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Abstract 
 

Reaction of the cyclic ligand (2Z,6Z)-piperidine-2,6-dione dioxime with TiCl4 and KOH yielded the 

hexanuclear cluster K6[TiIV6(μ3-O)2(μ2-O)3(CH3O)6(μ2–η1,η1,η2-Hpidiox-O,N,O′)4(μ2–η1,η1,η2-pidiox-

O,N,O′)2]·7.5CH3OH possessing a new {Ti6O5} structural motif. The cluster core {Ti6O5} is wrapped by 

external tripodal imide dioxime ligands, showing good solubility and stability and thus, allowing its 

solution to be studied by means of electrospray ionization mass spectrometry, electrochemistry and 

2D NMR, c. w. EPR and UV-vis spectroscopies. Density Functional Theory (DFT) calculations reveal 

that the cyclo-Ti3 metallic cores exhibit metallaromaticity which is expected to contribute to the 

stabilization of this system. 

 

Introduction 
 

Crystalline polyoxo-titanium clusters (PTCs) have attracted considerable attention the last years1–

12 due to their potential applications in catalysis, medicine, electro-optics, and nanotechnology.13–19 In 

particular, the precise structural information of PTCs can help the understanding of the binding modes 

of sensitizers to Ti–O20surfaces and potential applications in photoelectronic21–24 and photocatalytic 

chemistry.2,25–29 Moreover, the development of more efficient TOC photocatalysts for waste water 

treatment and splitting of the water is a hot topic in renewable energy and environmental research. 

Organic chelators could enhance the photocatalytic activity of PTCs and protect the Ti–O cores from 

hydrolysis.27,30 The ligand (2Z,6Z)-piperidine-2,6-dione dioxime (H3pidiox, Scheme 1) which stabilizes 

hard metals in their high oxidation states and protects them from hydrolysis was chosen as a chelator. 
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The ligand H3pidiox in its mono/di and tri-deprotonated form acts as a tridentate chelator in its metal 

complexes with UVI, {[UVIO2(Hpidiox)2]},31FeIII, {[FeIII(Hpidiox)(H2pidiox)]}32 and VIV/V, 

{[VIV/V(pidiox)2]2−/−}.33,34 The hydrolytic stability of the ligand H3pidiox was reported by Hay and co-

workers.35 

 

 

Scheme 1 The ligand H3pidiox. 

 

In this study, it is described the synthesis and physicochemical characterization of a new hexanuclear 

{Ti6O5} PTC, of which the cyclo-Ti3 metallic cores exhibit metallaromaticity. The hexanuclear cluster 1 is 

soluble in CH3OH and H2O and in both solvents retains its structural integrity. 

 

Experimental section 
 

Synthesis of the organic molecule (2Z,6Z)-piperidine-2,6-dione dioxime (H3pidiox) 

Pentanedinitrile (4.700 g, 49.93 mmol) and hydroxylamine (50% in water) (7.250 g, 109.7 mmol) were 

added to a solution of C2H5OH/H2O (100 mL, 1 : 1 v/v). The solution was refluxed at 86 °C (oil bath 

temperature 100 °C) under magnetic stirring for five days. Then, the solution was cooled to room 

temperature (25 °C) and the white precipitate was filtered and washed (2 × 10 mL) with cold ethyl 

alcohol (0 °C) and dried in vacuum to get 5.000 g of H3pidiox. Yield, 70% (based on pentanedinitrile). 

The white solid was recrystallized with ethyl alcohol (1.000 g per 50 mL of C2H5OH) to get 2.150 g (yield 

of recrystallization 43%) of pure sample. Melting point: 190 °C (decomposes). Elemental anal. calc. for 

(C5H9N3O2, Mr = 143.15 g mol−1): C 41.95, H 6.34, N 29.35; found: C 41.92, H 6.32, N 29.28. 

Synthesis of K6[TiIV6(μ3-O)2(μ2-O)3(CH3O)6(μ2–η1,η1,η2-Hpidiox-O,N,O′)4(μ2–η1,η1,η2-pidiox-

O,N,O′)2]·7.5CH3OH (1) 

To a stirred moist methyl alcohol solution (2 ml) were successively added H3pidiox (160 mg, 1.11 

mmol), and TiIVCl4 (0.061 ml, 0.105 g, 0.555 mmol). The color of the solution turned red. Then, upon 

addition of solid KOH (62.7 mg, 1.11 mmol) in one portion an orange precipitate was formed which 



was filtered off and the red filtrate was kept at ≈4 °C for two days during which period of time orange 

crystals of the hexanuclear titanium compound were formed. The crystals were filtered to obtain 98.6 

mg of compound 1 (56%, based on TiCl4). Elemental anal. calc. for (C36H60N18O23K6Ti6·7.5CH3OH, Mr = 

1873.07 g mol−1): C 27.89, H 4.74, N 13.46; found: C 27.72, H 4.57, N 13.28. 

 

Results and discussion 
 

Crystal structure 

Ball-and-stick representations of the structure of the anion of 1, along with the polyhedral/ball-and-

stick view of the metallic core are shown in Fig. 1. The centrosymmetric structure of the IV63-O)2(μ2-

O)3(CH3O)6(μ2–η1,η1,η2-Hpidiox-O,N,O′)4(μ2–η1,η1,η2-pidiox-O,N,O′)2]6− anion consists of two almost 

planar [Ti3-μ3-O] moieties in the eclipsed conformation (Fig. 1A) which are bridged by three μ2-

O2− ligands, thus leading to the formation of the [Ti6O5] oxo-core. Each of the six doubly and triply 

deprotonated ligands, Hpidiox2−/pidiox3−, which decorate the two [Ti3-μ3-O] structural units, acts as a 

μ2-bridging ligand through its oxime oxygen atom, while the hydroxylamine and oxime oxygens and 

the imine nitrogen atoms form two five-membered chelate rings (Scheme 2) with each titanium atom. 

All the titanium atoms adopt a distorted NO6 pentagonal bipyramidal coordination environment and 

are bonded to a μ3-O2− [O(3)] and a μ2-O2− [O(4)] bridges, two μ2-bridging oxime oxygens [O(2)–O(2)′], 

a hydroxylamine oxygen [O(1)] atom, a methoxy oxygen [O(5)] atom and an imine nitrogen [N(2)] atom 

(Fig. 1C). 

 

 

Figure 1 Ball-and-stick representations of the anion of the hexanuclear titanium cluster (A), the polyhedral/ball-and-stick view 
of the anion of 1 (B) and the coordination environment of the titanium atoms (C). 



 

 

Scheme 2 A sketch of the structure of the anion of 1 viewed along the c axis showing the arrangement of the ligands. 

The bond distances of Ti–μ2-O2− [1.795(1) Å] and Ti–μ3-O2− [1.931(2) Å] are in the expected range.3,7,9–

11,22,25,36–56 The d(Ti–Ohydroxylamine) = 2.002(6) Å is shorter than the d(Ti–Ooxime) = 2.088(5) Å reflecting the 

better donor properties of Ohydroxylamine in comparison with the Ooxime atoms (Scheme 2). The d(Ti–Ooxime) 

in 1 is larger than the Ti–Ooxime distances of other TiIV-oximates reported in the literature, which is due 

to the different coordination mode, end-on in 1vs. side on in those in literature.57,58 The 

strong trans effect of μ2-O2−ligand results in the elongation of the Ti–Omethoxy bonds [2.179(2) Å]. The 

two symmetry related μ3-O2− atoms in the two [Ti3-μ3-O] structural units are located 0.489 (5) Å above 

the plane defined by the three titanium atoms. The long-short pattern of the bond lengths of O(1)–

N(1)–C(1)–N(2)–C(5)–N(3)–O(2) (1.352, 1.285, 1.327, 1.369, 1.245, 1.406 Å respectively) supports the 

suggested hydroxylamine-oxime form for the ligand (Scheme 2). A similar pattern of the bond lengths 

of the ligand Hpidiox2−/H2pidiox− has been observed in the iron(iii) complex 

[FeIII(Hpidiox)(H2pidiox)].32 In the interior of the {Ti6O5} cluster there is a void space with dimensions 

4.11 × 4.52 Å. To the best of our knowledge, though the {Ti6O5} core has been reported only once,37 its 

topology in compound 1(Fig. 2A) is quite different in comparison with the previously reported one (Fig. 

2B). The main differences between them are: (i) the coordination number of the six titanium atoms is 

seven in comparison to six, and (ii) the six titanium atoms are in an almost ideal trigonal prismatic 

arrangement (Fig. 2C), while in the reported {Ti6O5} core of [Ti6O5(OiBu)6(OOCiBu)8] the six titanium 

atoms are in an almost co-planar configuration (Fig. 2B).37 

 



 

Figure 2 - The structures of the [Ti6O5] core in compound 1 (A) and [Ti6O5(OiBu)6(OOCiBu)8]37 (B) and the arrangement of the 
six titanium atoms in 1 (C). 

At this point, it is worth noting that eight different types of titanium-polyoxo hexamers have been 

reported (Fig. 3a–k). As shown in Fig. 3, the basic skeletal arrangements of Ti6 oxo-clusters are: (i) two 

{Ti6(μ3-O)6} configurations, one with a ball like structure (Fig. 3a),36,37 and the second one consisting of 

two planar {Ti3O3} units parallel to each other (Fig. 3b);12,27–39,42 (ii) six configurations with the six 

TiIV lying almost on a planar arrangement {Ti6(μ2-O)9} (Fig. 3c),51 {Ti6(μ2-O)2(μ4-O)2} (Fig. 3d),44 {Ti6(μ3-

O)4} (Fig. 3g),22,47,50 {Ti6(μ3-O)2(μ2-O)} (Fig. 3h),40,42{Ti6(μ3-O)2(μ2-O)2} (Fig. 3i),16 {Ti6(μ3-O)2(μ2-O)3} (Fig. 

3j),27 (iii) two configurations, {Ti6(μ2-O)8} (Fig. 3e)55 and {Ti6(μ2-O)9} (Fig. 3f),56 exhibiting two {Ti3(μ2-O)3} 

units parallel to each other; and (iv) {Ti6(μ3-O)2(μ2-O)2} (Fig. 3k),15,43–48 exhibiting two {Ti3(μ3-O)} units 

parallel to each other. 

 



 

Figure 3 - Skeletal arrangements of the Ti6 oxo-metallic cores (only the titanium and bridging oxygen atoms are shown for 
clarity). 

 

CW EPR spectroscopic study 

The CW EPR spectrum of 1 in methanol gave no signal in either room temperature or liquid helium 

and this implies that the oxidation state of the six titanium atoms in 1 is IV. 

FT-IR spectroscopic study 

Fig. 4 shows the FT-IR spectra obtained for the complex 1 in the solid state at ambient conditions, 

along with the corresponding spectrum of the ligand H3pidiox for comparison. The high-frequency 

region of the spectra is dominated by the presence of the N–H, OH and C–H stretching modes and 

does not provide insight into the structural features of the titanium complex. Thus, we focus our 

attention to the high-frequency region, namely the fingerprint region which is dominated by a large 

number of strongly overlapping bands designating the structural complexity of the system under study. 

Several bands emerge in the FT-IR spectrum that are absent in the spectrum of ligand and can be 

attributed to titanium complex formation. The intense bands located at 854 and 788 cm−1 are assigned 

to the high energy ν(Ti–O) stretching modes. Furthermore, two bands appear near ∼1598 and ∼492 

cm−1 with medium absorbance, while two additional weak bands are also shown in the spectra around 

∼625 and ∼426 cm−1. The spectroscopic data further justify the structure proposed by other 

experimental techniques used in this study. 

 



 

Figure 4 - Fingerprint region of the FTIR spectra of the ligand H3pidiox (black line) and titanium complex 1 (red line) at ambient 
conditions. 

 

Electrochemistry 

The cyclic voltammogram (CV) of the ligand H3pidiox in methanol solution gave an irreversible 

reduction peak at −410 mV. The CV of 1 in methyl alcohol solution gave a two-electron irreversible 

anodic peak at 1200 mV vs.NHE (Fig. 5), assigned to the oxidation of the two pidiox3− ligands as 

predicted by the theory (vide infra). The oxidation potential of the ligand was presumably decreased 

upon its coordination to the titanium(iv). 

 



 

Figure 5 - Cyclic voltammograms of the complex 1(A) and the ligand H3pidiox (B) in methanol. Platinum disk was used as 
working electrode and platinum wire for both counter and reference electrodes. The supporting electrolyte was tetra-
butylammonium perchlorate and the scan rate 100 mV s−1. 

 

In addition, the CV of 1 in methanol solution gave an irreversible one electron cathodic peak at −153 

mV assigned to the reduction of one TiIV to TiIII {i.e. [TiIV6] → [TiIIITiIV5]}, and a broad wave at −416 mV 

assigned to the reduction of the ligand. 

UV-vis spectroscopy 

The UV-vis spectrum of compound 1 in methanol exhibits two strong absorption bands [(λ/nm, 

(ε/M−1 cm−1): 300 (60 300), 383 (22 400)]. The band at 300 nm was assigned to intraligand π–π*, n–π* 

and LMCT transition from the ligand to the TiIV metal ions. This assignment was supported by the UV-

vis spectra of the mononuclear metal-H3pidiox complexes, which exhibit strong absorption at similar 

wavelengths.32,34 The broad intense peak at 383 nm was assigned to O–TiIV LMCT transitions. 



NMR spectroscopy 

The 1H and 13C NMR chemical shifts of the CD3OD and D2O solutions of the ligand H3pidiox and the 

complex 1are depicted in Table 1. The 1H NMR spectrum of the ligand in CD3OD gave a quintet and a 

triplet at 1.91 and 2.57 ppm assigned to the two protons attached to C3 and the four protons attached 

to C2 and C4 respectively; while its 13C NMR spectrum in CD3OD gave three peaks at 19.32 (C3), 26.20 

(C2, C4) and 148.57 (C1, C5). The numbering of the carbon and hydrogen atoms of the ligand H3pidiox 

is depicted in Scheme 3. 

 

 

Scheme 3 - The free ligand (A) and the numbering of the carbon and hydrogen atoms of the ligand Hpidiox2− attached to 
titanium, and the exchange process (B). 

 

Table 1 - 1Ha and 13C chemical shifts (ppm) of the complex 1 and the ligand H3pidiox 

  

1b 1c H3pidioxb 

13C 1H 13C 1H 13C 1H 

C2(Ha) 20.90 2.9284 20.73 2.707 26.20 2.5698 

C2(Hb) 
 

2.9284 
 

2.707 
 

2.5698 

C3(Ha) 18.17 2.0974 18.07 1.9833 19.31 1.9068 



  

1b 1c H3pidioxb 

13C 1H 13C 1H 13C 1H 

C3(Hb) 
 

2.3102 
 

2.0873 
 

1.9068 

C4(Ha) 20.72 2.8056 20.73 2.652 26.20 2.5698 

C4(Hb) 
 

3.0926 
 

2.707 
 

2.5698 

C1, C5 
    

148.57 
 

a The chemical shifts of the protons are the center of multiplets. b In CD3OD. c In D2O. 

 

 

The NMR spectra of the methanol solution 1 show that all ligands attached to titanium(iv) atoms in 

solution are indistinguishable. 

The 13C NMR peaks [found from 2D {1H,13C} grHSQC spectrum, Fig. 6] of the methanol solution 

of 1 show a shift to higher field in comparison to the free ligand, 18.17 (C3), 20.72 (C4) and 20.90 (C2). 

It is interesting to note that the C2 and C4 carbon atoms are chemically inequivalent in contrast to the 

free ligand (Scheme 3). This is in agreement with the crystal structure of the complex 1 in which the 

ligand μ2-Hpidiox2− is attached to titanium atoms in an asymmetric form (Scheme 3), supporting that 

the complex retains its structural integrity in solution. 

 

 

Figure 6 - The 2D {1H, 13C} grHSQC spectrum of complex 1 in CD3OD. 



 

In the 1H NMR spectrum of 1 in CD3OD the geminal protons of the ligand in each carbon are different 

and gave different chemical shifts. The1H NMR signals of 1 were assigned using 2D {1H} grCOSY (Fig. 

S1†), 2D {1H,13C} grHSQC (Fig. 6), and 2D {1H} NOESY (Fig. S2†) spectroscopies. All the hydrogen atoms 

of the ligands in complex 1, are correlated with each other in 2D {1H} grCOSY and 2D {1H} grTOCSY 

spectra suggesting that the six oximes of the complex 1 are equivalent. The H2a and H2b protons’ 

peaks have a δv value (δv = chemical shift difference) approximately equal to the coupling constant (J) 

and thus, gave a second order multiplet centered at 2.928 ppm. The H3a and H3b protons multiplet 

gave peaks at 2.097 and 2.310 ppm respectively (δv = 0.213 ppm). The δν value between H4a (2.806 

ppm) and H4b (3.093 ppm) is 0.287 ppm. The larger δv value of the H4a/H4b protons in comparison 

with the δv value of H2a/H2b protons, was attributed to the anisotropy induced by the –C N–

O− oxime double bond next to the H4 protons. Moreover, the 2D {1H} NOESY spectrum of 1 in 

methanol solution, except to the NOESY cross peaks, gave also EXSY peaks between the H4 and H2 

protons and this fact was attributed to the exchange process shown in Scheme 3. The 1H NMR, 2D {1H} 

grCOSY and 2D {1H,13C} grHSQC spectra of 1 in D2O gave similar features to those observed in CD3OD 

and this supports the fact that 1retains its structural integrity in aqueous solution (Fig. S3†). 

ESI-MS spectrometry 

In an effort to characterize further the hexanuclear cluster we employed high resolution ESI-MS to 

determine unambiguously the structural integrity and composition52,53 of the titanium-based species 

in solution.59–62 The ESI-MS studies were performed in methanol. The observation of the higher 

intensity set of distribution envelopes is due to the existence of the hexanuclear moiety, resulting 

from the variable number of protons, counterions and solvent molecules. Additionally, transition 

metal clusters are generally susceptible to redox processes under the employed ionization conditions 

which can occasionally induce partial fragmentation of the species. This type of behavior is quite 

common in ESI-MS solution studies of compounds.54 The spontaneous or induced fragmentation is 

quite common approach employed in order to identify stable building blocks and reveal useful details 

regarding the formation mechanism of the species.53 In this case, the region of higher m/zvalues is 

populated by a series of distribution envelopes assigned to −1 charged species and correspond to the 

{Ti6} cluster (Fig. 7). In this case two of the coordinating groups have been removed during the 

ionization process (e.g. {TiIII6O5(CH3O)4(C5N3O2H7)4K2(H2O)3H5}−). The change of the oxidation state of 

the metal centers is due to the ionization and consecutive ion-transfer process of the charged species 

and has been observed previously in numerous occasions.55 

 



 

Figure 7 - Negative ion mass spectrum of 1; A = {TiIII2TiIVO(CH3O)3(C5N3O2H7)3(CH3OH2)(H2O)6}−, B = 
{TiIII3O(CH3O)3(C5N3O2H7)3H2K2(CH3OH2)5(H2O)4}−, C = {TiIII6O5(CH3O)4(C5N3O2H7)4K2H5(H2O)3}−, D = 
{TiIII6O5(CH3O)4(C5N3O2H7)4K2H5(H2O)4}−, E = {TiIII6O5(CH3O)4(C5N3O2H7)4K2H5(H2O)5}−, F = 
{TiIII6O5(CH3O)4(C5N3O2H7)4K2H5(H2O)5}−. 

 

Interestingly, the lower region of m/z values (ca. 700–1000) revealed additional information regarding 

the building block units that have been initially identified by X-ray diffraction analysis, but also showing 

that the {Ti6} molecules fragments into their fundamental trimeric building blocks. The distribution 

envelopes centred at 818.94 and 987.96 m/z values have been identified as the intact {Ti3} units 

associated with different number of counterions and solvent molecules. The identification of the 

building blocks that appear in the mass spectrometry studies suggests the existence of an underlying 

sequential mechanism of assembly, where the initial formation of trimeric clusters3,4,63 takes place 

before their subsequently self-assembly into the hexanuclear species that finally crystallize. More 

specifically, we observed a mixed valence, {TiIII
2TiIVO(CH3O)3(C5N3O2H7)3H3(CH3OH)(H2O)6}− (818.94) 

and a fully reduced {TiIII3O(CH3O)3(C5N3O2H7)3H2K2(CH3OH)5(H2O)4}−(987.96) Ti-based oxo centred 

triangle, respectively. 

Theoretical study 

Based on the fact that it is not possible to determine the protonation state of the six ligands in cluster 1, 

we determined theoretically the relevant stabilities of two TiIV
6 clusters, one with six H3pidiox ligands 

doubly deprotonated {i.e., [TiIV6(Hpidiox)6]} and one with four ligands doubly and two fully 

deprotonated ligands {i.e., [TiIV6(Hpidiox)4(pidiox)2]}. DFT calculations revealed that the cluster 

[TiIV6(Hpidiox)4(pidiox)2] with the two pidiox3−ligands one on the top of the other [Fig. S4(a)†] is 

considerably more stable by 14.5 kcal mol−1 than [TiIV6(Hpidiox)6] (Fig. S5†). The isomer of the cluster 

[TiIV6(Hpidiox)4(pidiox)2] with the two pidiox3− ligands on opposite sides [Fig. S4(b)†] is 4 kcal mol−1 less 

stable than isomer a. 

Moreover, in an effort to better understand the redox behaviour observed in 1 we used the 

hypothetical vanadium(v) complex [VV(pidiox)(Hpidiox)] as a simpler model [based on the previously 



reported vanadium(v) complex33]. The plot of spin density of [VV(pidiox)(Hpidiox)] shown in Fig. 

S6,† reveals that when both ligands pidiox3− and Hpidiox2− coexist in the same complex, the former is 

susceptible to oxidation. 

Metallaromaticity 

Formation of trinuclear titanium clusters, instead of the expected mononuclear complex 

[TiIV(pidiox)2]2−, instigated us to investigate the magnetic diatropic/paratropic 

(aromatic/antiaromatic)64 behavior of the cyclo-Ti3(μ2-O)3(μ3-O) moieties, constituting 

the [Ti6O5] oxo-core in 1. In this context, we used the most popular and quite reliable criterion of the 

magnetic aromaticity/antiaromaticity, the Nucleus Independent Chemical Shifts (NICS)65–67 in 

conjunction with the related NICSzz scan curves.68 Accordingly, we calculated the NICSzz scan curves for 

the [cyclo-Ti3(μ2-O)3(μ3-O)]2 and [cyclo-Ti3(μ2-O)3]2 constituents of the [Ti6O5] oxo-core employing the 

GIAO (gauge-including atomic orbitals) DFT method69,70 as implemented in the Gaussian09 program 

suite.71 Calculations were performed using the GIAO/PBE0/6-31G(d,p) computational protocol. The 

calculated NICSzz-curves along with the structures of the model systems used and the 3D plots of the 

MOs involved in the Tx,y-allowed HOMO → LUMO transition that mainly contributes to induced 

diatropic ring current68,72–78 are shown in Fig. 8. 

 

 

Figure 8 - NICSzz scan curves for the [cyclo-Ti3(μ2-O)3(μ3-O)]2 (a) and [cyclo-Ti3(μ2-O)3]2 (b) constituents of the [Ti6O5] oxo-core 
and the 3D plots of the MOs involved in the Tx,y-allowed HOMO → LUMO transition (c). NICSzz scan curve for the cyclo-Ti3(μ2-
O)3O3 model system (d). 

 

On the basis of the NICS criterion, it is expected that the capping O atoms do partly reduce aromaticity. 

An inspection of Fig. 8 reveals that the NICSzz curve calculated for the [cyclo-Ti3(μ2-O)3]2 model system 



without the O-capping atom, is more symmetric than that calculated for the [cyclo-Ti3(μ-O)3(μ3-

O)]2 model systems. 

The NICSzz scan curves of the system without the O capping atoms gave high negative NICS(1) values. 

Calculations were also performed for a simplified model, cyclo-Ti3(μ2-O)3O3, including only the 

trinuclear Ti metallic core, the three terminal and the three bridging O atoms [Fig. 8(d)]. In this system, 

the three O bridging atoms slightly depart from the plane of the trinuclear Ti core. These three O 

atoms form also a trinuclear core and the values above 0.7 Å reflect its antiaromatic (paratropic) 

character. In contrast, the large negative peak indicates that the trinuclear Ti core is highly aromatic. 

In the system with O capping atoms there is a multiple superposition of aromatic/antiaromatic zones 

of the two trinuclear Ti metallic cores along with those of the trinuclear core formed by the three O 

atoms bridging the two metallic cores. In addition, the O capping atoms probably affect also the 

aromatic/antiaromatic zones in the opposite to them side, located in the space in between the two 

metallic cores. Accordingly, the NICSzzcurve corresponding to the [cyclo-Ti3(μ2-O)3(μ3-O)]2 model 

systems exhibits two large peaks around −380 and −390 ppm at 0.5 Å and 4 Å above and below the 

center of the upper [cyclo-Ti3(μ2-O)3(μ3-O)] respectively, attributed to the merging of the Bq (Banquo, 

Bq ghost atoms) into the O capping nuclei. Both of these two sharp peaks are not observed in the 

NICSzz curve corresponding to the [cyclo-Ti3(μ2-O)3]2 model system without O capping atoms and 

obviously arise from the strong contribution to the induced diatropic ring current from the two μ3-O 

capping nuclei. The negative NICSzz(1) and NICSzz(−1) values at points 1 Å above and below the center 

of a molecular ring computed to be −4.3 ppm and −23.2 ppm respectively are indicative for weak 

aromaticity of the cyclo-Ti3(μ2-O)3(μ3-O) ring. On the other hand, the negative peak at 1.5 Å with a 

NICSzz value equal to −12.5 ppm and the NICSzz(1) values for the cyclo-Ti3(μ2-O)3 ring core computed 

to be around −15 ppm indicate diatropicity of the ring. Interestingly, the computed negative NICSzz(0) 

values of −45 ppm for the cyclo-Ti3(μ2-O)3 ring illustrates a remarkable in-plane σ-aromaticity of the 

ring. The main contribution to the diatropic ring current arises from a Tx,y-allowed HOMO → LUMO 

excitation amounting to 0.644 eV (Fig. 8c). Both of the magnetically active HOMO and LUMO are 

composed mainly from 3d AOs of the Ti metal centers, thereby the cyclo-Ti3(μ2-O)3 rings exhibit 

metallaromaticity, that accounts well for their stability. 

 

Conclusions 
 

In conclusion, following a facile one-pot three-component reaction, a novel hexanuclear oxo-titanium 

compound 1 with a new structural motif TiIV6O5 was synthesized. The cluster is hydrolytically stable in 

methanol and aqueous solutions suggesting that it can be used further as a building block for the 

synthesis of larger clusters. NICSzz scan curves, obtained from DFT/GIAO calculation, reveal 

metallaromaticity for the cyclo-Ti3metallic cores. The rare structural and electronic properties of 1, 

suggest that the chemistry described herein can be used for modification of semiconducting materials, 

such as TiO2, to new unique materials useful to numerous applications. 
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