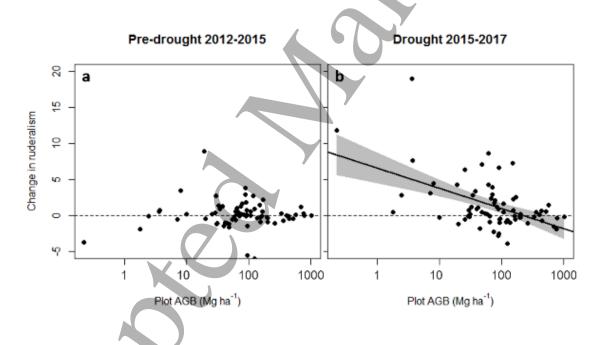
log10-transformed) and plot mean slope on the 2015-16 El Niño drought mortality of tree seedlings. Estimates were based on the top model set


with $\Delta AIC < 2$. The relative importance of a variable was calculated by summing the AIC weights across all the models in the set where the

variable occurred.

Parameter	Estimate	SE	Cl lower	Cl upper	Relative importance
(Intercept)	47.45	11.60	24.71	70.19	
LAI	-5.97	2.58	-11.02	-0.92	1.00
nort	-0.64	0.13	-0.90	-0.38	1.00
og(AGB)	-4.52	2.46	-9.35	0.31	0.68
slope	0.16	0.21	-0.25	0.58	0.19

Figure 1. Effects of (a) canopy leaf area index (LAI), (b) pre-drought mortality and (c) plot above-ground biomass (AGB) on drought mortality (change in mortality rate from pre-drought period) of tree seedlings after the 2015-16 El Niño. Solid lines are effects estimated based on the highest-ranked linear mixed effects (LME) model where the focal predictor variable occurs within the top model set (Supplementary Table S2), while holding the other predictor variables in the model constant (mean-centred). Shading areas represent confidence intervals (CIs). Observed data points are shown as solid dots.


Figure 2. Changes in seedling community traits during non-drought vs drought periods. Ternary plot (a) shows the relative proportions (%) of competitor (C), stress-tolerator (S) and ruderal (R) trait values of woody seedlings. Grey symbols are plot level mean CSR values (circles: 2012 census; triangles: 2015 census; crosses: 2017 census); black symbols are mean CSR values across the study landscape. Inset plot (b) zooms in to the area of interest. Histograms show the distribution of plot-level changes in C (c), R (d) and S (e) respectively, over the 2012-2015 non-drought

Page 21 of 21

AUTHOR SUBMITTED MANUSCRIPT - ERL-105997.R1

period (green bars; green dash lines are mean changes across the study landscape) and 2015-2017 drought period (orange bars; orange dash

lines are mean changes across the study landscape). Asterisk indicates significant difference between the two periods (p = 0.001, t-test, df = 71).

Figure 3. Observed changes in community ruderalism (R trait value) at seedling plot level in relation to plot AGB during the pre-drought census interval 2012-2015 (a) and over the drought census interval 2015-2017 (b). Solid line show effect estimated based on a linear regression model ($F_{1.70} = 17.28$, p < 0.001). Shading areas represent the confidence intervals (CI).