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Abstract The purpose of this article is to give a closed Fourier-based valuation for-
mula for a caplet in the framework of the Lévy forward process model which was
introduced in Eberlein and Özkan, Financ. Stochast. 9:327-348, 2005, [5]. After-
wards, we compute Greeks by two approaches which come from totally different
mathematical fields. The first is based on the integration-by-parts formula, which
lies at the core of the application of the Malliavin calculus to finance. The second
consists in using Fourier-based methods for pricing derivatives as exposed in Eber-
lein, Quantitative Energy Finance, 2014, [3]. We illustrate the results in the case
where the jump part of the underlying model is driven by a time-inhomogeneous
Gamma process and alternatively by a Variance Gamma process.
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1 Introduction

To compute expectations which arise as prices of derivative products is a key issue
in quantitative finance. The effort which is necessary to get these values depends to
a high degree on the sophistication of the model approach which is used. Simple
models such as the classical geometric Brownian motion lead to easy-to-evaluate
formulas for expectations but entail at the same time a high model risk. As has
been shown in numerous studies, the empirical return distributions which one can
observe are far from normality. This is true for all categories of financial markets:
equity, fixed income, foreign exchange as well as credit markets (see e.g. Eberlein
and Keller (1995) [4] for the analysis of stock price data and Eberlein and Kluge
(2007) [7] for data from fixed income markets). A first step to reduce model risk
and to improve the performance of the model consists in introducing volatility as a
stochastic quantity. Some of the stochastic volatility models became quite popular.
Nevertheless one must be aware that the distributions which diffusion processes with
non-deterministic coefficients generate on a given time horizon are not known. They
can only be determined approximately on the basis of simulations of process paths. In
order to get more realistic distributions, an excellent choice is to replace the driving
Brownian motion in classical models by a suitably chosen Lévy process. This can
also be interpreted in the sense that instead of making volatility stochastic one can go
over to a stochastic clock. The reason is that many Lévy processes can be obtained as
time-changed Brownian motions. For example, the Variance Gamma process results
when one replaces linear time by a Gamma process as subordinator. Of course, one
can also consider both: a more powerful driver and stochastic volatility.

Lévy processes are in a one-to-one correspondence to the rich class of infinitely
divisible distributions and at the same time analytically well tractable. Due to the
higher number of available parameters, this class of distributions is flexible enough to
allow a much better fit to empirical return distributions. The systematic error which
results from the assumption of normality is avoided. The generating distribution of a
Lévy process shows up as the distribution of increments of length one. Consequently,
any distribution which one gets by fitting a parametrized subclass to empirical return
data can be implemented not only approximately but exactly into Lévy-driven mod-
els. Suitably parametrized model classes which have been used successfully so far
are driven by generalized hyperbolic, normal inverse Gaussian (NIG), or Variance
Gamma (VG) processes, just to mention a few.

As noted above, advancedmodels with superior statistical properties require more
demanding numerical methods. Efficient and accurate algorithms are crucial in this
context, in particular for calibration purposes. For pricing of derivatives the historical
distribution, which can be derived from price data of the underlying and which is
used for risk management, is of less interest. Calibration usually means to estimate
the risk-neutral distribution parameters. In other words, one exploits price data of
derivatives. In most cases this is given in terms of volatilities. Whereas years ago
calibration was usually done overnight, many trading desks recalibrate nowadays
on an intraday basis. During a calibration procedure in each iteration step a large
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number of model prices have to be computed and compared to market prices. A
method which almost always works to get the corresponding expectations is Monte
Carlo simulation. Its disadvantage is that it is computationally intensive and therefore
too slow for many purposes. Another classical approach is to represent prices as
solutions of partial differential equations (PDEs) which in the case of Lévy processes
with jumps become partial integro–differential equations (PIDEs). This approach,
which is based on the Feynman–Kac formula, applies to a wide range of valuation
problems, in particular it allows to compute prices of American options as well.
Nevertheless, the numerical solution of PIDEs rests on sophisticated discretization
methods and corresponding programs. In this paper we concentrate on the third,
namely the Fourier-based approach.

To manage portfolios of derivatives, traders have to understand how sensitive
prices of derivative products are with respect to changes in the underlying parame-
ters. For this purpose they need to know the Greeks which are given by the partial
derivatives of the pricing functional with respect to those parameters. Usually Greeks
are estimated by means of a finite difference approximation. Two kinds of errors are
produced this way: the first one comes from the approximation of the derivative by
a finite difference and the second one results from the numerical computation of
the expectation. To eliminate one of the sources of error, Fournié et al. (1999) [9]
adopted a new approach which consists in shifting the differential operator from the
pricing functional to the diffusion kernel. This procedure results in an expectation
operator applied to the payoff multiplied by a random weight function.

In the following we focus on a discrete tenor interest rate model which has been
introduced in Eberlein and Özkan (2005) [5]. This so-called Lévy forward process
model is driven by a time-inhomogeneous Lévy process and is developed on the basis
of a backward induction that is necessary to get the LIBOR rates in a convenient
homogeneous form. A major advantage of the forward process approach is that it
is invariant under the measure change in the sense that the driving process remains
a time-inhomogeneous Lévy process. Moreover, the measure changes do not only
have the invariance property but in addition they are analytically and consequently
also numerically much simpler compared to the corresponding measure changes in
the so-called LIBOR model. The reason is that in each induction step the forward
process itself represents up to a norming constant the density process on which the
measure change is based. As a consequence, any approximation such as the ‘frozen
drift’ approximation ormore sophisticated versions of it are completely avoided. This
means that the approximation error with which one has to struggle in the LIBOR
approach does not show up in the forward process approach.

Another important aspect is that in the latter model the increments of the driving
process translate directly into increments of the LIBOR rates. This is not the case
for the LIBOR model where the increments of the LIBOR rates are proportional to
the corresponding increments of the driving process scaled with the current value of
the LIBOR rate. Expressed in terms of the terminology which will be developed in
Sects. 2 and 3 this means that in the Lévy LIBOR model
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L(t + Δt, Tk) − L(t, Tk) ∼ L(t, Tk)
(
LTk+1
t+Δt − LTk+1

t

)
, (1)

whereas in the Lévy forward process model

L(t + Δt, Tk) − L(t, Tk) ∼ δ−1
k

(
LTk+1
t+Δt − LTk+1

t

)
. (2)

The fact that the increments of the LIBOR rate process do not depend on current
LIBOR values, translates into increased flexibility and a superior model performance
of the forward process approach.

In addition to the differences in mathematical properties there is a fundamental
economic difference. The forward process approach allows for negative interest rates
as well as for negative starting values. This is of crucial importance in particular in
the current economic environment where negative rates are common. Models where
by construction interest rates stay strictly positive are not able to produce realistic
valuations for a large collection of interest rate derivatives in a deflationary or near-
deflationary environment.

As far as the calculation of Greeks in this setting is concerned, we refer to Glasser-
man andZhao (1999) [12],Glasserman (2004) [11], andFries (2007) [10]where some
treatment of this issue is given. The classical diffusion-based LIBOR market model
offers a high degree of analytical tractability. However, this model cannot reproduce
the phenomenon of changing volatility smiles along the maturity axis. In order to
gain more flexibility in a first step one can replace the driving Brownian motion by
a (time-homogeneous) Lévy process. However, one observes that the shape of the
volatility surface produced by cap and floor prices is too sophisticated in order to be
matched with sufficient accuracy by amodel which is driven by a time-homogeneous
process. To achieve a more accurate calibration of the model across different strikes
and maturities one has to use the more flexible class of time-inhomogeneous Lévy
processes (see e.g. Eberlein and Özkan (2005) [5] and Eberlein and Kluge (2006)
[6]). Graphs in the latter paper show in particular that interest rate models driven
by time-inhomogeneous Lévy processes are able to reproduce implied volatility
curves (smiles) observed in the market across all maturities with high accuracy. If
one restricts the approach to (time-homogeneous) Lévy processes as drivers, the
smiles flatten out too fast at longer maturities. Consequently, we have analytical—
the invariance under measure changes—as well as statistical reasons to choose time-
inhomogeneous Lévy processes as drivers. In implementations of the model already
a rather mild form of time-inhomogeneity turns out to be sufficient. Typically one
has to glue together three pieces of (time-homogeneous) Lévy processes in order to
cover the full range of maturities with sufficient accuracy. In terms of parameters
this means that instead of three or four one uses nine or twelve parameters.

The first goal of this paper is to give a closed Fourier-based valuation formula for
a caplet in the framework of the Lévy forward process model. The second aim is to
study sensitivities. We discuss two approaches for this purpose. The first is based
on the integration-by-parts formula, which lies at the core of the application of the
Malliavin calculus to finance as developed in Fournié et al. (1999) [9], León et al.
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(2002) [14], Petrou (2008) [17], Yablonski (2008) [19]. This approach is appropriate
if the driving process has a diffusion component. The second approach which covers
purely discontinuous drivers as well relies on Fourier-based methods for pricing
derivatives. For a survey of Fourier-based methods see Eberlein (2014) [3]. We
illustrate the result by applying the formula to the pricing of a caplet where the jump-
part of the underlying model is driven by a time-inhomogeneous Gamma process
and alternatively by a Variance Gamma process.

2 The Lévy Forward Process Model

Let 0 = T0 < T1 < · · · < Tn−1 < Tn = T ∗ denote a discrete tenor structure and set
δk = Tk+1 − Tk for all k ∈ {0, . . . , n − 1}. Because we proceed by backward induc-
tion, let us use the notation T ∗

i := Tn−i and δ∗
i = δn−i for i ∈ {1, . . . , n}. For zero-

coupon bond prices B(t, T ∗
i ) and B(t, T ∗

i−1), the forward process is defined by

F(t, T ∗
i , T ∗

i−1) = B(t, T ∗
i )

B(t, T ∗
i−1)

. (3)

Hence, modeling forward processes means specifying the dynamics of ratios of
successive bond prices. Let (Ω;F=FT ∗ ;F;PT ∗) be a complete stochastic basis
where PT ∗ should be regarded as the forward martingale measure for the settlement
date T ∗ > 0 and the filtration F= (Ft )t∈[0,T ∗] satisfies the usual conditions. Consider
a time-inhomogeneous Lévy process LT ∗

defined on (Ω;F =FT ∗ ;F;PT ∗) starting
at 0 with local characteristics (bT

∗
, c, FT ∗

) such that the drift term bT
∗

s ∈ R, the
volatility coefficient cs and the Lévy measure FT ∗

s satisfy the following conditions

∃ σ > 0, ∀ s ∈ [0, T ∗] : cs > σ, FT ∗
s ({0}) = 0 (4)

and

∫ T ∗

0

(
|bT ∗

s | + |cs | +
∫

R

(|x |2 ∧ 1
)
FT ∗
s (dx)

)
ds < ∞. (5)

We impose as usual a further integrability condition.Note that the processeswhichwe
will define later, are by construction martingales and therefore every single random
variable has to be integrable.

Assumption 2.1 (EM) There exists a constant M > 1 such that

∫ T ∗

0

∫

{|x |>1}
exp(ux)FT ∗

s (dx)ds < ∞, ∀ u ∈ [−M, M]. (6)
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Under (EM) the random variable LT ∗
t has a finite expectation and its law is given by

the characteristic function

E

[
eiuL

T∗
t

]
= exp

(∫ t

0

(
iubT

∗
s − 1

2
u2cs +

∫

R

(
eiux − 1 − iux

)
FT ∗
s (dx)

)
ds

)
. (7)

Furthermore, the process LT ∗
is a special semimartingale, and thus its canonical

representation has the simple form

LT ∗
t =

∫ t

0
bT

∗
s ds +

∫ t

0

√
csdW

T ∗
s +

∫ t

0

∫

R

xμ̃LT∗
(ds, dx), (8)

where (WT ∗
t )t≥0 is aPT ∗ -standardBrownianmotion and μ̃LT ∗ := μLT∗− νT ∗

is thePT ∗ -

compensated random measure of jumps of LT ∗
. As usual, μLT∗

denotes the random
measure of jumps of LT ∗

and νT ∗
(ds, dx) := FT ∗

s (dx)ds the PT ∗ -compensator of

μLT∗
. We denote by θs the cumulant function associated with the process LT ∗

as given
in (8) with local characteristics (bT

∗
, c, FT ∗

), that is, for appropriate z ∈ C

θs(z) = zbT
∗

s + z2

2
cs +

∫

R

(
ezx − 1 − zx

)
FT ∗
s (dx), (9)

where c and FT ∗
are free parameters, whereas the drift characteristic bT

∗
will later

be chosen to guarantee that the forward process is a martingale. The following ingre-
dients are needed.

Assumption 2.2 (LR.1) For anymaturity T ∗
i there is a bounded, deterministic func-

tion λ(·, T ∗
i ) : [0, T ∗] �−→ R which represents the volatility of the forward process

F(·, T ∗
i , T ∗

i−1). These functions satisfy

λ(s, T ∗
i ) > 0, ∀ s ∈ [0, T ∗

i ] and λ(s, T ∗
i ) = 0 for s > T ∗

i for any maturity T ∗
i ,∑n−1

i=1 λ(s, T ∗
i ) ≤ M, ∀ s ∈ [0, T ∗] where M is the constant from Assumption

(EM).

Assumption 2.3 (LR.2) The initial term structure of zero-coupon bond prices
B(0, T ∗

i ) is strictly positive for all i ∈ {1, . . . , n}.
We begin to construct the forward process with the most distant maturity and postu-
late

F(t, T ∗
1 , T ∗) = F(0, T ∗

1 , T ∗) exp
(∫ t

0
λ(s, T ∗

1 )dLT ∗
s

)
. (10)

One forces this process to become a PT ∗ -martingale by choosing bT
∗
such that
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∫ t

0
λ(s, T ∗

1 )bT
∗

s ds = −1

2

∫ t

0
csλ

2(s, T ∗
1 )ds

−
∫ t

0

∫

R

(
exλ(s,T ∗

1 ) − 1 − xλ(s, T ∗
1 )

)
νT ∗

(ds, dx). (11)

Then the forward process F(·, T ∗
1 , T ∗) can be given as a stochastic exponential

F(t, T ∗
1 , T ∗) = F(0, T ∗

1 , T ∗)Et
(
Z(·, T ∗

1 )
)

(12)

with

Z(t, T ∗
1 ) =

∫ t

0

√
csλ(s, T ∗

1 )dWT ∗
s +

∫ t

0

∫

R

(exλ(s,T ∗
1 ) − 1)μ̃LT∗

(ds, dx). (13)

Since the forward process F(·, T ∗
1 , T ∗) is aPT ∗ -martingale, we can use it as a density

process and define the forward martingale measure PT ∗
1
by setting

dPT ∗
1

dPT ∗
= F(T ∗

1 , T ∗
1 , T ∗)

F(0, T ∗
1 , T ∗)

= ET ∗
1

(
Z(·, T ∗

1 )
)
. (14)

By the semimartingale version ofGirsanov’s theorem (see Jacod and Shiryaev (1987)
[13])

W
T ∗
1

t := WT ∗
t −

∫ t

0

√
csλ(s, T ∗

1 )ds (15)

is a PT ∗
1
-standard Brownian motion and

νT ∗
1 (dt, dx) := exλ(s,T ∗

1 )νT ∗
(dt, dx) = exλ(s,T ∗

1 )FT ∗
s (dx)ds (16)

is the PT ∗
1
-compensator of μLT∗

.
Continuing this way one gets the forward processes F(·, T ∗

i , T ∗
i−1) such that for

all i ∈ {1, . . . , n}

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1) exp

(∫ t

0
λ(s, T ∗

i )dL
T ∗
i−1

s

)
. (17)

The drift term bT
∗
i−1 is chosen in such a way that the forward process F(·, T ∗

i , T ∗
i−1)

becomes a martingale under the forward measure PT ∗
i−1
, that is

∫ t

0
λ(s, T ∗

i )b
T ∗
i−1

s ds = −1

2

∫ t

0
csλ

2(s, T ∗
i )ds

−
∫ t

0

∫

R

(
exλ(s,T ∗

i ) − 1 − xλ(s, T ∗
i )

)
νT ∗

i−1(ds, dx). (18)
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We propose the following choice for the functions bT
∗
i−1 for all i ∈ {1, . . . , n}

⎧
⎪⎨
⎪⎩
b
T ∗
i−1

s = −cs
2

λ(s, T ∗
i ) −

∫

R

(
exλ(s,T ∗

i ) − 1

λ(s, T ∗
i )

− x

)
F

T ∗
i−1

s (dx), 0 ≤ s < T ∗
i

b
T ∗
i−1

s = 0, s ≥ T ∗
i .

(19)

The driving process LT ∗
i−1 becomes therefore

L
T ∗
i−1

t = −
∫ t

0

(
cs
2

λ(s, T ∗
i ) +

∫

R

(
exλ(s,T ∗

i ) − 1

λ(s, T ∗
i )

− x

)
F

T ∗
i−1

s (dx)

)
ds

+
∫ t

0

√
csdW

T ∗
i−1

s +
∫ t

0

∫

R

x(μT ∗ − νT ∗
i−1)(ds, dx) (20)

under the successive forward measures PT ∗
i
which are given by the recursive relation

⎧⎪⎪⎨
⎪⎪⎩

dPT ∗
i

dPT ∗
i−1

= F(T ∗
i , T ∗

i , T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
= ET ∗

i

(
Z(·, T ∗

i )
)
, i ∈ {1, . . . , n}

PT ∗
0

= PT ∗

(21)

with

Z(t, T ∗
i ) =

∫ t

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s +
∫ t

0

∫

R

(exλ(s,T ∗
i ) − 1)μ̃LT∗

i−1
(ds, dx), (22)

where (W
T ∗
i−1

t )t≥0 is a PT ∗
i−1
-standard Brownian motion such that

⎧⎪⎪⎨
⎪⎪⎩

W
T ∗
i

t = W
T ∗
i−1

t −
∫ t

0

√
csλ(s, T ∗

i )ds, i ∈ {1, . . . , n}

W
T ∗
0

t = WT ∗
t .

(23)

μ̃LT∗
i−1 := μLT∗ − νT ∗

i−1 is the PT ∗
i−1
-compensated randommeasure of jumps of LT ∗

and

νT ∗
i−1(ds, dx) = F

T ∗
i−1

s (dx)ds is the PT ∗
i−1
-compensator of μLT∗

such that

⎧⎪⎨
⎪⎩

F
T ∗
i

s (dx) = exλ(s,T ∗
i )F

T ∗
i−1

s (dx), i ∈ {1, . . . , n}

F
T ∗
0

s (dx) = FT ∗
s (dx).

(24)
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Setting Λi (s) := ∑i
j=1 λ(s, T ∗

j ), we conclude that for all i ∈ {1, . . . , n}

W
T ∗
i

t = WT ∗
t −

∫ t

0

√
csΛ

i (s)ds (25)

and

F
T ∗
i

s (dx) = exp
(
xΛi (s)

)
FT ∗
s (dx). (26)

Note that the coefficients
√
csΛi (s) and exp(xΛi (s)), which appear in this measure

change, are deterministic functions and therefore the measure change is structure
preserving, i.e. the driving process is still a time-inhomogeneous Lévy process after
the measure change.

Since the forward process F(·, T ∗
i , T ∗

i−1) is by construction a PT ∗
i−1
-martingale,

the process
F(·,T ∗

i ,T ∗
i−1)

F(0,T ∗
i ,T ∗

i−1)
, which is the density process

dPT ∗
i

dPT ∗
i−1

∣∣∣∣∣
Ft

= F(t, T ∗
i , T ∗

i−1)

F(0, T ∗
i , T ∗

i−1)
(27)

is a PT ∗
i−1
-martingale as well. By iterating the relation (21) we get on FT ∗

i−1

dPT ∗
i−1

dPT ∗
= B(0, T ∗)

B(0, T ∗
i−1)

i−1∏
j=1

F(T ∗
i−1, T

∗
j , T

∗
j−1)

= exp

⎛
⎝

i−1∑
j=1

∫ T ∗
i−1

0
λ(s, T ∗

j )dL
T ∗
j−1

s

⎞
⎠ . (28)

Applying Proposition III.3.8 of Jacod and Shiryaev (1987) [13], we see that its
restriction toFt for t ∈ [0, T ∗

i ]

dPT ∗
i

dPT ∗

∣∣∣∣
Ft

= B(0, T ∗)
B(0, T ∗

i )

i∏
j=1

F(t, T ∗
j , T

∗
j−1) (29)

is a PT ∗ -martingale.

3 Fourier-Based Methods for Option Pricing

We will derive an explicit valuation formula for standard interest rate derivatives
such as caps and floors in the Lévy forward process model. Since floor prices can
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be derived from the corresponding put-call-parity relation we concentrate on caps.
Recall that a cap is a sequence of call options on subsequent LIBOR rates. Each
single option is called a caplet. The payoff of a caplet with strike rate K and maturity
T ∗
i is

δ∗
i

(
L(T ∗

i , T ∗
i ) − K

)+
, (30)

where the payment is made at time point T ∗
i−1. The forward LIBOR rates L(T ∗

i , T ∗
i )

are the discretely compounded, annualized interest rates which can be earned from
investment during a future interval starting at T ∗

i and ending at T ∗
i−1 considered at

the time point T ∗
i . These rates can be expressed in terms of the forward prices as

follows

L(T ∗
i , T ∗

i ) = 1

δ∗
i

(
F(T ∗

i , T ∗
i , T ∗

i−1) − 1
)
. (31)

Its time-0-price, denoted by Cplt0(T
∗
i , K ), is given by

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)δ
∗
i EPT∗

i−1

[(
L(T ∗

i , T ∗
i ) − K

)+]
. (32)

Instead of basing the pricing on the Lévy LIBORmodel one can use the Lévy forward
process approach (see Eberlein andÖzkan (2005) [5]). It is thenmore natural to write
the pricing formula (32) in the form

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)EPT∗
i−1

[(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+]

, (33)

where K̃i := 1 + δ∗
i K . From (17), the forward process F(·, T ∗

i , T ∗
i−1) is given by

F(T ∗
i , T ∗

i , T ∗
i−1) = F(0, T ∗

i , T ∗
i−1) exp

(∫ T ∗
i

0
b
T ∗
i−1

s λ(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s

)

× exp

(∫ T ∗
i

0

∫

R

xλ(s, T ∗
i )μ̃LT∗

i−1(ds, dx)

)
. (34)

Using the relations (25) and (26) we obtain for t ∈ [0, T ∗
i ]

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1) exp

(∫ t

0
λ(s, T ∗

i )dLT
∗

s + d(t, T ∗
i )

)
, (35)
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where

d(t, T ∗
i ) =

∫ t

0
λ(s, T ∗

i )
[
b
T ∗
i−1

s − bT
∗

s − Λi−1(s)cs
]
ds

−
∫ t

0
λ(s, T ∗

i )

∫

R

x
(
exΛ

i−1(s) − 1
)
FT ∗
s (dx)ds. (36)

Remember that on FT ∗
i−1

dPT ∗
i−1

dPT ∗
= exp

⎛
⎝

i−1∑
j=1

∫ T ∗
i−1

0
λ(s, T ∗

j )dL
T ∗
s +

i−1∑
j=1

d(T ∗
i−1, T

∗
j )

⎞
⎠ . (37)

Keeping in mind Assumption 2.2 (LR.1), we find

exp

⎛
⎝−

i−1∑
j=1

d(T ∗
i−1, T

∗
j )

⎞
⎠ = EPT∗

[
exp

(∫ T ∗
i−1

0
Λi−1(s)dLT ∗

s

)]
. (38)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we find

exp

⎛
⎝−

i−1∑
j=1

d(T ∗
i−1, T

∗
j )

⎞
⎠ = exp

(∫ T ∗
i−1

0
θs

(
Λi−1(s)

)
ds

)
. (39)

Consequently,

dPT ∗
i−1

dPT ∗
= exp

(∫ T ∗
i−1

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i−1

0
θs

(
Λi−1(s)

)
ds

)
. (40)

Knowing that the process
(

F(·,T ∗
i ,T ∗

i−1)

F(0,T ∗
i ,T ∗

i−1)

)
is a PT ∗

i−1
-martingale, we reach

exp(−d(T ∗
i , T ∗

i )) = EPT∗
i−1

[
exp

(∫ T ∗
i

0
λ(s, T ∗

i )dLT ∗
s

)]
. (41)

Hence,

exp(−d(T ∗
i , T ∗

i ))

= exp

(
−

∫ T ∗
i

0
θs

(
Λi−1(s)

)
ds

)
EPT∗

[
exp

(∫ T ∗
i

0
Λi (s)dLT ∗

s

)]

= exp

(∫ T ∗
i

0

[
θs

(
Λi (s)

) − θs
(
Λi−1(s)

)]
ds

)
. (42)
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Thus,

d(T ∗
i , T ∗

i ) =
∫ T ∗

i

0

[−θs
(
Λi (s)

) + θs
(
Λi−1(s)

)]
ds. (43)

Define the random variable XT ∗
i
as the logarithm of F(T ∗

i , T ∗
i , T ∗

i−1). Therefore,

XT ∗
i

= ln
(
F(0, T ∗

i , T ∗
i−1)

) +
∫ T ∗

i

0
λ(s, T ∗

i )dLT ∗
s + d(T ∗

i , T ∗
i ). (44)

Proposition 3.1 Suppose there is a real number R ∈ (1, 1 + ε) such that the
moment-generating function of XT ∗

i
with respect to PT ∗

i−1
is finite at R, i.e. MXT∗

i
(R)

< ∞, then

Cplt0(T
∗
i , K ) = K̃i B(0, T ∗

i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
e(R+iu)xλ(s,T ∗

i ) − 1
)

− (R + iu)
(
exλ(s,T ∗

i ) − 1
)]

FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

(R + iu)(R + iu − 1)
. (45)

Proof The time-0-price of the caplet with strike rate K andmaturity T ∗
i has the form

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)EPT∗
i−1

[(
eXT∗

i − K̃i

)+]

= B(0, T ∗
i−1)EPT∗

i−1

[
f
(
XT ∗

i

)]
, (46)

where the function f : R → R
+ is defined by f (x) = (ex − K̃i )

+.
Applying Theorem 2.2 in Eberlein et al. (2010) [8] (by the definition of XT ∗

i
we

have s = 0 here), we get

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

MXT∗
i
(R + iu) f̂ (−u + iR)du, (47)

where the Fourier transform f̂ is given by

f̂ (−u + iR) = K̃ 1−R−iu
i

(R + iu)(R + iu − 1)
(48)
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and the moment-generating function MXT∗
i
is given by

MXT∗
i
(R + iu) = EPT∗

i−1

[
exp

(
(R + iu)XT ∗

i

)]

= (
F(0, T ∗

i , T ∗
i−1)

)R+iu
exp

(
(R + iu)d(T ∗

i , T ∗
i )

)

×EPT∗
i−1

[
exp

(∫ T ∗
i

0
(R + iu)λ(s, T ∗

i )dLT ∗
s

)]
. (49)

Making a change of measure, we find

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

exp
(
(R + iu)d(T ∗

i , T ∗
i )

)

×
EPT∗

[
exp

(∫ T ∗
i

0

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
dLT ∗

s

)]

EPT∗

[
exp

(∫ T ∗
i

0 Λi−1(s)dLT ∗
s

)] . (50)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we can prove easily that

MXT∗
i

(R + iu) = (
F(0, T ∗

i , T ∗
i−1)

)R+iu

× exp

(
(R + iu)

∫ T ∗
i

0

[
−θs

(
Λi (s)

)
+ θs

(
Λi−1(s)

)]
ds

)

×
exp

(∫ T ∗
i

0 θs

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
ds

)

exp

(∫ T ∗
i

0 θs
(
Λi−1(s)

)
ds

)

= (
F(0, T ∗

i , T ∗
i−1)

)R+iu exp

(∫ T ∗
i

0
θs

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
ds

)

× exp

(∫ T ∗
i

0

[
(−R − iu)θs

(
Λi (s)

)
− (1 − R − iu)θs

(
Λi−1(s)

)]
ds

)
. (51)

Taking into account the choice of the drift coefficient in (19), the cumulant function
θs (see (9)) and the moment-generating function MXT∗

i
, respectively, become

θs(R + iu) = (R + iu)

∫

R

(
ex(R+iu) − 1

R + iu
− (exλ(s,T ∗

1 ) − 1)

λ(s, T ∗
1 )

)
FT ∗
s (dx)

+cs
2

(R + iu)
(
R + iu − λ(s, T ∗

1 )
)

(52)

and

MXT∗
i

(R + iu) = (
F(0, T ∗

i , T ∗
i−1)

)R+iu exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)
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× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
e(R+iu)xλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(
−(R + iu)

∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
exλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)
. (53)

Finally, from (48) and (53) we conclude that

Cplt0(T
∗
i , K ) = K̃i B(0, T ∗

i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
e(R+iu)xλ(s,T ∗

i ) − 1
)

− (R + iu)
(
exλ(s,T ∗

i ) − 1
)]

FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

(R + iu)(R + iu − 1)
. (54)

4 Sensitivity Analysis

4.1 Greeks Computed by the Malliavin Approach

In this section we present an application of theMalliavin calculus to the computation
of Greeks within the Lévy forward process model. We refer to the literature, for
example Di Nunno et al. (2008) [2] as well as Nualart (2006) [15] for details on the
theoretical aspects of Malliavin calculus. Another important reference is Yablonski
(2008) [19]. See also the Appendix for a short presentation of definitions and results
used in the sequel. The forward process F(t, T ∗

i , T ∗
i−1) under the forward measures

PT ∗
i−1

can be written as stochastic exponential

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1)Et
(
Z(·, T ∗

i )
)

(55)

with

Z(t, T ∗
i ) =

∫ t

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s +
∫ t

0

∫

R

(exλ(s,T ∗
i ) − 1)μ̃LT∗

i−1
(ds, dx). (56)

Expressed in a differential form we get the PT ∗
i−1
-dynamics

dF(t, T ∗
i , T ∗

i−1)

F(t−, T ∗
i , T ∗

i−1)
= √

ctλ(t, T ∗
i )dW

T ∗
i−1

t +
∫

R

(exλ(t,T ∗
i ) − 1)μ̃LT∗

i−1
(dt, dx), (57)

where F(t−, T ∗
i , T ∗

i−1) is the pathwise left limit of F(·, T ∗
i , T ∗

i−1) at the point t .
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As in the classical Malliavin calculus we are able to associate the solution of
(57) with the process Y (t, T ∗

i , T ∗
i−1) := ∂F(t,T ∗

i ,T ∗
i−1)

∂F(0,T ∗
i ,T ∗

i−1)
; called the first variation process

of F(t, T ∗
i , T ∗

i−1). The following proposition provides a simpler expression for
the Malliavin derivative operator Dr,0 when applied to the forward process rates
F(t, T ∗

i , T ∗
i−1) (see Di Nunno et al. (2008) [2], Theorem 17.4 and Yablonski (2008)

[19], Definition 17. for details). We will denote the domain of the operator Dr,0

in L2(Ω) by D
1,2, meaning that D1,2 is the closure of the class of smooth random

variables S (see (100) in the Appendix).

Proposition 4.1 Let F(t, T ∗
i , T ∗

i−1)t∈[0,T ∗] be the solution of (57). Then F(t, T ∗
i ,

T ∗
i−1) ∈ D

1,2 and the Malliavin derivative is given by

Dr,0F(t, T ∗
i , T ∗

i−1)

= Y (t, T ∗
i , T ∗

i−1)Y (r−, T ∗
i , T ∗

i−1)
−1F(r−, T ∗

i , T ∗
i−1)λ(r, T ∗

i )
√
cr1{r≤t}. (58)

4.1.1 Variation in the Initial Forward Price

In this section, we provide an expression for the Delta, the partial derivative of the
expectation Cplt0(T

∗
i , K ) with respect to the initial condition F(0, T ∗

i , T ∗
i−1) which

is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = ∂Cplt0(T
∗
i , K )

∂F(0, T ∗
i , T ∗

i−1)
. (59)

The derivative with respect to the initial LIBOR rate is then an easy consequence.

Δ(L(0, T ∗
i )) = ∂Cplt0(T

∗
i , K )

∂L(0, T ∗
i )

= Δ(F(0, T ∗
i , T ∗

i−1))
∂F(0, T ∗

i , T ∗
i−1)

∂L(0, T ∗
i )

= δ∗
i Δ(F(0, T ∗

i , T ∗
i−1)), (60)

since

L(0, T ∗
i ) = 1

δ∗
i

(
F(0, T ∗

i , T ∗
i−1) − 1

)
. (61)

Let us define the set

T̃i =
{
hi ∈ L2([0, T ∗

i ]) :
∫ T ∗

i

0
hi (u)du = 1

}
. (62)
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Proposition 4.2 For all functions hi ∈ T̃i , we have

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

× exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)

×
(∫ T ∗

i

0

hi (u)dWT ∗
u

λ(u, T ∗
i )

√
cu

−
∫ T ∗

i

0

hi (u)Λi−1(u)du

λ(u, T ∗
i )

)]
. (63)

Proof We consider a more general payoff of the form H(F(T ∗
i , T ∗

i , T ∗
i−1)) such that

H : R −→ R is a locally integrable function satisfying

EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
2
]

< ∞· (64)

First, assume that H is a continuously differentiable function with compact support.
Then we can differentiate inside the expectation and get

ΔH (F(0, T ∗
i , T ∗

i−1)) :=
∂EPT∗

i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
]

∂F(0, T ∗
i , T ∗

i−1)

= EPT∗
i−1

[
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))
∂F(T ∗

i , T ∗
i , T ∗

i−1)

∂F(0, T ∗
i , T ∗

i−1)

]

= EPT∗
i−1

[
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))Y (T ∗
i , T ∗

i , T ∗
i−1)

]
. (65)

Using Proposition 4.1 we find for any hi ∈ T̃i

Y (T ∗
i , T ∗

i , T ∗
i−1) =

∫ T ∗
i

0
Du,0F(T ∗

i , T ∗
i , T ∗

i−1)
hi (u)Y (u−, T ∗

i , T ∗
i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

. (66)

From the chain rule (see Yablonski (2008) [19], Proposition 4.8) we find

ΔH (F(0, T ∗
i , T ∗

i−1)) = EPT∗
i−1

[∫ T ∗
i

0
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))Du,0F(T ∗
i , T ∗

i , T ∗
i−1)

× hi (u)Y (u−, T ∗
i , T ∗

i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]

= EPT∗
i−1

[∫ T ∗
i

0
Du,0H(F(T ∗

i , T ∗
i , T ∗

i−1))

× hi (u)Y (u−, T ∗
i , T ∗

i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
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= EPT∗
i−1

[∫ T ∗
i

0

∫

R

Du,x H(F(T ∗
i , T ∗

i , T ∗
i−1))

× hi (u)Y (u−, T ∗
i , T ∗

i−1)duδ0(dx)

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
, (67)

where δ0(dx) is the Dirac measure at 0.
By the definition of the Skorohod integral δ(·) (seeYablonski (2008) [19], Sect. 5),

we reach

ΔH (F(0, T ∗
i , T ∗

i−1))

= EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))δ

(
hi (·)Y (·−, T ∗

i , T ∗
i−1)δ0(·)

F(·−, T ∗
i , T ∗

i−1)λ(·, T ∗
i )

√
c·

)]
. (68)

However, the stochastic process

(
hi (u)Y (u−, T ∗

i , T ∗
i−1)

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

)

0≤u≤T ∗
i

(69)

is a predictable process, thus the Skorohod integral coincides with the Itô stochastic
integral and we get

ΔH (F(0, T ∗
i , T ∗

i−1))

= EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))

∫ T ∗
i

0

hi (u)Y (u−, T ∗
i , T ∗

i−1)dW
T ∗
i−1

u

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
. (70)

By Lemma 12.28. p. 208 in Di Nunno et al. (2008) [2] the result (70) holds for any
locally integrable function H such that

EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
2
]

< ∞. (71)

In particular, if one takes

H(F(T ∗
i , T ∗

i , T ∗
i−1)) = B(0, T ∗

i−1)
(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

, (72)

we can express the derivatives of the expectation Cplt0(T
∗
i , K , δ∗

i ) with respect to
the initial condition F(0, T ∗

i , T ∗
i−1) in the form of a weighted expectation as follows

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)EPT∗

i−1

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

×
∫ T ∗

i

0

hi (u)Y (u−, T ∗
i , T ∗

i−1)dW
T ∗
i−1

u

λ(u, T ∗
i )

√
cu F(u−, T ∗

i , T ∗
i−1)

]
.

(73)
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We show easily that

Y (u−, T ∗
i , T ∗

i−1) = F(u−, T ∗
i , T ∗

i−1)

F(0, T ∗
i , T ∗

i−1)
, (74)

hence

Δ(F(0, T ∗
i , T ∗

i−1))

= B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

i−1

[
(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+ ∫ T ∗

i

0

hi (u)dW
T ∗
i−1

u

λ(u, T ∗
i )

√
cu

]
. (75)

In accordance with (25) we can write

W
T ∗
i−1

t = WT ∗
t −

∫ t

0
Λi−1(s)

√
csds. (76)

By making a measure change using the fact (see (40)) that

dPT ∗
i−1

dPT ∗

∣∣∣∣
FT∗

i

= exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)
, (77)

we end up with

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

× exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)

×
(∫ T ∗

i

0

hi (u)dWT ∗
u

λ(u, T ∗
i )

√
cu

−
∫ T ∗

i

0

hi (u)Λi−1(u)

λ(u, T ∗
i )

du

)]
. (78)

4.2 Greeks Computed by the Fourier-Based
Valuation Method

Thanks to the Fourier-based valuation formula obtained in (45) and the structure
of the forward process model as an exponential semimartingale, we can calculate
readily the Greeks. We focus on the variation to the initial condition, i.e. Delta.

Proposition 4.3 Suppose there is a real number R ∈ (1, 1 + ε) such that the
moment-generating function of XT ∗

i
with respect toPT ∗

i−1
is finite at R, i.e. MXT∗

i
(R) <

∞, then
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Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
e(R+iu)xλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(
−

∫ T ∗
i

0

∫

R

exΛ
i−1(s)(R + iu)

(
exλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

R + iu − 1
. (79)

Proof Based on the Sect. 4 in Eberlein et al. (2010) [8], this proposition can be shown
easily.

4.3 Examples

4.3.1 Variance Gamma Process (VG)

We suppose that the jump component of the driving process LT ∗
(see (8)) is described

by a Variance Gamma process with the Lévy density ν given by

ν(dx) = FVG(x)dx (80)

such that

FVG(x) := 1

η|x | exp
⎛
⎝ θ

σ 2
x − 1

σ

√
2

η
+ θ2

σ 2
|x |

⎞
⎠ , (81)

where (θ, σ, η) are the parameters such that θ ∈ R, σ > 0 and η > 0.

Let us put B = θ
σ 2 and C = 1

σ

√
2
η

+ θ2

σ 2 and get

FVG(x) = exp (Bx − C |x |)
η|x | . (82)

In this case, the moment-generating function MXT∗
i
is given by

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z exp

(∫ T ∗
i

0

(cs z
2

(z − 1)λ2(s, T ∗
i ) + I VG(s, z)

)
ds

)
, (83)

where the generalized integral I VG(s, z) is given by
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I VG(s, z) :=
∫

R

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
FVG(x)dx

−
∫

R

z
(
exΛ

i (s) − exΛ
i−1(s)

)
FVG(x)dx . (84)

Now substituting FVG(x) by its explicit expression we get

I VG(s, z) =
∫

R

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx − C |x |) dx

η|x |
−

∫

R

z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx − C |x |) dx

η|x |
=

∫ +∞

0

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx − Cx)

dx

ηx

−
∫ +∞

0
z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx − Cx)

dx

ηx

−
∫ 0

−∞

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx + Cx)

dx

ηx

+
∫ 0

−∞
z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx + Cx)

dx

ηx
,

or

I VG(s, z) =
∫ +∞

0

[
e(zλ(s,T ∗

i )+Λi−1(s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]
dx

−
∫ +∞

0

[
z
e(Λ

i (s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]
dx

−
∫ 0

−∞

[
e(zλ(s,T ∗

i )+Λi−1(s)+B+C)x − e(Λ
i−1(s)+B+C)x

ηx

]
dx

+
∫ 0

−∞

[
z
e(Λ

i (s)+B+C)x − e(Λ
i−1(s)+B+C)x

ηx

]
dx

=
∫ +∞

0

[
e(zλ(s,T ∗

i )+Λi−1(s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]
dx

−
∫ +∞

0

[
z
e(Λ

i (s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]
dx

+
∫ +∞

0

[
e−(zλ(s,T ∗

i )+Λi−1(s)+B+C)x − e−(Λi−1(s)+B+C)x

ηx

]
dx

−
∫ +∞

0

[
z
e−(Λi (s)+B+C)x − e−(Λi−1(s)+B+C)x

ηx

]
dx .
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Using the notations

αi (s, z) = − (
zλ(s, T ∗

i ) + Λi−1(s) + B − C
)
, (85)

βi (s) = − (
Λi−1(s) + B − C

)
, (86)

γi (s) = − (
Λi (s) + B − C

)
, (87)

we end up with

I VG (s, z) =
∫ +∞
0

[
e−αi (s,z)x − e−βi (s)x

x
− z

e−γi (s)x − e−βi (s)x

x

]
dx

+
∫ +∞
0

[
e−(2C−αi (s,z))x − e−(2C−βi (s))x

x
− z

e−(2C−γi (s))x − e−(2C−βi (s))x

x

]
dx .

Using Frullani’s integral (see for details Ostrowski (1949) [16]), we can show that,
if α ∈ C and β ∈ C such thatRe(α) > 0,Re(β) > 0 and β

α
∈ C \ R− whereR− =

] − ∞; 0],

I(α,β) :=
∫ +∞

0

e−αx − e−βx

x
dx = Log

(
β

α

)
, (88)

where Log is the principal value of the logarithm. Consequently

I VG(s, z) = Log

(
βi (s)

αi (s, z)

)
− zLog

(
βi (s)

γi (s)

)

+Log

(
2C − βi (s)

2C − αi (s, z)

)
− zLog

(
2C − βi (s)

2C − γi (s)

)

= Log

(
βi (s)

αi (s, z)

)
+ Log

(
2C − βi (s)

2C − αi (s, z)

)

−z

(
Log

(
βi (s)

γi (s)

)
+ Log

(
2C − βi (s)

2C − γi (s)

))

= Log

(
βi (s) (2C − βi (s))

αi (s, z) (2C − αi (s, z))

)
− zLog

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
.

The moment-generating function MXT∗
i
becomes

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z
exp

(∫ T ∗
i

0

csz

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, z) (2C − αi (s, z))

)
ds

)

× exp

(
−

∫ T ∗
i

0
zLog

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)
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or

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)
.

The valuation formula becomes

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

K̃ 1−R−iu
i MXT∗

i
(R + iu)

(R + iu)(R + iu − 1)
du

= K̃i B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)}
du

(R + iu)(R + iu − 1)
. (89)

The Delta is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)}
du

R + iu − 1
. (90)

4.3.2 Inhomogeneous Gamma Process (IGP)

We suppose that the jump component of the driving process LT ∗
, is described by

an inhomogeneous Gamma process (IGP), which has been introduced by Berman
(1981) [1] as follows
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Definition 4.4 Let A(t) be a nondecreasing function from R
+ −→ R

+ and B > 0.
A Gamma process with shape function A and scale parameter B is a stochastic
process (Lt )t≥0 on R

+ such that:

1. L0 = 0;
2. Independent increments: for every increasing sequence of time points t0, . . . , tn ,

the random variables Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1 are independent;
3. for 0 ≤ s < t , the distribution of the random variable Lt − Ls is given by the

Gamma distribution Γ (A(t) − A(s); B).

We suppose that the shape function A is differentiable, hence we can write

A(t) = A(0) +
∫ t

0
Ȧ(s)ds (91)

for all t ∈ R
+ where Ȧ denotes the derivative of A. In this case, the Lévy density of

the Gamma process L is given by

FG
s (x) = Ȧ(s)

e−Bx

x
1{x>0}. (92)

The moment-generating function (53) has the form

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z exp

(∫ T ∗
i

0

cs z

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
ezxλ(s,T ∗

i ) − 1
)

− z
(
exλ(s,T ∗

i ) − 1
)]

FG
s (x)dxds

)

= (
F(0, T ∗

i , T ∗
i−1)

)z exp
(∫ T ∗

i

0

cs z

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)

∫

R

exΛ
i−1(s)

(
ezxλ(s,T ∗

i ) − 1
) e−Bx

x
1{x>0}dxds

)

× exp

(
−z

∫ T ∗
i

0
Ȧ(s)

∫

R

exΛ
i−1(s)

(
exλ(s,T ∗

i ) − 1
) e−Bx

x
1{x>0}dxds

)

= (
F(0, T ∗

i , T ∗
i−1)

)z exp
(∫ T ∗

i

0

( cs z
2

(z − 1)λ2(s, T ∗
i ) + Ȧ(s)I G(s, z)

)
ds

)
,

where

I G(s, z) =
∫ +∞

0

e(zλ(s,T ∗
i )+Λi−1(s)−B)x − e(Λ

i−1(s)−B)x

x
dx

−
∫ +∞

0
z
e(Λ

i (s)−B)x − e(Λ
i−1(s)−B)x

x
dx .
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Setting

αi (s, z) = − (
zλ(s, T ∗

i ) + Λi−1(s) − B
)
, (93)

βi (s) = − (
Λi−1(s) − B

)
, (94)

γi (s) = − (
Λi (s) − B

)
(95)

and using Frullani’s integral, we find that

I G(s, z) =
∫ +∞

0

[
e−αi (s,z)x − e−βi (s)x

x
− z

e−γi (s)x − e−βi (s)x

x

]
dx

= Log

(
βi (s)

αi (s, z)

)
− zLog

(
βi (s)

γi (s)

)

= Log

(
Λi−1(s) − B

zλ(s, T ∗
i ) + Λi−1(s) − B

)
− zLog

(
Λi−1(s) − B

Λi (s) − B

)
.

Therefore, we get the form

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z
exp

(∫ T ∗
i

0

csz

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

zλ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−z

∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)

or

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−(R + iu)

∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)
.

The valuation formula becomes

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

K̃ 1−R−iu
i MXT∗

i
(R + iu)

(R + iu)(R + iu − 1)
du

= K̃i B(0, T ∗
i−1)

2π

∫

R

du

(R + iu)(R + iu − 1)

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu
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× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu) Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)}
. (96)

The Greek Delta is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu) Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)}
du

R + iu − 1
.

(97)
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A Appendix

A.1 Isonormal Lévy Process (ILP)

Let μ and ν be σ -finite measures without atoms on the measurable spaces (T,A )

and (T × X0,B), respectively. Define a new measure

π(dt, dz) := μ(dt)δΘ(dz) + ν(dt, dz) (98)

on a measurable space (T × X,G ), where X = X0 ∪ {Θ}, G = σ(A × {Θ},B)

and δΘ(dz) is the measure which gives mass one to the point Θ . We assume that the
Hilbert space H := L2(T × X,G , π) is separable.

Definition A.1 We say that a stochastic process L = {L(h), h ∈ H} defined on a
complete probability space (Ω,F , P) is an isonormal Lévy process (or Lévy process
on H ) if the following conditions are satisfied:

1. The mapping h −→ L(h) is linear;
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2. E[eixL(h)] = exp(Ψ (x, h)), where Ψ (x, h) is equal to

∫

T×X

(
(eixh(t,z) − 1 − ixh(t, z))1X0(z) − 1

2
x2h2(t, z)1Θ(z)

)
π(dt, dz). (99)

A.2 The Derivative Operator

Let S denote the class of smooth random variables, that is the class of random
variables ξ of the form

ξ = f (L(h1), . . . , L(hn)), (100)

where f belongs to C∞
b (Rn), h1, . . . , hn are in H , and n ≥ 1. The setS is dense in

L p(Ω) for any p ≥ 1.

Definition A.2 The stochastic derivative of a smooth random variable of the form
(100) is the H -valued random variable Dξ = {Dt,xξ, (t, x) ∈ T × X} given by

Dt,xξ =
n∑

k=1

∂ f

∂yk
(L(h1), . . . , L(hn))hk(t, x)1Θ(x)

+ ( f (L(h1) + h1(t, x), . . . , L(hn) + hn(t, x))

− f (L(h1), . . . , L(hn))) 1X0(x). (101)

Wewill consider Dξ as an element of L2(T × X × Ω) ∼= L2(Ω; H); namely Dξ

is a random process indexed by the parameter space T × X .

1. If the measure ν is zero or hk(t, x) = 0, k = 1, . . . , n when x �= Θ then Dξ

coincides with the Malliavin derivative (see, e.g. Nualart (2006) [15] Definition
1.2.1 p.38).

2. If the measure μ is zero or hk(t, x) = 0, k = 1, . . . , n when x = Θ then Dξ

coincides with the difference operator (see, e.g. Picard (1996) [18]).

A.3 Integration by Parts Formula

Theorem A.3 Suppose that ξ and η are smooth random variables and h ∈ H. Then

1.

E[ξL(h)] = E[〈Dξ ; h〉H ]; (102)
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2.

E[ξηL(h)] = E[η 〈Dξ ; h〉H ] + E[ξ 〈Dη; h〉H ] + E[〈Dη; h1X0Dξ
〉
H ]. (103)

As a consequence of the above theorem we obtain the following result:

The expressionof the derivative Dξ given in (101) does not dependon the particular
representation of ξ in (100).
The operator D is closable as an operator from L2(Ω) to L2(Ω; H).

We will denote the closure of D again by D and its domain in L2(Ω) by D
1,2.

A.4 The Chain Rule

Proposition A.4 (see Yablonski (2008), Proposition 4.8) Suppose F = (F1, F2,
. . . , Fn) is a random vector whose components belong to the space D

1,2. Let φ ∈
C 1(Rn) be a function with bounded partial derivatives such that φ(F) ∈ L2(Ω).
Then φ(F) ∈ D

1,2 and

Dt,xφ(F) =
⎧⎨
⎩

n∑
i=1

∂φ

∂xi
(F)Dt,Θ Fi ; x = Θ

φ(F1 + Dt,x F1, . . . , Fn + Dt,x Fn) − φ(F1, . . . , Fn); x �= Θ.

(104)

A.5 Regularity of Solutions of SDEs Driven
by Time-Inhomogeneous Lévy Processes

We focus on a class of models in which the price of the underlying asset is given
by the following stochastic differential equation (see Di Nunno et al. [2] and Petrou
[17] for details)

dSt = b(t, St−)dt + σ(t, St−)dWt

+
∫

R0

ϕ(t, St−, z)Ñ (dt, dz), (105)

S0 = x,

where R0 := R
d \ {0Rd }, x ∈ R

d , {Wt , 0 ≤ t ≤ T } is an m-dimensional standard
Brownian motion, Ñ is a compensated Poisson random measure on [0, T ] ×
R0 with compensator νt (dz)dt . The coefficients b : R+ × R

d −→ R
d , σ : R+ ×

R
d −→ R

d × R
m and ϕ : R+ × R

d × R −→ R
d × R, are continuously differen-

tiablewith boundedderivatives and the family of positivemeasures (νt )t∈[0,T ] satisfies∫ T
0 (

∫
R0

(‖z‖2 ∧ 1)νt (dz))dt < ∞ and νt ({0}) = 0. The coefficients are assumed to
satisfy the following linear growth condition
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‖b(t, x)‖2 + ‖σ(t, x)‖2 +
∫

R0

‖ϕ(t, x, z)‖2νt (dz) ≤ C(1 + ‖x‖2), (106)

for all t ∈ [0, T ], x ∈ R
d , where C is a positive constant. Furthermore, we suppose

that there exists a function ρ : R −→ R with

sup
0≤t≤T

∫

R0

|ρ(z)|2νt (dz) < ∞, (107)

and a positive constant K such that

‖ϕ(t, x, z) − ϕ(t, y, z)‖ ≤ K |ρ(z)|‖x − y‖, (108)

for all t ∈ [0, T ], x, y ∈ R
d and z ∈ R0.

In the sequel we provide a theorem which proves that under specific conditions
the solution of a stochastic differential equation belongs to the domain D1,2.

Theorem A.5 Let (St )t∈[0,T ] be the solution of (105). Then St ∈ D
1,2 for all t ∈

[0, T ] and the derivative Dr,0St satisfies the following linear equation

Dr,0St =
∫ t

r

∂b

∂x
(u, Su−)Dr,0Su−du + σ(r, Sr−)

+
∫ t

r

∂σ

∂x
(u, Su−)Dr,0Su−dWu

+
∫ t

r

∫

R0

∂ϕ

∂x
(u, Su−, y)Dr,0Su− Ñ (du, dy) (109)

for 0 ≤ r ≤ t a.e. and Dr,0St = 0 a.e. otherwise.

As in the classical Malliavin calculus we are able to associate the solution of (105) to
the first variation processYt := ∇x St . Then,wewill also provide a specific expression
for Dr,0St , the Wiener directional derivative of the St .

Proposition A.6 Let (St )t∈[0,T ] be the solution of (105). Then the derivative satisfies
the following equation

Dr,0St = YtY
−1
r− σ(r, Sr−)1{r≤t} a.e. (110)

where (Yt )t∈[0,T ] is the first variation process of (St )t∈[0,T ].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.
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