
1 

 

 

DEVELOPING SOFTWARE BEYOND CUSTOMER NEEDS AND PLANS: 

AN EXPLORATORY STUDY OF ITS FORMS 

AND INDIVIDUAL-LEVEL DRIVERS 
 
 

Mattia Bianchi 

House of Innovation, Stockholm School of Economics 
Stockholm, SE 

mattia.bianchi@hhs.se 
 

Giacomo Marzi* 

Lincoln International Business School, University of Lincoln,  
Lincoln, UK 

gmarzi@lincoln.ac.uk 
 

Lamberto Zollo 

Department of Economics and Management (DISEI),University of Florence, IT 
lamberto.zollo@unifi.it 

 
Andrea Patrucco 

Department of Management, Penn State University, 

Philadelphia, US 
asp72@psu.edu 

 

 

Published in: International Journal of Production Research 

 

FULL TEXT (DOI): https://doi.org/10.1080/00207543.2019.1581953 
 

 

Abstract 
Excessive software development is the tendency to develop new software above and beyond the 
requirements of the market and/or planned specifications. It is a widespread phenomenon involving 

both risks and flexibility advantages. As it represents a challenging dilemma for software developers, 

it is important to study its human origins. Drawing on the tripartite model of individual attitudes, this 
study investigates the influence of developers’s cognitive (intuitive and rational thinking styles), 

affective (emotional attachment) and behavioural (reliance on past experiences) traits on two forms 
of excess, beyond needs and beyond plans. Using survey data on 307 software developers, this study 

shows that different manifestations of excess are associated with distinct traits of software developers. 

Emotional attachment drives beyond needs excess. A positive (negative) association is found between 
relying on past experiences and beyond needs excess (beyond plans excess). An intuitive cognitive 

style fosters the inclusion of extra features in the new product scope, whereas a rational style might 
lead to developing one-size-fits-all software that targets the needs of a broad user base. These findings 

contribute to research on the development of digital new products and production technologies by 

offering a comprehensive yet fine-grained picture of excessive software development’s nature and 
drivers. 

 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/189230808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mattia.bianchi@hhs.se
mailto:gmarzi@lincoln.ac.uk
mailto:lamberto.zollo@unifi.it
mailto:asp72@psu.edu
https://doi.org/10.1080/00207543.2019.1581953


2 

 

 

1. Introduction 
Excessive software development is the tendency to develop new software above and beyond what is 

required by the market and/or by planned specifications (Ronen and Pass, 2008). This practice can 

take different forms, e.g., overloading new software with extra, unnecessary capabilities or adding 
unanticipated features in the course of the project, and so multiple names, e.g., overdesign, featuritis, 

scope creep and gold-plating (Bjarnason et al., 2012). Attempting to clarify this terminological 
confusion, Shmueli and Ronen (2017) propose three distinct yet overlapping categories of excess in 

software development, depending on the dimension which they interfere with: beyond needs excess 

(BNE), defined as developing new software beyond the actual needs of the customer; beyond plans 
excess (BPE), defined as continuously changing the product scope beyond the initially planned 

specifications; and beyond resources excess, defined as setting a bigger scope than can be 
implemented with the available resources. 

The present study provides an empirical investigation of the individual-level antecedents of the first 

two excess categories. We focus on BNE and BPE because they represent challenging dilemmas for 
developers. On one hand, scholars have repeatedly classified BNE and BPE as irrational pathologies 

plaguing decision making and contributing to project failures (Boehm, 1991). Developing nice-to-
have features that add little or no value to customers is a major waste of resources and a distraction 

from core requirements, which can lead to artificial product complexity, lower usability and higher 

lifecycle costs (Coman and Ronen, 2010). Exceeding initial scoping decisions by modifying 
originally agreed specifications once the project is under way can cause instability and firefighting, 

i.e., the unplanned allocation of resources to address last-minute issues (Repenning, 2001). Accepting 
a change typically opens the door to an uncontrolled sequence of additional ones, hence the “creep” 

denomination of this phenomenon that can cause cost and schedule overruns (Bjarnason et al., 2012).  

However, BNE and BPE also represents intentional tactics to retain flexibility to manage the 
uncertainty inherent in developing something new (Sull, 2004)1. Market and technological conditions 

can shift unpredictably during and after projects, demanding prompt adaptation. Overdesigning a new 
product is an attempt to buffer uncertainty: adding safety margins to software specifications and 

leaving multiple options open make the product more tolerant of emerging deviations, avoiding costly 

reworks (Loch et al., 2011). The entrepreneurship literature, especially on lead users (Lettl et al., 
2008), provides examples of successful innovations that offered vanguard functionalities ahead of the 

market that eventually became mainstream (Fontela et al., 2006). Expanding the product scope 
beyond the original plans allows to adapt to uncertainty: an evolutionary design that incorporates 

newly emerged information results in solutions that achieve a better product-market fit (Bianchi et 

al., 2018). Welcoming changing requirements even late in development is a core principle of Agile, 
a software development approach associated with quality and productivity gains (Lee and Xia, 2010).  

Because they present both advantages and disadvantages, the decision to pursue development excess 
is a complex one2. Such decision is rooted in human nature and behavior (Coman and Ronen, 2010). 

While users might drive BNE and BPE by asking for the best possible solution or changing their 

priorities (Cule et al., 2000), Shmueli and Ronen (2017) argue that developers have the largest 
influence. However, evidence on this important influence is scarce and mostly anecdotal 

(Buschmann, 2009). To identify relevant developers’ attributes that might drive development excess, 

                                                 
 
1 Another tactic that offers development flexibility is the use of a modular architecture for the new product (Peng and Mu, 

2018). Modular designs enhance the ability to accept changes and additional features in the course of a project and 

throughout the product lifecycle. We thank an anonymous reviewer for this comment. While potentially a limitation, the 

role of a modular design for the new software is not included in the scope of this study.  
2 Differently from BNE and BPE, beyond resources excess rarely provides advantages, especially in terms of uncertainty 

management. It actually reduces flexibility (Repenning, 2001). An unbalance between requirements and available 

resources is one of the most common causes for project failure. Indeed, this type of excess mostly originates from poor 

management and developers’ mistakes (Shmueli and Ronen, 2017).  



3 

 

 

we draw on the tripartite model in psychology research according to which individual attitudes have 

cognitive, affective and behavioral components (Robinson et al., 1991). This study focuses on the 
influence of intuitive and rational cognitive styles (cognition), of emotional attachment (affection) 

and of reliance on past experiences (behavior)3, as they closely relate to the particular nature of 

development excess and strongly characterise developers (Shmueli et al., 2016). The research 
question addressed by this study is thus: what is the relation between cognitive, affective and 

behavioral traits of developers, and different forms of beyond needs and beyond plans excessive 
software development? 

Differently from previous case-based and experimental works, this study employs a survey 

methodology on a dataset of 307 software developers from ten virtual communities. We adopt a large-
N exploratory research design which is appropriate when existing theories provide useful frames for 

a baseline argument but are not sufficiently robust to formulate precise hypotheses (Bettis et al., 
2014). Software is the industry where the development excess phenomenon was first investigated 

(Boehm, 1991). Its prevalence in this context is mainly due to the information-based nature of the 

product, which promotes the misconception that adding features has low marginal cost, and the high 
volatility of development projects, which complicates decision making and supports the adoption of 

flexibility-enhancing practices (MacCormack et al., 2001)4. This study finds evidence of distinct 
manifestations of excess (one form of BNE that involves adding extra features to the new product 

scope; one form of BNE that involves targeting an extremely broad user base; and one form of BPE), 

which are differently associated to individual developers’ attributes. These results contribute to 
research on the development of new products and of digital production technologies that make up the 

emerging Industry 4.0 (Liao et al., 2017), whose performance largely depends on the quality of its 
software components.  

The next section reviews relevant literature. Section 3 develops the conceptual framework, Section 4 

describes the methodology and Section 5 reports the findings. The final section discusses the 
contribution of this study, outlining its limitations and future research avenues. 

 

2. Literature review 
Since the 1990s there has been an extensive debate on the nature of excess in software development 
and on its performance effects. The software engineering literature has mainly warned about the risks 

involved in developing new products that exceed the needs of the market and in letting features creep 
into the project after the scope has been set (Boehm, 1991). Research in innovation management and 

new product development, where software is one component, has to a larger extent highlighted the 

flexibility gains that can be obtained by leaving adequate margins in the product specifications and 
by modifying the plans if changes materialize during the project (Thomke and Reinertesen, 1998). 

Particularly, the growing literature on Agile management is investigating the influence of 
evolutionary adaptations of product design on innovation speed, cost and quality (Lee and Xia, 2010). 

This study aims to contribute to research on the antecedents of BNE and BPE. Notwithstanding the 

importance of understanding their origins, evidence on what drives the adoption of development 
excess is mainly anecdotal (Coman and Ronen, 2010). Conceptual articles and commentaries have 

                                                 
 
3 A person’s cognitive style refers to his/her preferred way of organizing and processing information to reach a decision 

(Messick, 1976). A rational style involves slow, conscious, and analytical processing of information, while an intuitive 

style is fast, unconscious and instinctive (Kahneman, 2003). Emotional attachment is defined as an emotion-laden target-

specific bond between a person and a specific object (Thomson et al., 2005). Reliance on past experiences is here defined 

as using knowledge gained in previous projects as reference information to make decisions about the current initiative 

(Shmueli et al., 2015). 
4 Software development projects are naturally characterized by heterogeneous levels of uncertainty and volatility. Because 

the unit of analysis in this study is the aggregate development process, it does not measure project-level factors. Although 

this is a limitation, which is common to other studies (Tripp and Armstrong, 2016), Furr and Dyer (2014) rank the software 

industry as a whole in the top three for technical and market uncertainty.  



4 

 

 

speculatively offered a long list of environmental, organizational and individual causes. For BNE, 

these include incentive systems rewarding engineers for technological brilliance and marketers for 
the short-run new product sales; limited market knowledge by R&D staff and disregard of business 

goals; users exhibiting an all-or-nothing attitude and asking for as much as possible in the new 

product; developers’ overconfidence, professional pride, desire to be at the technological frontier, 
search for peer-appreciation, adoption of market risk diversification and anticipation strategies (Cule 

et al., 2000; Ronen and Pass, 2008; Rust et al., 2006). For BPE, possible drivers are organizational 
politics and conflicts between stakeholders, lack of formal procedures to evaluate change requests, 

outsourcing partners that profit from implementing scope changes, early release of prototypes and 

integration of the resulting user feedback and developers’ intrinsic motivation to continuously 
improve (DeMarco and Lister, 2003; Buschmann, 2009; MacCormack, 2001). 

Empirical studies of BNE and BPE drivers are fewer. A recent, systematic literature analysis by 
Shmueli and Ronen (2017) identifies seven articles in peer-reviewed journals in the information 

systems, software engineering and project management areas. We expand this selection including 

studies in the marketing and innovation fields that investigate excess in the development of new 
products that include software components, and thus constitute relevant background to construct our 

conceptual framework. Table 1 provides an overview of these empirical studies. Each work is 
described in terms of the methodology used, the antecedents and the forms of excess investigated. 

 

[Insert Table 1 around here] 
 

Most studies focus on single forms of either BNE or BPE. The studies on BPE investigate 
organizational and contextual drivers of this excess type. Schmidt et al. (2001), Damian and Chisan 

(2006) and Chen et al. (2009) find that scope creep, i.e., a form of BPE, is a function of poor planning, 

ineffective change management, the pressure to resolve conflicts between managers and developers, 
not clearly identifying core customer requirements and not understanding the true work effort and 

skills needed to complete a project. An in-depth case study of a software company by Bjarnason et 
al. (2012) show that repeated requirements changes build up from multiple interacting drivers, such 

as the practice of producing detailed requirements upfront, the existence of communication gaps 

across teams and the lack of clear strategic goals. Lee-Kelley and Sankey (2008) and Choi and Bae 
(2009) highlight the role of contextual factors, such as project size, regulatory and technological 

volatility, in driving BPE. According to our literature review, no study has investigated the individual 
origins of BPE. 

Studies on BNE have instead examined the influence of both organizational and individual drivers of 

this excess type. At the organizational level, Christensen and Bower (1996) show that the tendency 
to develop products that overshoot the needs of the mainstream market stems from the attempt by 

industry leaders to seek higher profit margins by offering feature-rich products to the most demanding 
customers, and is intensified by strong industry competition. Among the studies that focus on more 

micro-level drivers, Thomson et al. (2005) emphasise the role of users in driving BNE, as they prefer 

to purchase feature-loaded offerings even when the extra features will make the product harder to 
use. Their preference derives from inferring functional benefits from concrete product attributes, even 

irrelevant ones, and from the social benefits provided by advanced products, e.g., eliciting others’ 
positive impressions of the buyer’s skills. Shmueli et al. (2015; 2016) focus instead on the individual 

traits of developers. They find that the more emotionally attached developers are to the new software 

creation, the greater the value that they will attribute to a feature they specify and the more likely 
superfluous features will be included in the product scope. Conversely, developers who use reference 

information about experiences in past projects and who adopt an external observer perspective tend 
to add less over-specified features. A common characteristic of these micro-level studies on BNE is 

that they are based on laboratory experiments with university students. 



5 

 

 

The only work that has simultaneously investigated forms of BNE and BPE, gold-plating and 

requirements creep respectively, is a survey study by Ropponen and Lyytinen (2000) which shows 
that development excess is higher in organizations that do not systematically use project and risk 

management methods and that develop software systems with distributed architectures. However, this 

study gives an overview of a broad range of software development risks and thus only marginally 
addresses each form of excess, whose measurement is in fact limited to a single survey item. Also, it 

does not examine the individual drivers of BNE and BPE. 
As indicated in the last row of Table 1, the present study aims to advance understanding of the origins 

of development excess by offering a comprehensive yet fine-grained analysis of how multiple 

individual characteristics of software developers simultaneously relate to different forms of excess. 
Conceptually, we draw on Shmueli and Ronen (2017) who ascribe to developers the highest influence 

on the emergence of excess and we use the tripartite model of individual attitudes (Robinson et al., 
1991) to identify traits that cover the whole spectrum of human responses: cognitive, affective and 

behavioural. Moreover, we take a balanced perspective to the role of excess in development: not only 

does excess represent a risk deriving from flawed decisions and human biases but could also stem 
from well-intentioned attempts to please customers and might offer flexibility advantages. 

Empirically, we use a large-N survey-based empirical design involving industry practitioners. This 
study thus offers an original contribution to existing literature which has typically examined single 

individual antecedents and/or single excess forms separately, mostly emphasised the risks attached to 

this practice, and primarily offered qualitative and experimental evidence. 
 

3. Conceptual framework 
Building on the scholarly works reviewed above, we develop a conceptual framework that can be 

empirically explored in this study. First, the framework elucidates the concepts of BNE and BPE so 
to bring clarity to the vague, sometimes inconsistent definitions of, e.g., gold-plating, over-

requirement, scope creep and requirements changes in existing literature. Second, the framework 
identifies relevant developers’ characteristics that might relate to BNE and BPE. For a wide spectrum 

of personal traits, we draw on the tripartite model of individual attitudes in social psychology, which 

posits that an attitude, defined as the predisposition towards an object (here, software development 
and related decisions), consists of three classes of components (Shaver, 1987; Robinson et al., 1991). 

The cognitive component refers to the beliefs and thoughts the developer has about the attitude object. 
The affective component concerns the feelings perceived by the developer towards the object. The 

behavioral component refers to his/her tendency to behave in a given way in relation to the object. 

Within each class, we use prior literature to identify traits that strongly characterise software 
developers and are closely linked to the nature of the decisions and activities involved in the 

emergence of excess (Baron, 2007). For cognition, we focus on the fundamental thinking styles, 
intuitive and rational, that a laboratory experiment by Eliens et al. (2018) has investigated as drivers 

of escalation of commitment, a BPE-related phenomenon. The also experimental works by Shmueli 

et al. (2015; 2016) inspired us to examine the role of emotional attachment, for affection, and of 
reliance on past project experiences, as behaviour.  

In this study, we offer arguments to support the existence of associations between these developers’ 
traits and excess forms. Although the arguments might differ, we expect the influence of individual 

drivers to be the same independently from whether the excess is relative to customer needs or plans. 

This follows the early-stage exploratory nature of this study and is consistent with Shmueli and Ronen 
(2017) who identify overlapping causes for BNE and BPE. 

 
3.1 Beyond needs excess 

BNE can manifest in multiple, overlapping ways. It can relate to the decisions of which features to 

include in the scope of the software system, of how many and how capable the included features are 
(Shmueli et al., 2015). Some features are core because they are currently required by the market and 



6 

 

 

thus their inclusion in the scope is necessary to add value to users and so for the product’s commercial 

success. Other features might be instead optional and not necessary toward meeting customer needs. 
Coman and Ronen (2010) argue that at least 30% of developed features in software projects are 

superfluous and report surprising examples, such as a hidden pinball application in Microsoft Word. 

Features, whether must-haves or nice-to-haves, could be over-specified, offering a higher 
performance level than customers require and are willing to pay for. Christensen and Raynor (2003) 

described the race to increase a processor’s clock rate between Intel and AMD, which ended up 
providing more speed than their mainstream customers could use. 

BNE might also manifest when the new product is specified very comprehensively so that it caters 

for the current needs of a broad user base (Rust et al., 2006). Instead of offering an assortment of 
products tailored to each customer segment, market heterogeneity is addressed through a multi-

purpose, one-size-fits-all system targeting any potential customer and in so doing, likely overshooting 
the needs of some segments. Thomson et al. (2005) mention the case of a firm that when developing 

a calculator with financial analysis functions, added a set of features useful to biochemists in order to 

hit two birds with one stone. The excess could also materialize when developers attempt to 
accommodate expected, but not yet real, future market trends. The product scope is thus specified 

inclusively to meet demand whatever dynamics will affect the market during and after the 
development project. YouTube and Facebook are multi-functional platforms that run experiments 

trying to anticipate emerging communication and socialization user needs (Nadkarni and Hofmann, 

2012). 
 

3.2 Beyond plans excess 
While BNE can occur in both upstream and downstream phases of the development process, i.e., 

when defining the specifications of the new system as well as during their implementation and testing, 

BPE occurs in the latter phases only, as it concerns the modification of initial scoping decisions 
through the addition and/or alteration of product features (Bjarnason et al., 2012). Late changes might 

occur unexpectedly and take the form of reworks, where developers must iterate back to earlier phases 
and correct or redo activities (Karlström and Runeson, 2006). Such changes might be uncontrolled as 

a flood of new or modified features creep into scope expanding the size of the project. This 

phenomenon occurred to the FBI’s virtual case file project which aimed to replace the bureau’s paper 
files with a networked system for tracking criminal cases (Keil and Mahring, 2010). Alternatively, 

downstream changes might be the intended result of adopting flexible approaches to software 
development that advocate dynamic scope management and iterative replanning of specifications so 

to accommodate unforeseen contingencies (Iansiti, 1995). By keeping the product scope fluid for a 

longer proportion of the development process, final decisions can be taken as close to market 
introduction as possible. This was a critical success factor in the development of Microsoft Internet 

Explorer, whose feature freeze occurred only a week before product release (MacCormack, 2001). 
 

3.3 Cognitive styles and software development excess 

Dual processing theory posits that human cognition, i.e., the mental processes by which information 
is organized and processed, consists of two distinct elements that shape decision making: rationality 

and intuition (Kahneman, 2003). Persons with a strong inclination towards a rational cognitive style 
tend to use a structured, analytical and logical approach to problem solving. Persons with a 

pronounced intuitive cognitive style solve problems in a holistic, experiential and automatic way and 

make decisions based on gut-feeling. Rationality and intuition are not opposing but co-exist in human 
beings: any person can be placed along a continuum ranging from highly rational to highly intuitive 

(Kirton, 2003). 
An intuitive cognitive style could be argued to drive excess. Development excess has been classified 

by different scholars as an erroneous, risk-laden form of decision making that may derive from human 

biases (Shmueli and Ronen, 2017). Compared to analytical thinkers, intuitive decision-makers are 



7 

 

 

particularly susceptible to cognitive biases and adopt heuristics (Bazerman and Moore, 2012), that in 

complex and uncertain situations such as when developing new software lead them to take inaccurate 
decisions (Tversky and Kahneman, 1974), e.g., overvaluing the importance of a feature and/or of 

changing requirements. In their analysis of escalation of commitment in innovation projects, Eliens 

et al. (2018) show that intuitively inclined developers are more likely to fall victim of this pathology 
related to scope creep. 

However, BNE and BPE have also been presented as tactics to retain flexibility. Adding just-in-case 
features, creating performance reserves or offering generic systems that are suitable for many 

customer segments might allow to readily respond to market and technological shifts without costly 

redesigns (Thomke and Reinertsen, 1998). Changing planned specifications might ensure a better 
product-market fit in volatile environments. To the extent that excess can provide performance gains, 

rational decision makers who analytically and logically process each information piece should be 
more prone to deliberately pursue BNE and BPE. 

 

3.4 Emotional attachment and software development excess 
As software development requires an extensive cognitive effort and time investment from developers, 

they tend to become emotionally involved with their new creations. They might describe the products 
they are working on as “their babies” (Gino and Pisano, 2008) and see them as part of their extended 

selves (Belk and Coon, 1993). Shmueli et al. (2015) show that emotional attachment is stronger when 

developers have specified and designed the new product themselves. Also, the more difficult the 
development tasks are, the stronger the psychological-ownership feelings towards the software being 

developed. When this happens, they tend to perceive both critical and nice-to-have features as being 
more valuable than they actually are. This distorted evaluation impairs their ability to exclude 

superfluous features from the scope and thus increases the likelihood of BNE. Moreover, a strong 

affection for the software creation might be a key force driving the developer’s desire to provide the 
best possible solution to customers, which is reported to cause both BNE and BPE, and to 

continuously improve the developed software through frequent changes that eventually lead to BPE 
(Shmueli and Ronen, 2017). 

 

3.5 Reliance on past experiences and software development excess 
Using experience gained in past projects, both successful or unsuccessful, as reference information 

to make decisions about current initiatives is a relevant behaviour for software developers. This 
practice can help mitigate the planning fallacy according to which decision makers make overly 

optimistic evaluations of the value of the product under development (Lovallo and Kanheman, 2003). 

Through this mechanism, harnessing knowledge about previous cases when scoping the current one 
reduces the inclusion of over-required features (Shmueli et al., 2016). Conversely, ignoring past 

lessons and focus on the unique characteristics of the current case, treating it as one-of-a-kind, might 
lead to BNE and BPE. In line with this finding, Coman and Ronen (2010) argue that excess more 

likely occurs when developers are inexperienced, as they strive to satisfy too many customer needs 

with their new products. Expert individuals instead develop effective “rules of thumb” over time to 
better assess the value of new products, preventing the emergence of excess. These arguments would 

suggest a negative association of reliance on past experiences with BNE and BPE. 
However, this behavior per se might not be useful or could actually be detrimental. This can occur 

when developers reference the case at hand to previous projects that are poor approximations of it. 

Basing current decisions on information about these dissimilar occurrences can lead to negative 
knowledge transfer, which occurs when experience accumulated in a given activity is inappropriately 

transferred to a new activity that appears to be similar, but is, in fact, very different (Hoang and 
Rothaermel, 2010). Related to this phenomenon is the use by software developers of the anchoring 

and adjustment heuristic (Aranda and Easterbrook, 2005), wherein an early and possibly ill-advised 

estimate skews subsequent estimates (Tversky and Kahneman, 1974). When developers make 



8 

 

 

evaluations about, e.g., the value of certain features or of late scope changes, these evaluations might 

be significantly driven by initial anchors, such as past project outcomes. If these events are poorly 
comparable to the current one, inaccurate initial estimates lead to inaccurate final estimates, even 

after considerable adjustments (Gino and Pisano, 2008). On the basis of this reasoning, one might 

expect reliance on past experiences to be positively associated to BNE and BPE. 
The conceptual framework in Figure 1 graphically depicts the relations articulated in this Section, 

between the cognitive, affective and behavioural traits of developers, and different forms of excess. 
 

[Insert Figure 1 around here] 

 
 

4. Methods 
4.1 Sample and data collection 

Software development, where excessive practices are particularly diffused, is the empirical setting of 
this exploratory study. Delimiting the study to a single product type helps isolate the association 

between individual-level drivers and excess. As a consequence of digitization and technology 
convergence trends, software is a key element in many new products also in non-IT industries 

(Karlsson et al., 2018), and in the emerging suite of advanced production technologies that are part 

of Industry 4.0 (Liao et al., 2017). This study’s unit of analysis is the development process that is 
employed to execute multiple projects. Because we do not measure project-level factors, we cannot 

account for heterogeneity between different projects, which could influence the relationships 
investigated in this study (Jayaram et al., 2014). Although this represents a limitation, other scholarly 

works on new product development (Ettlie and Elsenbach, 2007) and software engineering (Tripp 

and Armstrong, 2016) adopt this approach. 
This study surveyed developers of internet software products who are members of five Italian virtual 

communities (Italia JavaScript, ASP.NET Italia, Google Development Group Slack Milan, Google 
Development Group Florence, WordPress Italia) and five international communities (Gnome, Grav 

Developers, WordPress International Slack, Gimp Developers, Joomla Core Code Developers). A 

web-based questionnaire was used to collect data in Spring 2017. Following the suggestions by 
existing literature to reduce non-response, we carefully designed the survey instrument, established 

the research significance, and balanced survey length (Rogelberg and Stanton, 2007). In the first page 
of questionnaire, we informed participants that the questions refer to their actual, general software 

development work. They were thus asked to answer with respect of the process they employed to 

execute development projects instead of confining their responses to a specific project (Misra et al., 
2010). Community administrators encouraged their members to participate (Steenkamp and 

Geyskens, 2006) posting the link to the questionnaire on different channels, e.g., the community’s 
forum, chat and Facebook group.  

With this support, 479 questionnaires were collected corresponding to a raw response rate of 7.5% 5. 

Online virtual communities have many inactive members which explains the typically low rates in 

                                                 
 
5 A first round of data collection targeted four communities, Italia JavaScript (152 of the total 870 members responded to 

the questionnaire, a raw response rate of 17.4%), Google Development Group Slack Milan (27 of the total 83 members 

responded, a raw response rate of 32.5%), Google Development Group Florence (40 of the total 219 members responded, 

a raw response rate of 18.3 %), ASP.NET Italia (30 of the total 552 members responded, a raw response rate of 5.4%). 

This dataset was used for the empirical study by Bianchi et al. (2018), which addresses a different research question and 

draws on different concepts and theories than the present study. A second round of data collection shortly after targeted 

the remaining six communities: WordPress Italia (53 of the total 209 members responded to the questionnaire, a raw 

response rate of 25.4%), Gnome (45 of the total 649 members responded to the questionnaire, a raw response rate of 

6.9%), Grav Developers (42 of the total 2096 members responded to the questionnaire, a raw response rate of 2%), 

WordPress International Slack (39 of the total 1574 members responded to the questionnaire, a raw response rate of 

2.5%), Gimp Developers (33 of the total 92 members responded to the questionnaire, a raw response rate of 35.9%), 



9 

 

 

the studies that use them (Petrovčič et al., 2016; Chow and Cao, 2008). After removing responses 

with missing values, we obtained a final nested sample of 307 software developers6. Table 2 reports 
relevant descriptive statistics of the sample. Non-response bias was checked through independent 

sample t-test on questionnaire variables (Dalecki et al., 1993), e.g., age, organization size, cognitive 

styles, which indicated no statistically significant differences between early and late respondents. 
 

[Insert Table 2 around here] 
 

4.2 Scale development 

Multiple-item, 7-point Likert scales measures, ranging from "strongly disagree" to "strongly agree", 
are used for the main constructs of this study (Jarvis et al., 2003). The items assessing rational and 

intuitive cognitive styles are based on the short version of the Rational Experiential Inventory, a 
validated scale measuring both rationality and intuition (Hodgkinson and Sadler-Smith, 2003). The 

scale measuring reliance on past experiences leans on the work by Lovallo and Sibony (2010), later 

adapted to a new product development environment by Belvedere et al. (2013). 
Scale development was necessary for the emotional attachment, BNE and BPE constructs due to a 

lack of existing scales. The measures in prior experimental research (Shmueli et al., 2015) were not 
applicable to a survey-based empirical design. Due to this study’s aggregate level of analysis, we 

could not use objective indicators of excess, such as the number of superflous features in a product. 

The aim of measuring multiple dimensions of excess required to go beyond early aggregate attempts 
(Ropponen and Lyytinen, 2000). 

Jaworski and Kohli (1993) iterative procedure was used to develop the scales. A comprehensive 
literature analysis and multiple discussions with software professionals served to preliminarily form 

a large pool of items for the constructs. By applying the criteria of uniqueness and ability to convey 

different meanings (Churchill, 1979), we selected a subset of items which were tested for clarity and 
appropriateness with the previously interviewed practitioners. Their feedback allowed to exclude, 

alter and add items. We reverse-score some items to reduce response set bias. 
We then asked three academic experts to critically assess the scales in terms of domain 

representativeness, item specificity, and construction clarity. This pre-test returned meticulous 

suggestions for item revision. Finally, a pilot test was run with Master students in computer- and 
management-related disciplines who answered the questionnaire. After addressing the minor 

concerns raised by students, we had enough confidence that the instrument was reliable and valid for 
full-scale survey administration. 

Table 3 reports the items included in the questionnaire that are relevant to this study. Items measuring 

BNE capture its multiple aspects, such as including superfluous features in the new software scope,  
providing performance levels that are better than required by the market, targeting all possible needs 

of the entire user base and accommodating expected, but not yet real, market trends, and the time in 
which they can occur, during the early specification phase and during later execution phases (Coman 

and Ronen, 2010; Bianchi et al., 2018). Items measuring BPE assess the extent of late changes to 

planned specifications, their creeping nature often associated to the adoption in volatile environments 
of linear Stage-Gate models that advocate early scope freezing (MacCormack, 2001; Bianchi et al., 

                                                 
 
Joomla Core Code Developers (18 of the total 54 members responded to the questionnaire, a raw response rate of 33.3%). 

These additional data are not used in previous publications.  
6 The final sample consists of: 117 members of Italia JavaScript; 21 members of Google Development Group Slack Milan; 

26 members of Google Development Group Florence; 17 members of ASP.NET Italia; 24 members of WordPress Italia; 

28 members of Gnome; 27 members of Grav Developers; 23 members of WordPress International Slack; 7 members of 

Gimp Developers; 17 members of Joomla Core Code Developers. Because the sample size is low compared to the large 

population of Internet software developers and because individual developer effects can be nested in other higher -level, 

e.g., community-level, effects, results should be interpreted with caution.  



10 

 

 

2018) as well the use of dynamic scope management and iterative replanning techniques (Bjarnason 

et al., 2012). The emotional attachment construct consists of five items assessing the strength of the 
developer’s feelings towards his/her creations, which also depends on his/her task autonomy. As for 

the constructs derived from earlier works, the items for rational and intuitive cognition are four and 

five, respectively, and those for reliance on past experiences are three.  
 

[Insert Table 3 around here] 
 

4.3 Exploratory Factor Analysis 

Consistently with the early stage of extant research on development excess and the exploratory nature 
of this study, we run an Exploratory Factor Analysis (EFA) to identify parsimonious, mutually 

exclusive and unitary constructs. We use principal component extraction with varimax rotation (Hair 
et al., 2006), with indictors on factors loading and reliability tests reported in Table 4. Only the factors 

with eigenvalue higher than 1 were retained. Items were retained if the corresponding factor loading 

exceeded the value of 0.5 only for a single factor and was below this threshold for the others (Hu and 
Bentler, 1999). 

 
[Insert Table 4 around here] 

 

The distribution of items and their factor loadings provide important insights. The predicted factor 
variables for Rational cognition, Intuitive cognition, Emotional attachment and Reliance on past 

experiences emerge from the scale items. Due to low correlation with the other items on the scale, 
two items (INT3 and EMO4) were removed from the corresponding constructs. As regards excessive 

software development constructs, the factor analysis supports the unidimensionality of the three-item 

BPE factor (the item BPE2 was dropped due to low correlation with the other items), while it results 
in a two-factor solution for BNE. The five-item scale Feature-Driven BNE (FD-BNE) captures 

manifestations of excess that relate to the inclusion of extra features that are not necessary towards 
meeting current core customer needs. The two-item scale One-Size-Fits-All BNE (OSFA-BNE) 

assesses the forms of excess that relate to developing a generic new product so that is suitable for any 

potential customer segment. This factor structure is coherent with the conceptual development of 
BNE in Section 3. One item (BNE3) was dropped due to the low correlation with other items on the 

scale. 
A reliability test based on Cronbach alpha statistic and corrected item-total correlation coefficients 

was used to test the validity of the factors. In exploratory research, value of Cronbach alpha > 0.60 

are considered acceptable (whereas in more advanced stages of research, values between 0.70 and 
0.90 can be regarded as satisfactory; Nunally and Bernstein, 1994), while the threshold for item – 

total correlation is 0.5. Therefore, our results confirm a satisfactory level of reliability of the factors. 
 

4.4 Model testing 

The relations in the conceptual framework were statistically explored using Covariance-based 
Structural Equation modelling (CB-SEM), which is a common method used also for survey-based 

exploratory research (Perols et al., 2013). The model was tested using the maximum likelihood (ML) 
estimation method (Hair et al. 2011), as ML compared to other methods - like Generalized Least 

Squares and Weighted Least Squares – is able to provide more realistic indexes of overall fit and less 

biased parameter values for paths that overlap with the true model (Olsson et al., 2000). ML 
estimation assumes that the variables in the model are (conditionally) multivariate normal, which is 

true for our dataset according to the Doornik – Hansen test (χ² =948.708; p > χ² = 0.000) and the 
Henze – Zirkler test (χ² =9945.008; p > χ² = 0.000). 

The research model was analysed and interpreted sequentially in two stages: first, the assessment of 

the reliability and validity of the measurement model and second, the assessment of the structural 



11 

 

 

model (Anderson and Gerbing, 1988). Stata 14.0 was used to estimate both the measurement model 

and the structural model. The ML algorithm was used to obtain the paths, the loadings, the weights 
and the quality criteria. 

The model fit was evaluated using the chi-square goodness-of-fit statistic and the use of other absolute 

or relative fit indices (Bagozzi and Yi, 1988). For the former, some authors suggest checking for the 
ratio between the chi-square value and the degrees of freedom in the model, where the cut-off values 

range from <3 (for testing purposes) to <5 (for exploratory research). For the latter, to evaluate the fit 
of a model, several fit indices were used to supplement the chi-square. The fit indices range from 0 

to 1, with values closer to 1, indicating a good fit. Hu and Bentler (1999) recommend MLE-based fit 

indices, and they suggest a three-index presentation strategy that includes the comparative fit index 
(CFI), The Tucker–Lewis index (TLI), and the root mean square error of approximation (RMSEA). 

A satisfactory threshold for CFI and TLI is >0.90 (with a value >0.95 showing excellent fit), whereas 
RMSEA is supposed to be lower than 0.05. 

 

5. Results 
5.1 Measurement model 
The initial model – including factors coming from the EFA – was found to be discredited, as 

Composite reliability and Average Variance extracted for FD-BNE, Emotional attachment and 

Reliance on past experiences, as well as the model goodness-of-fit indicators, could not be considered 
satisfactory even for an exploratory stage. For this reason, three further items were eliminated (BNE6, 

EMO5 and PAS3), without compromising the theoretical validity of the three constructs7. 
Table 5 shows the results of confirmatory factor analysis (CFA) for the new model. The fit indicators 

were now found to be satisfactory (χ²=292.425; χ²/d.f.=1.730; CFI=.967; TLI=.951; RMSEA=.045; 

CD=.999), as well as the factors reliability, as measured by the Composite Reliability (CR, Fornell 
and Larcker, 1981). Additionally, convergent validity was assessed through significant loadings from 

all scale items on the hypothesized constructs, and through the Average Variance Extracted (AVE, 
Anderson and Gerbing 1988): AVE ranges between 37% and 57%.  

Table 6 reports the summary statistics of the constructs and the correlation matrix. The correlations 

have been analysed using Pearson’s r bivariate correlations. As an additional test for discriminant 
validity, we compared the squared correlation between two latent constructs to their AVE estimates 

(Fornell and Larcker, 1981). According to this test, the AVE for each construct should be higher than 
the squared correlation between each pair of constructs. This condition is valid for all the constructs. 

 

[Insert Tables 5 and 6 around here] 
 

As we relied on a single respondent design, we controlled for common method bias in two ways, 
through the study procedure and through statistical control (MacKenzie and Podsakoff et al., 2012). 

Regarding the procedure, the research project was labelled as a comprehensive overview of software 

development practices, therefore no explicit reference to development excess was made. Thus, 
respondents’ attention was not drawn to the relations being targeted in this study. Survey questions 

related to the dependent and independent constructs were separated (Podsakoff et al., 2003), to 
prevent respondents from developing their own theories about possible cause-effect relationships. 

The questionnaire was carefully created and pretested, and the cover letter emphasized that 

participation was anonymous, no compensation would be provided, answers were neither right nor 
wrong, and the researchers would ensure maximum confidentiality and independence. Regarding 

                                                 
 
7 The elimination of item BNE6 from factor FD-BNE should actually strengthen the validity of this factor, because its 

formulation only implicitly related to the inclusion of extra, non-core features, differently from the other FD-BNE items 

that contain explicit links.  



12 

 

 

statistical control, we performed the common latent factor technique (MacKenzie and Podsakoff et 

al., 2012), used in other SEM studies (Luzzini et al., 2015; Gopal and Thakkar, 2016), and we found 
that the common latent variable has a linear estimate of .661. This value, when squared, indicates a 

variance of .437 which is below the threshold of .50. This suggests that data analysis is not excessively 

affected by common method bias. 
 

5.2 Structural model 
A structural model was built to assess the path coefficients existing between the individual drivers 

and the constructs for excessive software development. Besides this study’s main variables, the model 

includes the following controls: developer’s age, organization size, typical project team size, 
measured as categorical variables; a set of dummies that equal 1 if the developer is male, has a 

leadership role (functional manager, project manager, team leader), the main clients for his/her 
software are other businesses (B2B) and operate in high uncertainty markets (computer, 

telecommunications, aerospace, electronics, health) (Furr and Dyer, 2014). We also include dummies 

to control for the virtual community to which the developer belongs, which helps address the nested 
nature of our data, and their location.  

The postulated path model produced a sufficient fit to the data (χ²=318.301.; χ²/d.f.=1.798; 
RMSEA=.048; CFI=.954; TLI=.945; CD=.999). Table 7 and Figure 2 shows the corresponding 

empirical results.  

[Insert Tables 7 and Figure 2 around here] 
 

The empirical results show that FD-BNE has a significant positive association with a developer’s 
intuitive cognition (p < .05), emotional attachment (p < .001) and reliance on past experiences (p < 

.001), while no significance is found for rational cognition. The other form of BNE, OSFA-BNE, has 

also a significant positive association with emotional attachment (p < .01) and reliance on past 
experiences (p < .001), however, as regards cognition, it has a significant positive association with 

rational cognition (p < .01) and not with intuitive cognition.  
The data indicate that BPE has a significant negative association with the behavioural component, 

reliance on past experiences (p < .05) while no significance is found for the cognitive and affective 

components. 
Some controls have significant association with the different forms of excess: FD-BNE is positively 

associated with being located in Europe and Asia, and negatively associated with belonging to Italia 
JavaScript and ASP.NET Italia communities; OSFA-BNE is positively associated with organization 

size and being located in Europe; BPE is positively associated with gender, being located in Europe 

and belonging to Google Development Group Slack Milan. 
 

6. Discussion and Conclusions 
6.1 Research implications 

This exploratory study has implications for research on innovation management and on new product 
development, for which software represents an increasingly important component. Furthermore, it 

holds relevant insights for current production research. The design and management of production 
technologies, such as Computer-Integrated Manufacturing and intelligent automation systems, have 

long depended on the development of the associated control software, on its quality and reliability  

(Chiu et al., 2001; Kurihara et al., 2002). Software-based enterprise information systems for 
managing resources and processes in production and logistics, such as ERP, are key subject areas in 

the operations field (Maqueira et al., 2018). It is however evident that the centrality of software in 
production research will grow as a consequence of the exponential progress of computer technology 

and the shift to an information economy. The successful development of digital manufacturing 

technologies such as additive manufacturing and industrial robotics is critically enabled by ongoing 



13 

 

 

software innovations in the areas of, e.g., machine learning, cloud computing and computer-aided 

design (Khorram Niaki and Nonino, 2017; Gunasekaran et al., 2018). 
By creating novel measures that capture diverse facets of excess, this study adds to the existing 

blurred definitions and operationalizations of excess in various literature streams. Our factor analysis 

not only supports, as expected, a distinction between beyond needs and beyond plans forms of excess 
(Shmueli and Ronen, 2017), but it suggests that each form might manifest in distinct ways as in the 

case of beyond needs excess. Our results help discriminate between a manifestation of BNE that 
emphasises the inclusion of non-required features in the new product scope and one that highlights 

the developers’ attempt to target several customer segments at once and to attract an extremely broad 

user base. This distinction offers preliminary empirical support to the prediction advanced in 
conceptual articles (Coman and Ronen, 2010) about the multidimensional nature of overdesign. Due 

to this study’ limitations (see Section 6.3), our proposed twofold conceptualization of BNE needs to 
be further validated by future research. 

Given its focus on human drivers of excess, the core contribution of this study is to show that different 

manifestations of excess are associated with distinct traits of software developers and that a particular 
trait might exert a mixed influence depending on the type of excess. Based on our empirical analysis, 

we propose a set of formal propositions on these relationships for the direction of future research. As 
regards beyond needs excess, both feature-driven and one-size-fits-all forms appear to be influenced 

by the same affective and behavioural components, emotional attachment and reliance on past 

experiences. The former finding is consistent with the experiment by Shmueli et al. (2015) who find 
that developers who are emotionally involved with their creations are more likely to overdesign them.  

Hence, we propose that: 
Proposition 1. Emotional attachment is positively associated to different forms of beyond needs 

excess. 

Interestingly, our analysis indicates that FD-BNE and OSFA-BNE, while related, have different 
cognitive origins: an intuitive decision maker is more likely to adopt the former type while the latter 

type is more likely to emerge from a rational decision maker. One possible yet cautious interpretation 
of this result is that the act of including extra features not currently required by customers (FD-BNE) 

stems from optimistic and somewhat biased interpretations and predictions of what users might need, 

and so might be associated with more intuitive and instinctive judgment. One might argue that a 
feature orientation tends to characterize earlier stages of the development process which consists of 

explorative activities and more intuitive information processing (Leonard et al., 2005; de Visser et 
al., 2014). On the other hand, the attempt to satisfy as many users as possible (OSFA-BNE) might be 

a conscious and deliberate tactic by a rational decision maker, who aim to maximize sales volume, at 

least in the short run (Thomson et al., 2005). The desire to target a broad market could be argued to 
characterize later stages of the innovation process, where some uncertainty sources have been 

addressed and the higher availability of more reliable information allows for its analytical processing. 
Based on the analysis of our survey data, we thus posit that the association of each cognitive style 

with beyond needs excess is contingent on the specific form of this excess. The following 

propositions, which could be further elaborated and tested by future research, are formulated: 
Proposition 2a. An intuitive cognitive style is positively associated to the form of beyond needs 

excess that consists of including extra features in the new product scope. 
Proposition 2b. A rational cognitive style is positively associated to the form of beyond needs 

excess that consists of specifying a new product comprehensively so to satisfy as many users as 

possible. 
 

Differently from BNE having both cognitive, affective and behavioural origins, BPE appears to 
associate only to the behavioural component of a developer’s attitudes. The occurrence of late 

changes of plans, either as manifestation of scope creep or of an agile management approach, seems 

thus independent from the way an individual thinks and feels. An interesting result is that the 



14 

 

 

behaviour of relying on experience gained in past projects to make decisions about current ones is 

found to be positively related to (both forms of) BNE and negatively related to BPE. The possibility 
of both negative and positive associations does not go against conceptual predictions in Section 3.5. 

A tentative interpretation of this finding builds on the different nature of BNE vs. BPE. The former 

involves proactive anticipation, i.e., developers predicting the areas in which changes might occur 
and adding just-in-case buffers that will help manage eventual deviations, whereas the latter is about 

adapting on-the-fly by making reactive changes to the originally scope. In highly dynamic and 
uncertain environments such as software development, relying on past experiences might reduce the 

accuracy of estimations because knowledge of specific technologies and markets atrophy fast 

(MacCormack, 2001). Indeed, Coman and Ronen (2010) report that in turbulent contexts, the number 
of design solutions that can be reused into next generation products is fewer and fewer. Projects are 

thus more likely to be one-of-a-kind. Because it involves anticipation and prediction, BNE is 
particularly exposed to anchoring bias and negative knowledge transfer which derive from 

overrelying on accumulated knowledge in past events that appear to be similar to the current one, but 

in reality are not, and so they lead developers to exceed what customers want from their products 
(Marcovitch et al., 2014). Conversely, the fact that BPE is emergent, reactive and characterized by a 

shorter lag between the decision to exceed and the resulting feedback might help developers better 
assess the similarity between past and current events and so the usefulness of prior knowledge as 

reference information for the case at hand. With this more accurate assessment, developers harnessing 

past experience might reduce the occurrence of late scope changes in the current project. Naturally, 
an in-depth analysis of what type of prior information developers rely on to make current decisions, 

and how they use it, is needed to assess the validity of this interpretation. Given the differences 
between BNE and BPE, we formulate two distinct propositions for their relationship with reliance on 

past experiences:  

Proposition 3a. Reliance on past experiences is positively associated to different forms of beyond 
needs excess. 

Proposition 3b. Reliance on past experiences is negatively associated to beyond plans excess. 
 

All in all, while the conceptual work by Shmueli and Ronen (2017) suggests the existence of mutual, 

overlapping causes for different excess forms, this study finds substantial diversity. We argue that 
different human origins are motivated by the distinct nature of excess categories.  

 
6.2 Managerial implications 

While this study does not investigate the performance consequences of an “above and beyond” 

approach to software development, it provides insights to project managers and developers on the 
individual traits that might lead to various forms of excess. Depending on whether managers are 

seeking to avoid excess because of its inherent risks or to pursue excess for flexibility advantages, 
this suggests possible remedies or catalysts for excess. First, managers aiming to go beyond customer 

needs should trigger strong feelings by developers toward their new software creations, e.g., by giving 

them more autonomy and ambitious challenges. Second, if managers’ goal is to develop innovations 
that cater for the needs of a broad user base, they should form development teams with predominantly 

rational decision makers. They should instead involve intuitive thinkers when the purpose is to design 
feature-rich products. Third, managers can reduce scope creep by promoting the use of knowledge 

from past experiences as a basis for decision making in current projects but they should be aware that 

this can lead to overshooting customer needs. 
 

6.3 Limitations and directions for future research 
This study has limitations that call for future research work. Subjective and common method biases 

may exist due to the single-respondent retrospective approach used in this empirical analysis. A key 

limitation is that this study’s unit of analysis is the aggregate software development process. 



15 

 

 

Therefore, it does not measure project-level dimensions, e.g., size and complexity, and it cannot 

assess whether these affect the relationships here investigated. Future research should examine the 
impact of contextual factors on the association between individual drivers and excess forms. Because 

survey participants belong to different communities, sample data are nested. Unfortunately, the 

sample size does not allow to explore, separately, how the relationships vary across communities. A 
larger sample size and higher response rate would provide more robust statistical calculation and 

analysis and would aid in determining the generalizability of the findings. Focusing on fewer 
communities and using comparative methodologies (e.g., multi-group or multi-level SEM) to explore 

more macro-level effects on excess is an avenue for further research. 

The study relies on novel, perceptual questionnaire items for measuring development excess. Despite 
having used statistical tests to assess their validity and reliability, they have limitations and need 

further verification. In-depth case studies and longitudinal data from multiple informants would 
strongly contribute to this. In hindsight, the survey instrument could have been improved by including 

more and more focused questions on the different types of excess, especially the beyond plans 

category. It is thus advisable to treat the research results accordingly.  
Our empirical setting is the software industry. The information-based nature of the good and the high 

levels of volatility create peculiar conditions for the emergence of excess (MacCormack et al., 2001), 
which may make our results not universally applicable in all kinds of environments. However, they 

should be to some extent transferable to highly turbulent environments, such as electronics, 

telecommunications and automation. Moreover, trends like digitization are not only increasing the 
share of software components in new products and production technologies, but they are also favoring 

the adoption of software development practices in hardware-based contexts (Conforto et al., 2014). 
Future research should test the relationships investigated in this study, in other industries beyond 

software. 

Finally, this study includes only a limited set of individual developer-related antecedents. Future 
research should investigate other drivers of excess, related to the developer (e.g., intrinsic 

motivation), to the user (e.g., risk propensity), to the product (e.g., modular architecture) and to the 
organization (e.g., incentive systems). It should also examine the interaction between different forms 

of excess, their effects on multiple performance dimensions and how they are moderated by 

management approaches. 
 

 

References 
Anderson, J. C., and D. W. Gerbing. 1988. “Structural equation modeling in practice: A review and 

recommended two-step approach.” Psychological bulletin 103(3): 411-423. 

Aranda, J., and S. Easterbrook. 2005. “Anchoring and adjustment in software estimation.” In: 
Proceedings of the 10th European software engineering conference ESEC/FSE-13 30(5): 346-

355. 

Bagozzi, R. P., and Y. Yi. 1988. On the evaluation of structural equation models. Journal of the 

academy of marketing science 16(1): 74-94. 

Belk, R. W., and  G. S. Coon. 1993. “Gift giving as agapic love: An alternative to the exchange 

paradigm based on dating experiences.” Journal of consumer research 20(3): 393-417. 

Belvedere, V., A. Grando and B. Ronen. 2013. “Cognitive Biases, Heuristics, and Overdesign: An 

Investigation on the Unconscious Mistakes of Industrial Designers and on Their Effects on 
Product Offering”. In Behavioral Issues in Operations Management: New Trends in Design, 

Management, and Methodologies, edited by Ilaria Giannoccaro, 125–139. London: Springer. 

Baron, R. A. 2007. “Behavioral and cognitive factors in entrepreneurship: Entrepreneurs as the active 

element in new venture creation.” Strategic entrepreneurship journal 1(1‐2): 167-182. 



16 

 

 

Bettis, R., A. Gambardella, C. Helfat, and W. Mitchell. 2014. “Quantitative empirical analysis in 

strategic management.” Strategic Management Journal 35(7): 949-953. 

Bianchi, M., and J. Lejarraga. 2016. “Learning to license technology: the role of experience and 

workforce's skills in Spanish manufacturing firms.” R&D Management 46(S2): 691-705. 

Bianchi, M., G. Marzi, and M. Guerini. 2018. “Agile, Stage-Gate and their combination: Exploring 
how they relate to performance in software development.” Journal of Business Research. 

https://doi.org/10.1016/j.jbusres.2018.05.003. 

Bjarnason, E., K. Wnuk, and B. Regnell. 2012). “Are you biting off more than you can chew? A case 

study on causes and effects of overscoping in large-scale software engineering.” Information 

and Software Technology 54(10): 1107-1124. 

Boehm, B. W. 1991. “Software risk management: principles and practices”. IEEE software 8(1): 32-

41. 

Buschmann, F. 2009. “Learning from failure, part 1: scoping and requirements woes.” IEEE Software 

26(6): 69–69. 

Caputo, A., Marzi, G., & Pellegrini, M. M. (2016). The internet of things in manufacturing innovation 
processes: development and application of a conceptual framework. Business Process 

Management Journal, 22(2), 383-402. 

Chen, C. C., C. C. Law, and S.C. Yang. 2009. “Managing ERP implementation failure: a project 

management perspective.” IEEE transactions on engineering management 56(1): 157-170.  

Chiu, K. F., L. K. Chu, and D. Sculli 2001. “Modular generic software system for cellular FMS.” 

International Journal of Production Research 39(12): 2545-2566. 

Choi, K., and D. H. Bae. 2009. “Dynamic project performance estimation by combining static 
estimation models with system dynamics.” Information and software technology 51(1): 162-

172. 

Chow, T. and D. B. Cao. 2008. “A survey study of critical success factors in agile software projects.” 

Journal of systems and software 81(6): 961-971. 

Christensen, C. M., and M. E. Raynor. 2003. “Why hard-nosed executives should care about 

management theory.” Harvard business review 81(9): 66-75. 

Christensen, C. M., and J. L. Bower, J. L. 1996. “Customer power, strategic investment, and the 

failure of leading firms.” Strategic management journal 17(3): 197-218. 

Churchill, G. A. 1979. “A paradigm for developing better measures of marketing constructs.” Journal 

of marketing research 16(1): 64-73. 

Coman, A., and B. Ronen. 2010. “Icarus’ predicament: managing the pathologies of overspecification 

and overdesign.” International Journal of Project Management 28(3): 237-244. 

Conforto, E. C., F. Salum, D. C. Amaral, S. L. da Silva, and L. F. M. de Almeida. 2014. “Can agile 
project management be adopted by industries other than software development?” Project 

Management Journal 45(3): 21-34. 

Cule, P., R. Schmidt, K. Lyytinen, and M. Keil. 2000. “Strategies for heading off is project 

failure.” Information systems management 17(2): 65-73. 

Dalecki, M. G., J. C. Whitehead, and G.C. Blomquist. 1993. “Sample non-response bias and 
aggregate benefits in contingent valuation: an examination of early, late and non-

respondents.” Journal of Environmental Management 38(2): 133-143. 



17 

 

 

Damian, D., and J. Chisan. 2006. “An empirical study of the complex relationships between 

requirements engineering processes and other processes that lead to payoffs in productivity, 

quality, and risk management.” IEEE Transactions on Software Engineering 32(7): 433-453. 

Dholakia, U. M., R. P. Bagozzi, and L. K. Pearo. 2004. “A social influence model of consumer 

participation in network-and small-group-based virtual communities.” International journal of 

research in marketing 21(3): 241-263. 

Eliëns, R., K. Eling, S. Gelper, and F. Langerak. 2018. “Rational versus intuitive gatekeeping: 
Escalation of commitment in the front end of NPD.” Journal of Product Innovation 

Management 35(6): 890-907.  

Ettlie, J. E., and J. M. Elsenbach. 2007. “Modified Stage‐Gate® Regimes in New Product 

Development.” Journal of Product Innovation Management 24(1): 20-33. 

Fontela, E., J. Guzmán, M. Pérez, and F. J. Santos. 2006. “The art of entrepreneurial foresight.” 

Foresight 8(6): 3-13. 

Fornell, C., and D. F. Larcker. 1981. “Structural equation models with unobservable variables and 

measurement error: Algebra and statistics.” Journal of marketing research 18(3): 382-388. 

Furr, N. R., and J. Dyer. 2014. The Innovator's Method: Bringing the Lean Startup Into Your 

Organization. Boston: Harvard Business Press. 

Gino, F., and G. Pisano. 2008. “Toward a Theory of Behavioral Operations.” Manufacturing & 

Service Operations 10(4): 676–691.  

Gopal, P. R. C., and J. Thakkar. 2016. “Sustainable supply chain practices: an empirical investigation 

on Indian automobile industry.” Production Planning & Control 27(1): 49-64. 

Gunasekaran, A., Y. Y. Yusuf, E. O. Adeleye, and T. Papadopoulos. 2018. “Agile manufacturing 

practices: the role of big data and business analytics with multiple case studies.” International 

Journal of Production Research 56(1-2): 385-397. 

Hair, J. F., W. C. Black, B. J. Babin, R. E. Anderson, and R. L. Tatham. 2006. Multivariate data 

analysis (6th ed.). Upper Saddle River, NJ: Prentice-Hall International. 

Hair, J. F., C. M. Ringle, and M. Sarstedt. 2011. “PLS-SEM: Indeed a silver bullet.” Journal of 

Marketing theory and Practice 19(2): 139-152. 

Hoang, H. A., and F. T. Rothaermel. 2010. “Leveraging internal and external experience: exploration, 

exploitation, and R&D project performance.” Strategic Management Journal 31(7): 734-758. 

Hodgkinson, G. P., and E. Sadler‐Smith. 2003. “Reflections on reflections… on the nature of 

intuition, analysis and the construct validity of the Cognitive Style Index.” Journal of 

Occupational and Organizational Psychology 76(2): 279-281. 

Hu, L. T., and P. M. Bentler. 1999. “Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives.” Structural equation modeling: a 

multidisciplinary journal 6(1): 1-55. 

Iansiti, M. 1995. “Shooting the rapids: Managing product development in turbulent environments.” 

California Management Review 38(1): 37-58. 

Jarvis, C. B., S. B. MacKenzie, and P.M. Podsakoff. 2003. “A critical review of construct indicators 

and measurement model misspecification in marketing and consumer research.” Journal of 

consumer research 30(2): 199-218. 

Jaworski, B. J., and A. K. Kohli. 1993. “Market orientation: antecedents and consequences.”  Journal 

of marketing 57(July): 53-70. 



18 

 

 

Jayaram, J., A. Oke, and D. Prajogo. 2014. “The antecedents and consequences of product and process 

innovation strategy implementation in Australian manufacturing firms.” International Journal 

of Production Research 52(15): 4424-4439. 

Kahneman, D. 2003. “A perspective on judgment and choice: mapping bounded 

rationality.” American psychologist 58(9): 697-720. 

Karlström, D., and P. Runeson. 2006. “Integrating agile software development into stage-gate 

managed product development.” Empirical Software Engineering 11(2): 203-225. 

Karlsson, A., L. Larsson, and A. Öhrwall Rönnbäck. 2018. “Product-service system innovation 

capabilities: linkages between the fuzzy front end and subsequent development phases.” 

International Journal of Production Research 56(6): 2218-2232. 

Keil, M., and M. Mähring. 2010. “Is your project turning into a black hole?” California Management 

Review 53(1): 6-31. 

Khorram Niaki, M., and F. Nonino. 2017. “Additive manufacturing management: a review and future 

research agenda.” International Journal of Production Research 55(5): 1419-1439. 

Kirton, M. J. 2003. Adaption and innovation in the context of diversity and change. London: 

Routledge. 

Kurihara, K., S. Takigawa, N. Nishiuchi, and M. Kitaoka. 2002. “Factory automation control software 
designing method based on petri nets.” International journal of production research 40(15): 

3605-3625. 

Lee, G., and W. Xia. 2010. “Toward agile: an integrated analysis of quantitative and qualitative field 

data on software development agility.” Mis Quarterly 34(1): 87-114. 

Lee-Kelley, L., and T. Sankey. 2008. “Global virtual teams for value creation and project success: A 

case study.” International journal of project management 26(1): 51-62. 

Lettl, C., C. Hienerth, and H.G. Gemuenden. 2008. “Exploring how lead users develop radical 

innovation: opportunity recognition and exploitation in the field of medical equipment 

technology.” IEEE Transactions on Engineering Management 55(2): 219-233. 

Liao, Y., F. Deschamps, F., E. D. F. R. Loures, and L. F. P. Ramos. 2017. “Past, present and future 
of Industry 4.0-a systematic literature review and research agenda proposal.” International 

journal of Production Research 55(12): 3609-3629. 

Loch, C. H., A. DeMeyer, and M. Pich. 2011. Managing the unknown: A new approach to managing 

high uncertainty and risk in projects. Hoboken, NJ: John Wiley & Sons. 

Loewenstein, G., and J. S. Lerner. 2003. “The role of affect in decision making.” In Handbook of 

affective science, edited by R. J. Davidson, 619–642. Oxford: Oxford University Press. 

Lovallo, D., and D. Kahneman. 2003. “Delusions of success.” Harvard business review 81(7): 56-

63. 

Lovallo, D., and O. Sibony. 2010. “Taking the bias out of meetings.” McKinsey Quarterly 2(2010): 

68-69. 

Luzzini, D., M. Amann, F. Caniato, M. Essig, and S. Ronchi. 2015. “The path of innovation: 

purchasing and supplier involvement into new product development.” Industrial Marketing 

Management 47(2015): 109-120. 

MacCormack, A. 2001. “How internet companies build software.” MIT Sloan Management Review 

42(2): 75-84. 



19 

 

 

MacCormack, A., R. Verganti, and M. Iansiti. 2001. “Developing products on “Internet time”: The 

anatomy of a flexible development process.” Management science 47(1): 133-150. 

MacKenzie, S. B., and P. M. Podsakoff. 2012. “Common method bias in marketing: causes, 

mechanisms, and procedural remedies.” Journal of Retailing 88(4): 542-555. 

Maqueira, M. J., J. Moyano-Fuentes, and S. Bruque. 2018. “Drivers and consequences of an 
innovative technology assimilation in the supply chain: cloud computing and supply chain 

integration.” International Journal of Production Research. DOI: 

10.1080/00207543.2018.1530473. 

Marzi, G., Zollo, L., Boccardi, A., & Ciappei, C. (2018). Additive manufacturing in SMEs: empirical 

evidences from Italy. International Journal of Innovation and Technology 

Management, 15(01), 1850007. 

Marzi, G., Dabić, M., Daim, T., & Garces, E. (2017). Product and process innovation in 

manufacturing firms: a 30-year bibliometric analysis. Scientometrics, 113(2), 673-704. 

Vlajčić, D., Caputo, A., Marzi, G., & Dabić, M. (2019). Expatriates managers’ cultural intelligence 

as promoter of knowledge transfer in multinational companies. Journal of Business 

Research, 94, 367-377. 

Marzi, G., Caputo, A., Garces, E., & Dabić, M. (2018). A three decade mixed-method bibliometric 
investigation of the IEEE transactions on engineering management. IEEE Transactions on 

Engineering Management. 

Messick, S. 1976. “Personality consistencies in cognition and creativity”. In Individuality in 

Learning, edited by S. Messick, 4-22. San Francisco, California: Jossey-Bass. 

Misra, S.C., V. Kumar, and U. Kumar. 2010. “Identifying some critical changes required in adopting 
agile practices in traditional software development projects.” International Journal of Quality 

& Reliability Management 27(4): 451-474. 

Nadkarni, A., and S.G. Hofmann. 2012. “Why do people use Facebook?” Personality and individual 

differences 52(3): 243-249. 

Olsson, U. H., T. Foss, S.V. Troye, and R.D. Howell. 2000. “The performance of ML, GLS, and WLS 
estimation in structural equation modeling under conditions of misspecification and non-

normality.” Structural equation modeling 7(4): 557-595. 

Peng, G., and J. Mu. 2018. “Do modular products lead to modular organisations? Evidence from open 
source software development.” International Journal of Production Research 56(20): 6719-

6733. 

Perols, J., C. Zimmermann, and S. Kortmann. 2013. ”On the relationship between supplier integration 

and time-to-market.” Journal of Operations Management 31(3): 153-167. 

Petrovčič, A., G. Petrič, and K.L. Manfreda. 2016. “The effect of email invitation elements on 
response rate in a web survey within an online community.” Computers in Human Behavior 

56(March): 320-329. 

Podsakoff, P. M., S. B. MacKenzie, J. Y. Lee, and N. P. Podsakoff. 2003. “Common method biases 

in behavioral research: a critical review of the literature and recommended remedies.” Journal 

of applied psychology 88(5): 879-903. 

Repenning, N. P. 2001. “Understanding fire fighting in new product development.” Journal of 

product innovation management 18(5): 285-300. 



20 

 

 

Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: a 

bibliometric analysis and systematic literature review. Management Decision. In press 

Rogelberg, S. G., and J. M. Stanton. 2007. “Introduction: Understanding and dealing with 

organizational survey nonresponse.” Organizational Research Methods 10(2): 195-209. 

Robinson, P. B., D. V. Stimpson, J. C. Huefner, and H. K. Hunt. 1991. “An attitude approach to the 

prediction of entrepreneurship.” Entrepreneurship theory and practice 15(4): 13-32. 

Ronen, B., and S. Pass. 2008. Focused operations management: Doing more with existing resources. 

New York: John Wiley & Sons. 

Ropponen, J., and K. Lyytinen. 2000. “Components of software development risk: How to address 

them? A project manager survey.” IEEE transactions on software engineering 26(2): 98-112. 

Rust, R. T., D. V. Thompson, and R. “. Hamilton. 2006. “Defeating feature fatigue.” Harvard 

business review 84(2): 37-47. 

Schmidt, R., K. Lyytinen, and M. Keil. 2001. “Identifying software project risks: An international 

Delphi study.” Journal of management information systems 17(4): 5-36. 

Shaver, K. G. 1987. Principles of social psychology (3rd ed.). Cambridge, MA: Winthrop. 

Shmueli, O., and B. Ronen. 2017. “Excessive software development: Practices and penalties.” 

International Journal of Project Management 35(1): 13-27. 

Shmueli, O., N. Pliskin, and L. Fink. 2015. “Explaining over-requirement in software development 

projects: An experimental investigation of behavioral effects.” International Journal of Project 

Management 33(2): 380–394. 

Shmueli, O., N. Pliskin, and L. Fink. 2016. “Can the outside-view approach improve planning 

decisions in software development projects?” Information Systems Journal 26(2016) 395–418. 

Steenkamp, J. B. E., and I. Geyskens. 2006. “How country characteristics affect the perceived value 

of web sites.” Journal of marketing 70(3): 136-150. 

Sull, D. N. 2004. Disciplined entrepreneurship. MIT Sloan Management Review 46(1): 71-77. 

Thomke, S., and D. Reinertsen. 1998. “Agile product development: Managing development 

flexibility in uncertain environments.” California management review 41(1): 8-30. 

Thomson, M., D. MacInnis, and W. Park. 2005. ”The ties that bind: Measuring the strength of consu- 

mer’s emotional attachment to brands.” Journal of Consumer Psychology, 15(1): 77–91.  

Thompson, D. V., R.W. Hamilton, and R.T. Rust. 2005. “Feature fatigue: When product capabilities 

become too much of a good thing.” Journal of marketing research 42(4): 431-442. 

Thompson, D. V., and M. I. Norton. 2011. “The social utility of feature creep.” Journal of Marketing 

Research 48(3): 555-565. 

Tripp, J. F., and D. J. Armstrong. 2016. “Agile methodologies: organizational adoption motives, 

tailoring, and performance.” Journal of Computer Information Systems 58(2): 1-10. 

Tversky, A., and D. Kahneman. 1974. “Judgment under uncertainty: Heuristics and 

biases.” Science 185(4157): 1124-1131. 

 

 

 

 

  



21 

 

 

Tables and figures 

Table 1. Existing empirical studies on the drivers of BNE and BPE vis-à-vis the present study 

Study 

Methodology 

(empirical 

setting) 

Drivers of excess Forms of excess 

Christensen 
and Bower 

(1996) 

Multiple case 
study (Disk drive 

industry) 

Focus on organizational and contextual drivers 

• Strategy of targeting higher tiers of the market 

• High level of competition  

Focus on a form of BNE 

• Needs overshooting: excessive capabilities 
offered by the new product 

Thomson et 
al. (2005) 

Laboratory 
experiment with 
students (Digital 

media players) 

Focus on individual, user-related driver 

• Users’ attraction to feature-rich products 

Focus on a form of BNE 

• Feature fatigue: inclusion of extra, 
unimportant features 

Shmueli et 

al. (2015) 

Laboratory 

experiment with 
students (Software 
industry) 

Focus on individual, developer-related driver, and on 

contextual factors 

• Involvement in specifying a feature 

• Difficulty of the development task 
 

Focus on a form of BNE 

• Over-requirement: inclusion of extra features 
of no real value 

Shmueli et 
al. (2016) 

Laboratory 
experiment with 
students (Software 

industry) 

Focus on individual, developer-related drivers  

• Lack of reference information about similar past projects 

• Internal view approach, typical of engineers actively 
developing the software (as opposed to an external view, 
typical of consultants) 

Focus on a form of BNE 

• Over-requirement: higher perceived valuation 
of features that leads to the inclusion of over-
specified features 

Schmidt et 
al. (2001)  

Delphy survey 
with expert project 

managers 
(Software 
industry) 

Focus on organizational drivers  

• Lack of understanding of the actual development effort 
(size, complexity, skills) 

• Ineffective change management 

• Vague definition of the scope 

Focus on a form of BPE 

• Scope creep: continuing stream of 
requirements changes  

Damian and 
Chisan 
(2006) 

Single case study 
(Software 
industry) 

Focus on organizational drivers  

• Informal requirements management processes 

• Lack of project tracking 

Focus on a form of BPE 

• Requirements creep: unconstrained late 
requirements changes 

Lee-Kelley 

and Sankey 
(2008) 

Multiple case 

study (IT projects 
in the bank 
industry) 

Focus on organizational and contextual drivers 

• Regulatory changes  

• Changes dictated by external stakeholders 

• Use of emails to communicate changes 

Focus on a form of BPE 

• Requirements creep: numerous requirement 
changes during development 

Chen et al. 

(2009) 

Single case study 

(Automation 
industry) 

Focus on organizational drivers  

• Tensions between top management and software 
developers, and resulting pressure  

• Ill-defined scope planning and definition 

Focus on a form of BPE 

• Scope creep: requirement changes during 
development) 

Choi and 

Bae (2009) 

Simulation 

(Software in 
military industry) 

Focus on contextual drivers  

• Volatile technical conditions 

• Volatile organizational conditions 

• Project size and long-term orientation 

Focus on a form of BPE 

• Creeping requirements: uncontrolled changes 
to requirements 

Bjarnason 

et al. (2012) 

Single case study 

(Software 
industry) 

Focus on organizational and contextual drivers 

• Early detailing of requirements 

• Long project lead times 

• Communication gaps between technical areas 

• Unclear strategic vision and goals 

Focus on a form of BPE 

• Scope creep: frequent late scope changes 

Ropponen 

and 
Lyytinen 

(2000) 

Survey (Software 

industry) 

Focus on organizational and contextual drivers 

• No application project management, development and risk 
management methods  

• Inattention to ill-defined parts of the project 

• Distributed product architecture 

• Less interactive batch oriented software 
 

Simultaneous investigation of BNE and BPE, 

although measured in an aggregate way, with a 
single survey item for each type of excess  

• Gold-plating: inclusion of unnecessary 
features (BNE) 

• Requirement changes: continuous, 
uncontrolled changes in specifications (BPE) 

The present 
study 

Survey (Software 
industry) 

Focus on multiple developer-related drivers, according to the 
tripartite model of individual attitudes 

• Intuitive and rational cognitive styles 

• Emotional attachment 

• Reliance on past experiences 

Simultaneous investigation of different forms of 
BNE and BPE, measured through multiple 

survey items 

Table 2. Sample Descriptives 

 

Number of 

respondents 

Percentage of 

respondents 

Age   

18-30 113 36.8 



22 

 

 

31-45 149 48.5 

> 45 45 14.7 

Gender   

Woman 13 4.2 

Man 294 95.8 

Main market   

B2C 92 30 

B2B 215 70 

Level of responsibility   

Managerial role 132 43 

Non-managerial role 175 57 

Number of members in a typical project team 

 < 5 196 63.8 

5-10 89 29 

> 10 22 7.2 

Number of employees in the organization 

< 10 141 45.9 

10-100 92 29.9 

101-1000 37 12.1 

> 1000 37 12.1 

Location 

Italy 191 62.2 

Europe (not Italy) 71 23.1 

North America 27 8.8 

Asia 15 4.9 

Other 3 1 

 

 



23 

 

 

Table 3. Items included in the questionnaire 

 

First order 
constructs 

Description Code 

Beyond 

Needs 

Excess 

Including nice-to-have, non-core features in the scope of the new software product is a good way to differentiate from competing products and attract new users. BNE1 

During the development of new software, innovative features can be added even if not strictly necessary to users. BNE2 

To fully satisfy a user, it is important to offer something “extra” beyond their expectations or needs. BNE3 

When specifying the requirements for the new software, it is a good practice to include features that anticipate possible long-term future user needs, technical evolutions, 
and product extensions. 

BNE4 

When the following release is too distant in the future, it is good practice to incorporate new features in the current development project, even if unanticipated. BNE5 

When specifying the requirements for the new software, it is important to cater to the needs of the most advanced users (“power-users”). BNE6 
To be on the safe side and leave all options open, it is preferable to specify new software requirements as broadly and inclusively as possible.  BNE7 

One key goal in creating new software is to please as many users as possible. BNE8 

Beyond 

Plans 

Excess 

Changing software requirements after the project specifications have been already “frozen” should be absolutely avoided. (reverse) BPE1 

The software’s scope should be dynamic and change during the course of the project to accommodate new events and unforeseen contingencies. BPE2 

Whenever a feature is added later in the project, it creates a distraction from the development of the core features of the new software. (reverse) BPE3 

Features added later in the project during software development have typically lower value to users than those included in the initial specifications. (reverse) BPE4 

Rational 

Cognition 

I double-check my information sources to be sure I have the right facts before making decisions.  RAT1 

I make decisions in a logical and systematic way. RAT2 

My decision making requires careful thought.  RAT3 
When making a decision, I consider various options in terms of a specific goal. RAT4 

Intuitive 

Cognition 

When I make decisions, I tend to rely on my intuition.  INT1 

When I make a decision, it is more important for me to feel the decision is right than to have a rational reason for it.  INT2 

I generally make decisions that feel right to me. INT3 
When making decisions, I rely upon my instincts. INT4 

When I make a decision, I trust my inner feelings and reactions. INT5 

Emotional 

Attachment 

I perceive coding as a personal challenge. EMO1 

Developing software is similar to creating art. EMO2 
I often feel a strong link with my software creation, as if it is “my baby.” EMO3 

When developing new software, I enjoy great autonomy. EMO4 

I feel delighted when I see my code not only working well, but also aesthetically pleasing. EMO5 

Reliance on 

past 

experiences 

When I am planning and/or executing a new software development project, I recall examples of previous development projects. PAS1 

When I am planning and/or executing a new software development project, I tend to replicate practices and decision criteria already utilized in the past. PAS2 

I tend to ignore past experiences because each software development project is unique (reverse) PAS3 



24 

 

 

Table 4. Exploratory Factor Analysis 

 

 

 

Feature-

Driven 

BNE 

One-Size-

Fits-All 

BNE 

BPE 
Intuitive 

cognition 

Rational 

cognition 

Emotional 

attachment 

Reliance on 

past 

experiences 

BNE4 0.684             

BNE1 0.661        

BNE2 0.647        

BNE6 0.576        

BNE5 0.569             

BNE8  0.7831      

BNE7  0.707      

BPE1    0.767         

BPE3   0.742      

BPE4    0.613         

INT4       0.816       

INT1    0.776     

INT5    0.754     

INT2       0.547       

RAZ2         0.747     

RAZ3     0.719    

RAZ4     0.717    

RAZ1         0.694     

EMO2           0.729   

EMO3      0.718   

EMO1      0.665   

EMO5           0.620   

PAS1             0.766 

PAS2       0.713 

PAS3             0.612 

Cronbach 0.602 0.671 0.695 0.666 0.704 0.675 0.731 

Item – total 

correlation 
0.522-0.559 0.591 – 0.631 0.601 – 0.666 0.588 – 0.637 0.622 – 0.698 0.597 – 0.652 0.662 – 0.843 

 

Table 5. Confirmatory Factor Analysis (CFA) of the constructs. 

 



25 

 

 

Construct Factor Loadings AVE1 CR2 

Rational cognition  40.86% 0.733 

RAZ2 0.692   

RAZ3 0.668   

RAZ4 0.597   

RAZ1 0.594   

Intuitive cognition  57.10% 0.799 

INT4 0.824   

INT1 0.727   

INT5 0.711   

Emotional Attachment  37.62% 0.643 

EMO1 0.583   

EMO2 0.604   

EMO3 0.651   

Reliance on past experiences  53.29% 0.691 

PAS1 0.830   

PAS2 0.614   

FD-BNE  37.43% 0.705 

BNE5 0.584   

BNE2 0.651   

BNE4 0.596   

BNE1 0.614   

OSFA-BNE  40.36% 0.575 

BNE8 0.615   

BNE7 0.655   

BPE  36.43% 0.629 

BPE3 0.601   

BPE1 0.689   

BPE4 0.507   
1Average Variance Explained; 2Composite Reliability. 

  



26 

 

 

Table 6. Correlation Matrix and Descriptive Statistics 

 
 

 Mean S.D. 1 2 3 4 5 6 7 

1. Intuitive cognition 4.33 1.60 1                 

2. Rational cognition 5.60 1.15 0.0084* 1                

3. Emotional Attachment 5.52 1.43 0.005 0.0046 1               

4. Reliance on past experiences 5.41 1.26 0.0171 0.004 0.0002 1              

5. FD-BNE 4.21 1.55 0.0095* 0.0018 0.0193* 0.0024 1             

6. OSFA-BNE 4.08 1.76 0.0014 0.0097 0.0199** 0.0142 0.0273** 1  

7. BPE 4.34 1.71 -0.0033 0.0039 -0.0319 0.0068* 0.0172 0.031 1 
** p < 0.01; * p < 0.05 

  



27 

 

 

Table 7. Parameter estimates 

 
 Coeff Std error p-value 

Feature-Driven BNE (FD-BNE) 

Intuitive cognition 0.153 0.075 0.045* 

Rational cognition 0.085 0.074 ns 

Emotional Attachment 0.391 0.089 0.000*** 

Reliance on past experiences 0.447 0.092 0.000*** 

One-Size-Fits-All BNE (OSFA-BNE) 

Intuitive cognition -0.012 0.086 ns 

Rational cognition 0.262 0.093 0.003** 

Emotional Attachment 0.307 0.105 0.003** 

Reliance on past experiences 0.317 0.104 0.001*** 

BPE 

Intuitive cognition 0.002 0.088 ns 

Rational cognition 0.024 0.087 ns 

Emotional Attachment 0.002 0.102 ns 

Reliance on past experiences -0.184 0.092 0.048* 

*p<0.05; **p<0.01; ***p<0.001 (two tailed test) 

 

  



28 

 

 

Figure 1. Conceptual Framework 

 
 

 

 
  

Reliance on past 

experiences 

Rational 

Cognition 

Intuitive 

Cognition 

Emotional 

Attachment 

Beyond Needs Excess 

Beyond Plans Excess 

Individual Antecedents Software Development Excess 

  



29 

 

 

Figure 2. Structural Equation Model results 

 
 

 
 

 
Intuitive 

cognition 

Emotional 

attachment 

FD-BNE 

BPE 

.122* 

R
2
 = .344 

R
2
 = .331 

R
2
 = .102 

Rational 

cognition 

Reliance on 

past 

experiences 

OSFA-BNE 

.262** 

.391*** 

.307** 

.447*** 

-.184* 

.317*** 

Gender  

Organizational 

size 

Europe 

Asia 

.138* 

.102* 

.221** 

.269** 

.152* 

Control variables 

It. JavaScript 

ASP.NET Ita 

GDGS Milan 

-.179* 

-.252** 

.157* 

.153* 


