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Abstract— Many problems in multiagent networks can be solved
through distributed learning (state estimation) of linear dynamical
systems. In this paper, we develop a partial-diffusion Kalman filter-
ing (PDKF) algorithm, as a fully distributed solution for state estimation
in the multiagent networks with limited communication resources. In the
PDKF algorithm, every agent (node) is allowed to share only a subset of
its intermediate estimate vectors with its neighbors at each iteration,
reducing the amount of internode communications. We analyze the
stability of the PDKF algorithm and show that the algorithm is stable and
convergent in both mean and mean-square senses. We also derive a closed-
form expression for the steady-state mean-square deviation criterion.
Furthermore, we show theoretically and by numerical examples that the
PDKF algorithm provides a trade-off between the estimation performance
and the communication cost that is extremely profitable.

Index Terms— Diffusion strategy, distributed estimation,
Kalman filtering, partial update, state estimation.

I. INTRODUCTION

Distributed learning of linear dynamical systems is required in
many applications related to multiagent networks, machine learn-
ing, big data, sensor networks, and smart grid [1]. We consider a
multiagent network where the agents (nodes) collaborate to estimate
the state of a linear dynamic system. In previous studies, some
decentralized Kalman filtering algorithms such as parallel information
filter [2], distributed Kalman filter with embedded consensus filter
[3]–[7], and distributed Kalman filter with weighted averaging [8], [9]
have been developed for distributed state estimation. Here, we focus
on diffusion Kalman filtering (DKF) algorithm, originally reported
in [10], which relies on the diffusion adaptive network strategy. This
is because diffusion adaptive networks deliver better performance
for distributed optimization and learning problems, compared with
those given by the consensus strategies [11]. In the DKF algorithm,
the nodes communicate only with their immediate neighbors, and
the information is diffused across the entire network through a
sequence of Kalman iterations and data aggregation. Unfortunately,
the successful implementation of such a strategy requires consid-
erable information exchange among the nodes, which may affect
their performance in practical applications where the communication
resource is restricted. Therefore, lowering the amount of information
exchange among the neighboring nodes, while keeping the benefits
of cooperation, is of practical importance.

When the observed data by agents follow a linear regression
model, several methods have been reported to reduce the commu-
nication cost without any significant degradation of estimation in
diffusion algorithms, such as reducing the dimension of estimates
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[12]–[14], selecting a subset of entries of the estimates [15]–[18],
and set-membership filtering [19]–[21] or partial updating [22]–[26].
Regarding the linear dynamic model, algorithms whose ultimate goal
is to reduce the communication cost have also been reported in the
literatures [27]–[32]. In [33]–[35], some distributed Kalman filters
have been reported to estimate a common state in a sensor network.
However, none of these algorithms rely on the adaptive diffusion
strategy.

Solutions to distributed learning systems suffer from lack of
continuous (full) communications between the nodes. Therefore,
the objective of this paper is to enable distributed learning, including
state estimation, under limited communication resources. Thus, in this
brief, we propose a PDKF algorithm as a fully distributed and
reduced-communication solution for state estimation in the multia-
gent networks. In the PDKF algorithm, each agent uses an entry
selection mechanism to exchange and diffuse only a part of its
estimate state vector with its direct neighbors at each time update.
Using the diffusion adaptation alongside partial updating enables the
proposed algorithm to provide a trade-off between estimation perfor-
mance and communication cost, which is required in many practical
applications.

The contributions of this brief are summarized as follows.

1) A PDKF algorithm is proposed to solve the distributed state
estimation problem, which is amenable to implementation in
resource-constrained multiagent networks. The provided theo-
retical analysis and numerical simulations show that the PDKF
algorithm exhibits an acceptable estimation performance, while
the utilization of communication resources is kept low.

2) The stability of PDKF algorithm in both mean and mean-square
senses under certain statistical conditions is investigated.

3) A closed-form expression for mean-square deviation (MSD)
is derived, which explains how the PDKF algorithm performs
in the steady state. The provided numerical tests validate the
theoretical derivations.

4) Theoretically, and by numerical examples, it is shown that
the PDKF algorithm provides a trade-off between estimation
performance and communication cost.

Notation: We adopt small boldface letters for vectors and bold
capital letters for matrices. The notation diag{·, ·} is a block matrix
where the diagonal terms are given as the arguments of diag{·}.
The notation col{p, q} denotes a column vector with entries p and
q stacked on top of each other. We use �x�2

�
= xT �x for the

weighted square norm of x. We use ⊗ and 1 to denote the Kronecker
product and a column vector with unity entries, respectively. We use
the notation (p mod q) as the modulus operator, which returns the
remainder after division of p by q.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model and System Description

Consider a network with N agents represented by the set
N = {1, 2, . . . , N}. Only single-hop communications are allowed,
i.e., agent k can only communicate with the agents in its neigh-
borhood Nk . The neighborhood of agent k is defined as the set of
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Fig. 1. Typical connected network with N agents (nodes).

all neighbors of agent k including itself (see Fig. 1). The network
topology is a connected graph, i.e., there exists at least one path
between every pair of agents. Note that the connectivity condition
ensures that the information from an arbitrary agent can diffuse
through the entire network [36].

At time instant i , each node k measures yk,i ∈ R
P of the true

state xi ∈ R
M of a linear dynamic system as

yk,i = Hk,i xi + vk,i (1)

where Hk,i ∈ R
P×M and vk,i denote, respectively, the local

observation matrix and observation noise vector. The state vector xi
evolves according to

xi+1 = Fi xi +Gi ni (2)

where Fi ∈ R
M×M , Gi ∈ R

M×M , and ni ∈ R
M denote, respec-

tively, the model matrix, the state noise matrix, and the state noise
vector. For every agent, the objective is to estimate xi by collaborating
with other agents. For the state-space model described by (1) and (2),
it is customary to make the following set of assumptions.

Assumption 1:

1) The measurement noises vk,i are zero mean and spatially
and temporally uncorrelated with covariance matrices given by
E[vk,i vT

l, j ] = δi j δkl Rk,i , where Rk,i > 0 (δi j is the Kronecker
delta.)

2) The state noise vectors {ni } are zero mean and temporally
uncorrelated with covariance matrices E[ni nT

j ] = δi j Qi .
3) The noise signals vk,i and ni are uncorrelated for all i .
4) The initial state x0 is zero mean with covariance matrix

E[x0xT
0 ] = �0 > 0 and uncorrelated with the noise signals

vk,i and ni for all i and k.

B. Diffusion Kalman Filter Algorithm

As mentioned earlier, the DKF algorithm is an effective tool to
solve the distributed state estimation problems. Before proceeding
further, we define x̂k,i| j as the local estimator of xi that node k
computes at time i based on the local observations and information
up to and including time j . We further use x̃k,i| j = xi − x̂k,i| j
to denote the estimation error at node k and Pk,i| j to denote
the covariance matrix of x̃k,i| j . Then, the DKF algorithm in its
time and measurement update form is given in Algorithm 1. The
algorithm starts with x̂k,0|−1 = 0 and Pk,0|−1 = �0, where
Pk,0|−1 ∈ R

M×M . The symbol ← denotes a sequential assign-
ment. The algorithm consists of two steps: the incremental update
and diffusion update. In the incremental update step, first, node k
communicates with its neighbors and incorporates the real-time mea-
surement information denoted by {yl,i ,Hl,i ,Rl,i } into {ψψψk,i ,Pk,i }.
Then, each node performs KF using the available data to obtain the
intermediate estimates ψψψk,i as (3). In the diffusion step, the nodes
share intermediate estimates ψψψk,i and then compute a convex
combination of intermediate estimates to obtain the local estimate
x̂k,i|i as (4). The scalars {clk } are nonnegative coefficients that

Algorithm 1 DKF [10]

Initialization: x̂k,0|−1 = 0 and Pk,0|−1 = �0
For every time instant i , every node k computes
Step1: Incremental Update
ψψψk,i ← x̂k,i|i−1
Pk,i ← Pk,i|i−1
for l ∈ Nk do

Re,i ← Rl,i +Hl,i Pk,i HT
l,i

ψψψk,i ← ψψψk,i + Pk,i HT
l,i R−1

e,i [yl,i −Hl,iψψψk,i ]
Pk,i ← Pk,i − Pk,i H

T
l,i R−1

e,i Hl,i Pk,i (3)

end for
Step2: Diffusion Update

x̂k,i|i ←
�

l∈Nk

clkψψψ l,i

Pk,i|i ← Pk,i

x̂k,i+1|i = Fi x̂k,i|i
Pk,i+1|i = Fi Pk,i|i FT

i +Gi Qi GT
i (4)

satisfy

N�

l=1

clk = 1, clk = 0 if l /∈ Nk , ∀l, k. (5)

The coefficients {clk } are free-weighting parameters and their selec-
tion influences the algorithm performance. If the coefficients form an
N × N matrix C � [clk ], named combination matrix, the condition
above conveys that all the columns of C add up to unity, i.e., CT 1 =
1. This means that C is a left stochastic matrix, i.e., the magnitude
of any of eigenvalues of C is bounded by one.

III. PDKF ALGORITHM DERIVATION

In the DKF given in Algorithm 1, the nodes exchange local
data {yl,i ,Hl,i ,Rl,i }, l ∈ Nk , to calculate the intermediate esti-
mates ψψψk,i . Clearly, the implementation of such strategy requires
considerable communication resources. In the proposed algorithm,
the reduction in communication complexity is achieved by the
following solutions.

1) Unlike DKF algorithm, the nodes do not exchange the local
data {yl,i ,Hl,i ,Rl,i }, l ∈ Nk with their neighbors in the
incremental step and the algorithm solely relies on the transmis-
sion selected entries of ψψψ l,i . Therefore, in the proposed PDKF
algorithm, the incremental step (3) changes to the following
Adaptation Phase:

⎧
⎪⎨

⎪⎩

Re,i = Rk,i +Hk,i Pk,i|i HT
k,i

ψψψk,i = ψψψk,i + Pk,i|i HT
k,i R−1

e,i [yk,i −Hk,iψψψk,i ]
Pk,i = Pk,i|i − Pk,i|i HT

k,i R−1
e,i Hk,i Pk,i|i .

(6)

2) At time instant i , each node k exchanges and diffuses only L
out of M , 0 ≤ L ≤ M , entries of the intermediate state estimate
vector. According to this scheme, the selection process can be
implemented using a diagonal selection matrix, Tk,i ∈ R

M×M .
Multiplication of ψψψk,i by Tk,i that has L ones and M−L zeros
on its diagonal replaces its nonselected entries with zero. The
positions of ones on the diagonal of Tk,i determine the entries
of node k that are selected to diffuse at time i . Note that the
integer L is fixed and prespecified.
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Fig. 2. PDKF update at node k.

Remark 1: At any node k and iteration i , the entry selection
matrices, Tk,i , are statistically independent of any input–output data.
Furthermore, the probability of scattered entries of each node at each
iteration is equal and expressed as

ρ = L

M
. (7)

The most fundamental problem we face hinges on the ambiguities
in nondiffused elements of the nodes in combination phase. When
the intermediate estimates are partially transmitted, the noncommu-
nicated entries are not available to take part in this phase. However,
each node requires all entries of the intermediate estimate vectors
of its neighbors for combination. To avoid this ambiguity, the nodes
can replace the entries of their own intermediate estimates instead of
the ones from the neighbors that are not available. The following
equation (combination phase) is used to aggregate the partially
received intermediate estimates:

x̂k,i|i = ψψψk,i +
�

l∈Nk\{k}
clk Tl,i (ψψψ l,i −ψψψk,i ). (8)

Therefore, we substitute the unavailable elements with their equiva-
lent ones in each node’s own intermediate estimate vector. Accord-
ingly, our proposed PDKF algorithm employs (6) in the adaptation
phase and (8) in the combination phase. The proposed PDKF algo-
rithm is described in Algorithm 2. This process is also demonstrated
schematically in Fig. 2.

Remark 2: The computational complexity of the proposed PDKF
algorithm is similar to the original DKF algorithm given by Algo-
rithm 1. To show this, note that (8) can be written as

x̂k,i|i = ckkψψψk,i +
�

l∈Nk\{k}
clk [Tl,iψψψ l,i + (IM − Tk,i )ψψψk,i ]. (9)

Comparing (4) and (9) reveals that both expressions require |Nk |M
multiplications and (|Nk | − 1)M additions per iteration per node.
To select L-subset of a set on M elements containing exactly L
elements, we employ a similar approach proposed in [15] (see the
Appendix for more details).

IV. PERFORMANCE ANALYSIS

To begin with, let ψ̃ψψk,i = xi − ψψψk,i denote the estimation error
at the end of the adaptation phase. Then, it can be easily shown that
the following expression holds:

ψ̃ψψk,i = x̃k,i|i−1 − Pk,i HT
k,i R−1

e,i (Hk,i x̃k,i|i−1 + vk,i )

= �
IM − Pk,i HT

k,i R−1
e,i Hk,i

�
x̃k,i|i−1 − Pk,i HT

k,i R−1
e,i vk,i . (10)

Using the matrix inversion lemma, it is straightforward to show that
Pk,i HT

k,i R−1
k,i = Pk,i HT

k,i R−1
e,i . Thus, we can rewrite (10) as

ψ̃ψψk,i = (IM − Pk,i Sk,i )x̃k,i|i−1 − Pk,i H
T
k,i R−1

k,i vk,i (11)

where Sk,i � HT
k,i R−1

k,i Hk,i . We also have

	xk,i|i−1 = Fi−1x̃k,i−1|i−1 +Gi−1ni−1. (12)

Algorithm 2 PDKF

Initialization: x̂k,0|−1 = 0 and Pk,0|−1 = �0
For every time instant i , every node k computes
Step1: Adaptation phase
ψψψk,i ← x̂k,i|i−1
Pk,i ← Pk,i|i−1

Re,i = Rk,i +Hk,i Pk,i HT
k,i

ψψψk,i = ψψψk,i + Pk,i H
T
k,i R−1

e,i [yk,i −Hk,iψψψk,i ]
Pk,i = Pk,i − Pk,i HT

k,i R−1
e,i Hk,i Pk,i

Step2: Combination Phase

x̂k,i|i ← ψψψk,i +
�

l∈Nk\{k}
clk Tl,i (ψψψ l,i −ψψψk,i )

Pk,i|i ← Pk,i

x̂k,i+1|i = Fi x̂k,i|i
Pk,i+1|i = Fi Pk,i|i FT

i +Gi Qi GT
i

Substituting (12) into (11) gives

	ψψψk,i = (IM − Pk,i Sk,i )Fi−1x̃k,i−1|i−1

+(IM − Pk,i Sk,i )Gi−1ni−1 − Pk,i HT
k,i R−1

k,i vk,i .(13)

To proceed, we define the augmented state-error vectors 	X i|i and
	�i , measurement noise vectors vi , and block-diagonal matrices Hi ,
P i|i , S i , and Bi as follows:

	X i|i = col{	x1,i|i ,	x2,i|i , . . . ,	xN,i|i }
	�i = col{	ψψψ1,i ,	ψψψ2,i , . . . ,	ψψψN,i }
vi = col{v1,i , . . . , vN,i }

Hi = diag{H1,i ,H2,i , . . . ,HN,i }
P i|i = diag{P1,i|i ,P2,i|i , . . . ,PN,i|i }

S i = diag{S1,i ,S2,i , . . . ,SN,i }
Bi =



Bp,q,i

�

where

Bp,q,i =

⎧
⎪⎨

⎪⎩

IM −
�

l∈Np\{p} clpTl,i if p = q

cqpTq,i if q ∈ Np\{p}
OM otherwise.

Using the above-mentioned definitions, we now can express (9) and
(13) in a global form as

	X i|i = Bi 	�i (14)
	�i = (IM N −P i|i S i )[(IN ⊗ Fi−1)	X i−1|i−1

+(IN ⊗Gi−1)(1⊗ ni−1)] −P i|i HT
i R−1

i vi (15)

where Ri = E[vi vT
i ] is a block-diagonal matrix. Note that (14)

describes the evolution of entire network. Furthermore, note that (15)
can be rewritten in a more compact form as

	�i = F i 	X i−1|i−1 + Gi (1⊗ ni−1)−Di vi (16)

where

F i = (IM N −P i|i S i )(IN ⊗ Fi−1)

Gi = (IM N −P i|i S i )(IN ⊗Gi−1)

Di = P i|i HT
i R−1

i .
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Now, substituting (16) into (14), the update equation for the network
state error vector becomes

	X i|i = BiF i 	X i−1|i−1 +BiG i (1⊗ ni−1)−BiDi vi . (17)

Proposition 1 (Mean Performance): Under Assumption 1,
the PDKF is convergent in the mean and asymptotically unbiased.

Proof: Based on Assumption 1, Bi , 	X i|i , and 	�i are jointly
independent. Therefore, by taking expectation of both sides of (17),
we obtain

E[	X i|i ] =MF iE[	X i−1|i−1]. (18)

As stated in [15, Appendix], all entries of M = E[Bi ] are real
nonnegative with each row summing to unity, i.e., M1 = 1. Since
E[x̂k,0|−1] = 0 and E[x0] = 0, we have E[x̂k,−1|−1] = 0 for all k.
Therefore, the following equation holds:

lim
i→∞E[	X i|i ] = 0M N

where 0M N denotes an M N × 1 zero vector. This means that the
PDKF is convergent in the mean and asymptotically unbiased.

To investigate the mean-square performance of the PDKF, we first
introduce the following assumption.

Assumption 2:

1) The matrices in (1) and (2) are time invariant, i.e., the matrices
F, G, H, R, and Q do not depend on time i .

2) The pair of matrices {F,Hk} is detectable for every node k

and {F,GQ
1
2 } is controllable on the unit circle. Moreover,

{F,GQ
1
2 } is stabilizable [10].

Remark 3: The time-invariant assumption is considered to make
the analysis tractable. Such an assumption is not a necessary condition
for using our proposed algorithm for linear state estimation in
connected network. On the other hand, Assumption 2-2) is a common
assumption in the analysis of Kalman filtering algorithms (see more
details in [37, pp. 310–332]). Under the second item of Assumption 2,
the matrices Pk,i+1|i will converge to P−k for any initial condition
Pk,0|−1 > 0 as i →∞ where

P−k = FP−k FT +GQGT −Kp,kRe,kKT
p,k (19)

with

Kp,k = FP−k HT
k R−1

e,k

Re,k = Rk +HkP−k HT
k

Pk = P−k − P−k HT
k R−1

e,k HkP−k . (20)

Note that P−k is the unique stabilizing solution of discrete-time
algebraic Riccati equation (19). Moreover, the matrix Pk,i|i converges
to matrix Pk in (20).
Under Assumption 2, matrices F i , Gi , and Di also converge in
steady state, and their steady-state values are given by

P � lim
i→∞P i|i = diag{P1, . . . ,PN }

P− � lim
i→∞P i|i−1 = diag{P−1 , . . . ,P−N }

F � lim
i→∞F i = (IM N −PS)(IN ⊗ F)

G � lim
i→∞Gi = (IM N −PS)(IN ⊗G)

D � lim
i→∞Di = PHT R−1

where S and H are used instead of S i and Hi since these matrices
are now time-invariant.

Proposition 2 (Mean-Square Stability): The partial DKF (PDKF)
algorithm given by Algorithm 2 is convergent and stable in mean-
square sense.

Proof: Taking the squared weighted Euclidean norm of both
sides of (17) and applying the expectation operator with Assumption
2 yield the following weighted variance relation:

E

�	X i|i�2�

� = E

�	X i−1|i−1�2�

�

+E


(1⊗ ni−1)

T GT
i BT

i �BiG i (1⊗ ni−1)
�

+E


vT

i DT
i BT

i �BiD i vi
�

(21)

� = BT
i F T

i �F i Bi (22)

where � is an arbitrary symmetric nonnegative definite matrix. Since
	X i−1|i−1 is independent of �, we have

E

�	X i−1|i−1�2�

� = E

�	X i−1|i−1�2E[�]

�
. (23)

Define

γ � vec{E[�]}, and σ � vec{�} (24)

where vec{·} denotes a linear transformation which converts the
matrix into a column vector by stacking all columns of its matrix
argument. The transpose of a vectorized matrix is also denoted by
vecT {·}. Using (23) and (24), we can alter (21) to

E

�	X i|i�2σ

� = E

�	X i−1|i−1�2γ

�

+E


(1⊗ ni−1)

T GT
i BT

i �BiG i (1⊗ ni−1)
�

+E


vT

i DT
i BT

i �BiD i vi
�

(25)

where E[�	X i|i �2σ ] and E[�	X i−1|i−1�2γ ] are the same quantities
as E[�	X i|i�2� ] and E[�	X i−1|i−1�2E[�]], respectively. The relation-
ship between the Kronecker product and vec{·} operator [38], i.e.,
vec{XYZ} = (ZT ⊗X)vec{Y} and also the commutative property of
the expectation and vectorization operations enable us to write (22)
in terms of γ and σ as

γ =B
�F T

i ⊗F T
i

�
σ (26)

where B = E[BT
i ⊗ BT

i ]. In addition, by applying the following
property from linear algebra [16]:

tr{XT Y} = vecT {Y}vec{X}
and the symmetry of �, we have

E


(1⊗ ni−1)

T GT
i BT

i �BiG i (1⊗ ni−1)
�

= E


tr

�Bi Gi

�
1⊗ ni−1

��
1⊗ ni−1

�T GT
i BT

i
��

= vecT 
E



�BiGi

�
1⊗ ni−1

��
1⊗ ni−1

�T GT
i BT

i
���

= �
BT vec


E


G i
�
1⊗ ni−1

��
1⊗ ni−1

�T GT
i

���T
σ

= vecT L�
Bσ (27)

where L = G i (11
T ⊗ Qi−1)GT

i . The last term of (25) can be
written as

E


vT

i DT
i BT

i �Bi Di vi
� = E



tr

�BiD i vi vT

i DT
i BT

i
��

= E


vecT BiDi vi v

T
i DT

i BT
i

�
σ
�

= �
BT vec


E


Di vi vT
i DT

i
���T

σ

= vecT K�
Bσ (28)

where K = Di RiDT
i . Substituting (26)–(28) into (25) gives

E

�	X i|i �2σ

� = E

�	X i−1|i−1�2B�

FT
i ⊗FT

i

�
σ

�+ vecT 
�

�
Bσ (29)

where � = K + L. The recursion (29) is convergent and stable if,
and only if, the matrix B(F T ⊗F T ) is stable, or equivalently, all
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its eigenvalues lie inside the unite circle. The entries of B are real
and nonnegative. Moreover, we have

BT 1M2 N2 = E[Bi ⊗ Bi ]1M2 N2

= E[Bi1M N ⊗Bi1M N ] = 1M2 N2

which means that each column of B sums up to unity. We say that
B is a left stochastic matrix and has unit spectral radius. Therefore,
the PDKF algorithm is stable in mean-square sense if, and only if,
(F T ⊗F T ) is stable. The matrix (FT ⊗F T ) is stable if, and only
if, F is stable. The items in Assumption 2 are sufficient to guarantee
the stability of matrix F .

In the sequel, we turn our attention into obtaining the steady-state
network MSD for the PDKF algorithm. To this end, we first define
the network MSD as a steady-state performance metric as

ηL = lim
i→∞

1

N

N�

k=1

E[�xi − x̂k,i|i �2]. (30)

The following proposition summarizes the steady-state performance
of the PDKF algorithm.

Proposition 3 (Steady-State Performance): Let Assumptions 1
and 2 hold. Then, the network steady-state MSD for the PDKF
algorithm is given by

ηL = 1

N
vecT {�}B× (IM2 N2 −B(F T ⊗F T ))−1h (31)

where h � vec{IM N }.
Proof: By taking the limit of (29) as i →∞, we have

lim
i→∞E


�	X i|i �2(IM2 N2−B(FT⊗FT ))σ

� = vecT {�}Bσ . (32)

Note that since F is stable1 then matrix IM −B(F T
i ⊗ F T

i ) is
nonsingular. We can recover ηL from (32) by setting σ = vec{IM N },
which gives (31).

V. DISCUSSION ON THE COMMUNICATION TRADE-OFF

To show the performance-communication trade-off provided by the
PDKF algorithm performance precisely, we introduce the following
assumptions to examine its steady-state network MSD, both for the
sequential schemes.

Assumption 3:

1) Matrix C is doubly stochastic.
2) During any M consecutive iterations, the node’s intermediate

estimate vector does not vary considerably.

Note that Assumption 3-1) is considered only to conduct the analysis
and obtain a better understanding of the performance of the PDKF
algorithm. Such an assumption is not required to implement the
proposed algorithm. As discussed in [15], when Assumption 3-2)
holds, in every M consecutive time iterations, all the agents concur-
rently diffuse all the entries of their intermediate estimate vectors
to their neighbors at only L iterations. This assumption translates
the approximation of the sequential partial-diffusion scheme into a
periodic diffusion scheme. In lights of [15, Appendix], with this
scheme, we have

B = (1− ρ)IM2 N2 + ρC⊗ C (33)

where C = C ⊗ IM . The following proposition indicates the
communication–performance trade-off for the PDKF algorithm.

Proposition 4: Under Assumptions 1 and 3, the following inequal-
ities hold for the steady-state network MSD of the PDKF algorithm:

ηM < ηM−1 < · · · < ηL < · · · < η1 < η0. (34)

1See [10] for a detailed proof.

Proof: First, it should be noted that ηL in (31) can be
rewritten as

ηL = 1

N
vecT {�}B

∞�

i=0

[B(F T ⊗F T )]i h (35)

Substituting (33) into (35) gives

ηL = 1

N

∞�

i=0

(1− ρ)i+1vecT {�}[(FT )i ⊗ (F T )i ]h

+ 1

N

∞�

i=0

ρi+1vecT {�}[C(F T C)i ⊗ C(F T C)i ]h

= 1

N

∞�

i=0

(1− ρ)i+1vecT {F i�(F T )i }h

+ 1

N

∞�

i=0

ρi+1vecT {(CT F )iCT �C(F T C)i }h

= 1

N

∞�

i=0

(1− ρ)i+1tr{F i �(F T )i }

+ 1

N

∞�

i=0

ρi+1tr{(CT F )i CT �C(F T C)i }. (36)

With the first item in Assumption 1, we have

tr{(CT F )i CT �C(F T C)i } = tr{(CT )i+1Ci+1} × tr{F i�(F T )i }
where

tr{(CT )i+1Ci+1} =
N�

k=1

�ck,i+1�, i ≥ 0

where ck,i+1 denotes the kth row of Ci+1. Since C is doubly
stochastic, Ci+1, i ≥ 0, is also doubly stochastic. Moreover, in a
connected network, each node is coupled with its neighbor (at least
one other node). This fact, for any k, leads to �ck,i+1�2 ≤ 1, i ≥ 0,
and therefore,

tr{(CT F )iCT �C(F T C)i } < tr{F i�(F T )i }. (37)

Equation (37) implies that the following inequality holds for M =
{1, . . . , L − 1}, (0 < ρ < 1):

tr{(CT F )i CT �C(F T C)i }
< (1− ρ)i+1tr{F i �(F T )i }
+ρi+1tr{(CT F )iCT �C(F T C)i } < tr{F i�(F T )i }. (38)

In addition, for the cases of noncooperative algorithm (L = 0, ρ = 0)
and full-diffusion (L = M, ρ = 1) algorithm, we, respectively, have

η0 = 1

N

∞�

i=0

tr{F i �(F T )i } (39)

ηM = 1

N

∞�

i=0

tr{(CT F )i CT �C(F T C)i }. (40)

From (35)–(38), we arrive at (34), which completes the proof.
This implies that the better steady-state network MSD perfor-

mance is achieved, the more entries are scattered at each iteration.
Indeed, a communication–performance trade-off is realized by partial-
diffusion algorithm. However, it should be noted that the performance
offered by the PDKF algorithm depends not only on ρ but also on
the other parameters such as the combination weights as well as the
quality of measurements.
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Fig. 3. Variance of the observation noise and covariance matrix trace of the
state noise at each node.

VI. SIMULATION RESULTS

We now present the simulation results to evaluate the performance
of PDKF algorithm and draw a comparison between its performance
and the theoretical results of Section IV. To this end, we consider a
randomly generated network with N = 10 nodes, where each node
is, on average, linked with two other nodes. The size of the unknown
parameter of the system is M = 4. The state of the system is unknown
2-D vector location of an object, i.e., (x, y), where x and y are the
first and second entries, respectively. The state-space model matrices
in (1) and (2) are

F =

⎡

⎢⎢⎣

1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦, G = 0.625I4, Q = 0.001I4.

We assume that every node measures the position of the unknown
object in either the two horizontal dimensions or a combination of one
horizontal and one vertical dimensions. Thus, the individual nodes
do not have direct (three dimensional) measurements of the position.
Therefore, we have

Hk,i =
⎡

⎣
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎦, Hk,i =
⎡

⎣
0 1 0 0
0 0 0 0
0 0 0 1

⎤

⎦

at random, but with the requirement that every neighborhood should
have nodes with both types of matrices to guarantee that the con-
vergence of the local Kalman filter follows Assumption 1. Finally,
the measurement noise covariance matrix for agent k is, Rk,i =
σ 2

k,i I3, where the noise variance σ 2
k,i across agents is selected

randomly in the range [0 0.5]. The experimental results are achieved
by ensemble averaging over 200 independent runs. The steady-state
values are also assessed by taking an average over 1000 iterations.
We also use the uniform combination rule [10] in the combination
phase and initialize the estimates to zero vectors. The state-noise
covariance matrix traces and observation noise variances are illus-
trated in Fig. 3.

In Fig. 4, we plot the average network MSD curves of the PDKF
algorithm, using both sequential and stochastic partial-diffusion
schemes for different numbers of entries transmitted at each time
update, L . We can observe that there is a good match between the
derived theoretical expression and simulation results. The validity
of our theoretical analysis is also shown in Fig. 5 where the
experimental and theoretical steady-state MSDs of all the nodes
for different numbers of entries transmitted at each iteration, L ,
are illustrated. Fig. 5 also shows a trade-off between the commu-
nication cost and the estimation performance in Section V. Fig 6
shows the comparison of the steady-state network MSD perfor-
mance of different algorithms including noncooperative KF algo-
rithm, the proposed PDKF algorithm with different values of L ,
and the original DKF algorithm. From this figure, we can again see
that the PDKF algorithm provides a trade-off between the estimation
performance and the communication cost. Note that the difference
between full-diffusion PDKF (i.e., L = M, ρ = 1) and the DKF

Fig. 4. Network MSD curves of PDKF algorithm for different numbers of
entries communicated at each iteration: stochastic scheme (top) and sequential
scheme (bottom).

Fig. 5. Theoretical and experimental steady-state MSDs at each node for
different values of L using the PDKF algorithm with stochastic scheme (top)
and sequential scheme (bottom). Note that the points denoted by symbol “���
represent the results obtained from theory.

algorithm stems from the fact that in the PDKF algorithm the nodes
do not exchange local data {yl,i ,Hl,i ,Rl,i }, l ∈ Nk with their
neighbors.

To show the reduction of communication burden rate offered by
the PDKF algorithm, we define the communication saving metrics
SPDKF and SDKF, which are defined as the rate of communication
saved by the PDKF algorithm at each iteration with respect to
full-diffusion PDKF (L = M, ρ = 1) and the DKF algorithm,
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Fig. 6. Steady-state network MSD for different algorithms.

Fig. 7. Communication saving of the PDKF algorithm versus the number
of communicated entries at each iteration with respect to full-diffusion PDKF
and DKF algorithms.

Fig. 8. Performance loss versus the number of communicated entries at each
iteration for both stochastic and sequential PDKF schemes.

respectively,

SPDKF = 1− Lb + log2
�M

L

�

Mb

SDKF = 1− Lb + log2
�M

L
�

b(M + M P + P)

where b denotes the number of bits that describe each intermediate
estimate vector elements and

�M
L

�
returns combinations of L out of

M elements. Fig. 7 shows the communication saving metrics SPDKF
and SDKF where it is clear that the algorithm needs less communi-
cation overhead compared to the conventional DKF method. Finally,
the expected degradation on the performance of PDKF algorithm in
comparison to DKF is expressed in terms of the performance loss
metric, which is defined as

Performance loss = ηL − η�M
η0 − η�M

where η�M , ηL , and η0 denote the steady-state MSD provided by
DKF, PDKF, and noncooperative KF algorithms in decibels scale,
respectively. Fig. 8 shows the performance losses as the function of
number of entries communicated at each iteration for both stochastic
and sequential schemes. We can see that the PDKF algorithm with

the sequential scheme outperforms the algorithm with stochastic
selection pattern.

VII. CONCLUSION

In this brief, we examined the PDKF algorithm for distributed
state estimation. The PDKF enables reduced internode communi-
cations by allowing each node to transmit only a subset of inter-
mediate state estimates to its close neighbors at every iteration.
This fact directly leads to savings in bandwidth usage as well
as power consumption of communication resources. To select the
entries, communicating at each iteration, the nodes employ two
different protocols, namely, stochastic and sequential partial-diffusion
schemes. Consequently, using the PDKF algorithm, the required
communications between the nodes are decreased in contrast
to the case where all entries of the intermediate estimates are
continuously transmitted. We analyzed the convergence of the algo-
rithms and provided steady-state mean and mean-square analysis
showing a good agreement with the simulation results. Theoretical
analysis and numerical simulations provided valuable insights into the
performance of PDKF algorithm and illustrated that it offers a trade-
off between the communication cost and the estimation performance.

APPENDIX

ENTRY SELECTION METHOD

There exist two different schemes to select an L-subset of a set
on M elements containing exactly L elements, namely, sequential
and stochastic partial diffusion. These methods are analogous to
the selection processes in sequential and stochastic partial-update
schemes [39]. In the sequential partial diffusion, the entry selection
matrices Tk,i are

Tk,i =
⎡

⎢⎣
t1,i · · · 0
...

. . .
...

0 · · · tM,i

⎤

⎥⎦, tl,i =
�

1 if l ∈ J(i mod θ̄ )+1
0 otherwise

(41)

with θ̄ = �M/L. The number of selection entries at each iteration
is restricted by L . The coefficient subsets Ji are not unique as long
as they meet the following requirements [38].

1) Cardinality of Ji is between 1 and L .
2)

�θ̄
τ=1 Jτ = S where S = {1, 2, . . . ,M}.

3) Jτ ∩ Jυ = ∅,∀τ, υ ∈ {1, . . . θ̄} and τ �= υ.

As an example, if S = {1, 2, 3, 4}, for M = 4 and L = 2, the subsets
of S containing two elements are, I1 = {1, 2}, I2 = {1, 3}, I3 =
{1, 4}, I4 = {2, 3}, I5 = {2, 4}, and I6 = {3, 4}. one possible way
to assign J1 and J2 is J1 = I1 and J2 = I2.

The description of the entry selection matrices, Tk,i , in stochastic
partial diffusion is similar to that of sequential one. The only
difference is as follows. At a given iteration i , for the sequential
case, one of the sets Jτ , τ = 1, . . . , θ̄ , is determined in advance,
whereas for the stochastic case, one of the sets Jτ is sampled at
random from {J1,J2, . . . ,Jθ̄ }. We do this because the nodes need
to know which entries of their neighbors’ intermediate estimates have
been transmitted at each iteration. These schemes bypass the need for
any addressing procedure.
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