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Abstract

During a solar flare, it is believed that reconnection takes place in the corona followed by fast energy transport to
the chromosphere. The resulting intense heating strongly disturbs the chromospheric structure and induces
complex radiation hydrodynamic effects. Interpreting the physics of the flaring solar atmosphere is one of the most
challenging tasks in solar physics. Here we present a novel deep-learning approach, an invertible neural network,
to understanding the chromospheric physics of a flaring solar atmosphere via the inversion of observed solar line
profiles in Hae and Ca 11 A8542. Our network is trained using flare simulations from the 1D radiation hydrodynamic
code RADYN as the expected atmosphere and line profile. This model is then applied to single pixels from an
observation of an M1.1 solar flare taken with the Swedish 1 m Solar Telescope/CRisp Imaging SpectroPolarimeter
instrument just after the flare onset. The inverted atmospheres obtained from observations provide physical
information on the electron number density, temperature, and bulk velocity flow of the plasma throughout the solar
atmosphere ranging from 0 to 10 Mm in height. The density and temperature profiles appear consistent with the
expected atmospheric response, and the bulk plasma velocity provides the gradients needed to produce the broad
spectral lines while also predicting the expected chromospheric evaporation from flare heating. We conclude that
we have taught our novel algorithm the physics of a solar flare according to RADYN and that this can be
confidently used for the analysis of flare data taken in these two wavelengths. This algorithm can also be adapted
for a menagerie of inverse problems providing extremely fast (~10 us) inversion samples.
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1. Introduction

The current and next generation of solar observations, with
their high spatial, temporal, and spectral resolution, present a
significant analysis challenge, as does the increasing complex-
ity and realism of the models with which the data are
confronted. The two go hand-in-hand: ever-increasing resolu-
tion reveals observational phenomena that cannot be under-
stood using convenient theoretical simplifications, while the
inclusion of “realistic physics” in models (often taken to mean,
e.g., multifluid effects and nonequilibrium processes) motivates
observational testing at higher and higher resolution. The
challenge of model-data comparison grows accordingly and
drives us to seek new approaches.

This paper deals specifically with combining models and
observations to learn about the structure of the solar
atmosphere during a solar flare. The underlying motivation
for such investigations is to understand how the energy
released in a flare is transported through and dissipated in the
solar atmosphere, primarily in the solar chromosphere, where
most of the flare’s radiation originates (appearing mostly in the
optical and UV; e.g., Kretzschmar 2011; Milligan et al. 2014).
However, the route to this is complicated. The observed
chromospheric radiation—a combination of optically thin
(mostly extreme UV) and optically thick (mostly UV to
optical)—carries information about the temperature, density,
and velocity structure of the solar chromosphere, which
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evolves rapidly with time as it heats. This structure is
determined by the pre-flare chromosphere and the character-
istics of the flare energy input. The task is to work out the
chromospheric structure from the radiation emitted and use this
to constrain the properties of the energy input. The picture is
complicated because the heating is very intense, between 10'°
and 10'? erg cm 2 s~ (Fletcher et al. 2007; Krucker et al.
2011), compared to the ~10” ergcm >s~ ' (Withbroe & Noyes
1977) needed to balance radiative losses in the nonflaring
chromosphere. In addition, there is abundant evidence for
nonthermal particles and flows close to the sound speed,
meaning that simplifying assumptions such as hydrostatic or
local thermodynamic equilibrium are unlikely to be valid.

We focus here on optically thick emission lines from the upper
photosphere and chromosphere. These lines encode information
about the atmospheric structure; typically, the emergent radiation
in the line core is formed higher up in the atmosphere than in the
line wings. A number of techniques exist for “inverting” optically
thick line profiles to recover the structure of the atmosphere that
emitted them, though most have been developed for the inversion
of spectropolarimetric information to also include the magnetic
field, which is not our concern at present. These include analytic
methods employing the Milne-Eddington approximation for
frequency-independent opacity in an LTE atmosphere (e.g.,
Skumanich & Lites 1987), the non-LTE codes NICOLE (Socas-
Navarro et al. 2000) and HAZEL (Asensio Ramos et al. 2008), and
the non-LTE code STiC (de la Cruz Rodriguez et al. 2019), which
can treat multiple atomic species and a complex atmospheric
stratification. In essence, these all iterate the output of a forward
model toward the observed spectropolarimetric line profiles (note
that an alternative approach for solving the inverse problem for the
chromospheric temperature structure from an integral form was
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demonstrated by Metcalf et al. 1990). They have also not been
developed with the flare chromosphere in mind, though NICOLE
has been used by Kuridze et al. (2017, 2018) for flares. While
non-LTE calculations are included in many codes, hydrostatic
equilibrium is uniformly assumed. Instead, the most frequently
used approach for flares is forward modeling with codes such as
RADYN (Carlsson & Stein 1992, 1997; Allred et al. 2005, 2015)
in an attempt to match with observed spectral lines. The energy
input to the model is specified according to observed properties,
when possible (i.e., the energy input by nonthermal electrons
deduced from hard X-rays). This approach has produced some
notable insights into the properties of the flare chromosphere from
both line and continuum emission (e.g., Kuridze et al. 2015; da
Costa et al. 2016; Kowalski et al. 2017; Simdes et al. 2017).
However, iterating these models toward agreement with observa-
tions is not practical, and in some cases, reproducing features of the
observations pushes the models in ways that are difficult to justify
observationally (e.g., the long beam injection times required by
Kennedy et al. 2015). Also, while manageable for small samples of
data, this “trial-and-error” approach cannot realistically be scaled
up to take advantage of the high volumes of data from new
instruments. Furthermore, in cases where the energy input by
nonthermal electrons cannot be constrained because of a lack of
complementary observations, it is hard to know where to start
among the vast range of model possibilities.

Here we take a different track, exploiting developments in
machine learning to efficiently recover RADYN-like atmospheres
from spectral-line profiles. We design and train an invertible
neural network (INN; similar to that introduced in Dinh et al.
2016; oArdizzone et al. 2018) to learn the output Ho and Call
8542 A spectral lines corresponding to many thousands of
RADYN atmospheric solutions, and vice versa. The network
proves capable of inverting model RADYN spectral-line profiles
to accurately generate the corresponding RADYN atmospheric
parameters, giving us confidence in its ability to recover
reasonable, realistic atmospheres from observed flare spectral
data. We demonstrate the method on data taken by the CRisp
Imaging SpectroPolarimeter (CRISP) instrument on the Swedish
Solar Telescope (Scharmer et al. 2003, 2008). The method is fast,
producing both atmospheric parameters and a measure of their
uncertainties in about 44.7 s measurement™ on a GPU. This
makes application to large data sets feasible.

This initial paper is intended to demonstrate proof of
concept, underpinning future in-depth analysis of flares. In
Section 2, we describe the principles of INNs, and Section 3
covers how our network is trained and validated on RADYN
models. In Section 4, we present the first inversion using this
method of real flare data, and we end with discussion and
conclusions in Section 5.

2. INNs

An inverse problem is one in which a set of measurements is
used to deduce the properties of the system that caused them. It
is usually the case that information about the system is missing
because of the properties of the medium or the complexity
of the physics involved. The example presented in this paper
is that of deducing the plasma parameters of the chromosphere
that are three-dimensional quantities, whereas we only observe
the chromosphere as two-dimensional images at a given
wavelength from an instrument such as the Swedish Solar
Telescope CRISP instrument (Scharmer et al. 2003, 2008). We
wish to learn about this missing information, as it will constrain
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our model of the physical system producing the observations.
Formally for any process, there exists a function y = f (x) that
maps the input of physical parameters x to the output of
observations y: this function is known as the forward process.
The forward process does not define a bijective function,
meaning that we cannot find a unique mapping from the output
to the input; i.e., there are many possible x for a single y. This
proves to be important, since a traditional neural network
trained on such a problem will only learn to find one of the
possible solutions or an average of multiple correct but
physically incompatible solutions. Furthermore, with a tradi-
tional neural network, it is impossible to ever know if the
connections being made are the correct ones, as the network is
trying to learn an ill-defined problem.

We circumvent this issue in our work by introducing a latent
space z that captures all of the information lost in the forward
process (Dinh et al. 2014 and references therein). The latent
space z represents the space of all information loss in the
forward process, such that a sample from the latent space
combined with the observation y will be able to be mapped to
the correct input parameters x. As a result of the introduction of
latent variables, we now have a bijective mapping x < [y, z].
This means that we have transformed the inverse process into a
deterministic function (a function that has a definite result for a
set of inputs). Consequently, sampling different values from the
latent space will lead to a sampling of the distribution of the
input parameters corresponding to a given output observation.
This deterministic function x = g (y, z) is thus invertible, and
we can learn the function g~ as the forward process and g as
the inverse process that will directly track where the lost
information is obtained from the latent space. This is
characterized by our network assuming that the latent variables
z are drawn from the unit multivariate Gaussian distribution
MO, Zy) for an N-dimensional data space in the reverse
direction. Here g~ ' will populate the true latent space Zyye with
the information lost in the forward process. Our network is then
trained in such a way (see Section 3) as to learn this mapping
from the true latent distribution to the unit Gaussian latent
distribution. After sufficient training, sampling the unit
Gaussian distribution will be equivalent to sampling the true
latent distribution, since they differ by only a known mapping.
The choice of drawing from the unit multivariate Gaussian is an
arbitrary one. It is true that any distribution could be used here,
but we choose a Gaussian because it is smooth and continuous.
The architecture we choose to learn this is our INN.

Like traditional neural networks, INNs are composed of
interconnected layers of neurons that aim to learn a function
from input to output. The key difference is the composition of
the hidden layers between the input and output. These take the
form of affine coupling layers (Dinh et al. 2014, 2016). Affine
coupling layers are simple yet powerful tools. By construction,
in learning the function from the input to the output with an
affine coupling layer, we get the inverse function learned for
free. This is due to the reversibility of the blocks, illustrated in
Figure 1. We base our layers on the form first presented in
Ardizzone et al. (2018). The input x is split into two equals
parts [x;, x,] that are propagated through the forward direction
of the block. This leads to x, undergoing an affine transforma-
tion before combining with x; to obtain half of the output y;.
Then, y; is subject to its own affine transformation and
combination with x, to get the second half of the output y,.
This is illustrated in the upper panel of Figure 1. There is now a
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Figure 1. Affine coupling layer showing the affine transformation between
input and output for the forward process (top) and reverse process (bottom).
These form the building blocks of our INN, as they are easily invertible.

simple relation between the input and output for this layer,
¥ = x @ exp(s2(x2)) + 12(x2), (1
Yy = x2 ® exp(si(y) + a(yp, )

where ® denotes the element-wise multiplication of two tensors
(which are represented by matrices in our problem), and the
functions s;, t; are arbitrarily complex and differentiable
(@ € {1, 2}). After obtaining the pair of outputs [y;, y,], they
are then concatenated to give the total output y. The inverse of
this operation is then simple, and we can also map from the
output y to the input x,

x2 = (y, — t1(yp) @ exp(si(y)), 3)
x = (y; — (x2)) @ exp(s2(x2)), 4

where © denotes the element-wise division of two matrices.
We have now defined a setup in which the inverse is easily
calculable. This is extremely useful for inverse problems, as it
is rarely easy to find the inverse function for a forward model.
This means that the only problem we now need to deal with is
learning what the latent space is to make sure that our network
produces the correct inversion; see Section 3 for more
information. Since the functions s;, #; do not need to be
inverted themselves to calculate the inversion, they can be as
complex and arbitrary a function as needed. To fill this role, we
look to fully connected artificial neural networks (ANNSs).

ANNs can learn complex classification and regression
problems via a method known as backpropagation, and are
therefore universal function approximators (Rumelhart et al.
1986; Cybenko 1989). They are an example of supervised
machine learning, meaning that the network is trained on a data
set where the answers to the functions we want to learn are
known. In backpropagation, the input data is fed through a
neural network, where linearities and nonlinearities are applied
to it until it reaches the output, where it is compared with the
known answers. This comparison is then surmised by a loss
function, which is minimized by changing the values of the
weights in each layer of the network to produce a different
result (Schmidhuber 2015). There have been innumerable
successes of ANNs learning complex functions via this
method, so we use randomly initialized ANNs as our complex
s; and t; functions in the INN.
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In our network, the functions s; and ¢; are defined by four-
layer fully connected networks (FCNs). An FCN is a type of
ANN where all neurons in the previous layer are connected to
all neurons in the current layer. The basic architecture for the
FCNs utilized in our network is shown in Figure 2. The
activation function (the function that determines to what extent
the nodes pass on information to the next layer) after the first
three layers in our deep networks is a leaky rectified linear unit
(ReLU),

¢(x) = max(x, 0.01x), ®))
with the activation after the fourth given by a ReLU
¢ (x) = max(0, x), (6)

where x is the input (in both cases). These activations are used,
as they are sparse and thus speed up computation. Furthermore,
ReLU activation and its variants are popular, as they are better
at avoiding the vanishing gradient problem (when the gradients
of the loss are small enough, they do not affect the update of
the weights, leading to the optimizer getting stuck in the loss
space). The functional forms of s; and ¢; differ by a clamping
inverse tangent function applied at the end of the s; networks.
This clamping function stops the exponential terms dominating
the affine transform while still being smooth (i.e., gradients are
still easy to calculate). These networks are trained as normal via
backpropagation (see Section 3), and they learn the optimal
representation of the affine transform that will approximate the
forward physical model. Then, this representation is also
optimal for the inverse problem, as the FCNs apply to the
inverse problem too.

Our network is comprised of five stacked affine coupling
layers. Stacking these layers will allow us to approximate more
complex tasks (this is the standard pillar of deep learning;
Raschka 2015). This means that the network is dependent on
20 deep neural networks to approximate our inverse problem.
Between each subsequent affine coupling layer, we have what
is known as a permutation layer. This introduces channel
mixing into our network by permuting the order of the inputs to
each new layer. Channel mixing is when the inputs are shuffled
into a different order. This is done as the input to the affine
coupling layers is split in two, meaning that if there is no
permutation, then these two halves remain independent
throughout the network. The permutations are done by
shuffling the input dimensions of our network in a random
but fixed way (Dinh et al. 2014, 2016). Each permutation is
different from the previous. This will increase the general-
ization properties of our network. The architecture of the INN
is shown in Figure 3. The flow of the forward model is shown
by the black arrows, and the flow of the inverse is shown by the
cyan arrows.

3. Training an INN Using Synthetic Flare Data

This section describes the methods used to train and validate
an INN to learn a bijective mapping between atmospheric
profiles and two spectral lines. The training data consist of
synthetic flaring solar atmospheres and spectral-line profiles
generated from the one-dimensional radiation hydrodynamic
model RADYN.
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Figure 2. The FCNs for the # functions (left) and s; functions (right). These are deep neural networks with four hidden layers. The network architecture for the s;
functions contains a smooth clamping function after output in the form of the inverse tangent. This clamps the output such that the exponential term in our affine
transform does not overshadow the linear term (as this would make the linear term null). The input dimension is half the input dimension of the affine coupling layer
due to the splitting of the input, as shown in Figure 1. The hidden layer depth is then double this.

3.1. Training Data

The state-of-the-art forward models for simulating the atmo-
spheric response and radiation originating from solar flares are
one-dimensional radiation hydrodynamic models that solve the
equations of hydrodynamics coupled with the equations of
radiative transfer (outside local thermodynamic equilibrium and
statistical equilibrium). Among these models are RADYN
(Carlsson & Stein 1992, 1997; Allred et al. 2005, 2015),
FLARIX (Varady et al. 2010; Heinzel et al. 2016), and
HYDRAD (Bradshaw & Cargill 2013). Due to the preexisting
grid of RADYN simulations® and its widespread acceptance, we
have chosen to use RADYN as the forward model for training
here. These RADYN simulations all start from a modified
VAL3C quiet Sun atmosphere (Vernazza et al. 1981).

For the simulations in the RADYN grid, the dynamic
atmospheric response to an electron beam from a flare is
computed, where

1. the distribution of electron energies in the beam is
modeled as a power law with variable total energy flux
(in the range 3 x 10'°-1 x 10" ergcm?),

2. the beam low-energy cutoff is E. = {10, 15, 20,
25} keV,

3. the beam spectral index 6 = {3, 4, 5, 6, 7, 8},

4. the beam flux is a symmetric triangular pulse lasting for
20 s and peaking at 10's, and

5. the simulation lasts for 50s with data available
every 0.1s.

Some of the simulations with high total energy, lower values
for E., and higher values for § did not complete and therefore
are not available in the grid. This leaves 81 simulations, with
40,500 total timesteps to use as our training data. Of these
timesteps, 20% are separated and used to independently verify
the training.

RADYN uses an adaptive spatial grid (Dorfi & Drury 1987) to
accurately represent the atmosphere, but due to the way in which
our INN learns shapes, these data must first be interpolated onto a
fixed, static grid. As we are primarily interested in the chromo-
sphere and transition region, where the plasma parameters vary

3 Produced by the F-CHROMA project and available from https://star.pst.

qub.ac.uk/wiki/doku.php/public/solarmodels/start.

rapidly in space, we interpolate onto 45 linearly spaced points
below 3.5 Mm with a grid spacing of 79.2 km. Five further points
are used to represent the rest of the corona, and these are spaced
exponentially from 3.5 up to 10 Mm.

The plasma parameters extracted from the RADYN simula-
tions are the electron density n, [cm*3], the temperature 7 [K],
and velocity v [cm s_l] as a function of altitude and time on the
interpolated grid. The line profiles from these simulations, for
Ha 6563 A and Ca 8542 A, are each interpolated onto 30
linearly spaced points in wavelength across wavelength ranges
with half-widths of 1.4 and 1.0 A, respectively. The assump-
tion of energy input specifically by an electron beam
originating in the corona results in a characteristic Coulomb-
collisional energy deposition profile in the chromosphere
determining n,, T, and v. For the spectral lines we will use,
RADYN calculates both the thermal and nonthermal (i.e.,
direct beam—electron electron impact) collisional rates.

To reduce the dynamic range of these profiles and improve
the performance of the INN, we first map n, — log,n.,
T+ log,T, and v — sign(v)log,,(|v|/10° 4+ 1). For each
timestep in each simulation, the line profiles are divided by
the maximal intensity in each profile, so that the profiles’
relative intensities are preserved on a [0—1] scale.

3.2. MMD

Training the INN is made possible by the use of the
maximum mean discrepancy (MMD). The MMD is a statistic
used for computing the distance between two probability
distributions based on a set of randomly drawn samples from
each distribution by means of a high- or infinite-dimensional
space through a nonlinear feature mapping. Our implementa-
tion is explained in depth in the Appendix, drawing on Gretton
et al. (2012) and lectures given at the Machine Learning
Summer School 2018.*

3.3. Training

Our INN is trained similarly to Ardizzone et al. (2018) and is
based on their Framework for Easily Invertible Architectures
(FrEIA).” Herein, we provide a more in-depth description of the

4 Available at http://www.gatsby.ucl.ac.uk /~gretton/teaching.html.
> https://github.com/VLL-HD /FrEIA
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Figure 3. Architecture of our INN. We have five affine coupling layers with a permutation layer sandwiched between two affine coupling layers (four in total). The
forward process mapping the input to the output is illustrated by the black arrows. The inverse process mapping a combination of the output and the latent space to the

input is illustrated by the cyan arrows.

training method and the slight differences in the MMD
loss used.

The INN is trained with the preprocessed simulation data
alternating forward and backward iterations. We define the
input x as the concatenation of the electron density, temper-
ature, and velocity profiles at a certain timestep. The output y is
the concatenation of the normalized line profiles at this
timestep. The latent space z is currently defined to be the
same length as x, although this is still an area of investigation
tied to the intrinsic dimensionality of the problem. The output
of the INN is then the vector [z, y]. Both the input and output
vectors are zero-padded to provide the network blocks with
additional dimensionality over which to represent the learned
mapping, as well as to fix the input and output to the vectors to
the same length, as the structure of the affine coupling layers
requires this. We will write these zero-padded vectors x, = [x,
0,0,...]and y, = [z, 0,0, ..., y], and in our network, these are
padded to have a length of 384.

The forward and backward training directions are both
constrained by two loss functions. A loss function is a function
that the neural network optimizer attempts to minimize during
training so as to minimize the distance between the output from
the ANN and the expected output. In the forward direction, we
apply an L2 loss (|y — y[meu%) to the zero-padding and line
profiles in the generated y, vector against the expected y,
training vector from the forward model. An MMD loss is also
applied between batches of [y, z] and [y,,., N0, Z,)]. During
backpropagation (modification of the weights in the ANN
layers guided by the gradients at these nodes), the gradients on
the generated y due to the MMD loss are ignored so as to train
the neurons learning the mapping from the true latent
distribution to the normal distribution without hindering the
training of the forward model x — y. The convergence of this
MMD loss ensures the independence of z from y.

The backward direction is trained similarly. The vector of
Yuue and the latents z generated by the forward iteration is
propagated through the network in reverse, and an L2 loss is
applied between x, and a zero-padded vector containing Xeye.
Another vector of y.,. with latents z drawn from the normal
distribution is also propagated in reverse, and an MMD loss is
computed between x and x.. This second MMD loss serves to
ensure that the distributions of x across the batch look alike
(while taking into account internal variability within the true
distribution).

The kernel used in our MMD loss is the same as that of
Tolstikhin et al. (2017) and Ardizzone et al. (2018), the inverse
multiquadric (IMQ) kernel

az

> @)
a® + |l =yl

ka(x, Y) =

as it has been found most effective for comparing sample
quality in these problems. In the example provided by
Ardizzone et al. (2018), the kernel used is a sum of IMQ
kernels with different « (due to the properties of the
reproducing kernel Hilbert space (RKHS) over which the
MMD is defined, this sum is also a kernel); however, we had
difficulty isolating a set of values for o that were effective in
training the latent distribution to match the expected distribu-
tion without dependence on y. By plotting the MMD for the
same x and y samples but different values of «, it was found
that the biased sample estimate of the MMD between x and y
drawn from similar but perturbed distributions produced a peak
for certain values of a.. We therefore compute the value of « at
the turning point of the MMD?(«) (for which the MMD is
maximal) during the training of the net and update « every five
epochs. This approach is supported by Sriperumbudur et al.
(2009), as the kernel of a family that yields the greatest
distinction between the two differing distributions is the one for
which the MMD estimate is maximal.

Our INN is trained using the Adam optimizer (Kingma &
Ba 2014) with 3, = 8, = 0.8 and € = 1 x 107°, where the 3
hyperparameters control the momentum of the first and second
moments of the gradients and e prevents division by zero. A
hyperparameter is a parameter that is set prior to training,
possibly evolving in a predictable fashion, and is not optimized
by the training process. The values of these parameters are
typically determined empirically and may well not be optimal,
but they have been chosen to lead to convergence of the model.
The learning rate 7 (the size of the steps taken in descending
the gradient) is initially set to 1.5 x 10° and decays by
a factor of ~ = 0.004'/1333 every 12 epochs; thus, for the
model presented in this paper, trained for 11,400 epochs, the
final learning rate is 7 =~ 3.38 x 107°. This model does not
appear to be very sensitive to variations in the learning rate, and
multiple variations of v have been used with success. We used
a minibatch size of 500, with 20 minibatches per epoch, and the
backpropagation took place every minibatch. In contrast to
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traditional training, where the model is trained on the entire
training set every epoch and accumulates gradients over the
entire training set before backpropagation, minibatch training
shows the model multiple small subsets of the data each epoch
with gradient accumulation and backpropagation between each
of these minibatches.

The two losses computed for each of the forward and
backward iterations need to be combined into a single loss in
each direction for the backpropagation. We use this as an
opportunity to add additional hyperparameters with which to
weight the various losses when combining them. We therefore
define three weights: Wpyreq, Wiatent» and Wrey. Then, the loss from
the forward process is produced by

lossy = Wpreszf + Wiatene MMDy, (8)

and the backward loss by
lossy = 0.5Wprea L2y + & (n)Wiey MMDy,, C)

where f and b represent the previously discussed forward and

3
backward losses that are combined, £ (n) = (min ( 0 4]':, s 1)) s
8 fade

where n is the current epoch and Ny, is the number of epochs in
the initial training stage. The function &(n) helps to avoid the
initially large gradients in MMD, from steering the net away from
the correct solution. In practice, it was found that this function
was not strictly necessary but improved convergence. Additionally,
the zero padding was set to 5 x 1072(1 — £m))N(O, 1) to
increase the activations of these neurons during early training and
therefore push their outputs toward zero. The exact values of these
parameters were determined empirically but with an emphasis on
minimizing the L2 losses.

The initial 800 epochs were treated as an initial fade-in stage
as &(n) grew to 1 and the padding became zero. For this phase,
the loss weightings were set t0 Wpreq = 4000, Wigene = 900,
and w, = 1000. After this initial phase, the net was trained in
batches of 400 epochs up to 4800 epochs, increasing wpreq by
1000 each batch. This process was then repeated with batches
of 600 epochs up to a total of 12,000 epochs. Finally, the model
that performed best on the unseen validation set was chosen as
the final model. This model was trained for 11,400 epochs.

3.4. Validation

The first stage in validating the training of the model is to
test the forward model against ground truths on the unseen
testing data. Figure 4 shows the results of the forward model.
The top panels are the electron number density, temperature,
and flow speed from an unseen RADYN snapshot, and the
bottom panels compare the “ground-truth” RADYN output line
profiles with the network’s forward process. The mean squared
error is 5.73 x 107 in the scaled intensity at each wavelength
point. Note that for all figures in this paper, wavelength axes
show the wavelength in a vacuum, and positive velocities
represent upflows.

It is somewhat more difficult to evaluate the model’s ability
to reproduce an atmosphere when given the line profiles due to
the aforementioned ambiguity of the problem, as one set of line
profiles may have been produced by a variety of atmospheres.
To understand the range of solutions, we draw random samples
from the latent space multiple times and use these samples
with the line profiles to generate a histogram of atmospheric
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properties predicted by the INN. Figure 5 shows the results and
verification of the inversion of data from the unseen testing set.
In the top panels, the input line profiles are plotted in dashed
blue lines on top of horizontal bars representing the line profiles
calculated using the recovered atmospheric solutions. The
recovered solutions are shown in the bottom panels, plotted as
two-dimensional colored histograms representing the prob-
ability density of the solution at each altitude node. The regions
of highest density in these parameters are therefore the most
likely values. Superposed on this are the ground-truth values
for each parameter, plotted as dashed lines. The data in the
histograms are accumulated for every solution for the atmo-
spheric profile produced from different draws of the latent
space and represent 10,000 sampled solutions.

To better show the range of outlying solutions, all of the
histograms were gamma-corrected (with v = 0.3) to reduce
contrast. As can be seen from the dashed black lines in the
bottom panels of Figure 5, the peak density of the solutions is
close to the ground truth, and the narrowness of the histograms
shows that the solution is well constrained through the
atmosphere up to around 3 Mm above the photosphere.
However, the spectral lines used do not constrain the problem
well in the upper atmosphere, and although the solutions align
very well with the ground-truth, the histograms are broader,
particularly for the profile of velocity at 4 Mm and above. The
histograms underneath the input line profiles in the top panels
of Figure 5—so narrow as to look like single bars—are
obtained by applying the forward model to each atmosphere
produced by the inverse process and gamma-corrected in the
same way. They reproduce the input line profiles very closely,
demonstrating the self-consistency of the model’s solutions.

4. Single-pixel Inversion of Real Flare Data

We have demonstrated above that the INN has successfully
learned the synthetic flare model from RADYN. The next step
is to apply our learned model to real spectroscopic data, with
the intention of characterizing the atmosphere that produced it,
and eventually learning about the physics of a flaring
chromosphere. As our problem is only defined in Ha and
Cal1 8542 A, and these are mostly formed in the chromosphere
(cores) and upper photosphere (wings), we will focus
specifically on our results for atmospheric parameters below
around z &~ 2 Mm. We do not attach much significance to the
results from the small number of points in the corona.

The flare data we use are from the M1.1 two-ribbon solar flare
SOL 20140906T17:09, which occurred in NOAA AR 12157
with heliocentric coordinates (—732", —302"). Data were taken
by CRISP (Scharmer 2006; Scharmer et al. 2008) mounted on
the Swedish 1 m Solar Telescope (Scharmer et al. 2003) on La
Palma. CRISP produced imaging spectroscopy data in both Ha
and Call. The Ha data consist of 15 wavelength positions
sampled at intervals of 200 mA from the line core, and the Call
data consist of 25 wavelength positions sampled at intervals of
100 mA from the line core. The cadence of these observatlons is
11.54 s with a spatial sampling of 0.057” pixel ' (giving a
spatial resolution of 0.114”). The data set is open access and
available from the F-CHROMA solar flare database (Cauzzi
et al. 2014),° where it has been preprocessed and reconstructed
using Multi-Object Multi-Frame Blind Deconvolution
(MOMFBD; Van Noort et al. 2005) and the CRISPRED data

6 https: //star.pst.qub.ac.uk /wiki/doku.php/public/solarflares /start
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Figure 4. Output of the model’s forward process on unseen testing data. The top row shows the atmospheric parameters used as input to the network, and the bottom
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reduction pipeline (de la Cruz Rodriguez et al. 2015). We
assume that the intensity calibration of the two lines is done as
well as possible in the same way through the CRISPRED
pipeline. Therefore, we are assuming that the relative intensities
between the two lines are physically meaningful, as assumed
by our inversion technique. This event was previously analyzed
by Kuridze et al. (2015), who presented the time evolution of
the Ha and Call 8542 A lines in small flaring regions and
compared these with RADYN forward modeling, driven by an
electron beam with properties deduced from the observed hard
X-ray spectrum, commenting primarily on the relationship
between plasma flows and line asymmetries.

Figure 6 shows the wing and core images of Ca Il and Ha at
~16:56 UTC, just after the onset of the flare at ~16:54 UTC.
These images clearly show the presence of two flare ribbons
during the time of the observation. We chose two pixels to
invert: one on the flare ribbon and one off the flare ribbon.
These are indicated in Figure 6 by a circle and square,
respectively. The spectral-line profiles from the two pixels are
extracted, normalized to the maximum value of the two lines,
and interpolated to the RADYN grid. These are shown in
Figure 7.

The lines in the top panels of Figure 7 are from a point on the
flare ribbon, and those in the bottom panels are from a point off
the flare ribbon (the circle and square, respectively, in

Figure 6). The Call 8542 A line profile for the circular point
is characteristic during a flare. It is fully in emission, and the
core is slightly blueshifted (with respect to the vacuum
wavelength) by ~3.51kms ™' with a slight wing asymmetry.
The Ha profile is highly asymmetric, with the blue peak of the
central reversal being much higher in emission than the red
peak. For the square point, both profiles are heavily in
absorption (indicative of the quiet Sun). The Ca Il and Ha cores
are slightly redshifted here (by ~1.26 and ~2.18kms ',
respectively), and both profiles have some asymmetry between
the wings.

To calculate the asymmetries in the profiles, we use a
technique similar to that described in Mein et al. (1997), De
Pontieu et al. (2009), and Kuridze et al. (2015),

Aop+6A

@:f IOV d), (10)
Aog—OA
Aor+0OA

@:f“ IO d, (11)
Aor—B8\

where A\gp and A\gr are the center wavelengths of the blue and
red wings, respectively, and 6 is the width of the wing from its
center wavelength. The wings are defined as being the area of
the line one standard deviation away from the calculated
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Figure 5. Output of the model’s inverse process on unseen testing data. The dashed lines in the top panels show the input to the inverse process that is augmented with
a randomly drawn latent space. The two-dimensional histograms in the bottom panels show the results of each inversion. The dashed lines in the bottom panels show
the expected solution for the inversion. The two-dimensional histograms (narrow gray bars) in the top panels are the result of propagating each atmospheric solution

from the inversion through the forward process.

intensity-averaged line core. The intensity-averaged line core is
calculated via

JI) Xdx
0= 12)
J1(D dx
which leads to us calculating the variance of the profile,
I(N) (X — Xo)? dX
oo . (13)

J1) dx

Then the end of the blue wing and the start of the red wing are
defined by Ay — o and )y + o, respectively, allowing us to
calculate the central wavelengths for the wings and the half-
width of the wings (i.e., Aop, Agr, and d)). These values, along
with the intensity ratio of the wings, Ip/Ig, are presented in
Table 1. The off-ribbon profiles both have red asymmetries of
~1.8% for calcium and ~1.7% for Ha. This corresponds to
small positive velocity gradients or downflows in the region
where the wings of these lines are formed. The calcium profile
on the ribbon has an ~3.2% blue asymmetry, while the Ha

profile has a red asymmetry of ~0.4%. This corresponds to
small negative velocity gradients or upflows in the region
where the wings of calcium are formed.

It has been shown that the spectral lines we are considering
should be symmetric about the line core in a static atmosphere
(Canfield et al. 1984; Fang et al. 1993; Cheng et al. 2006),
implying that the velocity field in the flaring atmosphere is
responsible for the observed asymmetries. This is likely linked
to chromospheric evaporation (Neupert 1968; Fisher et al.
1985; Graham & Cauzzi 2015) and condensation (Ichimoto &
Kurokawa 1984; Wulser & Marti 1989), which are the bulk
expansion flows that occur in the rapidly heated flare chromo-
sphere. However, mapping between the observed asymmetry
and the flow direction is complicated by absorption and
emission in the moving plasma. For example, a blue
asymmetry, as is observed in the Call line on the flare ribbon,
could be due to emission from upflowing plasma or absorption
by downflowing plasma, as argued for this flare by Kuridze
et al. (2015).

These observed spectral-line profiles were propagated in the
backward direction through our INN (see Figure 3) 20,000
times each with different random draws from the unit Gaussian
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Figure 6. Observations of the M1.1 two-ribbon solar flare from AR 12157 on 2014 September 6. These images are from just after the onset of the flare at 16:56:13
UTC. The top row shows images taken in the Ca Il 8542 A band, with the left panel showing the blue line wing, the middle panel showing the line core, and the right
panel showing the red line wing. The bottom row shows images taken in the Ha band following the same convention as for CaIl. We select two pixels for our
inversion test: one on the flare ribbon (circle) and one off the flare ribbon (square). These points are plotted on top of the images in each panel.

latent space (i.e., 20,000 inversions). The inversion of a single
pixel takes ~893 ms on an NVIDIA GTX 1050Ti and ~84.5 s
on an Intel Core i7-8700 CPU. The results of the inversions for
the point on the flare ribbon are shown in Figure 8 and for the
point off the flare ribbon in Figure 9. As in the case of the
model validation in Section 3.4, the results are plotted as two-
dimensional histograms (top panels of Figures 8 and 9). The
dashed lines show the median profile for the parameters. This
gives an approximation to the true solution from our inversion,
as the median profile will pass through the bins with the highest
densities. The bottom panels of these figures are plots of the
observed spectral lines (dotted blue lines) and the densities of
the round-trip profiles obtained by passing the results of the
inversion back through the network in the forward direction.
This shows that each of the atmospheres we produce are viable
for the production of these spectral lines, with some curves
being less likely due to the lack of density in the bins of the
histogram (i.e., models with specific points in less dense bins
are less likely to be the true solution).

Examining the atmospheric profiles obtained from the
inversions helps us interpret the line profiles generated. Looking
first at the line asymmetries, we have previously remarked that
for the on-ribbon pixel, the Call line is slightly blueshifted, with
a blue asymmetry in the wings. According to Kerr et al. (2016),
the Call 8542 A line during a flare is formed between 0.2 and
1.0 Mm above the photosphere, with the wings beyond 0.3 A

from line center formed between 0.2 and 0.4 Mm, i.e., in the
upper ephotosphere/ lower chromosphere. The line core within
40.3 A of line center is formed above that. A steep positive
velocity gradient in the area of core formation (0.9—1 Mm)
explains the blueshifted core of our flare ribbon calcium profile.
In the region of formation of the wings of this line, we observe a
small positive upflow that would cause the observed blue
asymmetry due to the emitting material moving upward. Kuridze
et al. (2015) indicated that the Ha profile forms below 1.2 Mm,
with the wings forming below 0.95Mm and the core forming
above this height. The wings of the on-ribbon Ha profile are
very slightly asymmetric in favor of the red wing. In the region
where the wings are formed, there is a small positive velocity
gradient. This leads us to believe that there has been chromo-
spheric evaporation in this region leading to an increase in
optical depth in the region of the blue wing, meaning that there
will be more absorption in the blue wing.

For our off-ribbon pixel, both profiles have small red
asymmetries. This can be explained in our inverted atmosphere
due to a turbulent flow where the lines are formed, which
would also explain the asymmetries. Our velocity solution here
is quite oscillatory. RADYN has an underlying 2kms ™'
microturbulent velocity, so the line profiles it produces are not
as broad as those observed. Having learned that flows produce
shifted emission, this oscillation is our model’s attempt at
making the lines the correct width.



THE ASTROPHYSICAL JOURNAL, 873:128 (14pp), 2019 March 10

Ca Il 85424 for the circlular point

0.6 1

o
[0}
L

Normalized Intensity
o
S

0.3 1

8543.8 8544.4 8545.0

Ca Il 85424 for the square point

0.48 1

0.40 -

Normalized Intensity
o
w
N

8544.4 8545.0

Wavelength (4)

8543.8

Osborne, Armstrong, & Fletcher

Ha for the circular point

0.96 1

0.88 ~

0.80

6563.2 6564.0 6564.8 6565.6

Ha for the square point

1.0 A

0.8

0.6 -

0.4 1

6564.0 6564.8 6565.6

Wavelength (4)

6563.2
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panels show one point off the flare ribbon. We perform inversions on both of these pairs of spectral lines.

Table 1
The Results of Calculating the Intensity-averaged Line Core and Line Standard
Deviation from Moments Analysis and Using These Values to Calculate the
Asymmetries in the Observed Lines from Figure 7

Mo [Al o [Al Mg lAl Mr[Al ON[A]l  Ip/lk

Ho on ribbon  6564.57 0.78 6563.49  6565.68 0.31 0.996

Call on 8544.43 0.52 8543.67 8545.20 0.24 1.032
ribbon

Ha off 6564.58 0.93 6563.41 6565.75 0.23 0.983
ribbon

Ca1I off 8544.43 0.62 8543.63 8545.25 0.19 0.982
ribbon

Note. Here Aoz and Ao are the central wavelengths of the blue and red wings
of the line, respectively; 6 is the half-width of the wings; and I/I is the wing
intensity ratio.

The other main feature is the lack of a strong central reversal
in Ha during the flare. This is likely due to the source function
being closer to the blackbody in the regions of line core
formation in the flaring atmosphere compared to the nonflaring
atmosphere. This may, in turn, be a result of the order-of-
magnitude increase in the electron density at the line formation

10

height in the flare, as indicated by the n, curves in Figures 8
and 9.

5. Discussion and Conclusions

We have presented a novel approach to obtaining the
distribution of solar atmospheric properties n,, T, and bulk flow
speed v from observed Ha and Call 8542 A spectral-line
profiles using an INN trained on RADYN flare models. The
network learns a bijective approximation to the forward and
inverse problems of mapping atmospheric snapshots to
(observable) spectral-line profiles, and vice versa. Our initial
results are very promising when tested on a flare previously
analyzed by Kuridze et al. (2015), aligning well with their
results, as discussed in Section 4.

The INN method of atmospheric inversion represents a
significant theoretical step forward in the field of inversion.
Taking the process of training and applying the INN as a whole,
it is comparable to the process performed by existing non-LTE
inversion tools, which are typically composed of a forward
model for computing the line profiles from an atmosphere, such
as RH (Uitenbroek 2001), and an “inversion engine” that is
responsible for determining the necessary perturbations to the
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Figure 8. Inversion of the pixel on the flare ribbon. The top panels show the atmospheric parameters obtained from the inversion. The top left panel shows the electron
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true line profiles. The black bins are the round-trip generation of the spectral lines produced by performing the forward process on the sets of atmospheric parameters

we obtain from the inversion.

atmosphere to produce a best-fit line profile. Our INN first learns
the forward process from our training data, but due to the
bijective nature of the mapping, a perturbative solution approach
is not required, as all of the information lost in the forward
process can be restored through the latent space. The models that
take this “inversion engine” approach, such as STiC (de la Cruz
Rodriguez et al. 2019) and NICOLE (Socas-Navarro et al.
2015), are effectively performing a walk through the latent space
guided by their “inversion engines.” There is no guarantee of
solution uniqueness from those approaches, as the entire latent
space is not visited. With the INN approach, the useful extent of
the latent space is learned during training, and it is therefore
trivial to span the latent space with multiple draws of the unit
multivariate normal distribution.

As our INN was trained on RADYN data, it is important to
stress that it can only generate RADYN-like solutions, and this
should be taken into account when analyzing any atmospheric
inversions performed. The RADYN training atmospheres also
include the specific assumption of heating and nonthermal
excitations by an electron beam from the corona. As a
counterpoint to this, it is important to note that the INN does
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not simply ingest the grid of RADYN simulations and return a
closely matched or interpolated template (an approach used, for
exampole, by Beck et al. 2015 in the fast inversion of Call
8542 A spectropolarimetric data). Instead, the INN has learned
a bijective mapping between the input space containing the
atmospheric parameters and the output space containing the
line profiles and the explicit latent space. In the inverse process,
the line profiles are complemented by the latent space to
remove ambiguities due to information lost in the forward
process. The model’s validation on the unseen testing set
should ensure that the atmospheres recovered are physically
reasonable, and that the model has learned to relate the
emergent line profiles with the properties of the atmosphere.
The INN method is fast, as it “front-loads” a large portion of
the computational work by requiring a large training set in the
form of RADYN simulations followed by approximately 1 day
of training on an NVIDIA GTX 1050Ti GPU. The result of this
precomputation is that inference is then extremely rapid while
still drawing on a very complex physical model. The complex
model is needed for the flare problem, where assumptions of
hydrostatic and local thermodynamic equilibrium cannot hold,
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Figure 9. Inversion of the pixel off the flare ribbon. The plots have the same format as Figure 8, and the latent space was also sampled 20,000 times.

and steep gradients are expected to form. This presents a further
advantage of the INN method for flares, since, to reduce the
size of the parameter space and allow an “inversion engine” to
converge in a reasonable amount of time, all other inversion
codes currently assume that the atmosphere is in hydrostatic
equilibrium (Socas-Navarro et al. 2015; de la Cruz Rodriguez
et al. 2019) and use <10 nodes in the atmosphere where the
parameters are computed, with various interpolation techniques
used between these.

As found in Brown et al. (2018), the nonequilibrium level
population and ionization effects present in RADYN, including
those due to direct excitations by nonthermal electrons, cause
significant deviations between the line profiles computed with
these populations and those computed under the assumption of
statistical equilibrium in RH (Uitenbroek 2001). Because our
model is trained on RADYN data, the associated line profiles
are based on RADYN’s nonequilibrium formalism and
assumption of complete redistribution (i.e., the frequency of
an absorbed photon that leads to an excited state and that of the
resulting emitted photon are assumed to be independent). These
effects are therefore learned by the INN. It is interesting that,
even with limited atmospheric information, i.e., n,, 7, and v,
which are a far-from-complete description of the state of the
atmosphere, the INN was nevertheless able to very successfully
reproduce the emission from the unseen RADYN snapshots
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from the F-CHROMA grid. This implies that sufficient non-
LTE and non-hydrostatic equilibrium information about local
“microscopic” (ionization, level populations), “macroscopic”
(gas pressure, opacity), and nonlocal physics (conduction,
radiative back warming) must be encoded in these three
parameters and their variation through the atmosphere.
Inversions of pixels on the flare ribbon performed in
Section 4 suggest significant oscillations in the velocity profile
in the transition region (e.g., Figure 8). These oscillations do
not simply appear on the median line but appear with a similar
form on many of the individual velocity profiles obtained from
the inversion. This may in part be due to RADYN using a
conservative 2kms ' microturbulent velocity throughout the
atmosphere. Studies with the Interface Region Imaging
Spectrograph (De Pontieu et al. 2014) have required
significantly higher values to explain the nonthermal broad-
ening in Mgl h & k in chromospheric plage. Carlsson et al.
(2015) found a value of ~7km s”! and the inversions
performed with STiC (de la Cruz Rodriguez et al. 2019)
suggest a value of ~8kms~' for the same observation. We
suggest, then, that the INN needs to broaden the line to match
observations and uses an oscillating velocity and higher
temperature in the 7 = 1 region to achieve this. To better
constrain the parameters in the upper chromosphere and
transition region requires computation of lines such as MgII h
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& k or SiIv 1403 A, but these are not currently calculated in
RADYN. While the emission from Mgl h & k could be
computed from populations in statistical equilibrium using RH,
it is essential to verify whether the nonequilibrium effects are
important for these lines in flares.

There are several additional assumptions made during the
training process that need to be considered when applying
the INN.

1. Only the line profiles from the p = 0.9531 ray angle
were included in the training set. This is the emergent
radiation at an angle cos™! it ~ 1796 to the normal of the
atmospheric layers of the plane-parallel atmosphere used
in RADYN. The emergent radiation detected from the
flare discussed in Section 4 is approximately 37° from
the local vertical. Assuming a plane-parallel atmosphere,
the layers appear thicker by a factor of 1/u than their
depth along the normal to the atmosphere, so shallower
layers may have a more significant effect than is predicted
by the training set. The altitude stratification in the
training set is perpendicular to the solar surface at this
assumed p-ray angle to the observer.

2. Although different beam parameters are used, the
simulations in the F-CHROMA RADYN grid all use
the same 20s triangular heating pulse, leading to a
particular temporal sequence in the run of atmospheric
properties that may not occur for different heating profiles
(or indeed for different heating methods). As the
inversions performed in Section 4 appear well con-
strained, this does not appear to be an issue.

To summarize, our novel technique using an INN trained
with simulations from the radiation hydrodynamic model
RADYN to solve the inverse problem of determining the solar
atmospheric parameters given chromospheric spectral-line
profiles lifts several restrictions that affect other inversion
methods, such as enforcing hydrostatic equilibrium, that make
these methods unusable for energetic atmospheres. The method
is fast to train and very rapid to apply to data and has proven
accurate on unseen validation tests; early results are very
convincing and in broad agreement with previous analyses.
This method of solving inverse problems is computationally
tractable when a prior forward exists and could be leveraged to
solve many other astrophysical problems. The code is available
online under the MIT license’ at https://github.com/Goobley /
Radynversion and will soon be added to the RadynPy®
(Osborne 2019) python package.
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Appendix
MMD

This section draws heavily on Gretton et al. (2012) and the
lectures on this topic given at the Machine Learning Summer
School Madrid 2018 (see footnote 4).

Training the INN is made possible by the use of the MMD.
The MMD is a technique for determining the distance between
probability distributions P and Q using observations X = {x,
ey Xy and Y = {yy, ..., y,} drawn in an independent and
identically distributed fashion from P and Q, respectively. The
MMD can be mathematically expressed as

MMD? = ||up — pllF
, (14
= (tp, tp)r + (1gs HolF — 2{tips Ho)F
where F is an RKHS known as the feature space, with

elements known as features; (-, -)» denotes the inner product in
the feature space; and u, represents the expectation vector of
the features of F evaluated for the distribution A.

Let X be a nonempty space with a positive definite kernel
k:X xX—Rand¢ : X — F afeature map; then, for all x,
yeX

k(x, y) = (0(x), (M) 5)

The feature spaces of kernels such as the Gaussian kernel

llr—IP
kx,y)=e 2 ,

>0

are in fact infinite-dimensional, but the kernel trick of Equation
(15) allows the inner product between vectors in this space to
be written in closed form. The reproducing property of the
RKHS states simply that under the inner product of features in
F, the kernel will always be recovered. For a positive definite
kernel, there is a unique RKHS F with a reproducing kernel k
whose features are a subset of F ; therefore, a feature map is not
unique, but the kernel is.

Then, pp from Equation (14) can be written in terms of the
features of F,

fp = Lo Bp[6,00] ... 1, (16)
where Ep denotes the expectation value of its argument with
respect to P and ¢; is the ith feature of ¢. From this definition,
we can write

</’(‘P’ IU/Q>]: = ]EP,Q[k(x’ Y)], (17)
where Ep glk(-, -)] denotes the expected kernel of P and Q,

where x ~ Pand y ~ Q (and a ~ A indicates that a is drawn in
an unbiased way from A).


https://github.com/Goobley/Radynversion
https://github.com/Goobley/Radynversion
https://opensource.org/licenses/MIT
https://github.com/Goobley/radynpy
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Now, from the expansion in Equation (14), we have
2 _ 2
MMD? = ||up — poll7

= Bplk(x, x)] + Bolk(y, y)] — 2Epolk (x, y)].
(18)

For finite observations X and Y (of length n), this then gives
an unbiased sample estimate of the MMD:

2 1
MMD, = —— > k(x; x;
u n(n—1) ; (x5 x7)
1 2
kG ) — 5 k). (19)
n(n —1) = iy :

Due to the efficiency of the matrix operations used to
compute the MMD loss in our training scheme, we compute a
biased sample estimate of the MMD:

=2 1
MMD,;, = ?Z(k(xi’ x) + k(y y) — 2k(xi, ). (20)
i.j
The bias on this statistic simply increases the expected MMD
result but has the advantage of remaining positive even when

P = Q, which works better with the optimizer used to train
the INN.
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