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Abstract

Statistical methods which enable shape information on organisms to be used to construct a phylogenetic
tree and to learn how shape evolves are developed. In particular, this allows the evolution of facial curves to
be used in studying relationships between and within different ethnic groups and their ancestors. The main
challenge is to exploit the details of surface shape, while maintaining computational feasibility. A Gaussian
process approach is adopted.

Keywords: Gaussian processes, phylogenetic evolution, shape analysis, facial curves, morphometrics, nose
shape, functional phylogenetics, ancestral reconstruction

1. Introduction

The statistical modelling of evolution is a topic of sizeable interest with an extended range of applications.
Phylogenies, or evolutionary trees, are the basic structures necessary to think clearly about differences
between species and to analyse those differences statistically. The use of both metaphors and models
comparing evolution to branching trees goes back at least to Darwin’s On the Origin of Species (Darwin,
1859) but the major advances from a statistical, computational and algorithmic point of view have mostly
been made in the past 50 years. Felsenstein (2004) summarised well the major advances that had been
achieved in the course of the previous four decades.

This paper builds on the idea of developing statistical methods through which shape information on
organisms can be used to infer a phylogenetic tree and to learn how shape evolves. In recent years, genetic
information has most commonly been used for this purpose, typically DNA sequences observed in present-
day organisms, but the underlying principle in Darwin’s idea of ‘descent with modification’ was based on
physical features (the size and shape of different body parts, the presence or absence of different physical
characteristics and so on). External physical traits such as facial shape or skin pigmentation are likely to have
been influenced by natural selection (Gregory, 2009). How selection may have affected facial shape, which
is also quite variable between populations, has received less attention than its effect on other traits. The
approach proposed here is to use shape information, more specifically facial curves, to study relationships
between different ethnic groups and their (our) ancestors. The use of shape information, expressed as a
continuous and multivariate data type, raises a number of very interesting issues from a methodological
perspective.

The raw facial data are in the form of three-dimensional point clouds, usually of size around 100, 000,
which characterize each facial surface. A traditional starting point for the analysis of shape is to identify a
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number of landmarks, which are reproducible and anatomically meaningful points on the surface. Methods
for the statistical analysis of landmarks are well developed, with an excellent description given by Dryden
and Mardia (1998). However, the expectation of this approach is that the number of landmarks will be small,
which does not allow the full surface to be represented adequately. An alternative approach is to identify
anatomical curves, rather than landmarks. The motivation for this is strengthened by the observation that
the key features of the face can be viewed as a set of ridges and valleys. For example, the mid-line of the lip
is a valley, while the nose profile is a ridge. The essential information for characterising the curvature across
the surface is provided by the principal curvatures and their associated directions (Tanaka et al., 1998).
Methods of curve estimation are described by Vittert et al. (2017) and Marinas—Collado (2017). Figure 1
shows a human face with a set of anatomical curves superimposed. The nasal curves in red are used in an
application in Section 5.

Figure 1: A human face with anatomical landmarks (black) and anatomical curves (yellow). The curves in red are used in the
application in Section 5.

Facial curves change in many different contexts. They vary between and within population subgroups
and they have changed over the evolution of modern humans. During the last few decades, several authors
have tried to clarify the anthropological aspects of the shape of the human nose (Franciscus and Trinkaus,
1988; Mladina et al., 2009). It seems that the erectile posture of H. sapiens caused remarkable morphological
changes to skull shape. Erectile posture enabled man to see around more effectively, to recognise potential
dangers, enemies, sources of food, etc. more easily. The olfactory function of the nose, so important for
quadrupeds, started therefore slowly to diminish over time. Its respiratory function became the leading
driver in man’s nose physiology. This paper uses the evolution of nose curves across three ethnic groups as
a case study (Section 5).

The general machinery proposed is that of Gaussian processes (GPs). A GP is a collection of random
variables any finite number of which have a multivariate Gaussian (normal) distribution. The random
variables will represent the coordinates of the three-dimensional points that define a facial curve, as a
function of their location along the curve’s arc-length and the time point in the phylogenetic tree. A GP is
defined by its mean function (widely assumed to be zero (Rasmussen and Williams, 2006)) and its covariance
function. One of the main advantages in the use of GPs to model the spatio-temporal characteristics of facial
features is that GPs allow one to specify various types of covariance functions that can capture complex data
structures. This is important to be able to model the interactions among the different coordinates, as well as
the space and time locations of the points. Facial curves are functions rather than single numbers or vectors
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and they can be correlated due to phylogenetic relationships in the evolution of facial morphology within
and between families or ethnic groups. Jones and Moriarty (2013) presented a flexible statistical model
for such data by combining assumptions from phylogenetics with GPs. Their approach generalizes the
Brownian motion and Ornstein-Uhlenbeck models of continuous-time evolution from quantitative genetics
(Felsenstein, 1985). This paper extends their model to data in the form of points on curves embedded in
d-dimensions, where the covariance of the different coordinates needs to be modelled, in addition to the
spatial and phylogenetic covariances.

Inside the branching structure of a phylogenetic tree, one can focus on the evolution of one single curve
along one branch, without taking into account the branching patterns and the ancestors. This is equivalent
to modelling the curve evolving over time as a linear continuous variable, which can be regarded as a
degenerate scenario of the phylogenetic GP model and, therefore, is the first model introduced (Section 2).
The model is later extended, using the phylogenetic covariance function to allow for branching points in the
evolution in Section 3. The challenges encountered when implementing the model are discussed in Section 4.
Finally, in Section 5, we present a case study to compare nose shape between and within three broad ethnic
groups: Sub-Saharan Africans, White British and Chinese.

2. Gaussian process model for evolving curves

A curve embedded in a d-dimensional space can be parametrised in terms of its arc-length s (a continuous
index that can be rescaled to be from 0 to 1) and the set of discrete coordinate labels, {c1,...,cq}. The
curve might, for example, represent a ridge or a valley on a surface embedded in those d dimensions. If the
curve is, moreover, changing over time, a time dependence ¢ can be added to the model. A GP can be then

specified as:
w(t,c,s) ~ GP(m(t,c,s),k(t,t',c,d,s,5)), (1)

where the two arguments of the GP refer to the mean and covariance function and where t,t' € R; ¢,c €
{c1,...,¢q} and s,s" € [0,1].

Let s = (s1,...,8,)" represent a choice of n values of s. Each coordinate can be represented as a function
of the arc-length and the time, i.e., w(t, ¢;, s) = ¢;(t,s). Then, a curve at time ¢ can then be notated as:

W(t) =[e1(t), ... eat)]" (2)

where ¢;(t) = (ci(t7 81), .-, ci(t, sn))T The vector W = (W(tl), ... ,W(tT))T for a choice of T' values of ¢,
t = (t1,...,t7)", can then be written as:

W ~ Nrg, (m,K), (3)

where m is the mean, assumed to be zero, and K the covariance matrix. Separability is assumed, so that
k(t,t',c,c,s,8") = ki(t,t)ke(c, ' )ks(s, s') (Rasmussen and Williams, 2006), i.e., K = K; ® K. @ K.

o If the process is assumed Markovian, the Ornstein-Uhlenbeck (OU) covariance function can be used,
ie., ki(t,t') = exp(— |t — /| /u), with hyperparameter u, the time-scale. Crudely, p explains how
wiggly the function is in time. A large p corresponds to a process where change is slow. K; represents
the covariance of curves at different time points, with the (i, )" element equal to k;(t;,t;).

e For the d x d matrix K., k(c,¢’) = ke is used, with k.o representing the correlation between coordi-
nates ¢ and ¢’. Up to d(d—1)/2 hyperparameters can be specified to capture the relationships between
coordinates. For example, for curves embedded in three dimensions, with coordinates =, y and z, one
could specify three hyperparameters:

1 Key Kaz
Ke=|kay 1 Fy



If two coordinates behave in a very similar manner, one can assume they have similar correlations with
the remaining coordinates. For example, if y and z behave in a similar fashion, then one can specify
a single hyperparameter for the correlation between x and y or z:

1 Reyz Rayz
K. = | bzyz 1 Ky
Kayz Kyz 1

In both cases, the hyperparameters are restricted to values which produce positive-definite covariance
matrices.

e The space-covariance function used is ks(s,s’) = 0]20 exp (—3(s — s’)2/A?), the Squared-Exponential
(SE), with hyperparameters O’;, the signal variance, and A, the length-scale. A explains how wiggly

the function is in space. K is the covariance matrix for the n arc-length inputs, with (, j)** element
equal to ks(s;, s;5).

2.1. Likelihood

From (3), the log-likelihood of the hyperparameters, 8 = (o, A, i1, k1, ..., Kqa—1)/2), by the Markov
property in time, can be decomposed as:

T
logp(W | 8) =logp(W(1) | 8) + Zlogp(W(t) | W(t—1),0). (4)

The time difference between adjacent time points is assumed to be constant along the sequence; specifically,
it is assumed to be 1. Defining k; = exp(—1/p),

W(l) ~ Ndn(O,Kc®Ks), 5
W) [W(t—1) ~ Nap(eeW(t—1),(1 - D)K. 0K,), (t>2). (5)

Therefore, the marginal log-likelihood for the first curve is:
dn 1 1 T -1
Ing(W(l) | 0) = _7 10g(27’l’) - 5 log ‘Kc ® Ks| - Ew(l) [Kc ® Ks] W(l), (6)

and the conditional log-likelihood for the tth curve given the (¢ — 1)th is:

dn dn 1
logp(W(t) | W(t—1),0) = —71og(27r) - 710g(1 — K7) — 3 log K. ® K|

1 _
_ m(vv(t) — kWt —1)" K. o K] (W(t) — kW(E—1)). (7)
Moreover, at each time point, the total log-likelihood can be calculated as the sum of the log-likelihood of
each coordinate, using conditional distributions.

Because of the complexity of the likelihood function, maximum likelihood estimates are more effectively
located by an initial grid search, followed by local refinement. To ease the optimisation process, the number
of hyperparameters can be reduced by finding the signal variance, 0]20, that maximises the log-likelihood
function analytically:

WK~ 'w

Tdn

The profile log-likelihood, given the remaining hyperparameters 8’ = (A, u, K1, ..., Ka(a—1)/2), is:

(8)

/\2_
Uf—

Tdn Tdn W'K~'w 1 Tdn
g (W | 6) =~ 15" tog(2r) % tog (ML) - g i) - )
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which can be decomposed as in (4).

The standard errors for ” can be computed from the second derivative information in the usual way.
The (conditional) standard error of the estimated variance can be calculated from the square root of the
negative of the reciprocal of the second derivative of the full log-likelihood at 0

)
Tdn 3WTK-1W
SE(Gf) = 4| — — . 10
(Uf) O,? O,? 1 (10)
2.2. Predictive distributions
Marginal predictions at time ¢ € R can be made at a set of test points (arc-lengths) s* = (sf,...,sk.)

for each coordinate, using the observed training points s = (s, ..., s,)". The joint distribution for a curve
at time ¢, W*(q), and the whole sequence, W, can be written as:

W9 _ n o[ KoK LoK:® K., (11)
w dn*+Tdn ) (L ® Kc ® KS*S)T Kt ® Kc X Ks )

L= o (<) e (F) L e (HITD) (12)

W*(q) | W~ Ny ([L @ K, ® Koo ] [Ke @ Ko @ K] 7'W,
K. 9Ke — LK, ® K] [Ki @ K, @ K] 'L © Ko ® Kg+4]7)

where

Then

The matrix L depends on the value of q. K4« denotes the n x n* matrix of spatial covariances evaluated at
all pairs of training and test points, with (i,5)*" element equal to k, (s, sj), K- is its transpose and K-
represents the covariance matrix for the test points.

3. Gaussian process model for curves evolving along a phylogenetic tree

A tree can be defined as a mathematical structure which is used to model the evolutionary history of a
group of objects, such as organisms, DNA sequences, or, in our case, curves. The actual pattern of historical
relationships is the phylogeny or evolutionary tree for which estimation is the aim (Page and Holmes, 1998).
A tree consists of nodes connected by edges (Figure 2). In most cases, the terminal nodes (or leaves)
represent the objects for which data are available, usually at the present time. Internal nodes represent
hypothetical ancestors and the ancestor of all the objects that comprise the tree is the root. The nodes and
edges of a tree may have various kinds of information associated with them and one of the issues of interest
is to reconstruct the (missing) data at each hypothetical ancestor. Most methods also try to estimate the
amount of change that takes place between each pair of nodes, which is represented as an edge length.

The particular branching pattern of a tree is called its topology. This does not represent the distance
or time between nodes. A widely-used shorthand notation for the topology of a tree is the Newick format
(Huson et al., 2010), where each internal node is represented by a pair of parentheses that enclose all
descendants of that node. In this notation, the tree from Figure 2 would be written as (4, (B,C)).

Where there are models of evolution for the data, standard statistical methods can be used to make
estimates of the phylogeny, such as maximum likelihood estimation (Felsenstein, 2004). Depending on the
different types of data that can be observed at the leaves of the tree, an appropriate likelihood function can
be associated with the tree. This likelihood function can be maximised with respect to the tree topology,
the branch lengths, and other model parameters. Because there exist finitely many tree topologies, it is
possible, in principle, to optimize branch lengths and model parameters for every possible tree topology
and choose the tree that has the highest likelihood value as the maximum likelihood tree. However this
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Root

Branch Internal node
(edge) (hypothetical ancestor)
D tl

Terminal node (leaf)

Figure 2: A simple tree and associated terms and times.

approach is only viable for trees with a small number of leaves and a correspondingly small number of
possible topologies. For trees with a larger number of leaves the number of possible topologies increases
exponentially, so exhaustively searching over this tree space is computationally infeasible. Various heuristics
can be used to find the topology that has the highest likelihood, such as local modifications of a previously
visited tree topology. For example, common methods traverse the tree topology space greedily by comparing
the likelihood values between modified trees and by choosing the topology that increases the likelihood the
most; the procedure will end if there are no trees that increase the likelihood (Dhar and Minin, 2016).

3.1. Phylogenetic covariance function

Consider a set of observations such that each corresponds to a point (s, t), where s is a continuous-spatial
index, the arc-length, and t is the location in the tree (at a specific time on a specific branch). To construct
a covariance function for this type of data, two assumptions natural to the context of evolution are made.
Assumption 1: Conditional on their common ancestors in the phylogenetic tree T, any two function-valued
traits are statistically independent. Assumption 2: The statistical relationship between a function-valued
trait and any of its descendants in T is independent of the topology of the tree. In most cases, the covariance
function is assumed to be separable in s and t, so that we need to specify just a spatial and a phylogenetic
covariance function, as done by Jones and Moriarty (2013). The phylogenetic covariance function can be
defined as:

k‘T(fi,fj) = exp (—dT(tZ’t])> s (13)

I

where dr(t;,t;) denotes the ‘patristic’ distance between t; and t;, i.e., the distance along the path from t;
to t;. Consider the tree in Figure 2, and let ¢y be the time at present, i.e. ¢y = 0. The patristic distance
between (terminal) nodes B and C' is twice the age of their most common recent ancestor, i.e., the time
back to node D: dr(B,C) = 2t;. The time between A and D is the sum of the times from each of them
to their most common recent ancestor, F: dr(A, D) = ta + (to — t1) = 2ts — t;. The matrix of patristic
distances for the tree is:

A B C D E
A 0 2t2 2t2 2t2 — tl tQ
B 2t2 0 2t1 tl tg
C 2t2 2t1 0 t1 to . (14)
D 2t2 —11 t1 t1 0 to — 11
E to to to tz -t 0



The hyperparameter u specifies the characteristic time scale for the evolutionary dynamics in the tree.
As previously, the overall process variance is included in the spatial covariance function. Note that other
non-exponential covariance functions built in terms of patristic distances can be employed (Anderes et al.,
2017).

3.2. The model

Each curve can be represented as a GP which describes the joint distribution over arc-length s, indexing
space, the discrete label ¢, indexing coordinates, and t, indexing the position in the tree. The GP can then
be defined as:

w(t,c,s) ~ GP(m(tc,s), k(t,t,c.c,s,8)). (15)

For a series of spatial points s = (s1 - - - s,)" and using the notation from previous section, points on a curve
at node t can be notated as W (t) = [c1(t),...,cq(t)]".

If I represents the number of terminal nodes in the tree, then the total number of nodes, m, is 21 — 1 (in
a fully resolved rooted bifurcating tree). If data are available at all nodes, the joint distribution for the set
of points of all the curves in the tree is:

Wr = [W(t), ..., W(t,)]" ~ Nuan (m,K), (16)

where m represents the mean, again assumed to be zero and K is the covariance matrix. Once again,
separability is assumed, so that K = Kt ® K, ® K,. Whilst K, and K, remain as before, Kt is the
covariance matrix of points on curves at different nodes. The phylogenetic covariance function is used and,
hence, this matrix has (i, j)'" element equal to kr(t;,t;), where t; is the position of the i*" node in the tree.
If only data at the [ terminal nodes are available, the distribution has its dimensions reduced, such that the
set of curves at the leaves Wy, ~ Nig, (m, K). The covariance matrix K will have the same structure. It
is important to note that the phylogenetic covariance matrix, although calculated only for the leaves, will
reflect the relationship among all nodes, since it takes into account internal nodes to calculate the patristic
distances between the leaves. The log-likelihood function and the profile log-likelihood follow from (16) as
in Section 2.1.

3.8. Identifiability

The model proposed above assumes that the times of the nodes are known and the evolution rate p is
to be estimated. In practice, both the times and p are unknown. The likelihood function only depends on
these unknowns via the product of p with the node times. So, deeper trees with larger values of u result in
the same likelihood value as shallower trees with smaller ;. The model is therefore non-identifiable and the
likelihood surface contains ridges of equal (maximal) likelihood. One solution is to fix p so that the node
times are effectively being measured in some arbitrary units, not years or generations, as would be ideal
(Yang, 2006). An independent calibration of p would permit a conversion of node times into such units.
Note that assuming that p is constant across the tree implies that the rate of evolution does not change
across the phylogeny. This is analogous to the ‘molecular clock hypothesis’ of molecular evolution (Thorpe,
1982).

3.4. Predictive distributions

In practice, the most common scenario is to have data available only at the leaves of the tree. In which
case, it is natural to try to infer curves at internal nodes (ancestors). Predictions can be made both spatially
and temporally. For the set of points on curves at the [ leaves Wy, ~ Njg, (m, K), with K = Kt @ K. @ Kj,
marginal predictions at node q can be made at a set of test points s* = (s7,...,s>.) using the posterior

predictive distribution W*(q) | Wy, (conditioned on the maximum likelihood values of the hyperparameters):
W*(q) | W~ N ( ([LK7'] @13 @ [K,- K ']) Wi,
I(C X KS»« — ( [LKE}LT] & [I3K0] oy [KS*SK;IKSS*] ))a (17)
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where L is the covariance matrix between the terminal nodes and node g:

L o () () ()]

4. Implementation

When fitting the model to real data, several problems may arise. The question of whether the hyper-
parameters should be optimised or drawn from their posterior distribution is a manifestation of the long-
standing debate whether Bayesian or frequentist methods are more desirable. Applying Bayesian methods
is not always straightforward. The difficulty with priors lies in the challenging process of assigning prior
probabilities when prior beliefs may be very hard to express in terms of the models (Gibbs, 1998). Choosing
the hyperparameters via maximum likelihood estimation (MLE) has become a widely used approach in
the literature, partly because of the intuitive motivation of maximizing the probability of occurrence and
partly because of its strong asymptotic properties (consistency and efficiency) (Robert, 2001). MLE was
recommended, analysed and widely popularized by Ronald Fisher between 1912 and 1922 (Aldrich, 1997).
Since then (Mardia and Marshall, 1984), it has been widely used for the estimation of hyperparameters in
Gaussian Processes. In this research hyperparameters are chosen by MLE.

Points in facial curves tend to be highly correlated (due to their smoothness). This causes the covari-
ance matrix to be potentially ill-conditioned. One possible approach is to use spectral decomposition, also
known as eigen-decomposition. By expressing a positive semi-definite matrix in terms of its eigenvalues and
eigenvectors, the inverse and determinant can be approximated by disregarding those eigenvalues that are
very small. This produces the Moore-Penrose pseudoinverse (Ben-Israel and Greville, 2003). However, in
some cases, maximisation of the likelihood can still be rather unstable even with the use of the spectral
decomposition. Another option is to include a noise term in the model, as this causes the ratio between the
largest and the smallest eigenvalue to decrease and hence the correlation matrix is no longer ill-conditioned.
This is a reasonable strategy since the data acquisition process is not noise-free in practice.

As previously mentioned, to find the MLE of the parameters, an initial grid search was carried out
to locate the local region where the maximum of the likelihood is located. The size of the grid grows
exponentially with the dimension of the distribution so it is important to restrict the number of possible
values of @ at which the log-likelihood is computed, while assuring the coverage of the relevant parts of the
distribution (Pietilainen, 2010). To reduce the number of hyperparameters, the optimal value of the signal
variance that maximises the log-likelihood function (see (8) and (9)) was calculated. As the signal variance
is taken out of the Squared Exponential covariance function, where measurement noise was added as an
additional variance o2 on the diagonal, it is now accounted for by specifying a noise-to-signal ratio o2/ O'J%
as an additive term on the diagonal of the new Kj.

5. A case study: the evolution of nose shape within and between ethnic groups

To apply the model to real data, a small case study was conducted. Using the ©Di3D 3-dimensional
surface-imaging device (http://www.di4d.com/), facial images were collected from volunteer subjects re-
cruited in the local community. Ethical permissions were obtained from the Ethics Committee of the College
of Science and Engineering, University of Glasgow. Three broad ethnic groups were selected for the study:
African, European and Asian. The subjects consisted of 12 Sub-Saharan African, 20 British and 12 Chinese
males. For each subject, two curves chosen to identify the nose were extracted. These curves are: the mid-
line nasal profile (ridge points from the nasal root along the dorsum of the nose and the columella, defined
by 28 equally-spaced points) and the nasal bridge (which outlines the width of the nose from one alar facial
groove to the other, defined by 13 equally-spaced points). To be able to properly study the similarities and
dissimilarities of the curves, Generalised Procrustes Analysis (GPA) was used to register the set of shapes
into a common coordinate system. This is a standard precursor to exploration of the shape variability in a
dataset. To compare the shape of two or more objects, the objects must first be optimally ‘superimposed’.


http://www.di4d.com/

Figure 3: Nose curves: mid-line nasal profile (blue) and nasal bridge (green). From top to bottom: African, British and Chinese
subjects.

GPA involves the superimposition of all configurations ‘on top of each other’ in optimal positions by trans-
lating, rotating and rescaling each figure so as to minimize the sum of squared Euclidean distances between
corresponding points. The concept of GPA was originally proposed by Kristof and Wingersky (1971). A
full description of the method can be found in Dryden and Mardia (1998). An example of the nose curves
from one participant from each ethnic group is shown in Figure 3. The curves are superimposed on facial
surfaces rotated at different angles for a better appreciation of the three-dimensional curves.

5.1. FEwvolution of mean nose shape

A natural starting point is a model for the evolution of the mean shape of the nose through a phylogenetic
tree. For this, the corresponding three-dimensional points of each curve were averaged for each group,
resulting in sets of mean points from the three ethnic groups for the two nasal features. These means can
be plotted for each coordinate as a function of the arc-length rescaled from 0 to 1. Moreover, the points
on each coordinate curve have the mean over that curve subtracted to match the assumption of zero mean
in the GP model. The profile means are shown in Figure 4(a), with each group represented by its first
letter, conveniently, A-African, B-British and C-Chinese. By the nature of the nose profile and the frontal
orientation of the images, the x coordinate varies very little. For this reason, it was decided to model the
data of the nose profiles as curves embedded in two dimensions, omitting coordinate x, while the data for



the bridge curves is modelled as 3D curves. The means of the nasal bridges for each group are shown in
Figure 4(b).

In both cases, for the two- and three-dimensional models, data are only available at the terminal
nodes. Given there are three leaves, the three possible (rooted) topologies are (A, (B,()), (B, (A4,C))
and (C, (A, B)). Calling the root of the tree E and the remaining internal node D (Figure 2), and assigning
the data at the leaves time zero, the times of the nodes A-E are (0,0,0,¢p,tg), where time increases going
into the past. The hyperparameter p has been set to one, to make the model identifiable. The model is
reparametrised in terms of differences in node times: %, representing the time between node D and the
leaves and to, representing the time from the root to node D.

#: Obs x - African
B Obs x - British
Obs x - Chinese
# Obs y - African
B Obs y - British
Obs y - Chinese
4 Obs z - African
B Obs z - British
€ Obs z - Chinese

N
38

s

Values
Values
o

0.00 025 075 1.00 0.00 0.25

0.50
Arclength

050
Arclength

(a) Mean mid-line nasal profile (b) Mean nasal bridge
Figure 4: Points on the mean nose curves.

Let the sets of hyperparameters be Oy = (0 fap, Aap, Kyz2p, t12p, toop) and Osp = (0 f3p, Asp, Kwyap, Fy23p;
Kz23p, t13p, t23p) for the nose profile curves and the nasal bridges, respectively. Data from the two nasal
curves can be modelled separately or jointly, by adding up the log-likelihood values of the two- and three-
dimensional datasets and optimising the hyperparameters simultaneously. If both models are optimised
simultaneously, there are three possible scenarios:

1. Assume the nose profile curves and the nasal bridges have evolved at the same rate, and have diverged
at the same time points in history, i.e., @ = (02, Aop, Kyz2p, 03D, Kayaps Kyz3ps Kazap, t1, t2).

2. Use the same time differences for both sets but allow for a scaling parameter multiplying the rate of
change: p is fixed to 1 for the 3D data, and a hyperparameter pop is introduced, representing the
relative rate of change of profile to bridge: @ = (0 fop, Aap, f4op, Kyz20, T £30s Kayap, Kyz3p, Kzzap, t1, t2).

3. Allow for each set of curves to have different times ¢; and ¢, i.e., model each set of curves independently:
6 = (04, O3p), which is equivalent to modelling them separately.

Hyperparameters were optimised by maximum likelihood for the three possible topologies and the topology
with the largest log-likelihood value chosen. For every possible scenario and for modelling both sets of curves
independently, the topology producing the highest values was (B, (4, C)). That is, the African and Chinese
mean curves have a common ancestor more recently than each with the British.

Optimal hyperparameter values are shown in Table 1. Note the small differences in the values of the
log-likelihood, particularly between the model for the same times and the model that introduces the scaling
parameter pop. That scaling parameter is estimated to be close to one and its approximate 95% CI contains
one. This implies that there is indeed no significant difference between the rate of change of the nose profiles
and the nasal bridges. An error ratio  was added to the diagonal of the covariance matrices to accommodate
errors in the observed values, defined as n = o2/ JJ%. This was fixed to n = 0.01. Given the resulting optimal
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values for 6yop and O ysp, the final additive normal error have standard deviations (o5,) of approximately
0.74 mm and 0.86 mm, respectively.

Model selection can be performed to select the best scenario. The Bayesian information criterion (BIC)
was calculated for each model: 169.71 for scenario 1, 175.35 for scenario 2 and 175.01 for scenario 3, favouring
the model with fewest parameters (scenario 1).

1. SAME TIMES

0 0 fap Aop  Aoop 0 fap Asp Risp Rosp Rasp T t
MLE 7.59 0.15 0.14 6.86 0.11 0.01 0.75 —0.01 0.0073 0.0107
SE 0.41 0.00 0.12 0.45 0.00 0.16 0.07 0.16 0.0017 0.0032

log (L(8)) —56.59313
2. SAME TIMES + SCALING PARAMETER FOR [

0 0 fap A iz Fam & f3p Asp  Risp Rasp A3sp b b
MLE 7.58 0.15 0.95 0.14 6.96 0.11 0.01 0.76 —0.02 0.0069 0.0104
SE 0.48 0.00 0.38 0.12 0.45 0.00 0.16 0.06 0.16 0.0024 0.0036

log (L(6)) —56.58461
3. DIFFERENT TIMES

0 6f2D 5\2D ’%ZQD £12D £22D OA_fSD 5\3D ’%13D /%QSD ’%BSD tAlSD tAQSD
MLE 7.37 0.15 0.07 0.0091 0.0062 6.87 0.11 0.03 0.74 —0.00 0.0036 0.0149
SE 0.46 0.00 0.12 0.0026 0.0035 0.45 0.00 0.16 0.07 0.16 0.0012 0.0052

log (L(8)) —53.59132

Table 1: Optimal hyperparameters for the three scenarios.

The topology (B, (A,(C)), which had the maximal log-likelihood value, was used to reconstruct unob-
served ancestral mean curves at the internal node D and at the root, F. The maximum likelihood estimates
from scenario 1 were used to make predictions at 30 equally-spaced spatial points, s}, for the profile curves
and 20 spatial points, sip, also equally spaced, for the nasal bridges. As there is little variation among the
nose profile curves, only the reconstructed values for the nasal bridges are shown here.

The predicted curves at node D, the common ancestor of A (African) and C' (Chinese), are shown in
Figure 5(a). The posterior predictive mean is much closer to A and C' than to B (British). The observed
values of B differ from A, C' and the predictions at D considerably, with the middle spatial-points not
even contained in the confidence bands of D. The reconstructions for the root of the tree, node F, are
shown in Figure 5(b). Note how much wider the confidence bands are in this case, reflecting the fact that
extrapolations are being made even further back in time from the observed values. Note also how the
posterior mean of D is closer to the observed values of A and C, than the posterior mean of E is to all the
observed values. Nonetheless, the data are measured in millimetres, and therefore, even the widest bands
represent uncertainty of no more than 4 mm. The predicted values shown for D and E are one random draw
using the predictive distributions (17).

Using Procrustes analysis, the posterior means can be translated back to the original 3D space of the
nose curves, allowing a more comprehensive exploration of the ancestors’ nose shape. These shapes are
illustrated in Figure 6. Different angles of view can be seen when viewed in digital form (using Adobe reader
https://get.adobe.com/uk/reader/). The means of the three ethnic groups are displayed in blue, from
the African in the lightest blue, from the British in an intermediate shade and from the Chinese in the
darkest shade of blue.
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Figure 5: Observations along with posterior means, one realization of predicted values and 2-standard deviation credible bands
for nasal bridge curves at nodes D and E.
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(a) Node D ) Node E

Figure 6: Posterior mean for reconstruction at ancestral nodes D and E, displayed with the means of the original data.
(www.stats.gla.ac.uk/~adrian/phylogenetic-noseD.mp4 and www.stats.gla.ac.uk/~adrian/phylogenetic-noseE.mp4)

5.2. Inter- and intra-group variation in nose shape

In the study described above, the mean nose curves for each ethnic group have been modelled. This
approach does not address the variability within groups. Although the sample size in each group is small
for a comprehensive analysis, a model for all the data is described here. All the curves in each ethnic group
are assumed to have simultaneously diverged from one common ancestor, different between groups. These
assumptions were made to avoid a very challenging search over tree space, which would be a natural further
development. Let the common ancestral node of Africans Aq,..., A2 be A, of British By,...,Bsy be B
and of Chinese C1,...,C12 be C. As before, to select the best topology, optimal hyperparameters were
found by maximum likelihood for each of the three possible topologies. From these results, the topology
with the highest log-likelihood value is chosen. Two trees were studied, one for the evolution of nasal bridge
curves and one for the nose profile curves. In both cases the topology with the highest log-likelihood was,
as with the mean curves, (B (A C)) For the nasal bridges, the optimal hyperparameters were Op =
(6 f3p, Aap, A Rayan; Ryz3p, Rez3p, ta,tp,to,tp,tg) = (7.17,0.08,0.11,0.02, —0.02, 0.0049, 0.0055, 0.0028, 0.0055,
0.0114). The corresponding tree is displayed in Figure 7.

By By - -Bid390 ArAy Aty C1Cy - -Ci1n

Figure 7: Tree for nasal bridges, with branch lengths corresponding to the fitted model.
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When fitting the multifurcating tree for the nose profiles, problems arose due to the very small variability
observed between the curves. The differences between node times are even smaller than those found for
the nasal bridges. The root of the tree had the same estimated time as that of the common ancestor for
the British curves, i.e., ip = t, (see Figure 8(a)). The estimated time difference between D and E lay on
the boundary set by the requirement that the root cannot be younger than any other node. In addition,
if an estimate lies on a boundary, the SEs calculated from the Hessian matrix are not reliable. Proceeding
heuristically, with the aim of avoiding a model with parameter estimates on the boundary, and since the
branch from D to F was estimated as short as it could be, a second multifurcating tree with no internal
node D was explored. In this scenario, nodes B and E were still estimated at the same time (see Figure
8(b)). Since both trees had estimated {p = tg, it was decided to set node B to be the root of the tree.
This final multifurcating tree is shown in Figure 8(c), with the branch lengths, as usual, proportional to
the optimal time differences. The final optimal hyperparameters were O = (6 f2p, ;\QD, /%yzzD,fA,fB,fC) =
(7.15,—-0.0532, —0.0888, 0.0021,0.0024, 0.0018), which are not on the boundary.

The estimates for the hyperparameters not related to time remained stable across the three different
trees. Moreover, the age of B was stable and the age of A always larger than the age of C'. This has the
interpretation of greater variability amongst the British curves than within the other ethnic groups, which
agrees with the topologies previously estimated that had the British evolving more separately. The Chinese
group has the smallest variability in nose profile. The final maximised log-likelihood value was around 3
units smaller than in the original tree, but there are two hyperparameters fewer in the later tree. In a
likelihood ratio test, the simpler model with fewer hyperparameters cannot be rejected. Furthermore, there
are no estimates lying on the boundary.

By By - -Bid35 ArAy Ay C1Cy O By By 6 Bipllyy, Hy ppei nflyy 167Gy 16 GOy

(a) First tree for nose profiles curves. (b) Second tree for nose profiles curves.

Bl BQ' ) '319820 Ol CZ ) '011012 Al A'Z' 'V'AllAl'.?

(c) Final tree for nose profiles curves.

Figure 8: Model selection for topology of tree for nose profiles.
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5.8. Further models

The particular configuration of facial curves studied here has a common point at the tip of the nose. This
raises the question of whether a new model which allows correlation between the curves would be beneficial.
This requires a likelihood which is constructed jointly, rather than as a product of independent components.
As defined in Section 3, each curve evolving along a phylogenetic tree is defined as

Wr = [W(t) ... W(t,)]" ~ Npan (mKr @ K, @ Ky). (19)

Let B(t) denote the nasal bridge curve (3D) at position t in the tree and P(t), the mid-line nasal profile
(2D), and let ¢ be the common point of the two nose curves, located at arc-length s, in the mid-line nasal
profile and s; in the nasal bridge. Then:

8 v

where K, is defined as:

_ K., ® K, chp ® Kpr
KCS B |:[ch17 ® Kpr]T ch ® KSP ’ (21)
with:
1 K1 K2
] ch = K1 1 K3
K2 R3 1

e K, has (i,)" element equal to exp (—1(s; — s;)%/A2).

o 1 R4
(L)

[ ]
e K, has (i,5)"" element equal to exp (—%(s; — 5;)?/A2).

Ke Ke
e K, = | K ke

KC HC

- 2 . 2
e K,,, has (i,4)t" element equal to exp <—§ [(SZ )\gsb) + (5 )\2«9;)) }) )
D

The key point is that the elements of the between-curves covariance matrix Ky, , are based on the sum of
the distances from point 7 on one curve to the common point ¢, and from c to the point j on the other curve.
To contain the rise in the number of hyperparameters, the correlation between coordinates from different
curves in K., = are set to a common value, k.

The joint sequence of curves along the phylogenetic tree can then be written as:

[B(t)) P(t) ... B(tm) P(tm)]" ~ Npgn,t2n,) (0, Kt @ Key). (22)

This model was fitted to the mean curves presented in Section 5.1, with the common point set at
sp = 0.5 and s, = 0.67. Previously, as there were two separated likelihood components, the signal variance
was calculated independently for each curve. An assumption of one overall o is reasonable, as the confidence
intervals for variances of the two curves overlap. The hyperparameters in the new joint model were optimised
for the three possible topologies and, as previously, the topology with the highest value was (B, (A4, C)).
The optimal hyperparameters are shown in Table 2.
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6 Gy As Ap fiy oo fia fia e t t
MLE 6.64 009 0.0l 003 -0.00 038 0.02 0.06 0.0021 0.0061
SE 0.278 0.004 0.003 0.108 0.092 0.112 0.082 0.155 0.0002 0.0013

log (L(8)) —334.2679

Table 2: Optimal hyperparameters for the model with one common point.

The hyperparameter estimate i, = 0.06 has SE = 0.155 and so is not significantly different from 0. This
does not provide convincing evidence of correlation among the coordinates of the different curves. In addition,
in comparison with the model of Scenario 1 in Section 5.1, which has the same number of hyperparameters,
the log-likelihood for the joint model is very much smaller. So, while the new model demonstrates how
correlation between curves can be incorporated, there is no evidence that this is necessary or helpful in the
current example.

6. Discussion

The use of GP models combined with a phylogenetic covariance function provides a new, powerful, tool
for the study of shape combined with genealogical analysis. In this work, the GP (prior) mean has been
assumed to be zero. This assumption is not a drastic limitation and could be relatively easily relaxed.
In any case, the covariance function controls how rapidly (and where) deviations from the mean function
occur and so a more flexible covariance function can, to some extent, substitute for a more structured mean
function; where to put the effort is somewhat a matter of taste. Further, separability is assumed for the
covariance function. Whilst there has been much development in the use of cross-covariance functions for
multivariate data, the theoretical characterization of the allowable classes of multivariate covariances is still
ambiguous and it is not clear, given a certain number of marginal covariances, what is the valid class of
possible cross-covariances that still results in a non-negative definite structure (Genton and Kleiber, 2015).
Further lines of investigation might include a study of non-separable covariance functions, such as convolved
GPs (Shi and Choi, 2011).

In simulations (not shown), the model performed well, capturing adequately the covariance structure in
space and time, for curves embedded in two or three dimensions. In particular, the model performs well even
when data are available only at the leaves, which will be the case in most applications. This is shown with
the study of the evolution of nose shape. The predictive distributions provide a powerful tool to estimate
ancestral shapes. Spatial marginal predictions to interpolate the data at any measured node can also be
made but most interest lies in being able to reconstruct data which one could never directly obtain. In the
second study, where all the curves at the leaves are studied, prediction could also be carried out for the
common ancestor of each ethnic group. Given the small amount of data available, the predictions in this
case are not expected to differ largely from the mean of the curves in each.

When studying the structure of the tree for the mean nose curves for the three ethnic groups A-African,
B-British and C-Chinese, the first thing observed is that the optimal topology links A and C' with one
common ancestor more recent than the common ancestor of the three groups. From the genetic study
of ethnic groups, there is general agreement that the human lineage evolved in Africa and then spread to
southern Eurasia as H. erectus. After the evolution of modern humans in Africa, a second expansion occurred
out of Africa between 60000-80000 years ago that resulted in a global replacement (Macaulay et al., 2005).
Therefore, it might have been expected to find a topology that links B and C' under one more recent ancestor,
having A evolving on their own. These results are based on analyses of DNA variation assuming no strong
role for natural selection. However, it could well be that the morphology of the nose has evolved to adapt
to different environmental conditions. Noses adapted to cold weather may function differently from those
that evolved in hot and humid climates. People of African descent typically have shorter noses, with wider
nostrils, whilst people of northern European descent typically have longer, thinner, noses. Individuals from
cold, dry climates have higher and narrower nasal cavities than those from hot, humid climates (Noback
et al., 2011). The clustering of African and Asian noses then would reflect convergent evolution of nasal
shape rather than an ancestral population relationship.
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This topology was found to be optimal for both sets of nose curves for the mean of each group, as
well as when using the within-group variation of the nasal bridges. The equivalent topology for the nose
profiles (Figure 8(c)) looks at first sight distinct, with the British ancestor sitting at the root. However
the multifurcation of all British with the ancestor of Chinese and sub-Saharan Africans is most naturally
interpreted as reflecting uncertainly in the tree topology due to the limited information in the variation of
nasal profiles and indeed that tree can be resolved into the corresponding tree of nasal bridges. The proposal
to model both nasal curves together (Section 5.3), recognizing that they must become more correlated as
they near their crossing point, even if it did not prove a significantly better fit, at least led to the same tree
topology.

The results presented here provide an illustration of what these models can accomplish. A larger study
with more subjects, that takes into account more ethnic and sub-ethnic groups, would permit one to test
the idea that nose shape is correlated with climate condition. The models could clearly also be applied to
other facial curves. If data could be collected from various members of a family, it would be interesting
to model the facial morphology within its members. Even more powerful methods of analysis could be
developed through fusions of genetic and shape information. The results presented here open the door to
this interdisciplinary field.
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