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Gasification of solid waste for energy has significant potential given an abundant feed supply and strong
policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently
this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification pro-
cess. This paper includes a detailed review of gasification and plasma fundamentals in relation to the spe-
cific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a
first step to understanding sulphur partitioning and speciation within the process, thermodynamic mod-
elling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience,
indicate the prominence of solid phase sulphur species (as opposed to H2S) – Na and K based species
in particular. Work is underway to further investigate and validate this.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction relevant components. Analysis, including thermodynamic model-
There are numerous materials with an organic content (includ-
ing fossil fuels, biomass and solid waste) which may be suitable for
gasification or other thermochemical processes.1 To date, however,
most development has been on fossil fuels, with biomass and then
solid waste lagging (Childress, 2008). Nonetheless, recent policy to
tackle resource conservation and climate change has given waste
gasification renewed impetus.

Gasification of either fossil or biomass based materials can play
a central role within an integrated refinery (IChemE, 2010). Syngas
has many potential uses. In fact, power generation represents just
�20% globally, with the remaining capacity divided largely be-
tween chemicals and Fischer–Tropsch fuels (Childress, 2008;
Young, 2010).

This study focuses on a novel two stage fluid bed gasification
– plasma converter technology to transform solid waste into en-
ergy at a commercial scale. The feedstock consists of a refuse de-
rive fuel (RDF) produced from a combination of residual
municipal and commercial waste. The aim of this research is
to investigate pollutant removal from the hot syngas, focusing
on the partitioning and chemistry of sulphur along with other
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ling, is supported by experimental data from a demonstration
plant.

The following ‘ 2 provides technical insight on the fundamentals
of gasification and plasma in relation to above process, as well as
municipal solid waste (MSW) based feed and sulphur therein. Sec-
tion 3 builds on this, illustrating the thermodynamic modelling ap-
proach. This leads to the presentation of preliminary model
findings in Section 4, followed by the overall conclusions in
Section 5.

2. Review

2.1. Technology principles

2.1.1. Gasification
Gasification is the thermochemical conversion of organic matter

(i.e. carbonaceous) by partial oxidation (i.e. substoïchiometric) into
a gaseous product (i.e. synthesis gas or syngas) (Ciferno and Mar-
ano, 2002). This syngas may be used directly for combustion or
synthesised into fuels or chemicals. The main syngas components
are H2 and CO, with lower concentrations of CO2, H2O, CH4, higher
hydrocarbons and N2. Reactions take place at elevated tempera-
tures (500–1400 �C) and a range of pressures (from atmospheric
to 33 bar). The gasifying medium used may be air, pure oxygen,
steam or a mixture of these. Gasification chemistry is complex
(influenced by varying feed, process design and operating condi-
tions); however, it may be considered as a simplified two step pro-
cess namely, pyrolysis followed by gasification (Fig. 1).
rights reserved.
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Fig. 1. Gasification steps (Adapted from Ciferno and Marano, 2002).
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Pyrolysis (i.e. devolatilisation) is the decomposition of the feed-
stock by heat in the absence of oxygen. This is the first step in gasifi-
cation wherein water vapour, organic liquids and noncondensable
gases are separated from the solid carbon (i.e. char) content of the
fuel. The process is slightly endothermic, producing 75–90% volatile
materials (for biomass) in the form of gaseous and liquid (i.e. con-
densable vapours including tar) hydrocarbons. The relative yield of
gas, condensable vapours and residual char depends largely on the
rate of heating and final temperature. Pyrolysis is initiated at around
230 �C when thermally unstable feed constituents (for example, lig-
nin in biomass and volatiles in coal) break down and evaporate with
other volatile constituents. The other pyrolysis processes begin
slowly at �350 �C. Above 700 �C these become almost instanta-
neous. The product gasses tend to be light (including H2, CO, CO2,
H2O and CH4) with a low heating value (�3.5–9 MJ/m3). The va-
pour/liquid product comprises mostly of polyaromatic hydrocar-
bons (PAHs) and tar (i.e. a dark, sticky viscous, corrosive liquid
composed of heavy organic and inorganic molecules).

During the subsequent gasification step (i.e. the second step in
the overall gasification process) the volatile hydrocarbons and char
are converted into syngas (Table 1) (Ciferno and Marano, 2002). The
most important reduction reactions are the water–gas (Eq. 6) and
Boudouard (Eq. 7) reactions (Knoef, 2005). These reactions are
reversible, heterogeneous and endothermic, resulting in higher
CO and H2 gas volumes (at higher temperature and lower pressure).

2.1.2. Plasma
Plasma refers to any gas of which at least a percentage of its

atoms or molecules is partially or totally ionized (Moustakas
et al., 2005). The energy required can be thermal, electrical or elec-
tromagnetic. Plasma forms when a sustained electrical arc is gen-
erated by the passage of electric current (continuous, alternate or
high frequency) through a gas. Electrical resistivity across the sys-
tem creates massive localised heat. This strips electrons from the
gas molecules resulting in an ionised gas stream, or plasma (Gomez
et al., 2009).
Table 1
Main reactions during the second gasification stepa.

Type/Label Reactions Energy (kJ/
mol)

Equation

Exothermic
Combustion {volatiles/char} C + O2 ? CO2 �393.8 1
Partial oxidation {volatiles/char} C + O2 ? CO �123.1 2
Methanation {volatiles/char} C + H2 ? CH4 �74.9 3
Water–gas shift CO + H2O ? CO2 + H2 �40.9 4
CO methanation CO + 3H2 ? CH4 + H2O �217.0 5

Endothermic
Water–gas/

steam-carbon
{volatiles/char} C + H2O ? CO + H2 118.4 6

Boudouard {volatiles/char} C + CO2 ? 2CO 159.9 7

a Adapted from Ciferno and Marano (2002), Knoef (2005), and Basu (2006).
Compared to most gases even at elevated temperatures and
pressures, the chemical reactivity and quenching rate characteris-
tic of plasma is far greater (Moustakas et al., 2005). This is due to
the high temperatures and presence of highly reactive atomic
and ionic species. As a result, any organic molecules in the vicinity
break down due to the high temperature conditions forming a syn-
thetic gas (Lemmens et al., 2007). At the same time, fusion of inor-
ganic components (glass, metals, silicates and heavy metals)
occurs, forming a molten slag (and metal phases) which vitrifies
on cooling. In this respect the role of the plasma is often not direct
– for example, transferring energy to a metal bath at the base of the
holding vessel which in turn radiates heat throughout its interior.

Depending on the energy source used and the conditions under
which the plasma is generated, two main groups of plasmas can be
distinguished: high temperature or fusion plasmas, and low tem-
perature plasmas or gas discharges (Table 2) (Helsen and Bosmans,
2010). Low temperature plasmas are the most used in industrial
processes (Gomez et al., 2009). In turn, there are two types within
this subset, namely cold and thermal plasmas (Iron and Steel Soci-
ety, 1987). Cold plasmas are characterised by a non-equilibrium
state. Thermal plasmas, which are immediately relevant to this
study, achieve a quasi-equilibrium state, characterised by high
electron density and low electron energy. Temperatures between
2000 and 30,000 �C may be reached, dissipating sharply moving
away from the core (Moustakas et al., 2005).

Most thermal plasmas are generated by either radio-frequency
induction (RFI) discharge or an electric arc, created by a plasma
torch (Helsen and Bosmans, 2010). Two types of plasma arc torches
exist, namely: the transferred; and non-transferred. The trans-
ferred torch (i.e. as used in this study) creates an electric arc be-
tween its tip and a metal bath or the conductive lining of the
reactor wall. Transferred arc reactors offer high heat fluxes, advan-
tageous for solids melting (Heberlein and Murphy, 2008). In the
non-transferred torch configuration, the arc is produced within
the torch itself. The plasma gas is fed into the torch, heated, and
then exits through the tip of the torch.

Owing to their high temperature, reactivity and quenching
rates, thermal plasmas have potential in a variety of chemical pro-
cesses, making them popular in industry. This includes thermo-
chemical treatment of waste – rapidly initiating decomposition,
evaporation, pyrolysis and oxidation reactions (Moustakas et al.,
2005; Gomez et al., 2009).

The use of plasma-based systems for waste management is a
relatively new concept (Helsen and Bosmans, 2010). Applications
may be categorised as follows: plasma pyrolysis; gasification; com-
paction and vitrification; or a combinations of these. Plasma-based
waste treatment systems tend to incorporate transferred arc reac-
tors since they offer high heat fluxes (Heberlein and Murphy,
2008). This facilitates decontamination in combination with vol-
ume reduction and immobilisation of inorganic contaminants, fea-
tures typical of solid waste.

Plasma, incorporated with conventional gasification, enables
the use of low-energy fuels which may otherwise have difficulty



Table 2
Summary comparison of plasma types and key features.

Plasma group Species state within plasma Features

High temperature Thermodynamic equilibrium
Low temperature Cold Non-thermodynamic equilibrium High chemical reactivity

Thermal Quasi thermodynamic equilibrium High quenching rates
Types:
� Radio frequency induction (RFI)
� Transferred, non-transferred

Temperature range: 2000–30,000 �C
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Fig. 2. APP process: Key stages and operating parameters.
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sustaining reactions. This is normally performed in either a one or
two stage process format. In the one stage format, pyrolysis or gas-
ification is sustained by applying a thermal plasma directly onto
the waste material. All of the energy required for decomposition
comes from the plasma (van Oost et al., 2009). This allows for con-
trol of temperature independent of fluctuations in the feed quality
along with better control of the syngas composition – increasing its
heat capacity and reducing contamination (Lemmens et al., 2007).
A variation of this single stage approach is for the plasma to pro-
vide part of the heat required for processing, with the remainder
supplied by the waste feedstock or a fuel additive (Helsen and Bos-
mans, 2010). Examples of technology development include Wes-
tinghouse in Madison, USA and Europlasma in Morcenx, France.

The two stage format has quite a different concept. The first
stage incorporates a conventional gasifier. A second plasma stage
is then used to refine the syngas. Forerunners in this approach are
Advanced Plasma Power (APP) in the UK and Plasco Energy Group
Inc., Canada. Using two stages increases throughput, since plasma
decomposition of solid waste in a single stage is much slower than
refining tars and chars in the synthesis gas. It is also proposed that
control of volatile organic compounds (VOCs) and tars in the syngas
is improved along with conversion efficiency. In comparison, direct
pyrolysis or gasification in a single stage has a higher electricity
requirement (in some instances equating to the energy content of
the feedstock). For this reason, the single-stage format is more
appropriate in handling small difficult-to-treat process streams
(for example, hazardous or medical waste). Consequently, the
two-stage process is suited to larger waste streams.
2.1.3. Two stage process
This study focuses on a two stage fluid bed gasifier – plasma

converter process developed by APP (Fig. 2). These key stages are
incorporated into the overall process including: fuel preparation;
fluid bed gasifier; plasma converter; gas cleaning; and power gen-
eration (APP, 2008). The thermal processing stages operate under
slightly negative pressure. A nominal input feed of 90,000 tonnes
p.a. RDF produces 16–21 MWe gross for export (APP, 2010a).

Untreated municipal or commercial waste is first mechanically
processed in a materials recycling facility (MRF) at the front end.
This is done to homogenise the material and remove moisture,
recyclables (for example, metals and dense plastics) and reject
materials (for example, oversize and inerts). A 150,000 tonnes in-
put feed produces an output of �90,000 tonnes RDF with a mois-
ture content of 10–17%, 10–20% ash content and 12–16 MJ/kg
calorific value (CV) (APP, 2010a).

The RDF is then metered into a bubbling fluidised bed (BFB) gas-
ifier above a bed of coarse mullite sand. An updraft of steam and
oxygen helps fluidise the bed – RDF mix, whilst supporting gasifi-
cation reactions. The bed operates at �850 �C. The volatile organic
compounds and the fixed carbon content of the RDF are converted
into a crude syngas contaminated with tarry particulates and solid
chars.

The syngas passes from the top of the BFB into the plasma con-
verter above its slag level. The centrifugal design of the converter
encourages particulates to drop out of the syngas. Intense heat
and ultraviolet (UV) radiation from a single carbon plasma elec-
trode crack the complex organics (i.e. tars and chars) in the syngas.
This is aided by a supply of oxygen and steam. At the same time,
ash and inorganic material are retained in the molten slag. The fuel
gas exits the converter at 1000–1200 �C comprising mostly of H2,
CO and CO2.

The syngas is then cooled (from 1200 to 200 �C) using a steam
boiler. The steam produced is used within the process and also to
generate electricity using a steam turbine. From here the syngas
passes through a gas cleaning system to remove particulates, va-
pour phase metals and acid gases (mostly, Cl� and S� based). This
system includes a dry filter (incorporating a ceramic filter unit
with sodium bicarbonate dosing) followed by a wet scrubber.
The clean syngas (CV = 10 � 14 MJ/NM3) is dewatered before being
combusted in a series of gas engines to produce electricity (APP,
2010a). The hot engine exhaust also generates steam for use in
the process. Abatement equipment on the exhaust (including a cat-
alytic converter) ensures that emissions comply with the European
Industrial Emissions Directive (IED).

Depending on the RDF’s CV, the output for the APP process is
predicted to be in the range 0.95–1.27 MWh/t RDF with a net elec-
trical efficiency (NEE) of 23–30%. With reference to operating data
for incinerators in the UK, a range of 446–564 kWh/t is reported in
terms of average and best performance respectively (Tolvik, 2011).
This equates to an NEE of 17–22%, assuming a CV of 9.2 MJ/kg. The
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outlook for modern European incinerators is similar, with electric-
ity production at 550 kW/t on average (Santec, 2010).

APP’s demonstration plant incorporates the main process units
described above, including: a BFB; plasma converter; heat recovery
unit; dry filter/scrubber; wet scrubber; and gas engine (Fig. 3).
Depending on bulk density, heating value and other feed proper-
ties, the plant may handle 40–100 kg/h of RDF, supported by oxy-
gen and steam gasifying media. The process is centrally controlled
and monitored by way of a Supervisory Control and Data Acquisi-
tion (SCADA) computer interface. Syngas monitoring is performed
inline using a Fourier Transform Infrared (FTIR) spectrometer (to
identify gaseous oxides, N-species, CH-species, SO2 and HCl) and
infrared paramagnetic cell (to identify CO, CO2, O2).
2.2. Feed composition

2.2.1. Overview
As noted, a wide range of materials with an organic content may

be suitable for gasification. The composition of the feedstock, and
properties therein, has a major bearing on the performance of a
gasifier or other thermal process in terms of plant availability, en-
ergy conversion efficiency and environmental emissions. Conse-
quently, these factors are integral to the design (Kaiser, 1966;
Kathiravale et al., 2003). This is especially true for a heterogeneous
MSW-type feed. In turn, Niessen (2002) proposes that this is even
more important for solid waste materials than for liquids or gases
due to their tendency for high ash and the presence of
contaminants.

An important aspect to understanding the gasifier feedstock is
to break it down into its components – both on a macro ‘material’
level and subsequent ‘micro’ element level. Important material
Plasma 
converter

Fluid bed 
gasifier

Feed 
inlet

Syngas 
outlet

Fig. 3. APP demonstration plant.
composition studies in the UK include Defra (2010) for England
and WRAP (2010) for Wales. Focusing on the WRAP (2010) data,
analysis was performed for this study to assess the impact of recy-
cling on the biomass and energy content of the residual waste frac-
tion (i.e. the fraction most relevant to thermal treatment) (Table 3).
Total MSW recycling was increased from 37.4% (labelled the ‘origi-
nal’) to 74.0% (labelled ‘dry recyclables (DR) max’). Of interest,
increasing the recycling rate (i.e. to DR max) appears to improve
the residual waste’s HV (i.e. from 10.3 to 12.2 MJ/kg). In agreement
with US DOE (2007), this is due to a lower ratio of biomass to non-
biomass materials.

Material composition data may be further refined, considering
various aspects of proximate and ultimate analysis. The arising of
various elements in the global MSW feed, including sulphur, will
depend on the elemental content associated with each component
material and in turn their relative arising in the global feed. The
functionality and interaction of different elemental components
is also important – influencing the partitioning and speciation dur-
ing thermal processing (Section 2.2.2).

With regards to process design and simulation, the accuracy of
the model output ultimately depends on the quality of input data
as well as the model’s own internal database (Section 2.3). Such
proximate and ultimate analysis data may be obtained from lab
analysis or from reported sources. There are, however, significant
gaps in the data reported for MSW component materials (Chester
et al., 2008). The most comprehensive data source identified for
use in this study was that of UK DOE (1995).

2.2.2. Sulphur
It is reported that most feed-bound sulphur is released as H2S

under reducing gasification conditions, both for biomass (Kuramo-
chi and Kawamoto, 2005) and coal (Álvarez-Rodríguez and Cle-
mente-Jul, 2008; Jazbec et al., 2004; Nakazato et al., 2003). The
release of sulphur compounds may lead to issues including equip-
ment corrosion, turbine damage, catalyst deactivation or fuel cell
damage. To prevent this, up and/or down-stream abatement tech-
niques need to be employed.

Unless H2S and any other sulphur compounds are removed
from syngas, they will be converted to SO2 during combustion. Sul-
phur dioxide in turn contributes to acid rain (often impacting long
distances from source) along with more immediate process and
occupational issues. In addition to a range of national and interna-
tional agreements, the IED sets specific limits for SO2, namely: dai-
ly average (50 mg/m3); and half-hourly average (200 mg/m3

(100%) and 50 mg/m3 (97%)).
Owing to its heterogeneous and varying material content, MSW

may present a range of sulphur concentrations (for example, 0.60–
0.10 wt.% for RDF in Italy) (Yassin et al., 2009; Borgianni et al.,
2002, respectively). Biomass also has a varied makeup, albeit to a
lesser extent. In turn, its sulphur content tends to be lower (for
example, 0.04–0.25 wt.%) (van der Drift et al., 2001). In contrast,
coal has a more consistent composition, with a low to high sulphur
content range depending on rank (for example, 0.3–5.0 wt.% (Jaz-
bec et al., 2004)).

Information on other feed constituents is also important since
these can interact and impact on sulphur emissions during thermal
processing. For instance, during the gasification of biomass and
other materials, the formation of halides and sulphides with metals
(i.e. heavy, alakali and alkaline earth metals) can help reduce HCl
and H2S emissions (Kuramochi and Kawamoto, 2005).

The propensity of sulphur to be released and combined into dif-
ferent products during gasification also depends on its molecular
form and association with constituents in the feed (i.e. its function-
ality). Not with standing, Zevenhoven et al. (2001) note that the
inorganic content of biomass behaves in a very different manner
to that of coal. It is also noted that inorganic elements may bind



Table 3
Residual MSW in Wales (2008 / 09)a, original fraction and fraction after maximum recycling: Contribution of biomass and other to total GCVar.

Contribution Original Residual Waste Residual Waste after max DRe

Combustible Content c Total GCVar
d Combustible Content Total GCVar

d

(wt.%) (MJ/kg) (%) (wt.%) (MJ/kg) (%)

Biomass b 63.06 5.29 51.54 48.26 4.74 38.80
Other combustibles 21.65 4.97 48.46 33.59 7.48 61.20
Total 84.71 10.26 100.00 81.85 12.22 100.00

a Analysis based on composition data from WRAP (2010).
b Biomass content estimated as per the Environment Agency regulations (WRAP, 2010).
c Combustible content estimated for each material.
d Heating value (HV) calculations based on data in Tchobanoglous et al. (1993).
e Dry recyclables refers to both materials collected for recycling and materials for composting in an as received condition.
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to the organic matrix of the fuel. This review indicates that re-
search on sulphur functionality is lacking for biomass and MSW
in particular. In contrast, there is a substantial body of work for
coal including Khan (1989).

Research on MSW gasification in general is lacking (He et al.,
2009). In this respect, up to quite recently experimental data on
sulphur emissions during biomass gasification has also been lim-
ited (Kuramochi and Kawamoto, 2005). The same study found that
nearly all feed-sulphur became H2S during gasification. Using an
equilibrium model, it was found that H2S emissions were propor-
tional to the sulphur content of the feed especially at high temper-
atures (1023–1123 K). At lower temperatures, this was less
apparent, perhaps due to interaction with metal compounds
(forming sulphides, for example). Once again, research on coal gas-
ification is abundant in contrast, with H2S being most prominent
(�90%) (Jazbec et al., 2004). The organic sulphur content of coal
strongly influences the sulphur content of the tar or gases (Khan,
1989). Pyritic sulphur, on the other hand, largely determines the
sulphur content of char.

With regard to sulphur partitioning during gasification, research
appears to be more developed for biomass than for MSW. As with
other materials, the partitioning of sulphur (and other inorganic
elements) depends on gasification stage, temperature and the asso-
ciation of fuel elements (Zevenhoven et al., 2001). However, as
mentioned, behaviour in biomass is different to that in coal.

In addition to being aware of the sulphur content of a fuel, in or-
der to predict partitioning and emissions, understanding the inter-
action and behaviour of other constituents is very important
(Kuramochi and Kawamoto, 2005). For instance, the formation of
halides and sulphides with heavy, alkali, and alkaline earth metals
can reduce H2S (and HCl) emissions. This process depends on tem-
perature, therefore it is necessary to predict the phase distributions
of metals and sulphur at various temperatures.

Given the abundance of research on coal, it is worth while not-
ing where parallels may be drawn in relation to biomass and MSW.
For instance, Jazbec et al. (2004) note that the extent of gasification
(i.e. during devolatilisation) and in turn sulphur liberation depends
on several parameters including coal type, heating rate, tempera-
ture, reactor configuration, bed height, pressure, and soak-time at
the pyrolysis temperature (Khan, 1989). Additional variables in-
clude the form of sulphur in the feed (for example, inorganic versus
organic), intimacy between minerals and the primary products of
devolatilisation. It is also noted that the indigenous mineral con-
tent of the feed (particularly calcium, sodium, or iron compounds)
may react and fix sulphur species within the solids during
devolatilisation.

A range of different H2S sorbent materials were identified during
this review. Materials reported to be effective include calcite and
olivine (Pecho et al., 2008), CaO and Fe2O3 (effective under mild
pyrolysis conditions (Khan, 1989)). By far the most effective sor-
bents were limestone and dolomite. Calcined and fine grained lime-
stone functioned well (Nakazato et al., 2003; Yrjas et al., 1996;
Khan, 1989). However, dolomite in various forms (calcined, uncal-
cined and hydrated calcined) proved most versatile (Álvarez-Rodrí-
guez and Clemente-Jul, 2008; Yrjas et al., 1996; Khan, 1989).

From the above review a number of ambiguities in the research
base are apparent. Studies on coal gasification and sulphur are
abundant. Biomass based work, however, is far less common. In
turn, little if any research on MSW was identified. This includes
the absence of reported knowledge with respect to sulphur parti-
tioning and speciation. The functionality of sulphur in the different
feedstocks follows a similar trend. The heterogeneous nature of
MSW poses a particular quandary in this respect. Most of the re-
search identified was also limited to a bench scale or computer
simulation. Appropriate research based on pilot, demonstration
or larger plant was not identified. The innovative basis of this study
lies in addressing the above ambiguities in the context of APP’s no-
vel fluid bed gasifier – plasma converter technology.

2.3. Modelling

As mentioned, the partitioning of different species depends on
gasification stage, temperature and association with other fuel ele-
ments amongst other factors. The conventional approach to pre-
dicting gasification emissions is based on the use of
thermodynamic and/or kinetic models (Kuramochi and Kawamoto,
2005). Of the studies reviewed in relation to sulphur, three fol-
lowed a thermodynamic approach (Kuramochi and Kawamoto,
2005; Delay et al., 2001; and Zevenhoven et al., 2001) and one both
thermodynamic and kinetic (Jazbec et al., 2004).

Thermodynamic equilibrium calculation models may be used to
predict the equilibrium composition (i.e. distributed between gas
and solid phases) of multi-component reacting system across a
range of temperatures and pressures (Kuramochi and Kawamoto,
2005). This is a common approach based on established thermody-
namic principles (Zevenhoven et al., 2001). Equilibrium modelling
considers the gasifier as an equilibrium reactor. This generates
comprehensive information about the overall system as well as a
first description on more specific complex areas. While this is use-
ful when kinetic data is lacking, there are limitations since the ap-
proach assumes an infinite reaction time and perfect mixing. In
practice, residence times may vary depending on individual con-
stituents as well as plant operation and design. Reaction rates will
also vary. Furthermore, mass transfer between phases can be
slower than the reactions themselves.

Two equilibrium calculation methods are introduced by Kura-
mochi and Kawamoto (2005). The first involves mass balance cal-
culation and equilibrium equations. The second, often referred to
as the Gibbs Energy minimisation method, is based on the principle
that the total Gibbs Energy of a system is at its lowest value when
at equilibrium. This approach is believed to be more versatile and
also more capable with respect computation.
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The equilibrium calculations include the reactions expected be-
tween the elements associated with the feed material (Zevenhoven
et al., 2001). It is noted that, prior to commencing any modelling
work, it is necessary to decide which elements, species and phases
are to be considered. Model performance and accuracy is strongly
dependent on the quality of input data. Therefore, once thermody-
namic data sources have been identified, these must be evaluated
critically.

Commercially available software based on Gibbs energy mini-
misation includes FACT and HSC Chemistry (Kuramochi and
Kawamoto, 2005; Delay et al., 2001). These can be used to investi-
gate equilibrium gas chemistry or, in the case of Zevenhoven et al.
(2001), ash chemistry amongst other phenomena.
3. Materials and methods

3.1. Background

With reference to the overall project aim (Section 1), the
following section looks at estimating the equilibrium distribution
of sulphur and other major species between the gas and solid phase
at the fluid bed gasifier stage of the APP process. This approach is in
line with work done by Kuramochi and Kawamoto (2005) and Delay
et al. (2001). Findings are based on modelling performed by the
authors using HSC Chemistry�5.1 (as referenced by Kuramochi
and Kawamoto (2005) and Lohsoontorn et al. (2008)). As men-
tioned, thermodynamic equilibrium modelling provides a good
approximation of complex systems (Zevenhoven et al., 2001).

For a given specified system, HSC will calculate its thermody-
namic equilibrium composition based on Gibbs energy minimisa-
Table 4
Specification of the RDF feed to the fluid bed stage.

Ultimate analysis (% w/w) Proximate analysis (% w/w)

C 43.0 Fixed carbon 11.6
H 5.6 Volatile matter 64.8
O 26.6 Moisture 11.5
N 0.61 Ash 12.1
S 0.25
Cl 0.34

Table 5
HSC input and output data: Sulphur species only, fluid bed stage, equilibrium composition

Sim 1 Sim 2 Sim 3 Sim 4

min S

Input kmol kmol kmol Kmol
S-input 0.001 0.2 0.4 0.6
Output mol.% mol.% mol.% mol.%
Gas phase
S 0.00 0.00 0.00 0.00
COS(g) 0.00 0.00 0.00 0.00
H2S(g) 0.00 0.00 0.01 0.02
Sub total 0.00 0.00 0.01 0.02

Solid phase
CaS 0.00 0.00 0.00 0.00
NaS 0.01 0.05 0.15 0.43
FeS 0.00 0.01 0.02 0.05
K2S 99.94 99.78 99.33 98.03
MgS 0.00 0.00 0.00 0.00
ZnS 0.00 0.00 0.01 0.02
Cu2S 0.04 0.15 0.48 1.44
PbS 0.00 0.00 0.00 0.01
Sub total 100.00 100.00 99.99 99.98
Grand total 100.00 100.00 100.00 100.00
tion (Section 2.3). The software is supported by a
thermochemical database containing enthalpy (H), entropy (S)
and heat capacity (Cp) information for more than 1700 chemical
compounds (HSC, 2002). This enables the simulation of chemical
reactions and processes on a thermochemical basis. Amongst other
things, the effects of different variables on the chemical system at
equilibrium may be studied. So long as the inputs and system vari-
ables are specified, HSC can theoretically predict the resultant
products for most chemical processes. There are limitations, how-
ever, since the HSC model does not account for the kinetics (i.e.
rates) of chemical reactions nor nonideality of solutions.
3.2. Methodology

The model was set up by specifying the material inputs (includ-
ing: feed composition in terms of its elemental and compound
make up; and steam and oxygen addition) and fluid bed gasifier
system variables. The input feed consists of RDF, the composition
of which is presented in Table 4. A temperature range of 700–
900 �C was chosen (i.e. in line with the fluid bed operating temper-
ature), increasing at 50 �C intervals.

To begin with, a list including both the system input species (i.e.
reactants) and proposed output species needs to be specified on
the model’s input interface. This includes the proposed phase dis-
tribution of species. The selection of output species draws from an
understanding of gasification and thermodynamic principles, liter-
ature findings and plant experience in addition to the model’s
internal database.

An iterative approach was used to develop the species list. Ini-
tially the list was expanded to identify any other potentially viable
species (in particular those associated with sulphur and/or chlo-
rine). After running the simulation and reviewing the results, any
insignificant species (i.e. 10�5 kmol) were removed. This resulted
in a ‘baseline’ list, used again in later analyses.

Analysis was then performed in relation to sulphur. Using the
baseline list as a datum, the sulphur content of the feed was ad-
justed ranging from a minimum of 0.001 kmol to a maximum
2.50 kmol. For each incremental step (labelled simulation (‘sim’)
1–9), the output data obtained was recorded for later analysis (Ta-
ble 5). This approach is similar to that outlined by Kuramochi and
Kawamoto (2005).
at 800 oC.

Sim 5 Sim6 Sim 7 Sim 8 Sim 9

baseline max S

kmol kmol kmol kmol kmol
0.722 1.00 1.50 2 2.5
mol.% mol.% mol.% mol.% mol.%

0.00 0.00 0.01 0.02 0.03
0.00 0.01 0.04 0.07 0.09
0.04 0.22 1.23 2.14 2.90
0.04 0.23 1.28 2.23 3.02

0.01 0.03 0.18 0.31 0.42
0.80 4.20 21.71 34.59 42.68
0.10 0.58 3.20 5.39 7.06

96.21 91.26 69.93 53.90 43.48
0.00 0.00 0.00 0.00 0.00
0.05 0.25 1.14 1.53 1.62
2.78 3.38 2.25 1.69 1.35
0.01 0.08 0.31 0.37 0.36

99.96 99.77 98.72 97.77 96.98
100.00 100.00 100.00 100.00 100.00
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4. Results and discussion

The output data from the above preliminary analysis has been
arranged to focus on output sulphur species presented as mol%
against the quantity of sulphur in the input feed.

Trends for the solid and gas phase remain largely consistent
across the 700–900 �C temperature range (Fig. 4). Interestingly,
the results indicate that sulphur species are more prominent in
the solid phase, representing some 90% of the total across the tem-
perature range. Although this is in agreement with APP plant expe-
rience, it contrasts with other researchers who specify that gaseous
H2S is the main sulphur species (APP, 2010b) (Section 2.2.2). So-
dium and potassium are the main sulphur ‘getters’ – representing
over 85% of the total across the range – with K2S most prominent at
lower input [S], replaced by NaS with increasing input [S]. All of the
other solid phase species are less significant, the most prominent
being FeS which peaks at 7.84%. Consequently, predicted gas phase
sulphur (represented by S, COS and H2S) is at a similarly low level.

On a logarithmic scale, it can be seen that most solid phase spe-
cies trend consistently upwards with increasing temperature and
input [S] (Fig. 5). Furthermore, as input [S] is increased, the influ-
ence of temperature appears to become less pronounced for spe-
cies such as K2S, NaS and FeS.

Sulphur species are again shown to be less prominent in the gas
phase across the temperature range. Nonetheless, H2S is prominent
in the gas phase, with concentrations one or two orders of magni-
tude above COS or S, respectively. Temperature appears to have a
strong influence, with species concentrations trending upwards
consistently. A marked increase in species concentrations after
Sim 6, H2S in particular, may be attributed to a step rise in the in-
put [S].
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Fig. 4. HSC output data, fluid bed stage: Sulphur species only, eq
Contrasting the solid and gas phase species trends, temperature
appears to have more influence over the gas phase species. This
may be due to homogeneous reactions being more prevalent. There
is also more ‘noise’ evident amongst the trends for the solid phase.
The potential prevalence of heterogeneous reactions may help to
explain this.

Given that output sulphur species consume just a fraction of the
metals input, such reactions may be expected to continue beyond
the operating range examined here. This will be assessed through
further simulation, looking at a broader range of input [S] and tem-
peratures. This and adjusting the metals content of the feedstock,
along with other process variables (for example, varying the reduc-
ing conditions by adjusting oxygen and steam addition) also ties in
with identifying conditions where H2S may become prominent.
With respect to the prominence of Na and K species, work is in pro-
gress to further clarify and validate this, paying attention to Elling-
ham diagrams and other thermodynamic guides. The influence of
varying Na and K concentrations in addition to Si and Al (i.e. ash
forming constituents) will also be examined, with reference to
studies by Kuramochi and Kawamoto (2005) and Wei et al.
(2004) amongst others. Examining the influence of different sul-
phur functionalities (for example, organic and inorganic species
as opposed to elemental sulphur) is also of interest. The role played
by chlorides is another area, given their propensity for metals. Sim-
ilar analysis will be performed on the plasma converter stage.

As mentioned, the findings presented here are quite prelimin-
ary, with model results being indicative only. Further analysis in
line with that mentioned above, including a sensitivity analysis,
in addition to the use of real process data, will help provide valida-
tion. In this respect, work is in underway to perform a detailed sul-
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phur balance study (including phase distribution and speciation)
on the APP demonstration plant.

A significant amount of work remains in order to understand
the chemistry and mechanisms associated with sulphur (along
with influential species such as chlorides and metals) in the fluid
bed and plasma stages. This is being approached by three work
routes, namely: plant/process; modelling; and other desk study.
Plant/process work refers to experiments performed as well as pro-
cess samples and data obtained from process runs. This includes
physical analysis of the feedstock and collected samples. Modelling
will progress building on existing HSC analysis. In turn, develop-
ment of a more first principles based model is being considered.
Plant data is important in this respect with regards to validation.
‘Other desk study’ includes understanding sulphur functionality
in the feedstock along with analysis and ongoing literature review.
5. Conclusions

This paper introduces gasification and plasma principles with
reference to an innovative two stage process generating energy
from an MSW based feed. This informs the overall research aim
to understand sulphur speciation and partitioning therein.

From the review it is apparent that gasification of solid waste
has significant potential. Nonetheless, ambiguities in the knowl-
edge base are quite evident. Most research is at lab scale or model
based, with reports on MSW gasification, or the role of sulphur
therein, lacking.

To gain an initial understanding of the process, thermodynamic
analysis of the fluid bed gasification stage has been performed. Pre-
liminary model findings, supported by plant experience, indicate
the prominence of solid phase sulphur species (as opposed to
H2S) – Na and K based species in particular. Work is underway to
further investigate and validate this, with reference to phase dia-
grams, additional modelling and real process data.

This ties in with longer term plans to understand the chemistry
and mechanisms associated with sulphur throughout the two stage
fluid bed – plasma process. This is being approached by way of
plant experiment and process data, thermodynamic modelling
and ongoing desk study.
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