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Abstract. Using a representation theoretic parametrization for the orbits in the en-

hanced cyclic nilpotent cone, derived by the authors in a previous article, we compute
the fundamental group of these orbits. This computation has several applications to

the representation theory of the category of admissible D-modules on the space of

representations of the framed cyclic quiver. First, and foremost, we compute precisely
when this category is semi-simple. We also show that the category of admissible D-

modules has enough projectives. Finally, the support of an admissible D-module is

contained in a certain Lagrangian in the cotangent bundle of the space of represen-
tations. Thus, taking characteristic cycles defines a map from the K-group of the

category of admissible D-modules to the Z-span of the irreducible components of this

Lagrangian. We show that this map is always injective, and a bijection if and only if
the monodromicity parameter is integral.

Contents

1. Introduction 1
2. Monodromic D-modules 5
3. Quantum Hamiltonian reduction 11
4. Admissible D-modules 17
5. The framed cyclic quiver 23
6. Semi-simplicity 28
References 35

1. Introduction

The notion of admissible D-modules first appeared (implicitly) in Harish-Chandra’s
seminal body of work on representations of real reductive groups. Later, admissible D-
modules were formally introduced as the algebraic analogue, via the Riemann-Hilbert
correspondence, of Lusztig’s character sheaves [18], [35], and [22]. The summands of
the Springer sheaf appear as a special case of Lusztig’s character sheaves; their algebraic
analogues are the summands of the Harish-Chandra D-module. They constitute important
examples of admissible D-modules, and have been extensively studied e.g. [24], [30].

More recently, Gan and Ginzburg [17] defined admissible D-modules on the space of
representations of a certain quiver naturally associated to the Hilbert scheme of points
in the plane. Their motivation for doing so was the fact that the spherical subalgebra
of the rational Cherednik algebra of a symmetric group can be realised as the quantum
Hamiltonian reduction of the ring of differential operators on the space of representations.
This means that there is a natural functor of Hamiltonian reduction that associates to
each G-monodromic D-module a corresponding representation of the spherical rational
Cherednik algebra. In particular, admissible D-modules are precisely those mapped to
category O under Hamiltonian reduction. A key new feature of admissible modules in
this setting is their dependence on a parameter χ; the properties of the category vary
greatly depending on the choice of χ. This case was studied further in [16] and [4] where,
amongst other things, the analogue of the Harish-Chandra module is considered.

Finally, admissible D-modules have been shown to play a key role in understanding
geometric category O associated to quantizations of Higgs branches (in particular, quiver
varieties), as described in [40].
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Despite their intimate relation with Springer theory, character sheaves, rational Chered-
nik algebras and quantized Higgs branches, admissible D-modules are surprisingly poorly
understood, at least from the algebraic point of view. The goal of this article is to try
and remedy this, by developing general algebraic results that can be applied to categories
of admissible D-modules on a G-representation.

1.1. Admissible D-modules. In sections 2 to 4, which constitute the heart of the pa-
per, we consider an arbitrary category of admissible D-modules, defined on an affine
G-variety satisfying certain natural finiteness conditions; these are (F1)-(F3) of section 4.
However, our motivating example throughout has been admissible modules on the space
of representations of the framed cyclic quiver, where the associated algebra of quantum
Hamiltonian reduction is the spherical subalgebra of the rational Cherednik algebra for
the wreath product Sn oZ`. Therefore, for simplicity, we describe in the remainder of the
introduction what our results mean in this case.

Let Q(`) be the cyclic quiver with ` vertices, and Q∞(`) the framing ∞ → 0 of this
quiver at the vertex 0. Throughout, we let X denote the space Rep(Q∞(`),v) of repre-
sentations of the framed cyclic quiver, with dimension vector v := ε∞+nδ, where δ is the

minimal imaginary root of Q(`). The group G =
∏`−1
i=0 GLn acts by gauge transformations

on X. Fix a character χ of the Lie algebra g of G. The category Cχ of admissible D-
modules on X is the category of all smooth (G,χ)-monodromic D-modules on X, whose
singular support lies in a certain Lagrangian Λ. Essentially those modules whose singular
support is nilpotent in the conormal direction; see section 4 for details. Admissible D-
modules are always regular holonomic, and it is easily shown that there are only finitely
many simple objects in Cχ. However, it is generally very hard to say precisely how many
simple objects there are in this category.

1.2. Counting simple objects. The enhanced cyclic nilpotent cone N∞(`, n) is the
subspace of X consisting of nilpotent representations. The group G acts on N∞(`, n)
with finitely many orbits. These orbits were first classified by Johnson [26], extending
work of Achar-Henderson [1] and Travkin [38]. In the article [3], we gave a different
parametrization of these orbits in terms of the representation theory of the underlying
quiver. Let P denote the set of all partitions and P` the set of all `-multi-partitions. In
the article [3], we showed that:

Theorem 1.1. The G-orbits in the enhanced cyclic nilpotent cone N∞(`, n) are naturally
labelled by the set

Q(n, `) := {(λ; ν) ∈ P × P` | res`(λ) + sres`(ν) = nδ} .

Here res`(λ) and sres`(ν) are the (shifted) `-residues of the corresponding partitions;
see section 6 for details. A similar result also appears in [13]. The utility of this theorem
lies in the fact that the orbit O(λ;ν) labelled by (λ; ν) consists of representations of the
quiver Q∞(`) where the dimension vector of each indecomposable summand can be easily
recovered from res`(λ) and sres`(ν). We show in section 2.5 that the fundamental group
of O(λ;ν) depends only on these dimension vectors. Thus, using Theorem 1.1, we can
compute the fundamental groups of each G-orbit in the enhanced cyclic nilpotent cone.
The groups that appear are quotients of Z`, with π1(O(λ;ν)) = Z` if and only if ν = ∅; see
Lemma 5.2. As a consequence, we can explicitly count the number of isomorphism classes
of simple modules in Cχ. Define

Qχ(n, `) :=
{

(λ; ν) ∈ Q(n, `) |
〈

exp(χ), σires`

(
ν

(i)
j

)〉
= 1, ∀ i, j

}
,

where the notation is explained in section 5.1.

Theorem 1.2. There is a natural bijection Qχ(n, `)
1:1←→ Irr Cχ.

The proof of Theorem 1.2 is explained in section 5.2.

1.3. The functor of Hamiltonian reduction. As mentioned previously, the category
of admissible D-modules is closely related to representations of the rational Cherednik
algebra Hκ(W ), where W is the wreath product Z` o Sn. The functor of Hamiltonian
reduction is an exact quotient functor Hχ : Coh(DX , G, χ) → eHκ(W )e-mod from the
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category of (G,χ)-monodromic D-modules to representations of the spherical subalgebra
eHκ(W )e. It maps the category Cχ of admissible D-modules onto spherical category
Osph
κ . Being a quotient functor, there are objects that are killed by Hχ. Because of its

connection to localization results in the style of Beilinson-Bernstein, it is an important
problem, which has been intensively studied (see e.g. [34] and [4]), to try and characterize
what exactly is killed by Hamiltonian reduction. Let R+ be the set of positive roots for

the affine root system of type Ã`−1, with δ the minimal imaginary root. We set

Rn := {α ∈ R+ | ε0 · α < n} ∪ {nδ}. (1)

Using Theorem 1.2, we show:

Theorem 1.3. The following are equivalent:

(a) Hχ : Cχ → Osph
κ is an equivalence.

(b) Hχ : Coh(DX , G, χ)→ eHκe-mod is an equivalence.

(c) Γ(X,M )G 6= 0 for all non-zero objects M of Cχ.

(d) Γ(X,M )G 6= 0 for all non-zero (G,χ)-monodromic DX-modules M .

Moreover, each of the above holds if and only if χ · α /∈ Z for all α ∈ Rn.

In particular, Theorem 1.3 says that if there is a (G,χ)-monodromic DX -module with
no (non-zero) G-invariant global sections, then necessarily there exists an admissible DX -
module with no (non-zero) G-invariant global sections.

Although admissible D-modules in our context were originally introduced by Gan and
Ginzburg as a tool to study modules in category Osph

κ , we require a basic fact about
category Osph

κ in order to prove Theorem 1.3. Namely, we use Ariki’s criterion on the
semi-simplicity of the cyclotomic Hecke algebra to deduce that the simple objects in Osph

κ

are in bijection with `-multi-partitions of n, when χ · α /∈ Z for all α ∈ Rn.

1.4. Algebras of quantum Hamiltonian reduction. As noted above, the main mo-
tivation for studying the functor of Hamiltonian reduction is that it relates admissible
D-modules to modules over the spherical rational Cherednik algebra. This is possible
precisely because the latter can be realised as a quantum Hamiltonian reduction of the
algebra D(X) of differential operators on X. As we have seen, this does have a drawback
in that the functor of Hamiltonian reduction is often not an equivalence.

In order to remedy this, we study a natural generalization of the construction of Hamil-
tonian reduction. Namely, for any finite dimensional G-module U , there is an associated
algebra of quantum Hamiltonian reduction Aχ(U) of D(X). Just as in the case where
U = C is the trivial G-module, there is a functor of Hamiltonian reduction

HU,χ : Cχ → Oχ(U) (2)

to “category O” for Aχ(U). The fact that the category of admissible D-modules has only
finitely many isomorphism classes of simple objects implies that, for most U , the functor
HU,χ is an equivalence. We deduce:

Proposition 1.4. The category Cχ has enough projectives.

It follows that the indecomposable projective objects in Cχ are labelled by the set
Qχ(n, `). One can lift Proposition 1.4 to a statement about the category QCoh(DX , G, χ)
of all quasi-coherent (G,χ)-monodromic D-modules on X. Namely, there is a projective
object Pχ(U) in Coh(DX , G, χ), whose endomorphism algebra is the quantum Hamilton-
ian reduction Aχ(U). We say that U is sufficiently large if (2) is an equivalence.

Theorem 1.5. For all U sufficiently large, the D-module Pχ(U) is a projective generator
in QCoh(DX , G, χ) and hence Coh(DX , G, χ) is equivalent to Aχ(U)-mod.

One can always choose finitely many simple G-modules {Ui} such that [U : Ui] 6=
0 implies that U is sufficiently large. In particular, there are always infinitely many
sufficiently large G-modules. If M is a module for the quantum Hamiltonian reduction
Aχ(U), then one can consider it as a sheaf over X//G. In particular, one can consider
the support V (M) of modules M in Oχ(U). In general it is difficult to describe the
properties of the algebras Aχ(U) since they tend to depend non-trivially on the parameter
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χ. However, the following theorem describes the properties of the algebras Aχ(U) when
χ is generic.

Theorem 1.6. If χ · α /∈ Z for all α ∈ Rn then:

(a) Aχ(U) is simple, for all non-zero U ∈ Rep(G).

(b) The algebras Aχ(U) and Aχ(U ′) are Morita equivalent, for all U,U ′ ∈ Rep(G).

(c) V (M) = X//G for all non-zero U ∈ Rep(G) and all non-zero M in Oχ(U).

Our proof of Theorem 1.6 is rather indirect. One would like to understand what the
algebras Aχ(U) look like on some dense open subset of X//G. Unfortunately, there is no
open subset of X//G where the group G acts freely on its preimage in X. To remedy this,
we consider instead the G-stable open subset X◦ of X consisting of all representations of
the framed cyclic quiver admitting a cyclic vector at the framed vertex. In this case, there
is indeed an open subset of X//G on whose preimage in X◦ the group G acts freely. This
implies that the algebras A◦χ(U), defined on X◦, are much better behaved than Aχ(U).
For instance, we show:

Proposition 1.7. The algebras A◦χ(U) are prime.

In general the algebras Aχ(U) are not prime. The properties listed in Theorem 1.6
are much easier to establish for the algebras A◦χ(U). Thus, we are reduced to asking how
similar the two algebras are. Since X◦ is an affine open subset of X, localization induces
an algebra map ϕU : Aχ(U) → A◦χ(U). Let j : X◦ ↪→ X be the open embedding. In
general, ϕU is neither injective nor surjective. More precisely, we show that:

Theorem 1.8. The following are equivalent:

(a) j∗ : Coh(DX , G, χ)→ Coh(DX◦ , G, χ) is an equivalence.

(b) ϕU : Aχ(U)→ A◦χ(U) is an isomorphism for all U ∈ Rep(G).

Moreover, each of the above holds if and only if χ · α /∈ Z for all α ∈ Rn.

In other words, the map ϕU is an isomorphism for all U ∈ Rep(G) if and only if there
are no (G,χ)-monodromic D-modules supported on X rX◦, if and only if χ · α /∈ Z for
all α ∈ Rn.

1.5. Characteristic cycles. As noted earlier, the singular support of an admissible D-
module is, by definition, contained in a certain Lagrangian Λ. Theorem 1.1 implies that
the Lagrangian Λ has irreducible components Λ(λ;ν) labelled by pairs (λ; ν) ∈ Q(n, `).
Therefore, there is a characteristic cycles map Ch from the Grothendieck group K0(Cχ)
of Cχ to the free abelian group

⊕
(λ;ν) ZΛ(λ;ν).

Proposition 1.9. The characteristic cycles map

Ch : K0(Cχ)→
⊕

(λ;ν)∈Q(n,`)

ZΛ(λ;ν)

is always injective. It is an isomorphism if and only if χ is integral.

We note that this result is the analogue, in the setting of admissible D-modules, of
the injectivity of cycle maps in geometric representation theory; see [14]. It would be
interesting to explicitly describe the image under Ch of the simple objects in Cχ.

1.6. Semi-simplicity. Finally, we turn to the main result mentioned in the abstract;
that is, we consider when the category of admissible D-modules is semi-simple. As one
might expect, this is closely related to the question of when category Osph

κ is semi-simple.
It is well-known that this latter category is semi-simple if and only if the corresponding
cyclotomic Hecke algebra is semi-simple. As mentioned previously, Ariki gave an explicit
numerical criterion for when the cyclotomic Hecke algebra is semi-simple. In particular,
his criterion, together with the explicit expression for the parameters κ of the rational
Cherednik algebra in terms of the character χ, shows that the constraint χ · α /∈ Z for all
α ∈ Rn is equivalent to:

Osph
κ is semi-simple and k /∈ Z.
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Here k ∈ C is the first of the entries of the tuple κ. The open set X◦ contains the subset
Xreg, where additionally we ask that the map ”going once around the cycle” is regular
semi-simple; see section 5.3. Combining the above result with Theorem 1.3, we deduce:

Theorem 1.10. The following are equivalent:

(a) Cχ is semi-simple.

(b) M |Xreg 6= 0 for all non-zero M in Cχ.

(c) Osph
κ is semi-simple and k /∈ Z.

Moreover, each of the above holds if and only if χ · α /∈ Z for all α ∈ Rn.

Thus, Cχ is semi-simple away from a countable union of hyperplanes. The case where
k ∈ Z and Osph

κ is semi-simple corresponds to the situation where the character χ is
integral i.e. the derivative of a character of G. In this case, the rational Cherednik algebra
does not help us in analysing Cχ since Osph

κ is semi-simple. Instead, we show directly,
see Theorem 6.7, that the Harish-Chandra D-module Gχ ∈ Cχ is not semi-simple. This
implies that Cχ is not semi-simple. We note that Theorems 1.3, 1.8 and 1.10 list in total
9 statements which, for X = Rep(Q∞(`),v), are all equivalent, and hold if and only if
χ · α /∈ Z for all α ∈ Rn.

The study of admissible D-modules on X is motivated, in part, by the fact that it is a
variation on the idea of admissible D-modules on a simple Lie algebra g. In that situation,
it has been recently shown by Gunningham [22] that many of the properties of the category
of admissible D-modules on g lift to all quasi-coherent G-equivariant D-modules on g
(similar in spirit to Theorem 1.5). The methods of [22] are completely different to our
approach. We have been informed by Gunningham that he has, in addition, been able
to relate the block decomposition of the algebras A(U) to Lusztig’s cuspidal character
sheaves on g.

1.7. Outline of the article. In section 2 we recall the basic facts regarding monodromic
D-modules that we will required later. Then, in section 3 we introduce, and study the
algebras Aχ(U) of Hamiltonian reduction. The proof of Proposition 1.7 is given here.
Admissible D-modules are considered in section 4. We prove here Proposition 1.4 and
Theorem 1.5. Section 5 describes in more detail the geometry of the framed cyclic quiver.
The proof of Theorem 1.2, Theorem 1.8 and Proposition 1.9 are given in this section.
Finally, section 6 is devoted to the proof of the main results. In particular, the proofs of
Theorems 1.3, 1.6 and 1.10 are given in sections 6.4, 6.5 and 6.6 respectively.

Acknowledgements: The authors would like to thank K. Brown and T. Schedler
for helpful remarks on the subject. We would like to thank the referee for an extremely
detailed and constructive review of an earlier version of the article. The first author was
partially supported by EPSRC grant EP/N005058/1.

2. Monodromic D-modules

This section collects together all the results regarding monodromic D-modules that we
will require later.

2.1. Notation. If A is an algebra then A-Mod will denote the category of left A-modules.
If A is noetherian, then A-mod will denote the category of finitely generated A-modules.

If X is a smooth variety over C, then DX denotes the sheaf of differential operators
on X and Coh(DX) denotes the category of coherent (left) DX -modules. The sheaf of
vector fields on X is denoted ΘX . The singular support of a coherent D-module M is
denoted Ch(M ). It is a coisotropic subvariety of T ∗X. By a local system we always
mean an algebraic vector bundle equipped with an integrable connection that has regular
singularities.

If the affine algebraic group G acts on an affine variety X, then X/G denotes the set of
orbits and X//G := SpecC[X]G is the categorical quotient. For an element x ∈ g := Lie G,
its centralizer in G is denoted ZG(x), and its centralizer in g is Zg(x). The category of all
finite dimensional G-modules is denoted Rep(G).
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2.2. Monodromic modules. Fix G a affine algebraic group with Lie algebra g, and let X
be a smooth quasi-projective G-variety. The group G acts via Hamiltonian automorphisms
on T ∗X and there is an associated moment map µ : T ∗X → g∗. Dual to µ is the comoment
map ν : g → ΘX , coming from differentiating the action of G on X. It is a morphism of
Lie algebras and hence extends to an algebra morphism ν : U(g)→ DX .

Let X∗(g) denote the complex vector space of linear characters χ : g → C. Similarly,
X∗(G) denotes the lattice of all complex characters ψ : G→ C×. Differentiation defines a
map d : X∗(G)→ X∗(g). .

Differentiating the left regular action of G on itself, we get a comoment map νL : g→
DG that identifies g with the space of right invariant differential operators on G. Define

OGχ := DG ⊗νL(g) Cχ, (3)

where Cχ = C · vχ with x · vχ = χ(x)vχ for x ∈ g. If G is reductive, then OGχ has regular
singularities.

Let a : G × X → X denote the action map and let s : X → G × X denote the closed
embedding x 7→ (e, x)

Definition 2.1. A quasi-coherent D-module is said to be (G,χ)-monodromic if there is

a fixed isomorphism θM : OχG �M
∼→ a∗M , satisfying

(1) (Rigidity) s∗θ = idM .
(2) (Cocycle condition) The following diagram is commutative:

OχG �O
χ
G �M OχG � a∗M

(m× id)∗(OχG �M ) (idG×a)∗(OχG �M )

(m× idX)∗a∗M (idG×a)∗a∗M

idG×θ

(m×idX)∗θ (idG×a)∗θ

(4)

The category of (G,χ)-monodromic modules on X is denoted QCoh(DX , G, χ). We
recall, without proof, some of the standard properties of monodromic D-modules that we
will use later.

Proposition 2.2. If X is affine then M is (G,χ)-monodromic if and only if it is weakly
G-equivariant and ν(x) − χ(x) = νM (x) on Γ(X,M ), for all x ∈ g. Here νM : g →
End(Γ(X,M )) is the differential of the G-action.

In the affine setting, weakly G-equivariant means that Γ(X,M ) is a rational G-module,
with the action map D(X)× Γ(X,M )→ Γ(X,M ) being G-equivariant. More generally,
the analogue of [39, Proposition 2.6] holds in the monodromic setting. This allows one to
drop the affine assumption in Proposition 2.2.

Lemma 2.3. For any G-stable open subset U of X, the space Γ(U,M ) is a rational
G-module, such that

Γ(U,M )G = {m ∈ Γ(U,M ) | ν(x) ·m = χ(x)m, ∀x ∈ g}.

Proof of Lemma 2.3. If M is (G,χ)-monodromic, then as a quasi-coherent OX -module,
it is G-equivariant. Therefore the first claim follows from the corresponding fact about
G-equivariant OX -modules c.f. [25, §9.10]. The second claim follows easily from the
definitions, since

Γ(G,OχG)G = C · 1 = {f | ν(x) · f = χ(x)f},
c.f. the proof of [25, Theorem 11.5.3]. �

The following observation will also be required in section 6.6.

Lemma 2.4. Let ψ ∈ X∗(G). Then the functor M 7→M ⊗ ψ is an equivalence

QCoh(DX , G, χ)
∼−→ QCoh(DX , G, χ+ dψ).
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Assume now that G is connected. Then the map d : X∗(G)→ X∗(g) is an embedding,
and we write T(G) for the torus X∗(g)/dX∗(G). Given χ ∈ X∗(g), its image in T(G) is

denoted exp(χ). One can easily check that OχG ' O
χ′

G if and only if exp(χ) = exp(χ′)
in T(G). Therefore, for each q ∈ T(G), there is a DG-module OqG, well-defined up to
isomorphism.

Definition 2.5. Fix q ∈ T(g). A quasi-coherent DX-module M is said to be (G, q)-
monodromic if there is an isomorphism OqG �M ' a∗M .

We note that (G, q)-monodromic D-modules are D-modules that can be endowed with
a weakly G-equivariant structure. In other words, the full subcategory QCoh(DX , G, q)
of QCoh(DX) consisting of all (G, q)-monodromic D-modules is the image of the forgetful
functor For : QCoh(DX , G, χ) → QCoh(DX), where χ is any character with exp(χ) = q.
In fact, since G is assumed to be connected, the forgetful functor For : QCoh(DX , G, χ)→
QCoh(DX , G, q) is an equivalence.

2.3. Homogeneous spaces. In the case where X = O = G/K is a homogeneous G-
space, one can describe the possible (G, q)-monodromic local systems on X by considering
the fundamental groups of G and K. For brevity, write π1(G) := π1(G; e) etc. In the long
exact sequence

· · · → π1(K)→ π1(G)
π∗−→ π1(O)→ π0(K)→ 1, (5)

the local system L ∈ π1(O)-mod is (G, q)-monodromic if and only if π∗L ' q⊕ dimL. In
general, one sees that (G, q)-monodromic local systems do not correspond to representa-
tions of the component group π0(K).

The restriction maps X∗(G) → X∗(K) and X∗(g) → X∗(k), where k is the Lie algebra
of K, induce a map T(G)→ T(K).

Lemma 2.6. If K is connected, then there exist (G, q)-monodromic local systems on O
if and only if the image of q in T(K) is 1.

Proof. First we recall some standard facts about π1(G). If Ru(G) is the unipotent radical
of G, then let Gred = G/Ru(G) and G′ = [Gred, Gred] the derived subgroup of Gred. Then
π1(G) is a finitely generated abelian group with

π1(G)tor = π1 (G′) , π1(G)/π1(G)tor = π1

(
Gred/G′

)
.

In particular, this implies that

T(G) = Hom
(
π1

(
Gred/G′

)
,C×

)
,

parameterizes isomorphism classes of irreducible π1(G)-modules M such that M|π1(G)tor

is trivial.
If L is an irreducible (G, q)-monodromic local system on O, then its pull-back to G is

an irreducible (G, q)-monodromic local system (since the quotient map is smooth, with
connected fibers). In other words, the pull-back of L is q. Thus, if π0(K) = 1, then
we deduce from the long exact sequence (5) that there exists a (G, q)-monodromic local
system on O if and only if the irreducible representation q of π1(G) restricts to the trivial
representation of π1(K).

As noted above, π1(G)tor acts trivially on q. Therefore π1(K)tor also acts trivially. This
means that q restricts to a representation of π1(Kred/K ′), and is the trivial representation
of this group if and only if the image of q in T(K) is 1. �

If there exist (G, q)-monodromic local systems on O when K is connected, then the
category of all (G, q)-monodromic local systems on O is just Vect i.e. is semi-simple with
one simple object.

Proposition 2.7. If G is connected reductive and K ⊂ G connected, then there exists a
(G,χ)-monodromic quasi-coherent D-module on O = G/K if and only if the image of q
in T(K) equals 1.

Proof. Since G is reductive, it is easily checked that OχG is regular holonomic. Then the
fact that the map G→ G/K is smooth implies, by [8, Proposition 12.9] and the proof of
[25, Theorem 11.6.1] that every coherent (G,χ)-monodromic D-module on O is regular



8 GWYN BELLAMY AND MAGDALENA BOOS

holonomic. Finally, we note that every (G,χ)-monodromic quasi-coherent D-module on
O is the colimit of coherent (G,χ)-monodromic D-modules on O. Thus, we deduce that
the proposition is a consequence of Lemma 2.6. �

2.4. Duality for monodromic D-modules. Recall from (3) that vχ is the canonical
generator of OχG. We have identified g with right-invariant vector fields on G via the
morphism νL : g → Θ(G). Fix throughout N = dimG. Dual to Γ(G,ΘG)G is the space
Γ(G,Ω1

G)G of right-invariant one-forms on G, which we can identify with g∗. Define the
modular character of g to be δ : g → C, δ(x) = Tr ad(x). We note that if g is reductive

or nilpotent then δ = 0. The Lie algebra g acts on
∧N

g by

x · x1 ∧ · · · ∧ xN =

N∑
i=1

x1 ∧ · · · ∧ [x, xi] ∧ · · · ∧ xN .

Recall that Θ(G) acts on Γ(G,ΩNG ) by Lie derivatives, ω 7→ −Lxω, for x ∈ Θ(G).

Lemma 2.8. Fix non-zero s ∈
∧N

g and ω ∈ Γ(G,ΩNG )G. Then

x · s = δ(x)s, and ω · x = −Lxω = ωδ(x), ∀ x ∈ g.

Proof. The Jacobi identity implies that x · s = ψ(x)s for some character ψ. Moreover,

the fact that dim
∧N

g = 1 implies that ψ is independent of s. Fix x ∈ g and choose an
ordered basis {x1, . . . , xN} of g such that [x, xi] = aixi + y, where y ∈ C{xj | j > i}.
Then Tr ad(x) =

∑N
i=1 ai. Also,

x · s =

N∑
i=1

x1 ∧ · · · ∧ [x, xi] ∧ · · · ∧ xN =

(
N∑
i=1

ai

)
x1 ∧ · · · ∧ xN = δ(x)s.

If ω ∈ Γ(G,ΩNG )G and x ∈ g, then the action of x on ω is dual to the action of x on

s ∈
∧N

g. Thus, Lxω = −δ(x)ω. Notice that this means that considered as a section of
the right DG-module ΩNG , we have ω · x = ωδ(x). �

Lemma 2.9. Let A be an associative algebra, with homomorphism ν : g → A of Lie
algebras making A into a flat g-module. Let νδ : g→ A, with νδ(x) = ν(x) + δ(x). Then

ExtiA(A/Ag, A) = 0 for i 6= N and ExtNA (A/Ag, A) ' νδ(g)A \A,
as right A-modules.

Proof. To compute ExtiA(A/Ag, A), we explicitly resolve A/Ag. The fact that A is a flat
g-module implies that the Chevalley-Eilenberg complex,

0 A⊗
∧N

g · · · A⊗ g A 0,

is exact except at the very right. Applying the contravariant functor HomA(−, A) gives

0→ HomA(A,A)→ HomA(A⊗ g, A)→ · · · → HomA(A⊗
N∧

g, A)→ 0.

or,

0 A g∗ ⊗A · · ·
∧N

g∗ ⊗A 0.

This is everywhere exact, except at the very left, where the corresponding cohomology
group is ExtNA (A/Ag, A) = HN (g, A). By Poincaré duality, [27, Theorem 6.10], we have

HN (g, A) = H0

(
g,

N∧
g∗ ⊗A

)
= ν(g) ·

(
N∧

g∗ ⊗A

)
\
N∧

g∗ ⊗A.

If s ∈
∧N

g∗ is any non-zero section, then Lemma 2.8 implies that x · s = −δ(x)s. Thus,
there is a canonical isomorphism of right A-modules,

νδ(g)A \A ∼→ ν(g) ·

(
N∧

g∗ ⊗A

)
\
N∧

g∗ ⊗A, 1 7→ s⊗ 1.

�
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The full subcategory of QCoh(DX , G, χ) consisting of all holonomic D-modules is de-
noted Hol(G,DX , χ). We denote the usual exact duality on holonomic D-modules by D;
explicitly,

D(M ) = ExtdimX
D

(
M ,DX ⊗O Ω⊗−1

X

)
.

Proposition 2.10. There is a canonical isomorphism D(OχG)
∼−→ O−χG .

Proof. Let χGO be the right DG-module generated by v′χ, with defining relation v′χνL(x) =
v′χχ(x) for all x ∈ g. Applying Lemma 2.9, where D(G) is a right g-module via (νL − χ),
we deduce that

ExtND (OχG,D) ' χ−δ
G O.

Therefore the map
HomD(D ,D)→ χ

GO, φ 7→ v′χ−δφ(1),

descends to an isomorphism ExtND (OχG,D)
∼→ χ−δ

G O. Thus, it suffices to check that the

rule v′χ−δ⊗ s 7→ v−χ defines a morphism of left D-modules χ−δG O⊗OG Ω⊗−1
G → OχG; being

non-zero, such a morphism must be an isomorphism. Explicitly,

νL(x) · (v′χ−δ ⊗ s) = −(v′χ−δ · νL(x))⊗ s+ v′χ−δ ⊗ (νL(x) · s)
= (δ − χ)(x)(v′χ ⊗ s)− δ(x)(v′χ ⊗ s) = −χ(x)(v′χ ⊗ s),

since νL(x) · s = −δ(x)s by Lemma 2.8. �

Proposition 2.11. Duality lifts to a contravariant equivalence

D : Hol(G,DX , χ)
∼−→ Hol(G,DX ,−χ).

Proof. The key point here is that duality commutes with pull-back for non-characteristic
modules. That is, if f : X → Y and M is non-characteristic for f , then the canonical mor-
phism f∗D(M ) → D(f∗M ) is an isomorphism; see [25, Theorem 2.7.1 (ii)]. Noting that
each of the morphisms m and a are smooth (and hence all modules are non-characteristic
for them), applying D to diagram (4), and using Proposition 2.10 shows that the cocycle
condition holds. Similarly, the fact that OχG is non-characteristic for ie : {pt} ↪→ G, shows
that the rigidity condition holds for D(M ). Thus, D(M ) is (G,−χ)-monodromic if M is
(G,χ)-monodromic. �

2.5. The fundamental group of G-orbits. The goal of this section is to compute the
fundamental groups of the GLd-orbits in the space Rep(CQ/I,d). We do this for an
arbitrary quiver Q with relations I ⊂ CQ. Combining this result with the classification of
orbits in the enhanced cyclic nilpotent cone given in [3], we are able to explicitly compute
the fundamental group of the orbits in the cone. Recall that a dimension vector d is called
sincere if di 6= 0 for all i ∈ Q0. We assume, without loss of generality, that d is sincere.

First we recall the following standard fact, see [10, Proposition 2.2.1]. Let M be a
representation of CQ/I with dimension vector d. Then,

AutQ(M) = StabGLd
(M) is connected. (6)

Therefore the long exact sequence in homotopy groups associated to the fibre bundle

AutQ(M) GLd � O,

where O = GLd ·M , implies that it suffices to compute π1(AutQ(M)) and describe the
map π1(AutQ(M)) → π1(GLd). We begin with some preparatory results. Let E =
EndQ(M) and notice that AutQ(M) equals the group E× of invertible elements in E.
Decompose

M =

k⊕
i=1

M (i) ⊗ Vi,

where the M (i) are pairwise non-isomorphic, indecomposable CQ/I-modules. Then E
decomposes as

E =

k⊕
i,j=1

HomQ(M (i),M (j))⊗HomC(Vi, Vj). (7)

By [10, Proposition 2.2.1 (ii)], we have
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Lemma 2.12. The embedding γ :
∏k
i=1 GL(Vi) ↪→ E× induces an identification

γ∗ : π1

(∏k
i=1 GL(Vi)

)
π1(E×).∼

In particular, π1(E×) = Zk. Next, we calculate the morphism π1(E×) → π1(GLd).

First we note that the embedding
∏k
i=1 GL(Vi) ↪→ E× induces an isomorphism of funda-

mental groups because the composite∏k
i=1 GL(Vi) E×

∏k
i=1 GL(Vi)

η

is the identity. Therefore, it suffices to compute the map Zk → π1(GLd) induced by the

embeddings
∏k
i=1 GL(Vi) ↪→ E× ↪→ GLd. If Mj denotes the vector space of M at vertex

j, then Mj =
⊕k

i=1M
(i)
j ⊗ Vi and the composite

∏k
i=1 GL(Vi) ↪→ GLd � GLdj identifies∏k

i=1 GL(Vi) with the reductive subgroup
∏k
i=1 GL(Vi)⊗ Id

M
(i)
j

of GLdj . Hence, the map

Zk = π1

(∏k
i=1 GL(Vi)

)
π1(GLdj ) = Z

is given by (β
(1)
j , . . . , β

(k)
j ), where β(i) is the dimension vector of M (i). Since we have

assumed that d is sincere, π1(GLd) = Z|Q0|. We have shown that:

Proposition 2.13. Assume that d is sincere. The fundamental group of the GLd-orbit
of M is given by the cokernel of the map

Zk Z|Q0|,B (8)

where B =
(
β

(i)
j

)
for i = 1, . . . , k and j ∈ Q0.

In particular, Proposition 2.13 shows that the fundamental group of O only depends
on the combinatorial data of the dimension vector of the indecomposable summands of
M . In applications to the enhanced cyclic nilpotent cone, we will need a minor refinement
of Proposition 2.13. Namely, the quiver Q is assumed to have a preferred vertex ∞ ∈ Q0

such that d∞ = 1. In this case, if

G′ :=
∏
i 6=∞

GLdi ⊂ GLd

then the GLd-orbits in Rep(CQ/I,d) are the same as the G′-orbits. There is a unique

i such that β
(i)
∞ 6= 0. Let Q′0 := Q0 r {∞} and ` := |Q′0|. We may assume without loss

of generality that i = k. Since β
(k)
∞ = 1, we can disregard the indecomposable summand

M (k) of M when applying Proposition 2.13. More specifically, if d′ = d − ε∞ and B′

is the matrix (β
(i)
j ) for i = 1, . . . , k − 1 and j ∈ Q′0 then the fundamental group of the

GLd-orbit of M is given by the cokernel of the map

Zk−1 Z`.B′ (9)

Since Proposition 2.13 implies that the fundamental group of every orbit is abelian,
the irreducible complex representations of π1(O) are all one dimensional. If q ∈ (C×)`

and α ∈ Z` then qα denotes the complex number qα1
1 · · · q

α`
` . Notice that the irreducible

complex representations of Z` are parametrized by (C×)`.

Corollary 2.14. The irreducible complex representations of π1(GLd ·M) are given by{
q ∈ (C×)`

∣∣∣ qβ(i)

= 1, ∀ i = 1, . . . , k − 1
}
.

Proof. The representation q of Z` descends to a representation of π1(GLd ·M) if and only
if it is identically one on the kernel of the surjection Z` � π1(GLd ·M) . By Proposition
2.13, this kernel is generated by the β(i). �
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3. Quantum Hamiltonian reduction

Throughout this section, we assume that X is an arbitrary smooth affine G-variety,
with G a connected reductive group. For each character χ ∈ X∗(g) and finite dimensional
G-module U , one can define an algebra of quantum Hamiltonian reduction Aχ(U), which
sheafifies over the base X//G. We study how the various Aχ(U) are related when one
varies the choice of representation U . Our motivation for introducing different U is clear
- the major deficiently of the usual functor of Hamiltonian reduction is that its kernel is
non-trivial. By choosing U large enough one can ensure that the kernel becomes zero.

3.1. Quantum Hamiltonian reduction. Fix a finite-dimensional G-module U . Dif-
ferentiating the G-action gives an algebra map ΦU : U(g) → EndC(U). Let D(X) =
Γ(X,DX). For χ ∈ X∗(g), define νχ : g→ D(X) by νχ(x) = ν(x)− χ(x). The algebra of
quantum Hamiltonian reduction associated to U is defined to be

Aχ(U) :=

(
D(X)⊗ EndC(U)

D(X)⊗ EndC(U) · gχ

)G
,

where gχ = {νχ(x)⊗ 1 + 1⊗ ΦU (x) | x ∈ g} in D(X)⊗ EndC(U).

Lemma 3.1. Let U be a finite-dimensional G-module.

(a) The DX-module

Pχ(U) :=
DX ⊗ U

DX · {νχ(x)⊗ u+ 1⊗ ΦU (x)(u) | x ∈ g, u ∈ U}
,

with the natural G-action, is (G,χ)-monodromic. It is projective in QCoh(DX , G, χ).
(b) EndDX (Pχ(U))op = Aχ(U).

Proof. Part (a) is well-known, see [32, Lemma 4.3]. For part (b), we give a detailed proof.
The group G acts diagonally on D(X) ⊗ EndC(U) and by differentiating this action we
get an action of g on the algebra. Explicitly, for x ∈ g, D ∈ D(X) and E ∈ EndC(U),

x · (D ⊗ E) =
d

dt
exp(tx) · (D ⊗ E)

∣∣∣
t=0

= [ν(x), D]⊗ E +D ⊗ [E,ΦU (x)]. (10)

First, we define the isomorphism

φ : D(X)⊗ EndC(U)op → EndDX (D(X)⊗ U)op,

given by

φ

(∑
i

Di ⊗ Ei

)∑
j

Fj ⊗ uj

 =
∑
i,j

FjDi ⊗ Ei(uj).

Let

I = DX · {νχ(x)⊗ u+ 1⊗ ΦU (x)(u) | x ∈ g, u ∈ U},
so that Pχ(U) is the quotient of D(X)⊗ U by I.

Claim 3.2. If
∑
Di ⊗ Ei ∈ (D(X)⊗ EndC(U)op)G, then φ(

∑
Di ⊗ Ei)(I) ⊂ I .

Proof. Assume that
∑
Di ⊗ Ei ∈ D(X)⊗ EndC(U)op. If x ∈ g and u ∈ U , then

φ

(∑
i

Di ⊗ Ei

)
(νχ(x)⊗ u+ 1⊗ ΦU (x)(u)) =

∑
i

Diνχ(x)⊗ Ei(u) +Di ⊗ ΦU (x)(Ei(u))

+
∑
i

[νχ(x), Di]⊗ Ei(u) +Di ⊗ [Ei,ΦU (x)](u)

=
∑
i

Diνχ(x)⊗ Ei(u) +Di ⊗ ΦU (x)(Ei(u))

+
∑
i

[ν(x), Di]⊗ Ei(u) +Di ⊗ [Ei,ΦU (x)](u).
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Moreover, by equation (10),∑
i

[ν(x), Di]⊗ Ei(u) +Di ⊗ [Ei,ΦU (x)](u) = x ·

(∑
i

Di ⊗ Ei

)
(1⊗ u).

Thus,

φ

(∑
i

Di ⊗ Ei

)
(νχ(x)⊗ u+ 1⊗ ΦU (x)(u)) =

∑
i

Diνχ(x)⊗ Ei(u) +Di ⊗ ΦU (x)(Ei(u))

+ x ·

(∑
i

Di ⊗ Ei

)
(1⊗ u). (11)

This is zero if
∑
iDi ⊗ Ei ∈ (D(X) ⊗ EndC(U)op)G. This completes the proof of the

claim. �

Therefore φ descends to a well-defined map ψ : (D(X)⊗EndC(U)op)G → EndDX (Pχ(U))op.
Next, we check that

ψ
(

(D(X)⊗ EndC(U)op · gχ)
G
)

= 0.

We have

ψ

∑
i,α

(Di ⊗ Ei)(νχ(xα)⊗ 1 + 1⊗ ΦU (xα))


= ψ

∑
i,α

Diνχ(xα)⊗ Ei +Di ⊗ ΦU (xα) ◦ Ei


=
∑
i,α

Diνχ(xα)⊗ Ei +Di ⊗ ΦU (xα) ◦ Ei = 0.

This shows that ψ factors through Aχ(U).
Now we show that ψ is surjective. Each endomorphism f ∈ EndDX (Pχ(U))op is

uniquely defined by what it does on 1 ⊗ U . Therefore there exist Di ∈ D(X) and Ei ∈
EndC(U)op such that f(F ⊗ u) =

∑
i FDi ⊗ Ei(u) for all F ⊗ u ∈ Pχ(U). The element

E =
∑
Di ⊗ Ei ∈ D(X) ⊗ EndC(U)op must satisfy φ(E)(I) ⊂ I. Then equation (11) in

the proof of Claim 3.2 shows that this implies that

φ(x · E)(1⊗ u) ∈ I, ∀u ∈ U x ∈ g,

where x · E is defined in (10). Thus, E belongs to the rational G-representation

H := {F ∈ D(X)⊗ EndC(U)op | φ(x · F )(1⊗ U) ⊂ I ∀ x ∈ g}.

If E0 is the invariant component of E, then E − E0 ∈ g · H. But, by definition, any
element in g · H induces the trivial endomorphism of EndDX (Pχ(U))op. Thus, E0 ∈
(D(X) ⊗ EndC(U)op)G induces the endomorphism f in EndDX (Pχ(U))op. That is, ψ is
surjective.

Finally, we show ψ is injective. Assume that we are given E ∈ (D(X)⊗ EndC(U)op)G

such that φ(E)(u) ∈ I for all u ∈ U . Fix a basis u1, . . . , ur of U . Then

φ(E)(uj) =
∑
i,α

Di,j,α(νχ(xα)⊗ ui + 1⊗ ΦU (xα)(ui))

for some (non-unique) Di,j,α ∈ D(X). If Ei,j ∈ EndC(U) satisfies Ei,j(uj) = ui and
Ei,j(uk) = 0 for j 6= k, then

φ

∑
i,j,α

(Di,j,α ⊗ Ei,j)(νχ(xα)⊗ 1 + 1⊗ ΦU (xα))

 (u) = φ(E)(u).

Since the map φ is an isomorphism, this implies that E =
∑

(Di,j,α ⊗Ei,j)(νχ(xα)⊗ 1 +
1⊗ ΦU (xα)). Hence E = 0 as an element of Aχ(U). �
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Just as in the usual case where U = C is the trivial G-module, modules over the
algebra Aχ(U) are very closely related to (G,χ)-monodormic D-modules. The functor of
Hamiltonian reduction is the exact functor HU,χ : Coh(DX , G, χ) → Aχ(U)-mod defined
by

HU,χ(M ) = (Γ(X,M )⊗ U∗)G = HomDX (Pχ(U),M ).

It admits a left adjoint ⊥HU,χ given by

⊥HU,χ(N) = Pχ(U)⊗Aχ(U) N,

such that the canonical adjunction IdAχ(U)-mod → HU,χ ◦ ⊥HU,χ is an isomorphism. This
implies that HU,χ is essentially surjective and that the kernel of HU,χ is the Serre subcat-
egory of Coh(DX , G, χ) consisting of all objects M such that HU,χ(M ) = 0.

For a pair U1, U2 of finite-dimensional G-modules, define

Aχ(U1, U2) =

(
D(X)⊗HomC(U2, U1)

D(X)⊗ EndC(U1) · gχ(U1, U2)

)G
,

where

gχ(U1, U2) := {νχ(x)⊗ F + 1⊗ FΦU2
(x) | x ∈ g, F ∈ HomC(U2, U1)}.

Lemma 3.3. The space Aχ(U1, U2) is a Aχ(U1)-Aχ(U2)-bimodule and if U = U1 ⊕ U2

then

Aχ(U) =

(
Aχ(U1) Aχ(U1, U2)

Aχ(U2, U1) Aχ(U2)

)
(12)

is a Morita context (in the sense of [33, §1.1.6]).

Proof. It is a bi-module because∑
i

[ν(x), Di]⊗ Fi +Di ⊗ (ΦU1
(x)Fi − FiΦU2

(x)) =
d

dt
exp(tx) ·

(∑
i

Di ⊗ Fi

)∣∣∣
t=0

= 0

for x ∈ g and
∑
iDi⊗Fi ∈ (D(X)⊗HomC(U2, U1))G. It is straight-forward to check that

Aχ(U) is a Morita context. �

Lemma 3.4. Fix representations U1, U2 and U .

(a) The algebra Aχ(U) is noetherian.

(b) The bimodule Aχ(U1, U2) is finitely generated both as a left Aχ(U1)-module and
as a right Aχ(U2)-module.

Proof. Extend the order filtration on D(X) to a filtration on D(X)⊗EndC(U) by putting
EndC(U) in degree zero. This induces a filtration F• on Aχ(U) such that

(C[µ−1(0)]⊗ EndC(U))G � grFAχ(U)

(we do not require that µ be flat for surjectivity). By Hilbert’s Theorem [28, Zusatz 3.2],
(C[µ−1(0)] ⊗ EndC(U))G is a finite module over C[µ−1(0)]G. Since the latter is finite
type, the former is noetherian. Since the filtration is exhaustive, we deduce that Aχ(U)
is noetherian [33, Theorem 1.6.9].

Similarly, Aχ(U1, U2) has a filtration, making its associated graded a quotient of the
space (C[µ−1(0)]⊗HomC(U2, U1))G. Arguing as above, the latter is finitely generated both
as a left module over (C[µ−1(0)]⊗EndC(U1))G, and as right a (C[µ−1(0)]⊗EndC(U2))G-
module. This implies that Aχ(U1, U2) is finitely generated on both the left and the right.

�

Motivated by Lemma 3.4, we define a partial ordering on the isomorphism classes of
objects in Rep(G) by saying that U ≤ U ′ if U is isomorphic to a direct summand of U ′.
For any associative algebra A, we let Spec A denote the topological space (with Zariski
topology) of prime ideals in A.

Lemma 3.5. If U1 ≤ U2 then Aχ(U1, U2)Aχ(U2, U1) = Aχ(U1) as Aχ(U1)-bimodules and
hence there is a closed embedding

Spec Aχ(U1) ↪→ Spec Aχ(U2).
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Proof. If U1 ≤ U2, then U1 is a summand of U2 and hence Aχ(U1) is a direct summand of
Aχ(U1, U2) as left Aχ(U1)-modules. Similarly, Aχ(U1) is a direct summand of Aχ(U2, U1)
as right Aχ(U1)-modules. Hence Aχ(U1, U2)Aχ(U2, U1) = Aχ(U1). By Lemma 3.3, the
matrix (

Aχ(U1) Aχ(U1, U2)
Aχ(U2, U1) Aχ(U2)

)
is a Morita context. Therefore, it follows from [33, Theorem 3.6.2] that Spec Aχ(U1)
embeds in Spec Aχ(U2). �

3.2. Generic behaviour. In order to better understand the algebras Aχ(U), we consider
what they look like on some dense open subset of X. Let H ⊂ G be a closed subgroup
and assume that there is a H-stable closed subvariety Y ⊂ X such that the canonical map
G ×H Y → X is an isomorphism. Write i : Y ↪→ X for the closed embedding. The Lie
algebra of H is denoted h.

Lemma 3.6. For G,H and i : Y ↪→ X as above,

(a) i∗Pχ(U) 'Pχ|h(U |H).

(b) Aχ(U) ' Aχ|h(U |H).

In particular, if H = 1 then,

(c) The algebras Aχ(U) are all Morita equivalent to D(Y ).

(d) The bimodules Aχ(U,U ′) are non-zero for all U,U ′ non-zero.

Proof. Recall that Coh(DX , G, χ) denotes the category of (G,χ)-monodromic coherent
D-modules on X, and Coh(DY , H, χ

′) the category of (H,χ′)-monodromic coherent D-
modules on Y , where χ′ := χ|h. We recall from the proof of [4, Proposition 9.1.1] that

i∗ defines an equivalence Coh(DX , G, χ)
∼→ Coh(DY , H, χ

′) with quasi-inverse given by
N 7→ (π•(OχG �N ))H , where π : G × Y → G ×H Y = X is the quotient map. The D-
module Pχ(U) is (up to unique isomorphism) the unique object of Coh(DX , G, χ) such
that HomCoh(DX ,G,χ)(Pχ(U),M ′) = HomG(U,Γ(X,M ′)) for all M ′ ∈ Coh(DX , G, χ).
The module Pχ′(U |H) is similarly characterized in Coh(DY , H, χ

′). Therefore, in order
to show that (a) holds, it suffices to show that i∗Pχ(U) has the appropriate property.
Let N ∈ Coh(DY , H, χ

′). Then,

HomCoh(DY ,H,χ′)(i
∗Pχ(U),N ) ' HomCoh(DX ,G,χ)

(
Pχ(U), (π•(OχG �N ))

H
)

= HomG

(
U,Γ

(
X, (π•(OχG �N ))

H
))

= HomG×H (U,Γ (G× Y,OχG �N ))

= HomG×H(U,O(G)⊗ Γ(Y,N ))

= HomG×H

U, ⊕
V ∈Irrep(G)

V ⊗ V ∗ ⊗ Γ(Y,N )


=

∏
V ∈Irrep(G)

HomG×H(U, V ⊗ V ∗ ⊗ Γ(Y,N ))

= HomH(C, U∗ ⊗ Γ(Y,N )) = HomH(U,Γ(Y,N )),

as required. Here H acts trivially on U in the third, fourth and fifth line, and we have
used the fact that Γ(G,OχG) ' O(G) as a G-module.

The fact that i∗ is an equivalence, together with Lemma 3.1 and the isomorphism
i∗Pχ(U) 'Pχ′(U |H), implies that

Aχ(U) ' EndDX (Pχ(U))op ' EndDY (Pχ′(U |H))op ' Aχ|h(U |H),

as stated in (b).
In the case where H = 1, (a) and (b) imply that Aχ(U) ' D(Y ) ⊗ EndC(U) and

Aχ(U,U ′) ' D(Y )⊗HomC(U ′, U). Thus, (c) and (d) are trivially true. �
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The algebras Aχ(U) naturally sheafify over X//G, and the bimodules Aχ(U,U ′) sheafify
to sheaves of Aχ(U)-Aχ(U ′)-bimodules on X//G. Recall that an open subset of X is said
to be G-saturated if it is the preimage, under π : X → X//G of an open subset of X//G.

Proposition 3.7. Assume that there is a G-saturated dense open subset of X on which
G acts freely.

(a) The bimodules Aχ(U,U ′) are non-zero for all U,U ′ non-zero.

(b) Let S = {U ∈ Rep(G) | Aχ(U) is simple}. Then Aχ(U) is Morita equivalent to
Aχ(U ′), for all U,U ′ ∈ S.

Proof. Part (a). As noted above, the bimodules Aχ(U,U ′) sheafifiy over X//G. Since the
space X//G is affine, it suffices to show that there is some open set V ⊂ X//G such that
Aχ(U,U ′)|V 6= 0. We take V to be the image of a G-saturated open subset of X on which
G acts freely. Then it follows from Lemma 3.6 that Aχ(U,U ′)|V 6= 0.

Part (b). Let U,U ′ ∈ S. We have shown in Lemma 3.4 that the bimodule Aχ(U,U ′)
is finitely generated both as a left Aχ(U)-module and as a right Aχ(U ′)-module. By part
(a), it is non-zero. Therefore, the claim that Aχ(U) is Morita equivalent to Aχ(U ′) follows
from [20, Lemma 1.3]. �

3.3. Symplectic leaves. As in the previous setting, let X be a smooth affine G-variety
and U a finite-dimensional G-module. Let Z(U) denote the centre of the non-commutative
algebra (C[µ−1(0)] ⊗ End(U))G. Since (C[µ−1(0)] ⊗ End(U))G is a finite C[µ−1(0)]G-
module, and the latter algebra is of finite type, Z(U) is a finite module over C[µ−1(0)]G.
In particular, it is also of finite type. Abusing notion, we write µ−1

U (0)//G for SpecZ(U).

The finite morphism µ−1
U (0)//G→ µ−1(0)//G coming from the embedding C[µ−1(0)]G ↪→

Z(U) is denoted Ξ. Recall from the proof of Lemma 3.4 that the order filtration on
D(X)⊗ EndC(U) induces a filtration F• on Aχ(U).

Lemma 3.8. If the moment map µ is flat, then

C[µ−1(0)]G = grFAχ(C), Z(U) = Z(grFAχ(U)).

Proof. The first statement is a special case of the second statement, so we concentrate
on the latter. Since the moment map µ is flat, [23, Proposition 2.4] implies that the map
(C[µ−1(0)]⊗ End(U))G → grFAχ(U) is an isomorphism. �

Lemma 3.8 implies that both C[µ−1(0)]G and Z(U) inherit a natural Poisson struc-
ture (which agrees, in the case of C[µ−1(0)]G, with the one coming from Hamiltonian
reduction).

Lemma 3.9. The morphism Ξ is Poisson.

Proof. If we write 1 for the line spanned by the identity in E := End(U), then E =
E0 ⊕ 1 as a G-module, where E0 is the subspace of traceless endomorphisms. We write
(νχ + ΦU )(g) for the space {νχ(x) ⊗ 1 + 1 ⊗ ΦU (x) | x ∈ g}. Recall that F•D(X) ⊗ E
is the filtration obtained by taking the order filtration on D(X) and putting E in degree
zero. We claim that, for each m ≥ 0,[

(Fm−1D(X)⊗ E)G + (Fm(D(X)⊗ E(νχ + ΦU )(g)))G
]
∩ ((FmD(X))⊗ 1)G

=
[
(Fm−1D(X))G + (FmD(X)νχ(g))G

]
⊗ 1 (13)

First notice that

Fm−1D(X)⊗ E + Fm(D(X)⊗ E(νχ + ΦU )(g))

= Fm−1D(X)⊗ E + Fm(D(X)⊗ E(νχ(g)))

and hence

(Fm−1D(X)⊗ E)G + (Fm(D(X)⊗ E(νχ + ΦU )(g)))G

= (Fm−1D(X)⊗ E)G + (Fm(D(X)⊗ E(νχ(g))))G.

Next,
(Fm−1D(X)⊗ E)G = (Fm−1D(X)⊗ E0)G ⊕ (Fm−1D(X))G ⊗ 1
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and

(Fm(D(X)⊗ E(νχ(g))))G = (Fm(D(X)⊗ E0(νχ(g))))G ⊕ (Fm(D(X)(νχ(g))))G ⊗ 1.

Combining these equations gives (13).

Equality (13) implies that, for each m ≥ 0, there is a commutative diagram

0 Jm (FmD(X)⊗ E)G (C[µ−1(0)]⊗ E)Gm 0

0 Km (FmD(X))G ⊗ 1 C[µ−1(0)]Gm ⊗ 1 0

with exact rows, where

Jm := (Fm−1D(X)⊗ E)G + (Fm(D(X)⊗ E(νχ + ΦU )(g)))G

and
Km := ((Fm−1D(X))G + (FmD(X)νχ(g))G)⊗ 1.

Therefore, we have shown that there is a linear splitting

η : (C[µ−1(0)]⊗ E)Gm → (FmD(X)⊗ E)G

of the surjection (FmD(X)⊗E)G → (C[µ−1(0)]⊗E)Gm whose restriction to C[µ−1(0)]Gm⊗1
lands in FmD(X))G ⊗ 1. This means that if f ∈ C[µ−1(0)]Gm and g ∈ C[µ−1(0)]Gk , then
their Poisson bracket can be computed as the image of [η(f ⊗ 1), η(g⊗ 1)] in (C[µ−1(0)]⊗
E)Gm+k−1. This implies that Ξ is a Poisson morphism. �

Lemma 3.9 implies that if µ−1(0)//G has finitely many symplectic leaves, then so too
does µ−1

U (0)//G.

3.4. Prime endomorphism rings. In order to prove the results described in the intro-
duction, we need to relate the simplicity of the algebras Aχ(U) to the properties of the
category of admissible D-modules on X. This is done by applying the results from [19]
which show that the primitive ideals in Aχ(U) can be realised as the annihilators of mod-
ules coming from the category of admissible D-modules. We would like to conclude that
if Aχ(U) has only one primitive ideal then it is a simple algebra. For this, we need Aχ(U)
to be prime. If we consider the case that is most important to us, X = Rep(Q∞(`),v)
and G = G(nδ), then it is well-known that Aχ(C) is prime. However, if dimU > 1, then
explicit examples show that Aχ(U) is not prime in general. Whether Aχ(U) is prime or
not depends heavily on the parameter χ. We expect that locus of points χ in X∗(g) where
Aχ(U) is prime is a Zariski open subset.

In order to force Aχ(U) to be prime, we must perform a small localization. We assume
that there is a G-semi-invariant s : X → C, such that if X◦ = X r s−1(0) then there is a
non-empty G-saturated open subset of X◦ on which G acts freely.

Remark 3.10. Clearly if there is a G-stable open subset of X◦ where G acts freely, then
there is a G-stable open subset of X where G acts freely. However, in the example of
interest to us, there is no G-saturated open subset on which G acts freely. Hence we must
make the restriction to X◦.

Let A◦χ(U) be the endomorphism algebra of Pχ(U)|X◦ . Since X◦ is an affine open
subset of X, the restriction map Γ(X,Pχ(U))→ Γ(X◦,Pχ(U)) induces a map

EndD(Pχ(U))→ EndD(Pχ(U)|X◦)
which, by Lemma 3.1, we can identify with an algebra homomorphism ϕU : Aχ(U) →
A◦χ(U). In general this map is not injective.

Let µ−1(0)◦ = µ−1(0) ∩ T ∗X◦ and set

A = C[µ−1(0)◦], E = A⊗ EndC(U).

Since there is a G-saturated open set on which G acts freely, there is a function t ∈ C[X◦]G

such that G acts freely on (t 6= 0) ⊂ X◦. Pulling t back to T ∗X◦, we deduce that G acts
freely on µ−1(0) ∩ (t 6= 0).

Proposition 3.11. If AG is a domain then the algebra EG is prime.
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Proof. First, descent for G-equivariant coherent sheaves implies that the canonical mor-
phism

A[t−1]⊗AG[t−1] E
G[t−1]→ E[t−1]

is an isomorphism. Therefore EG[t−1] is an Azumaya algebra because its fibre, considered
as a sheaf of algebras on Spec A[t−1], over any closed point can be identified with EndC(U).
In particular, the centre of EG[t−1] equals AG[t−1].

Next, we note that E is t-torsion free, being free over A. Therefore E ↪→ E[t−1]. This
implies that we have inclusions

AG ↪→ Z(EG) ↪→ Z(EG[t−1]) = AG[t−1].

In particular, since A is a domain, both AG[t−1] and Z(EG) are also domains.
Let I be a non-zero ideal in EG. We claim that I∩Z(EG) 6= {0}. Consider the localized

ideal I[t−1] in EG[t−1]. If I[t−1] = EG[t−1] then some power of the central element t is
in I. So assume that I[t−1] is a proper ideal. It is non-zero since E embeds in E[t−1].
Then, the fact that EG[t−1] is an Azumaya algebra implies that every ideal is centrally
generated [33, Proposition 13.7.9]. In particular, I[t−1]∩Z(EG[t−1]) 6= {0}, which implies
that I ∩ Z(EG) 6= {0}. Since Z(EG) is a domain, we deduce that EG is prime. �

Finally, we lift Proposition 3.11 to a statement about A◦χ(U).

Proposition 3.12. Assume that:

(i) the moment map µ : T ∗X◦ → g∗ is flat,
(ii) there is a G-saturated open subset of X◦ on which G acts freely, and
(iii) the scheme µ−1(0)◦//G is reduced and irreducible.

Then A◦χ(U) is prime for all χ.

Proof. Let E = C[µ−1(0)] ⊗ End(U). By Lemma 3.8, the fact that µ is flat implies that
grFAχ(U) = EG. Since there is a G-saturated open set on which G acts freely, there is
a function t ∈ C[X◦]G such that G acts freely on (t 6= 0) ⊂ X◦. Pulling t back to T ∗X◦,
we deduce that G acts freely on µ−1(0) ∩ (t 6= 0). Then, using (iii), we can deduce from
Proposition 3.11 that EG is prime. Therefore A◦χ(U) is prime [33, Proposition 1.6.6]. �

4. Admissible D-modules

As explained in the introduction, one major motivation for studying the enhanced
cyclic nilpotent cone is the important role it plays in the theory of admissible D-modules,
and via the functor of quantum Hamiltonian reduction, to category O for the cyclotomic
rational Cherednik algebra. In this section we recall the definition of admissible and
orbital D-modules, as introduced by Gan-Ginzburg [17].

4.1. Definitions. We specialize to the following situation: X = Y × R is a trivial G-
equivariant vector bundle over Y , where Y is an affine G-variety, R is a finite dimensional
G-module and G acts diagonally on Y ×R. The group C× also acts on X by dilations along
the fibre R. Let eu ∈ DX be the corresponding vector field. We say that a coherent DX -
module M is smooth if eu acts locally finitely on Γ(X,M ). Given any G-representation V ,
let N (V ) := π−1(0) be the nilcone of V , where π : V → V//G is the categorical quotient.

Definition 4.1. The category Cq of q-admissible D-modules on X is defined to be the full
subcategory of Coh(DX) consisting of all M such that

(1) M is (G, q)-monodromic.
(2) M is smooth.
(3) Ch(M ) ⊂ T ∗Y ×R×N (R∨) ⊂ T ∗X.

Here R∨ denotes the dual representation. Similarly, we denote by Cχ the abelian cate-
gory of all (G,χ)-monodromic DX -modules satisfying properties (2) and (3) of Definition
4.1. Notice that Cχ is not a full subcategory of Coh(DX). There is a forgetful functor

F : Cχ → Coh(DX), forgetting the isomorphism φ : OχG �M
∼−→ a∗M . The image of F

is Cq.
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Remark 4.2. In [16] and [4], the admissible D-modules were called mirabolic because
of the relation to the mirabolic (= “miraculous parabolic”) subgroup P = StabGL(V )(v),
where v is any non-zero vector in V . Since admissible D-modules make sense for any
G-representation, not just gl(V )× V , we stick to the latter terminology in this article.

In order to be able to use our results on the fundamental groups of the orbitsO ⊂ V ×N ,
we use the Fourier transform to relate admissible D-modules to orbital D-modules. As
in the proof of Proposition 5.3.2 of [17], the Fourier transform along the trivial vector

bundle X = Y × R → Y defines an equivalence F : Coh(DX)
∼−→ Coh(DX∨), where

X∨ = Y ×R∨. On the level of geometry, the Fourier transform is the identification

F : T ∗X = T ∗Y ×R×R∨ ∼−→ T ∗Y ×R∨ ×R = T ∗X∨,

with F(y, r, f) = (y, f,−r) for y ∈ T ∗Y , r ∈ R and f ∈ R∨. Let

Λ = µ−1(0) ∩ (T ∗Y ×R×N (R∨)).

Repeating the proof of [17, Lemma 4.4], we have:

Lemma 4.3. If Y ×N (R∨) has finitely many G-orbits, then

Λ =
⋃

O⊂Y×N (R∨)

F
(
T ∗OX

∨
)
,

where the union is over all G-orbits. In particular, Λ is Lagrangian.

Definition 4.4. The category Orbq is the category of all (G, q)-monodromic DX∨-modules
supported on Y ×N (R∨). Similarly, Orbχ is the category of all (G,χ)-monodromic DX∨-
modules supported on Y ×N (R∨).

Again, we have a forgetful functor F : Orbχ → Orbq.

Proposition 4.5. Fix χ ∈ X∗(g) and q its image in T(G).

(a) Fourier transform defines an equivalence F : Orb•
∼−→ C•, where • ∈ {χ, q}, such

that the diagram

Orbχ Cχ

Orbq Cq

F

F F

F

commutes.

Moreover, if Y ×N (R∨) has finitely many G-orbits, then

(b) Every module in each of Cq,Cχ,Orbq and Orbχ is regular holonomic.
(c) The objects in each of Cq,Cχ,Orbq and Orbχ have finite length and there are only

finitely many simple objects, up to isomorphism.

Proof. The proof of the proposition is identical to the proof of Proposition 5.3.2 in [17].
The only thing that is not immediate is that the Fourier transform restricts to an equiv-
alence F : QCoh(DX , G, χ)

∼−→ QCoh(DX∨ , G, χ) of (G,χ)-monodromic modules. This is
an elementary direct calculation. �

The existence of the Fourier transform on X, and hence the equivalence between admis-
sible D-modules and orbital modules means that this situation is much simpler than the
corresponding group-like setup considered in [4]. However, there is no natural group-like
analogue in the cyclic quiver situation. We also note that, combinatorially, this situation
is much richer than the case X = gln × V .

The reader might also ask why there is a need to consider the category of admissible
D-modules, when one can just work directly with the category of orbital D-modules.
The reason for not abandoning the admissible point of view is because there are some
properties of the category that are much harder (if not impossible) to see from the orbital
point of view, that are clear when considering admissible D-modules. For instance, the
Knizhnik-Zamolodchikov functor is easy to define and study for admissible modules, but
involves a rather tricky microlocalization construction for orbital modules. Similarly, it is
easier to relate category Osph

κ to the admissible category.
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4.2. Quantum Hamiltonian reduction. Recall that we have assumed X = Y × R,
with R a finite-dimensional G-module. The canonical map C[R]G⊗C[R∨]G → C[µ−1(0)]G

defines a morphism

Υ : µ−1(0)//G→ R//G×R∨//G.
Throughout the remainder of section 4, we assume:

(F1) The morphism Υ is finite.
(F2) Y ×N (R∨) has finitely many G-orbits.

Remark 4.6. The situation of interest to us is where Y = V ' Cn, R = Rep(Q(`), nδ),
and hence X = Rep(Q∞(`),v). Then conditions (F1) and (F2) hold. See [17] and
references therein.

Identifying Sym R with constant coefficient differential operators on R, the algebras
C[R]G and (Sym R)G are commutative subalgebras of Aχ(U). Given a connected graded
algebra S, let S+ be the augmentation ideal. We say that the action of S on an S-module
M is locally nilpotent if for each m ∈M there is some N � 0 such that (s1 · · · sN ) ·m = 0
for all s1, . . . , sN ∈ S+.

Definition 4.7. Category Oχ(U) is defined to be the category of finitely generated Aχ(U)-
modules that are locally nilpotent for (Sym R)G.

The element eu belongs to Aχ(U) such that ad(eu) is semi-simple with integer eigen-
values. In particular, this makes Aχ(U) a Z-graded algebra.

Proposition 4.8. For all χ ∈ X∗(g),

(a) Every object in Oχ(U) has finite length.
(b) Up to isomorphism, there are finitely many simple objects in Oχ(U).
(c) Oχ(U) has enough projectives (and hence enough injectives).
(d) The action of eu on any object M of Oχ(U) is locally finite, and all generalized

eigenspaces of this action are finite-dimensional.

Proof. If A = Aχ(U), A+ = C[R]G and A− = (Sym R)G, then (A±, eu) is a commutative
triangular structure on A, in the sense of [19]. Therefore all claims follow from [19,
Theorem 2.5] once we establish (b) that Oχ(U) has finitely many simple objects, up to
isomorphism.

Since X is affine, the category Cχ can also be characterized as the category of smooth
(G,χ)-monodromic DX -modules M such that (SymR)G acts locally nilpotent on Γ(X,M );
see section 5 of [17]. This implies that HU,χ restricts to a quotient functor HU,χ : Cχ →
Oχ(U). As noted in Proposition 4.5, assumption (F2) implies that Cχ has finitely many
simple modules. Therefore, Oχ(U) has finitely many simple objects too. �

Let Prim Aχ(U) denote the set of primitive ideals in Aχ(U). In this case it follows
immediately from [19, Theorem 2.3] that:

Corollary 4.9. For all χ ∈ X∗(g),

(1) pC Aχ(U) is prime if and only if it is primitive i.e. SpecAχ(U) = Prim Aχ(U).
(2) Prim Aχ(U) is finite.

Recall that we have defined a partial order on the set of all finite-dimensional G-modules
by setting U ≤ U ′ if and only if U is isomorphic to some summand of U ′.

Lemma 4.10. There exists a finite-dimensional G-module U0 such that for all U ′ ≥ U0,
Cχ ' Oχ(U ′).

Proof. As noted in the proof of Proposition 4.8, the functor of Hamiltonian reduction
HU,χ is a quotient functor. Therefore it is an equivalence if HU,χ(M ) 6= 0 for every simple
M . Since there are only finitely many simple modules in Cχ, one can choose U sufficiently
large to guarantee this. �

We fix, for the remainder of this section, a representation U0 as in the statement of
Lemma 4.10.
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Lemma 4.11. For U1, U2 ≥ U0,

Aχ(U2, U1)⊗Aχ(U1) − : Oχ(U1) −→ Oχ(U2)

is an equivalence.

Proof. It suffices, by Lemma 4.10, to check that the diagram

Oχ(U1)

Cχ

Oχ(U2)

Aχ(U2,U1)⊗Aχ(U1)−

HU1,χ

HU2,χ

is commutative. Lemma 3.1, together with the decomposition (12), implies that

Aχ(U2, U1) = HomDX (Pχ(U2),Pχ(U1)).

Take N ∈ Cχ. By Lemma 4.10, the adjunction Pχ(U1) ⊗Aχ(U1) HU1,χ(N ) → N is an
isomorphism. Therefore, the transformation

HU2,χ(Pχ(U1)⊗Aχ(U1) HU1,χ(N ))→ HU2,χ(N )

is an isomorphism i.e.

HomDX (Pχ(U2),Pχ(U1)⊗Aχ(U1) HU1,χ(N ))
∼−→ HU2,χ(N ).

Finally, since Pχ(U2) is projective in Coh(DX , G, χ), and HU1,χ(N ) is finitely generated
as a Aχ(U1)-module, fixing a finite presentation of HU1,χ(N ) and applying the exact
functor HomDX (Pχ(U2),−) shows that the canonical map

HomDX (Pχ(U2),Pχ(U1))⊗Aχ(U1) HU1,χ(N )→
HomDX (Pχ(U2),Pχ(U1)⊗Aχ(U1) HU1,χ(N ))

is also an equivalence. �

Combining Lemma 4.10, with Proposition 4.8, proves Proposition 1.4.

Theorem 4.12. For all U ≥ U0, the functors

HU,χ : Coh(DX , G, χ)→ Aχ(U)-mod,

and

Aχ(U,U0)⊗Aχ(U0) − : Aχ(U0)-mod→ Aχ(U)-mod

are equivalences, making the diagram

Coh(DX , G, χ)

Aχ(U0)-mod Aχ(U)-mod

HU0,χ HU,χ

Aχ(U,U0)⊗Aχ(U0)−

commute.

Proof. First we check that for all U1 ≥ U2 ≥ U0, the Aχ(U1)-Aχ(U2)-bimodule Aχ(U1, U2)
induces a Morita equivalence Aχ(U1)-mod ' Aχ(U2)-mod. Let U ′2 be a submodule of U1

such that U1 = U2 ⊕ U ′2. Under the identification (12) of Aχ(U1) with a matrix algebra,
let e ∈ Aχ(U1) be the idempotent such that eAχ(U1)e = Aχ(U2). Then

Aχ(U1)e = Aχ(U2)⊕ Aχ(U ′2, U2) = Aχ(U1, U2)

and EndAχ(U1)(Aχ(U1)e)op = eAχ(U1)e = Aχ(U2). Moreover, notice that eAχ(U1) equals
HomAχ(U1)(Aχ(U1)e,Aχ(U1)). Thus, it follows that Aχ(U1, U2) defines a Morita equiva-
lence if and only if the multiplication map Aχ(U1, U2) ⊗Aχ(U2) Aχ(U2, U1) → Aχ(U1) is
surjective i.e. we just need to check that Aχ(U1, U2) is a generator in Aχ(U1)-mod. Assume
otherwise. Then there exists a (proper) primitive ideal J CAχ(U1) such that the image of
Aχ(U1, U2)⊗Aχ(U2) Aχ(U2, U1) is contained in J . By the generalized Duflo Theorem [19,
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Theorem 2.3], there exists a simple object L ∈ Oχ(U1) such that annAχ(U1)L = J . But
then

Aχ(U1, U2)⊗Aχ(U2) Aχ(U2, U1)⊗Aχ(U1) L = 0.

By Lemma 4.11, this implies that L = 0, contradicting the fact that J ( Aχ(U1). We
deduce that Aχ(U1, U2) is a generator.

Next, HU0,χ is a quotient functor. Therefore it suffices to check that HU0,χ(N ) 6= 0
for all non-zero objects N in Coh(DX , G, χ). Since there are only countably many iso-
morphism classes of simple G-modules, we can choose U0 ≤ U1 ≤ U2 ≤ · · · such that
for any simple G-module W there exists some N � 0 with W ≤ UN . Now assume
that HU0,χ(N ) = 0. If N 6= 0 then there exists W such that (Γ(X,N ) ⊗ W ∗)G 6=
0. Hence, for any UN ≥ W , HUN ,χ(N ) 6= 0. Taking a quotient if necessary, we
may assume N is simple. We argue as in the proof of Lemma 4.11. The adjunction
Pχ(UN )⊗Aχ(UN )HUN ,χ(N )→ N has non-zero image, hence is surjective (using the fact

that the adjunction IdAχ(UN )-mod → HUN ,χ ◦⊥HUN ,χ is an isomorphism). Therefore, there
is a short exact sequence

0→ K →Pχ(UN )⊗Aχ(UN ) HUN ,χ(N )→ N → 0, (14)

with HUN ,χ(K ) = 0. This implies that HU0,χ(K ) = 0 too. Hence the transformation

HU0,χ(Pχ(UN )⊗Aχ(UN ) HUN ,χ(N ))→ HU0,χ(N )

is an isomorphism i.e.

HomDX (Pχ(U0),Pχ(UN )⊗Aχ(UN ) HUN ,χ(N ))
∼−→ HU0,χ(N ).

Finally, since Pχ(U0) is projective in Coh(DX , G, χ), and HUN ,χ(N ) is finitely generated
as a Aχ(UN )-module, the canonical map

HomDX (Pχ(U0),Pχ(UN ))⊗Aχ(UN ) HUN ,χ(N )→
HomDX (Pχ(U0),Pχ(UN )⊗Aχ(UN ) HUN ,χ(N )) = HU0,χ(N )

is also an isomorphism. But HomDX (Pχ(U0),Pχ(UN )) = Aχ(U0, UN ) defines a Morita
equivalence between Aχ(UN )-mod and Aχ(U0)-mod. Therefore, HUN ,χ(N ) 6= 0 implies
that HU0,χ(N ) 6= 0. This contradicts our initial assumption. �

Corollary 4.13. The module Pχ(U) is a projective generator in Coh(DX , G, χ) for all
U ≥ U0.

Example 4.14. A classical situation where one can apply the results of this section is
the case where G is a simple affine algebraic group and X = R = g. We remark that the
category C is semi-simple and, via the Riemann-Hilbert correspondence, this category is
equivalent to Lusztig’s character sheaves on g. Thus, O(U) is also semi-simple for all U ,
and for U sufficiently large the simple modules in O(U) are in bijection with the simple
character sheaves on g. The results of Gunningham [22] imply that for U sufficiently large,
the blocks of the algebra A(U) are labelled by Lusztig’s cuspidal character sheaves.

4.3. Holonomic modules. As in section 3.4, we assume that there exists a semi-invariant
s on X, such that the conditions of Proposition 3.12 hold. Namely, if X◦ = (s 6= 0), then:

(i) the moment map µ : T ∗X◦ → g∗ is flat,
(ii) there is a G-saturated open subset of X◦ on which G acts freely, and
(iii) the scheme µ−1(0)◦//G is reduced and irreducible.

Let j : X◦ ↪→ X denote the affine open embedding. Throughout the remainder of section
4, we assume in addition that:

(F3) The moment map µ : T ∗X → g∗ is flat.

Let M be a finitely generated Aχ(U)-module. By Lemma 3.8, we may choose a good
filtration F•M on M , so that grFM is a finitely generated (C[µ−1(0)]⊗End(U))G-module.
By restriction, it is a finitely generated Z(U)-module and we write V (M) for its support
in µ−1

U (0)//G. We are in the general setting of [31, §2.1], therefore the results of [31] apply.

Following [31], we say that M is holonomic if V (M) is isotropic. Here V ⊂ µ−1
U (0)//G is

said to be isotropic if V ∩ L is isotropic in L for all leaves L ⊂ µ−1
U (0)//G.

Lemma 4.15. Every module in Oχ(U) is holonomic.
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Proof. Since Aχ(U) is a finite C[R]G ⊗ (Sym R)G-bimodule, every object of Oχ(U) is
finitely generated over C[R]G. Therefore a good filtration of M ∈ Oχ(U) is given by
putting F−1M = {0} and FmM = M for all m ≥ 0. This implies that V (M) is contained
in the zero set N of (Sym R)G+. To see that the latter is isotropic, first note that it suffices
to check that Ξ(N ) is isotropic i.e. we may assume without loss of generality that U = C.
Next, if π : µ−1(0)→ µ−1(0)//G is the quotient map, then by [31, Proposition 4.1], N is
isotropic if and only if π−1(N ) is isotropic in µ−1(0). The closed set π−1(N ) equals the
Lagrangian Λ defined in section 4.1. In particular, it is isotropic. �

Proposition 4.16. If Aχ(U) is simple then dimV (L) = dimX//G, for all simple objects
L ∈ Oχ(U).

Proof. Let L ∈ Oχ(U) be simple. If p is the annihilator of L in Aχ(U), then the generalized
Bernstein inequality [31, Theorem 1.2] says that dimV (p) = 2 dimV (L). Since Aχ(U) is
assumed to be simple, p = (0) and hence 2 dimV (L) = dimµ−1(0)//G = 2 dimX//G. �

Corollary 4.17. If Aχ(U) is prime, then the following are equivalent:

(1) Aχ(U) is simple.
(2) dimV (L) = dimX//G, for all simple objects L ∈ Oχ(U).

Proof. By Proposition 4.16, we may assume that dimV (L) = dimX//G, for all simple
objects L ∈ Oχ(U). If I 6= (0) is a proper ideal of Aχ(U), then it is contained in some
maximal ideal m. By the generalized Duflo Theorem [19, Theorem 2.3], there exists some
simple object L ∈ Oχ(U) whose annihilator equals m. Again, by the generalized Bernstein
inequality [31, Theorem 1.2],dimV (m) = 2 dimV (L). Thus, dimV (m) = dimµ−1(0)//G,
which equals the Gelfand-Kirillov dimension of Aχ(U). But, since we have assumed that
Aχ(U) is prime, [9, Korollar 3.5] says that dimV (m) < dimµ−1(0)//G if m 6= 0. Thus,
we deduce that Aχ(U) is simple. �

Finally, we consider how the algebras A◦χ(U) are related to Aχ(U). This will be devel-
oped further in section 5.3.

Lemma 4.18. For all U ∈ Rep(G), the diagrams

QCoh(DX◦ , G, χ) A◦χ(U)-Mod

QCoh(DX , G, χ) Aχ(U)-Mod

⊥HU,χ

j∗

⊥HU,χ
IndA◦

A
(15)

and

QCoh(DX◦ , G, χ) A◦χ(U)-Mod

QCoh(DX , G, χ) Aχ(U)-Mod

HU,χ

j∗ ResA
◦

A

HU,χ

(16)

commute.

Proof. For brevity, write A = Aχ(U) and A◦ = A◦χ(U). For M a left Aχ(U)-module,

⊥HU,χ
(

IndA◦

A M
)

= (Pχ(U)|X◦)⊗A◦ A
◦ ⊗A M,

and
j∗(⊥HU,χ(M)) = C[X◦]⊗C[X] Pχ(U)⊗A M.

Therefore, the commutativity of (15) follows from the fact that the canonical morphism

C[X◦]⊗C[X] Pχ(U)→ (Pχ(U)|X◦)⊗A◦ A
◦

of (DX◦ ,Aχ(U))-bimodules is an isomorphism. The fact that (16) commutes follows from

the commutativity of (15) by noting that ResA
◦

A ◦HU,χ is right adjoint to ⊥HU,χ ◦ IndA◦

A

and HU,χ ◦ j∗ is right adjoint to j∗ ◦ ⊥HU,χ. �

Proposition 4.19. The following are equivalent:

(a) The map Aχ(U)→ A◦χ(U) is an isomorphism for all U ∈ Rep(G).
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(b) Restriction is an equivalence j∗ : QCoh(DX , G, χ)
∼−→ QCoh(DX◦ , G, χ), with

quasi-inverse j∗.

Proof. Let A→ B be a ring homomorphism. Then we exploit the fact that this morphism
is an isomoprhism if and only if the adjunction id→ ResBAIndBA is an isomorphism. Lemma
4.18 implies that

ResA
◦

A ◦ IndA◦

A ' HU,χ ◦ j∗j∗ ◦ ⊥HU,χ.
By Theorem 4.12, we may choose U sufficiently large so that HU,χ is an equivalence,
with inverse ⊥HU,χ. Then if Aχ(U) → A◦χ(U) is an isomorphism, it follows that j∗ is an
equivalence, with inverse j∗.

Conversely, if j∗j
∗ ' id, then for all U ∈ Rep(G), we have

ResA
◦

A ◦ IndA◦

A ' HU,χ ◦ ⊥HU,χ ' id.

and hence Aχ(U)→ A◦χ(U) is an isomorphism. �

5. The framed cyclic quiver

Generalizing the case considered originally by Gan and Ginzburg [17], admissible D-
modules on the framed cyclic quiver are a rich class of examples of admissible D-modules in
large part because of their connection with the representation theory of rational Cherend-
nik algebras. This connection will be recalled in the final section. First, as in the introduc-
tion, Q(`) denotes the cyclic quiver, with vertices {0, . . . , `− 1} and arrows ai : i→ i+ 1.
Then Q∞(`) is the framed cyclic quiver with framing ∞ → 0. If εi is the dimension
vector with 1 at vertex i and zero elsewhere, then δ = ε0 + · · · + ε`−1 is the minimal
imaginary root for Q(`), and we fix v := ε∞ + nδ, a dimension vector for Q∞(`). Fix
G = G(nδ) and denote by X the space Rep(Q∞(`),v) of v-dimensional representations
of the framed cyclic quiver. Then X is a finite dimensional G-representation. We write
G(nδ) = G0× · · · ×G`−1, where Gi ' GLn acts on the vector space at vertex i of Q∞(`).
The corresponding decomposition of g is g0 ⊕ · · · ⊕ g`−1. The character g 7→ det(gi) of G

is denoted deti and its differential is Tri. This defines an isomorphism C` ∼→ X∗(g), given
by

(χ0, . . . , χ`−1) 7→ χ =

`−1∑
i=0

χiTri. (17)

5.1. Combinatorics. The set of all partitions is denoted P and P` denotes the set of
all `-multipartitions. The subset of P, resp. of P`, consisting of all partitions of n ∈ N,
resp. of all `-multipartitions of n, is denoted P(n), resp. P`(n). Let λ be a partition. The
associated Young diagram is

Y (λ) =
{

(i, j) ∈ Z2
≥0 | 1 ≤ j ≤ `(λ), 1 ≤ i ≤ λj

}
and the content ct(�) of the box � ∈ Y (λ) in position (i, j) is the integer j − i.

The underlying graph of the quiver Q(`) is the Dynkin diagram of type Ã`−1. Therefore
we will identify the lattice of virtual dimension vectors Z` for Q(`) with the root lattice

Q of type Ã`−1. We denote by R ⊂ Q the set of roots and R+ = R ∩ Q+ the subset of

positive roots associated to Ã`−1. If δ = ε0 + · · · + ε`−1 denotes the minimal imaginary
root and Φ := {α ∈ R | ε0 · α = 0} is the finite root system of type A`−1, then

R = {nδ + α | n ∈ Z, α ∈ Φ ∪ {0}}r {0}.

We fix a generator σ of the cyclic group Z`. Given a partition λ, the `-residue of λ is
defined to be the element res`(λ) :=

∑
�∈λ σ

ct(�) in the group algebra Z[Z`]. Similarly,
given an `-multipartition ν, the shifted `-residue of ν is defined to be

sres`(ν) =

`−1∑
i=0

σires`(ν
(i)).

We identify the root lattice Q with Z[Z`] by εi 7→ σi.
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5.2. Local systems. If we take Q = Q∞(`) and let I be the two-sided ideal of CQ
generated by (a`−1 ◦ · · · ◦ a0)n, then the space of representations Rep(CQ/I,v) is the
enhanced cyclic nilpotent cone N∞(`, n).

Recall from Theorem 1.1 that the G-orbits O(λ;ν) in the enhanced cyclic nilpotent cone
N∞(`, n) are labelled by the set

Q(n, `) = {(λ; ν) ∈ P × P` | res`(λ) + sres`(ν) = nδ} .

We sketch this parametrization here; the reader is referred to [3] for details. The G-
orbits in N∞(`, n) correspond to the isomorphism classes of representations of the framed
cyclic quiver of dimension v, where the operator a := a`−1 ◦ · · · ◦ a0 acts nilpotent. The
indecomposable representations M of the framed cyclic quiver where dimM∞ = 1 and
a acts nilpotent are parametrized up to isomorphism by the set of all partitions: λ ∈ P
corresponds to Mλ such that

dimMλ = ε∞ + res`(λ).

The indecomposable representations U of the framed cyclic quiver where dimU∞ = 0 and
a acts nilpotent are parametrized up to isomorphism by pairs of positive integers (i,N),
where if we think of N as being the partition (N) of N , then

dimU(i,N) = σires`(N).

Therefore an arbitrary representation M ∈ N∞(`, n) will, up to isomorphism, decompose
as

M = Mλ ⊕
`−1⊕
i=0

U(i, ν
(i)
1 )⊕ · · · ⊕ U(i, ν(i)

r ) (18)

such that

v = dimM = ε∞ + res`(λ) +

`−1∑
i=0

σi(res`(ν
(i)
1 ) + · · ·+ res`(ν

(i)
r ))

= ε∞ + res`(λ) + sres`(ν).

Thus, to each (λ; ν) ∈ Q(n, `), we associate the G-orbit O(λ;ν) of the module M(λ; ν)
defined in (18).

Lemma 5.1. There exists a (G,χ)-monodromic local system on O(λ;ν) if and only if

χ · σires`(ν
(i)
j ) ∈ Z, ∀ 0 ≤ i ≤ `− 1, 1 ≤ j ≤ `(ν(i)).

Proof. First we note that T(G) = (C×)` such that the image of χ ∈ X(g) is given by

q = exp(χ) :=
(
exp

(
2π
√
−1χ0

)
, . . . , exp

(
2π
√
−1χ`−1

))
.

Let K denote the stabilizer of M(λ; ν) ∈ O(λ;ν) so that O(λ;ν) ' G/K. Lemma 2.6,
applied with q = exp(χ), says that there is a (G,χ)-monodromic local system on O(λ;ν)

if and only if the image of q in T(K) is 1. If we set β(i,j) = dimU(i, ν
(i)
j ) = σires`(ν

(i)
j ),

then the paragraph after Proposition 2.13 explains that the map T(G)→ T(K) is precisely
Hom(−,C×) applied to the morphism (9). This map sends q = (q0, . . . , q`−1) in T(G) to(

qβ
(0,1)

, . . . , qβ
(`−1,k)

)
∈ T(K),

where k = `(ν(`−1)). This equals 1 ∈ T(K) if and only if

qβ
(i,j)

= exp
(

2π
√
−1
(
χ · σires`(ν

(i)
j )
))

= 1

for all i, j i.e. if and only if χ · σires`(ν
(i)
j ) ∈ Z. �

Recall from section 1.2 that we have defined the set Qχ(n, `). Lemma 5.1 and Propo-
sition 4.5 imply Theorem 1.2, as stated in the introduction. Next we note that:

Lemma 5.2. The fundamental group π1(O(λ;ν)) equals Z` if and only if ν = ∅.
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Proof. The orbit O(λ;ν) corresponds to an indecomposable representation (with dimension

vector ε∞+nδ) if and only if ν = ∅. In this case, k = 1 and the cokernel of (9) is just Z`.
If ν 6= ∅, then B′ 6= 0 and hence the rank of the image of B′ is at least one, implying that
the rank of the cokernel is at most Z`−1. �

We recall from (1) in the introduction that Rn = {α ∈ R+ | ε0 · α < n} ∪ {nδ}.

Lemma 5.3. We have |Qχ(n, `)| = |P`(n)| if and only if χ · α /∈ Z for all α ∈ Rn.

Proof. We identify P`(n) with the set of all partitions λ ∈ P with res`(λ) = nδ; this is
combinatorial identification between the set of all partitions of n` with trivial `-core and
the set of all `-multipartitions of n. Therefore we can identify P`(n) with the subset of
Q(n, `) consisting of all (λ; ν) such that ν = ∅. By Lemma 5.1, there exists a (G,χ)-
monodromic local system on O(λ;ν) if and only if

χ · σires`(ν
(i)
j ) ∈ Z, ∀ 0 ≤ i ≤ `− 1, 1 ≤ j ≤ `(ν(i)). (19)

In particular, if ν = ∅ then this condition is vacuous and hence there is always a (G,χ)-
monodromic local system on O(λ;∅). Thus, P` ⊂ Qχ(n, `) for all χ and the lemma is really
claiming that there exists (λ; ν) ∈ Qχ(n, `) with ν 6= ∅ if and only if χ · α ∈ Z for some
α ∈ Rn. Recall from section 5.1 that R+ denotes the set of positive roots in the root
lattice Q. For each positive integer N and 0 ≤ i ≤ `− 1, the dimension vector σires`(N)
is a root in R+.

First, let us assume that χ · α /∈ Z for all α ∈ Rn and choose (λ; ν) with ν 6= ∅.
If λ 6= ∅ then

∑
i,j σ

ires`(ν
(i)
j ) < nδ and hence ε0 · σires`(ν

(i)
j ) < n for all i, j. This

means that σires`(ν
(i)
j ) belongs to {α ∈ R+ | ε0 · α < n} and (19) is violated for all i, j.

Hence (λ; ν) /∈ Qχ(n, `). The only way one can have ε0 · σires`(ν
(i)
j ) = n for all i, j is if

ν = (. . . , ∅, (n`), ∅, . . . ). In this case there is only one term in the sum, which equals nδ,
and χ · nδ /∈ Z again violates (19).

The converse requires some case by case analysis. To begin with, we will assume that
χ · nδ ∈ Z. Let M0 be the unique representation with dimension vector ε∞ and let M1

be any indecomposable nilpotent representation with dimension vector nδ; there are ` to
choose from. Take O = G ·M , where M = M0 ⊕M1. Then there is some i such that
ν(i) = (n`) and ν(j) = λ = ∅ for j 6= i. The orbit O(λ;ν) admits a (G,χ)-monodromic local
system and hence |Qχ(n, `)| > |P`(n)|.

Next, we consider the case χ · α ∈ Z for some α ∈ R+ with ε0 · α < n. Recall from
section 5.1 that Φ = {α ∈ R | ε0 · α = 0} is the finite root system of type A`−1 and R+

is the set of all mδ + α with m ≥ 0 and α ∈ Φ ∪ {0} such that mδ + α ≥ 0. For α ∈ R+

with ε0 · α < n, there are three specific cases to consider: (1) α = mδ, (2) α = mδ + β,
for β ∈ Φ+, and (3) α = mδ − β, for β ∈ Φ+.

Case (1). α = mδ for some 0 < m < n. The indecomposable module U(0,m`) has
dimension vector mδ. Choose any partition λ of n − m. Then there is a unique inde-
composable nilpotent representation Mλ corresponding to λ. The orbit G · M , where
M = Mλ ⊕ U(0,m`), equals O(λ,ν), where ν(0) = (`m) and ν(i) = ∅ otherwise. Since
χ · · ·α ∈ Z, this orbit admits a (G,χ)-monodromic local system.

Case (2). α = mδ + β, for β ∈ Φ+, with 0 ≤ m < n. Then

(ε∞ + nδ)− α = ε∞ + εj+1 + εj+2 + · · ·+ ε`−1 + ε0 + ε1 + · · ·+ εi−1 + (n−m− 1)δ

for some 1 ≤ i ≤ j ≤ `− 1. This means that (ε∞+nδ)−α = dλ, for λ the hook partition
(i+ (n−m− 1)`, 1`−1−j). Since α is a real root, there is a unique indecomposable (nilpo-
tent) representation M1 with dimension vector α. If M0 is the indecomposable labeled
by λ, then take M = M0 ⊕M1. Its orbit O(λ,ν) has the property that (λ, ν) belongs to
Qχ(n, `) r P`(n).
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Case (3). α = mδ − β, for β ∈ Φ+, with 0 < m < n. Then

(ε∞ + nδ)− α = ε∞ + εi + εi+ + · · ·+ εj−1 + εj + (n−m)δ

for some 1 ≤ i ≤ j ≤ `− 1. This means that (ε∞+nδ)−α = dλ, for λ the hook partition
(j+1+(n−m−1)`, 1`−i). Again, since α is a real root, there is a unique indecomposable
(nilpotent) representation M1 with dimension vector α. If M0 is the indecomposable
labeled by λ, then take M = M0 ⊕ M1. Its orbit O(λ,ν) has the property that (λ, ν)
belongs to Qχ(n, `) r P`(n). �

We say that χ ∈ X∗(g) is integral if it is in the image of d : X∗(G)→ X∗(g). Under the
identification (17) this is equivalent to χi ∈ Z for all i.

Lemma 5.4. We have Qχ(n, `) = Q(n, `) if and only if χ is integral.

Proof. That we have equality if χ is integral is clear; the trivial local system on each orbit
is (G,χ)-monodromic in this case. Conversely, if χ is not integral, then there exists some
i such that χi = εi ·χ /∈ Z. If i 6= 0, then, just as in the proof of Lemma 5.3, since εi ∈ Rn
there exists a nilpotent representation M = M0 ⊕M1, with M0 and M1 indecomposable
such that dimM1 = εi; this is Case (2) of the proof of Lemma 5.3. By Lemma 5.1, there
does not exists a (G,χ)-monodromic local system on G ·M . Hence Qχ(n, `) ( Q(n, `).
If 0 is the only i for which χi /∈ Z, then χ · δ /∈ Z too. Again, as in Case (1) of the
proof of Lemma 5.3, this implies that there is some orbit O(λ,ν) such that (λ, ν) is not in
Qχ(n, `). �

Example 5.5. Let ` = n = 2. Then, a computer computation shows that, for integral χ,
Qχ(2, 2) = Q(2, 2) has 41 elements. But for generic χ, Lemma 5.3 implies that

Qχ(2, 2) = {(λ; ∅) |λ ∈ P2(2)},
which has only 5 elements.

5.3. Quantum Hamiltonian reduction. As noted in section 4, the characteristic vari-
ety of each admissible D-module lies in

Λ =
⋃

(λ;µ)∈Q(n,`)

Λ(λ;ν),

where Λ(λ;ν) = F
(
T ∗X∨O(λ;ν)

)
is the Fourier transform of the conormal to the orbit O(λ;ν)

in X∨. In particular, the characteristic cycle Ch(M ) belongs to
⊕

(λ;ν)∈Q(n,`) ZΛ(λ;ν).

Proposition 5.6. The characteristic cycles map

Ch : K0(Cχ)→
⊕

(λ;ν)∈Q(n,`)

ZΛ(λ;ν)

is always injective. It is an isomorphism if and only if χ is integral.

Proof. Since Cχ has only finitely many simple objects and every object has finite length,
K0(Cχ) is a free Z-module with basis given by the class of the simple objects. Each of
these objects is the Fourier transform of an intersection cohomology sheaf IC(O(λ;ν),Lχ),
where (λ;µ) ∈ Qχ(n, `) and Lχ is the corresponding (G,χ)-monodromic local system

on O(λ,ν). In particular, we note that the multiplicity of the cycle F
(
T ∗X∨O(λ;ν)

)
in

Ch(F(IC(O(λ;ν),Lχ))) is precisely one since the rank of Lχ is one. Thus,

K0(Cχ) =
⊕

(λ;ν)∈Qχ(n,`)

Z[F(IC(O(λ;ν),Lχ))]

and the map Ch is injective. In fact, its image, as a Z-module, is a direct summand. The
final statement follows from Lemma 5.4. �

A point of X is a pair (v, x•), where v ∈ V0 and xi : Vi → Vi+1, for i = 0, . . . , ` − 1.
Here Vi is the n-dimensional vector space at vertex i. Let x : V0 → V0 be the product
x = x`−1 · · ·x0. We say that a representation (v, x•) is cyclic if C[x] · v = V0. The open
set of all cyclic representations is denoted X◦. Define

s : X → C, s(v, x•) = det(v,x(v), . . . ,xn−1(v)).



SEMI-SIMPLICITY OF THE CATEGORY OF ADMISSIBLE D-MODULES 27

It is a semi-invariant of G and X◦ is precisely the non-vanishing locus of s. In particular,
X◦ is an affine open G-stable subset of X. Let Xreg denote the open subset of X◦, where
x is regular semi-simple as an element of gl(V0). Under the quotient map X◦ → X//G '
h/W , Xreg is the preimage of the regular locus. It is a principal open set, and the quotient
map is a principal G-bundle.

We check that the assumptions (i)-(iii) of Proposition 3.12 hold in our situation.

Lemma 5.7. (0) The set X◦ equals the open subset of X consisting of all indecom-
posable representations of Q∞(`).

(i) The moment map µ : T ∗X → g∗ is flat.
(ii) There is a G-saturated open subset of X◦ on which G acts freely.
(iii) The scheme µ−1(0)◦//G is reduced and irreducible.

Proof. Part (0). If x is nilpotent, then it is a consequence of the classification result [3,
Theorem 1.2] that (v, x•) is cyclic if and only if it is indecomposable. One can reduce the
general case to the nilpotent case by considering the generalized eigenspaces of x in V0.

Parts (i) and (ii). The moment map is flat by [17, Theorem 3.7]. The open subset Xreg

satisfies statement (ii).
For part (iii), we first note that µ−1(0) is reduced by [17, Theorem 3.7]. It is not

irreducible however. Part (0) shows that µ−1(0)◦ equals the open subset denoted Mn in
section 3.3 of [17]. In particular, it is irreducible by [17, Theorem 3.7]. Therefore, the
scheme µ−1(0)◦//G is reduced and irreducible. �

Lemma 5.7 implies that we can freely apply the results from section 4.3. By Proposition
3.12, we deduce that the algebras A◦χ(U) are all prime. It is not true that the algebras
Aχ(U) are prime in general. The following result will be required later.

Lemma 5.8. For any M in Cχ, M |Xreg is a local system.

Proof. The characteristic variety of M |Xreg is contained in Λ∩T ∗Xreg. Since every object
in Cχ has regular singularities, it suffices to show that Λ ∩ T ∗Xreg is the zero-section
T ∗XregXreg. If V = V0 ⊕ · · · ⊕ V`−1, then a point (v, x) ∈ X may be thought of as a pair
v ∈ V0 ⊂ V and x ∈ EndC(V). Then T ∗X embeds in M := V×V∗ × gl(V)× gl(V) and
the moment map µ : T ∗X → g is just the restriction of the moment map µ :M→ gl(V).
Hence µ−1(0) = µ−1(0) ∩ T ∗X. By [17, Lemma 2.1.3], this implies that if (v, w, x, y) ∈
µ−1(0), then w ∈ V∗ vanishes on C〈x, y〉 · v. Since v is assumed to be cyclic for x, this
forces w = 0.

Forgetting v, the fact that w = 0 implies that we may think of (x, y) as a represen-
tation of the preprojective algebra Π(Q(`)). As explained in [21], the space h embeds
as diagonal matrices in Rep(Q(`), nδ) and if (v, x) ∈ Xreg, then x is conjugate by G
to an element in hreg. Therefore we may assume that x ∈ hreg. Now, h∗ similarly em-
beds in Rep(Q(`)op, nδ), and for any y ∈ h∗, we clearly have (x, y) ∈ µ−1

Q(`)(0). On

the other hand, by [12, Lemma 3.1], the space of all y in Rep(Q(`)op, nδ) satisfying
(x, y) ∈ µ−1

Q(`)(0) is a torsor over Ext1
Q(`)(x, x)∗. Since x is a direct sum of pairwise non-

isomorphic simple representations of dimension δ, the standard Euler-Poincaré formula
implies that dim Ext1

Q(`)(x, x)∗ = dim EndQ(`)(x) = n. Thus, we deduce that y ∈ h. On
the other hand, y must belong to N . This forces y = 0, as required. �

As in section 3.3, let j : X◦ ↪→ X be the open embedding.

Proposition 5.9. The following are equivalent:

(a) χ · α /∈ Z for all α ∈ Rn.
(b) The restriction j∗ : QCoh(DX , G, χ) → QCoh(DX◦ , G, χ) is an equivalence, with

inverse j∗.

Proof. We recall from Lemma 5.2 that the fundamental group π1(O) of a G-orbit O in
X is a quotient of Z`, and it follows from Lemma 5.2 that π1(O) = Z` if and only if O
parameterizes indecomposable representations of Q∞(`). Therefore Lemma 5.7 implies
that π1(O) = Z` if and only if O ⊂ X◦.

Now assume that χ · α ∈ Z for some α ∈ Rn. Then Lemma 5.3 says that there exists
an orbit O with π1(O) a proper quotient of Z` such that O admits a (G,χ)-monodromic
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local system L. Necessarily, O ⊂ X rX◦. We can choose a (G,χ)-monodromic structure
on L. Then IC(O,L) is a (G,χ)-monodromic D-module supported on the complement of
X◦. Thus, j∗ kills this module and cannot be an equivalence.

Conversely, assume that χ · α /∈ Z for all α ∈ Rn. We must show that there are
no (G,χ)-monodromic D-modules supported on the complement of X◦. Let us assume
otherwise - M is a (G,χ)-monodromic D-module supported on X rX◦. Since M is the
colimit of coherent (G,χ)-monodromic D-modules, we may assume it is coherent. We
choose a G-stable open subset U of X such that Y := Supp M ∩ U is a smooth, closed
subvariety of U . Let i : Y ↪→ U be the closed embedding. By Kashiwara’s Theorem
[25, Theorem 1.6.1], N := i\M is a coherent (G,χ)-monodromic D-module on Y . Its
support equals Y . Therefore, [25, Lemma 3.3.2] says that there is a dense open subset
V ⊂ Y such that N |OV is a non-zero projective OV -module. We may assume that V is
G-stable. Choose a G-orbit O ⊂ V and let k : O ↪→ V be the locally closed embedding.
Then N ′ = H0(k∗N ) is a non-zero quasi-coherent DO-module since N |OV is projective
over OV . However, if K is the stabilizer of some point x0 ∈ O, then our assumption
on χ, together with the fact that O ⊂ X r X◦, implies that the image of q in T(K) is
not 1. Therefore, we deduce from Proposition 2.7 that there are no (G,χ)-monodromic
D-modules on O (recall from (6) that O ' G/K, where K is connected). This contradicts
the fact that N ′ 6= 0. �

We deduce from Proposition 5.9 and Proposition 4.19 that:

Corollary 5.10. The following are equivalent:

(a) χ · α /∈ Z for all α ∈ Rn.
(b) ϕU : Aχ(U)→ A◦χ(U) is an isomorphism for all U ∈ Rep(G).

6. Semi-simplicity

In this final section, we apply the results of sections 3 and 4 to the special case X =
Rep(Q∞(`),v), in order to prove the results stated in the introduction. We begin by
recalling Ariki’s semi-simplicity criterion.

6.1. Rational Cherednik algebras. We will fix an identification

X∗(g) = c :=

{
(κ0,0, κ0,1, κ0, . . . , κ`−1) ∈ C2 ⊕ C`

∣∣∣ κ0,0 + κ0,1 = 0,

`−1∑
i=0

κi = 0

}
by

χ0 =
1

`
+ (κ0 − κ1) + (κ0,0 − κ0,1)− 1, χi =

1

`
+ (κi − κi+1), 1 ≤ i ≤ `− 1. (20)

Equivalently, κ0,0 − κ0,1 = δ · χ and

`κi+1 = i−
i∑

j=1

jχj +

`−1∑
j=i+1

(`− j)χj , 1 ≤ i ≤ `− 1.

Associated to each κ ∈ c is the cyclotomic rational Cherednik algebra Hκ(W ), where
W = Z` o Sn is the wreath product of the symmetric group Sn with the cyclic group
Z`, as defined in [6, §3.1]. It is a non-commutative algebra containing the group algebra
CW as a subalgebra. Let e ∈ CW be the trivial idempotent. The algebra eHκ(W )e
contains both C[h]W and C[h∗]W , where h is the reflection representation of W . The
Harish-Chandra homomorphism allows one to identify the spherical subalgebra eHκ(W )e
with a certain algebra of quantum Hamiltonian reduction. Namely, it was shown in [36]
and [21] that1:

Theorem 6.1. There is a filtered algebra isomorphism Rχ : Aχ(C)
∼−→ eHκ(W )e.

1The parameters (k, c1, . . . , c`−1) used in [21] are related to the parameters (κ0,0, κ0,1, κ0, . . . , κ`−1) of

[6] by k = κ0,0 − κ0,1 and cr =
∑`−1
p=0(κp+1 − κp)ζpr, where ζ = exp

(
2π
√
−1
`

)
.
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Therefore, as a special case of the functor of Hamiltonian reduction described in section
3, there is an exact functor Hχ : Coh(DX , G, χ)→ eHκ(W )e-mod defined by

Hχ(M ) = {m ∈ Γ(X,M ) | ν(X) ·m = χ(X)m ∀ X ∈ g} = Γ(X,M )G.

Definition 6.2. Category Osph
κ is the full subcategory of the category eHκ(W )e-mod of

finitely generated eHκ(W )e-modules consisting of all modules on which C[h∗]W acts locally
nilpotent.

The Harish-Chandra homomorphism Rχ has the property that Rχ(C[R]G) = C[h]W

and similarly Rχ((Sym R)G) = C[h∗]W . This implies that the functor of Hamiltonian
reduction restricts to an exact quotient functor Hχ : Cχ → Osph

κ .

6.2. Localization of the Cherednik algebra. The following observation is not needed
elsewhere. Recall that κ (or equivalently χ) is spherical if eHκ(W ) defines a Morita
equivalence between eHκ(W )e and Hκ(W ).

Lemma 6.3. Let Q := ⊥Hχ(eHκ(W )), an object of Coh(DX , G, χ). Then,

(a) EndDX (Q) ' Hκ(W )op.
(b) Q is projective in QCoh(DX , G, χ) if and only if χ is spherical.

Proof. For brevity, let A = eHκ(W )e. It is a consequence of the double centralizer the-
orem, [15, Theorem 1.5], that EndA(eHκ(W )) ' Hκ(W )op. Then part (a) follows from
adjunction and the fact that 1→ Hχ ◦ ⊥Hχ is an isomorphism:

EndD(Q) = HomA(eHκ(W ),Hχ ◦ ⊥Hχ(eHκ(W ))).

Part (b). As a left A-module, eHκ(W ) is projective if and only if χ is spherical. Since ⊥Hχ
is left adjoint to the exact functor Hχ, this implies that Q is projective in QCoh(DX , G, χ)
if χ is spherical. If χ is not spherical then there exists a short exact sequence 0→ N1 →
N2 → N3 → 0 of modules in Osph

κ such that

0→ HomA(eHκ(W ), N1)→ HomA(eHκ(W ), N2)→ HomA(eHκ(W ), N3)→ 0 (21)

is not exact. Applying the right exact functor ⊥Hχ gives an exact sequence ⊥Hχ(N1)→
⊥Hχ(N2)→ ⊥Hχ(N3)→ 0 and we let N ′ be the quotient of ⊥Hχ(N1) making the sequence

0 N ′ ⊥Hχ(N2) ⊥Hχ(N3) 0

exact. The fact that 1 → Hχ ◦ ⊥Hχ is an isomorphism implies that HomD(Q, N ′) =
HomD(Q,⊥Hχ(N1)). Thus, the sequence

0→ HomD(Q, N ′)→ HomD(Q,⊥Hχ(N2))→ HomD(Q,⊥Hχ(N3))→ 0

is isomorphic to sequence (21). In particular, it is not exact. �

Lemma 6.3 implies that when χ is spherical there is an exact quotient functor

HomD(Q,−) : Coh(DX , G, χ)→ Hκ(W )-mod,

making the diagram

Coh(DX , G, χ) Hκ(W )-mod

eHκ(W )e-mod

HomD(Q,−)

Hχ e·−

commutative.
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6.3. The cyclotomic Hecke algebra. The cyclotomic Hecke algebra Hq(W ), for q ∈
T(G), is the finite dimensional algebra generated by T0, T1, . . . , Tn−1, satisfying the braid
relations

T0T1T0T1 = T1T0T1T0, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi,

for i, j = 1, . . . , n− 1, |i− j| > 1, and the additional relations

`−1∏
r=0

(T0 − ur) = 0, (Ti − q0)(Ti − q1) = 0, ∀ i > 0.

where q0, q1, u0, . . . , u`−1 ∈ C×. Let q = −q1q
−1
0 . By Ariki’s Theorem [2],

Theorem 6.4. The algebra Hq(W ) is semi-simple if and only if

n∏
m=2

(1− qm)
∏
i 6=j

(ui − qmuj) 6= 0.

Proof. The parametrization given in [2] is slightly different. Namely, Hq(W ) is generated
by a0, . . . , an−1 satisfying the relations of [2, Definition 0]. Then the isomorphism between
the two algebras is given by a0 = T0 and ai = −q−1

0 Ti for i > 0. �

Define

q0 = exp
(
2π
√
−1κ0,0

)
, q1 = − exp

(
2π
√
−1κ0,1

)
, ui = ζ−j exp

(
2π
√
−1κr

)
. (22)

Using the Knizhnik-Zamolodchikov functor, on can deduce from Theorem 6.4 when cat-
egory Osph

κ is semi-simple. Namely, by [6, Theorem 6.6], category Osph
κ is semi-simple if

and only if

κ0,0 − κ0,1 +
j

m
/∈ Z, 2 ≤ m ≤ n, (j,m) = 1. (23)

and

m(κ0,0 − κ0,1) + κj − κi +
(i− j)
`

/∈ Z, −n < m < n, i 6= j. (24)

We note that if Osph
κ is semi-simple then the parameter χ is spherical and the simple

objects of Osph
κ are in bijection with the set of `-multi-partitions of n.

6.4. The proof of Theorem 1.3. The proof of Theorem 1.3 follows from Theorem 6.5
and Corollary 6.6 below. Combining the results of section 5.2 with the above numerical
criterion for the semi-simplicity of Osph

κ , we deduce:

Theorem 6.5. The following are equivalent:

(a) χ · α /∈ Z for α ∈ Rn.

(b) |Qχ(n, `)| = |P`(n)|.

(c) Hχ : Cχ → Osph
κ is an equivalence.

Proof. Lemma 5.3 is precisely the statement that (a) ⇔ (b). Notice that

Rn = {mδ | 1 ≤ m ≤ n} ∪ {mδ + εi + · · ·+ εj | 0 ≤ m ≤ n− 1, 1 ≤ i ≤ j ≤ `− 1}
∪ {mδ − εi − · · · − εj | 1 ≤ m ≤ n− 1, 1 ≤ i ≤ j ≤ `− 1}.

Applying the identification (20) between χ and κ, we see that (a) holds if and only if

(A) 〈χ,mδ〉 = mδ · χ = m(κ0,0 − κ0,1) /∈ Z, ∀ 1 ≤ m ≤ n,

⇔ κ0,0 − κ0,1 +
j

m
/∈ Z, 1 ≤ m ≤ n, (j,m) = 1.

(B) 〈χ,mδ+εi+· · ·+εj〉 = mδ·χ+(χi+· · ·+χj) /∈ Z, ∀ 0 ≤ m ≤ n−1, 1 ≤ i ≤ j ≤ `−1,

⇔ m(κ0,0 − κ0,1) + (κi − κj+1) +
j + 1− i

`
/∈ Z, 0 ≤ m ≤ n− 1, 1 ≤ i ≤ j ≤ `− 1.

(C) 〈χ,mδ−εi−· · ·−εj〉 = mδ·χ−(χi+· · ·+χj) /∈ Z, ∀ 1 ≤ m ≤ n−1, 1 ≤ i ≤ j ≤ `−1,

⇔ m(κ0,0 − κ0,1)− (κi − κj+1)− j + 1− i
`

/∈ Z, 1 ≤ m ≤ n− 1, 1 ≤ i ≤ j ≤ `− 1
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This system of equations is equal to the set of equations (23) and (24), together with
the additional condition κ0,0 − κ0,1 /∈ Z, which comes from δ · χ /∈ Z. This implies
that

∣∣Irr Osph
κ

∣∣ equals |P`(n)| when (a) holds. Thus, (a) and (b) together imply that

the number of simple objects in Cχ equals the number of simple objects in Osph
κ . Since

Hχ : Cχ → Osph
κ is a quotient functor, we deduce that (c) holds. Conversely, if (c) holds

then |Irr Cχ| =
∣∣Irr Osph

κ

∣∣. Since we have∣∣Irr Osph
κ

∣∣ ≤ |P`(n)| and |Irr Cχ| = |Qχ(n, `)| ≥ |P`(n)|

for all χ, we see that (c) implies (b). �

In the statement of Theorem 1.3, we have taken k := κ0,0 − κ0,1.

Corollary 6.6. The following are equivalent:

(a) Hχ : Coh(DX , G, χ)→ eHκe-mod is an equivalence.

(b) Γ(X,M )G 6= 0 for all non-zero (G,χ)-monodromic DX-modules M .

(c) χ · α /∈ Z for all α ∈ Rn.

Proof. Since Hχ is a quotient functor, and Hχ(M ) = Γ(X,M )G on the level of vector
spaces, (a) is equivalent to (b). If (a) holds, then in particular Hχ : Cχ → Osph

κ is an
equivalence, and hence (c) holds by Theorem 6.5. Conversely, if Hχ : Cχ → Osph

κ is an
equivalence then we may take U0 = C, the trivial G-module, in Theorem 4.12 and we
deduce that Hχ : Coh(DX , G, χ)→ eHκe-mod is an equivalence. �

In recent work, T. Shoji has shown that there is a close relationship between certain
perverse sheaves on GL(V )×V `−1 and representations of the group Sn oZ`; see the survey
[37] and references within. It seem likely that the categories studied in [37] are related
by symplectic duality to the admissible D-modules we have considered here. We hope to
make this statement precise in future work.

6.5. The proof of Theorem 1.6. In this section we give the proof of Theorem 1.6. We
assume that χ ·α /∈ Z for all α ∈ Rn. This implies that Osph

κ is semi-simple, which in turn
means that Aχ(C) is a simple algebra. Moreover, for all U containing C as a summand,
Theorem 4.12 implies that Aχ(U) is Morita equivalent to Aχ(C), and hence is also simple.
Next, if U is an arbitrary representation, let U ′ = U ⊕ C. We have U ′ ≥ C and U ′ ≥ U .
This implies that Aχ(U ′) is simple. Then, Lemma 3.5 implies that SpecAχ(U) embeds in
SpecAχ(U ′) i.e. Aχ(U) has a unique prime ideal. By Theorem 5.10, Aχ(U) is isomorphic
to Aχ◦(U). As noted in section 5.3, the latter ring is prime by Proposition 3.12. Therefore,
we deduce that Aχ(U) is simple.

Next, we must check that all rings are Morita equivalent. But since we can identify
Aχ(U) with Aχ◦(U), and we have shown that all of these rings are simple, this follows
from Proposition 3.7 (b).

Finally, since each Aχ(U) is simple, Proposition 4.16 implies that if M in Oχ(U) is
non-zero then V (M) = X//G.

6.6. The proof of Theorem 1.10. As in [4], the Harish-Chandra D-module is defined
to be

Gχ := DX/DXνχ(g) + DX(Sym R)G+.

It is an object of Cχ. The goal of this section is to give a proof the following theorem,
from which we will deduce Theorem 1.10:

Theorem 6.7. If χ · δ ∈ Z then Gχ is not semi-simple. Hence, the category Cχ is not
semi-simple.

Recall that R = Rep(Q, nδ) so that X = V × R. The action of G(nδ) on V × R is
the diagonal action, with the action of G(nδ) on V factoring through G0 ' GL(V ). If
C×∆ ⊂ G(nδ) is the one-dimensional diagonal torus then the action of G(nδ) on R factors

through PG(nδ) := G(nδ)/C×∆. This implies that G(nδ) acts trivially on
∧dimR

R. The
moment map ν : g→ D(X) can be decomposed as ν = νR + νV , where νR : g→ D(R) ⊂
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D(X) and νV : g → D(V ) ⊂ D(X). We define the Harish-Chandra D-module in this
context to be

Fχ = DR/DRνR,χ(g) + DR(Sym R)G+.

Lemma 6.8. The module Fχ is non-zero if and only if χ · δ = 0.

Proof. If χ·δ 6= 0 then νR(1∆) = 0 but χ(1∆) 6= 0. This implies that D(R)νR,χ(g) = D(R)
and hence Fχ = 0. If χ ·δ = 0 then the result [36] shows that there is a surjective2 algebra
homomorphism

R′χ : (D(R)/D(R)νR,χ(g))G → eHκ(Sn o Z`)e,
mapping (Sym R)G isomorphically onto C[h∗]SnoZ` . This implies that

Γ(R,Fχ)G � eHe/eHe C[h∗]SnoZ`+ .

The module on the right is non-zero by the PBW property for rational Cherednik algebras.
Thus, Γ(R,Fχ) 6= 0. �

If g′ = Lie PG(nδ), then the above lemma shows that for χ · δ = 0, we can consider χ
as a character of g′ and

Fχ = DR/DRνR,χ(g′) + DR(Sym R)PG+ .

If we decreed that the canonical generator 1 ∈ Fχ is PG(nδ)-invariant then Fχ is a
(PG(nδ), χ)-monodromic D-module. Equivalently, it is a (G(nδ), χ)-monodromic D-

module such that Γ(R,Fχ)C
×
∆ = Γ(R,Fχ). We make the skyscraper module S0 =

DV /DV C[V ]+ = DV ·v0 into a G(nδ)-module by saying that the generator v0 is invariant.
Since

νV (10) · v0 =

(
n−

n∑
i=1

∂ixi

)
· v0 = nv0,

this means that S0 is a (G(nδ),Tr0)-monodromic D-module. Define χ′ := χ−Tr0, so that

χ′(1i) =

{
χ(1i) = nχi i 6= 0
χ(10)− n = nχ0 − n i = 0

(25)

Then Fχ′ � S0 is a (G(nδ), χ′ + Tr0) = (G(nδ), χ)-monodromic D-module. Recall from
Proposition 2.11 that if M is a holonomic (G,χ)-monodromic module then D(M ) is a
(G,−χ)-monodromic module.

Lemma 6.9. Let det0 : G(nδ)→ C× be the character g 7→ det(g0).

(a) D(S0) ' S0 ⊗ det⊗2
0 .

(b) D(Gχ) ' G−χ+Tr0
⊗ det0.

Proof. Part (a). Forgetting the equivariant structure, D(S0) = S0. On the other hand,
as shown above S0 is a (G(nδ),Tr0)-monodromic D-module. Thus, by Proposition 2.10,
the module D(S0) is (G(nδ),−Tr0)-monodromic. Since ddet⊗2

0 = 2Tr0, it follows that
D(S0) ' S0 ⊗ det⊗2

0 .
Part (b). As in [16], if we let k = νχ(g)⊕(Sym R)G+, then D(X) is a flat right k-module.

Therefore Lemma 2.9 says that

ExtND (Gχ,D) ' kD \D

as a right D-module. Here we have used the fact that k is the direct sum of a reductive Lie
algebra and an abelian Lie algebra, which implies that the modular character δ defined in
section 2.4 is zero. Therefore, as a non-equivariant D-module,

D(Gχ) ' kD \D ⊗O Ω⊗−1
X .

If s ∈
∧dimX

X is non-zero, it defines a nowhere vanishing section of Ω⊗−1
X . As a g-

module,
∧dimX

X '
∧dimV

V , and hence x · s = Tr0(x)s for all x ∈ g. This means
that

x · (1⊗ s) = (−x · 1)⊗ s+ 1⊗ (x · s) = (−χ+ Tr0)(x)(1⊗ s).
Similarly, v · (1 ⊗ s) = (−v) ⊗ s for v ∈ R ⊂ Sym R. Since multiplication by −1 clearly
commutes with the action of G, we deduce that (Sym R)G+ · (1⊗ s) = 0. We deduce that

2One can actually show that the morphism is an isomorphism. Details will appear elsewhere.
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D(Gχ) ' G−χ+Tr0 , if we forget the equivariant structure. On the other hand, we know from
Proposition 2.10 that D(Gχ) is (G(nδ),−χ)-monodromic. Thus, D(Gχ) ' G−χ+Tr0 ⊗ det0

as required. �

Lemma 6.10. If χ · δ = 1, then Fχ � S0 is a quotient of Gχ.

Proof. If
{
e

(0)
i,j

}
is the standard basis of g0 ⊂ g, then the fact that e

(0)
i,j · xk = −δk,ixj

implies that

νV

(
e

(0)
i,j

)
= −xj∂i = −∂ixj , νV

(
e

(0)
i,i − e

(0)
j,j

)
= xj∂j − xi∂i = ∂jxj − ∂ixi, ∀ i 6= j

and νV (10) = −
∑n
i=1 xi∂i = n−

∑n
i=1 ∂ixi. We have νV (gi) = 0 for all i 6= 0. This shows

that for all x ∈ [g0, g0], we have νV (x) ∈ D(X)C[V ]+. Then

ν(x)− χ(x) ≡ νR − χ′(x) mod D(X)C[V ]+

for all x ∈ g because

ν(10)− nχ0 = νR(10) + νV (10)− nχ0 ≡ νR(10)− nχ0 + n mod D(X)C[V ]+.

We conclude that

DXνχ(g) + DX(Sym R)G+ ⊆ DXνR,χ′(g) + DX(Sym R)G+ + DXC[V ]+,

and hence Gχ � Fχ � S0. This morphism sends the invariant generator of Gχ onto
the invariant generator of Fχ � S0, which implies that this is a morphism of (G(nδ), χ)-
monodromic D-modules. �

Proof of Theorem 6.7. If χ · δ ∈ Z, then we may assume by Lemma 2.4 that χ · δ = 0. Set
ψ = −χ + Tr0, so that ψ · δ = 1. Then Lemma 6.9 (2) implies that D(Gψ) ' Gχ ⊗ det0.
Hence, combining Lemma 6.9 (1) and Lemma 6.10, we deduce that

D(Fψ)� S0 ⊗ det0 ↪→ Gχ
The module Gχ has the property that no quotient is killed by the functor Hχ of Hamilton-
ian reduction. Therefore, if we assume that Gχ is semi-simple, it follows that no submodule
of Gχ is killed by Hamiltonian reduction.

On the other hand,

Hχ(D(Fψ)� (S0 ⊗ det0)) = Γ(X,D(Fψ)� (S0 ⊗ det0))G

⊂ Γ(X,D(Fψ)� (S0 ⊗ det0))C
×
∆

= Γ(R,D(Fψ))� Γ(V, (S0 ⊗ det0))C
×
∆ ,

since D(Fψ) is a (PG(nδ), χ)-monodromic module. Then, the fact that all the weights of

C×∆ on Γ(V, (S0 ⊗ det0)) are ≥ n implies that Γ(V, (S0 ⊗ det0))C
×
∆ = 0. Thus, Hχ kills

D(Fψ)� (S0 ⊗ det0), contradicting our assumption that Gχ is semi-simple. �

Proof of Theorem 1.10. Finally, we can give the proof of Theorem 1.10. It was explained
in the paragraph preceding Theorem 1.10 that (c) holds if and only if χ · α /∈ Z for all
α ∈ Rn.

Assume first that (a): Cχ is semi-simple. This implies that Osph
κ is semi-simple. Hence,

as explained in the proof of Theorem 6.5, this implies that χ · α /∈ Z for all α ∈ R+ with
ε0 · α < n. Therefore, we just need to show that χ · δ /∈ Z. But this is precisely the
statement of Theorem 6.7. Conversely, if χ · α /∈ Z for all α ∈ Rn, then by Theorem 6.5,
category Osph

κ is semi-simple and Hχ : Cχ → Osph
κ is an equivalence. We deduce that Cχ

is semi-simple. Thus, (a) holds if and only if χ · α /∈ Z for all α ∈ Rn.
Assume that (b): M |Xreg 6= 0 for all non-zero M in Cχ. The open set Xreg is the

intersection of X◦ with the open set Xss, which is defined to be the pre-image in X of
the regular locus hreg/W in h/W under the quotient map X → X//G ' h/W . Therefore,
there exists an element t ∈ C[X]G such that Xreg = X◦ ∩ (t 6= 0). In particular, if
M |Xreg 6= 0 then M |X◦ 6= 0 and we deduce from Proposition 5.9 that χ · α /∈ Z for
all α ∈ Rn. Conversely, if χ · α /∈ Z for all α ∈ Rn, and M ∈ Cχ is non-zero, then
once again Proposition 5.9 implies that M |X◦ 6= 0. The fact that and Hχ : Cχ → Osph

κ

is an equivalence implies that Hχ(M ) 6= 0. Moreover, the fact that category Osph
κ is
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semi-simple implies that every module in Osph
κ is free over C[h]W = C[X]G. In particular,

Hχ(M ) 6= 0 implies that Hχ(M )[t−1] 6= 0. Hence,

0 6= Hχ(M )[t−1] ⊂ Γ(X,M )[t−1] = Γ(Xss,M ),

and thus M |Xreg 6= 0 i.e. (b) holds if and only if χ · α /∈ Z for all α ∈ Rn. �

6.7. Extensions of local systems. Our classification allows one to make an elementary
“cleaness” result for generic χ. Namely, for each (λ; ν) ∈ Q(n, `), let j(λ;ν) : O(λ;ν) ↪→ X
be the locally closed embedding. The irreducible (G,χ)-monodromic local system on
O(λ;ν) (when it exists) is denoted Lχ.

Corollary 6.11. If χ · α /∈ Z for all α ∈ Rn then

j
(λ;∅)
! Lχ = j

(λ;∅)
!,∗ Lχ = j

(λ;∅)
∗ Lχ, ∀λ ∈ P`(n) = Qχ(n, `).

Moreover, Hχ(j
(λ;∅)
!,∗ Lχ) 6= 0.

It seems natural to expect, based on Corollary 6.11 that Hχ(j
(λ;ν)
!,∗ Lχ) 6= 0 implies that

ν = ∅ for all χ and that the Fourier transform of j
(λ;∅)
! Lχ should always give an admissible

D-module that maps to the Verma module in Osph
κ (assuming for simplicity that κ is not

aspherical). However, as the example in section 6.8 shows, such expectations are far too
naive.

6.8. Example: the enhanced nilcone. In this section, we describe in detail what our
results mean in the case of the original enhanced nilpotent cone. This is the situation
originally considered by Gan-Ginzburg [17], and relates admissible D-modules to the
spherical subalgebra eHκ(Sn)e of the rational Cherednik algebra Hκ(Sn) associated to
the symmetric group. The set Q(n, 1) is equal to the set P2(n) of all bipartitions of n.
Given a partition ν = (ν1, . . . ), we define gcd(ν) to be the greatest common divisor of the
νi and set gcd(∅) = 0. The following proposition was used in the proof of [5, Theorem
29].

Proposition 6.12. Fix χ ∈ C.

(1) For each (λ; ν) ∈ P2(n),

π1(O(λ;ν)) = Z/ gcd(ν)Z.

(2) O(λ;ν) admits a (GLn, χ)-monodromic local system if and only if gcd(ν)χ ∈ Z.
(3) The category Cχ is not semi-simple if and only if χ = r

m , with 1 ≤ m ≤ n and
r ∈ Z, (r,m) = 1.

Proof. Part (1) is just Proposition 2.13. Part (2) then follows from Corollary 2.14. Finally,
part (3) is a consequence of Theorem 1.10, noting that χ = r

m , with 1 ≤ m ≤ n and r ∈ Z,
(r,m) = 1 is equivalent to the statement χ · α ∈ Z for some α ∈ Rn. �

Consider the case n = 2. In this case the orbits in N (V )×V are labeled by bipartitions
of 2. Let Oreg denote the regular nilpotent orbit in N (V ), so that N (V ) = Oreg ∪ {0}.

O((2);∅) = {(X, v) ∈ Oreg × V | Xv 6= 0}, π1(O) = Z.
O((1,1);∅) = {(X, v) ∈ Oreg × V | Xv = 0}, π1(O) = Z.
O((1);(1)) = {(0, v) ∈ {0} × V | v 6= 0}, π1(O) = 1.

O(∅;(2)) = Oreg × {0}, π1(O) = Z2.

O(∅;(1,1)) = {(0, 0)}, π1(O) = 1.

When χ /∈ 1
2Z, the category Orbχ is semi-simple, with two simple objects j

((2);∅)
!,∗ Lχ and

j
((1,1);∅)
!,∗ Lχ. When χ ∈ 1

2 + Z, the category Orbχ is not semi-simple and has three simple
objects

L1 := j
((2);∅)
!,∗ Lχ, L2 := j

((1,1);∅)
!,∗ Lχ, L3 := j

(∅;(2))
!,∗ Lχ.
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Applying [11, Theorem 7.8] c.f. [4, Proposition 6.4.1], one can deduce that L2 is never
killed by Hamiltonian reduction, that Hχ(L1) 6= 0 if and only if χ ∈ 1

2 +Z≥0 and Hχ(L3) 6=
0 if and only if χ ∈ − 1

2 + Z<0.
If χ ∈ Z is integral then again Orbχ is not semi-simple and has five simple objects

S1 := j
((2);∅)
!,∗ Lχ, S2 := j

((1,1);∅)
!,∗ Lχ, S3 := j

(∅;(2))
!,∗ Lχ,

S4 := j
(∅;(1,1))
!,∗ Lχ, S5 := j

((1);(1))
!,∗ Lχ.

In this case, when χ ∈ Z≥0, S1 and S5 are not killed by Hχ, but S2, S3 and S4 are, and
when χ ∈ Z<0, S3 and S4 are not killed, but the others are.
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