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Abstract

Air pollution continues to be a key health issue in Scotland, despite recent

improvements in concentrations. The Scottish Government published the

Cleaner Air For Scotland strategy in 2015, and will introduce Low Emis-

sion Zones (LEZs) in the four major cities (Aberdeen, Dundee, Edinburgh

and Glasgow) by 2020. However, there is no epidemiological evidence quan-

tifying the current health impact of air pollution in Scotland, which this

paper addresses. Additionally, we estimate the health benefits of reducing

concentrations in city centres where most LEZs are located. We focus on

cardio-respiratory disease and total non-accidental mortality outcomes, link-

ing them to concentrations of both particulate (PM10 and PM2.5) and gaseous

(NO2 and NOx) pollutants. Our two main findings are that: (i) all pollutants

exhibit significant associations with respiratory disease but not cardiovascu-
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lar disease; and (ii) reducing concentrations in city centres with low resident

populations only provides a small health benefit.

Keywords: Air pollution, Cardio-respiratory disease, Epidemiological

modelling

1. Introduction1

Air pollution is the biggest environmental risk to health across the world,2

with the World Health Organisation (WHO) estimating that 3 million deaths3

are attributable to it each year (World Health Organisation, 2016). Pollution4

concentrations around the world often exceed safe levels, with an estimated5

90% of the population living in areas where pollutants exceed WHO guideline6

levels (also World Health Organisation, 2016). The true impact on health7

is di�cult to measure directly, and estimates vary with wide uncertainty8

intervals. The United Kingdom (UK) Royal College of Physicians estimated9

that up to 40,000 deaths in the UK could be attributable to air pollution10

each year (Royal College of Physicians, 2016).11

The focus of this study is Scotland, UK, where pollution concentra-12

tions are now comparatively low, although there are 39 declared Air Qual-13

ity Management Areas (AQMA, http://www.scottishairquality.co.uk/14

laqm/aqma), which either breach or are likely to breach legal pollution limits15

set by the European Union (EU, European Parliament, 2008). The majority16

of these breaches are for nitrogen dioxide (NO2, 27 areas) and / or coarse17

particulate matter (PM10, 24 areas), with only one for sulphur dioxide (SO2).18

The Scottish Government published the Cleaner Air For Scotland (CAFS)19

strategy (http://www.gov.scot/Resource/0048/00488493.pdf) in 2015,20
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Figure 1: Boundary of Glasgow City Councils Air Quality Management Area, which is

the location for the proposed LEZ.

which proposes interventions directed particularly at reducing tra�c related21

pollution. One such intervention is a Low Emission Zone (LEZ), where ve-22

hicles that do not meet specified emission standards are banned from, or23

attract fines for, entering the zone. The first LEZ in Scotland was intro-24

duced in the city of Glasgow at the end of 2018 (https://news.gov.scot/25

news/first-low-emission-zone-for-glasgow), with a phased implemen-26

tation over 5 years starting with buses that do not meet the EURO 6 emission27

standard. The other 3 main cities (Aberdeen, Dundee and Edinburgh) are28

mandated by the Scottish Government to follow suit by the end of 2020.29

The location for the Glasgow LEZ is the city centre (see Figure 1), bounded30

by the M8 motorway (west and north), river Clyde (south) and High street31

(east).32

The city centre has been specified for the LEZ because it was identified as33

the area most likely to exceed EU limit values for NO2 through the assessment34
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of air quality data. For example, despite the continual improvements in mea-35

sured NO2, the Glasgow Kerbside monitoring station (in the city centre) con-36

tinually exceeds the EU limit of 40µg m�3 for annual mean NO2, with many of37

the passive di↵usion tube sites within the city centre AQMA also continuing38

to exceed this limit (see http://www.scottishairquality.co.uk/assets/39

documents//Glasgow_LAQM_Annual_Progress_Report_2017.pdf). Thus as40

the Glasgow LEZ was located based on achieving regulatory compliance, the41

improvement of public health was not the primary driver in deciding the42

location. Possible public health drivers for an air pollution intervention in-43

clude the reduction of the overall risk from air pollution, and a reduction44

in the number of disease cases, the latter being naturally targeted at highly45

populated and high risk areas.46

For the Glasgow LEZ, its beneficial health impact will depend on the size,47

demographics and underlying health of the population who spend time in the48

LEZ, as well as on the scale of reduction in pollution concentrations that it49

achieves. Thus while the city centre has the highest pollution concentrations50

within the city, it also has a very low resident population and thus may have51

a limited impact on the majority of Glasgow’s population. This preceding52

argument however does not account for people who travel into the city centre53

for work or pleasure for large periods of time, which illustrates the complexity54

of comprehensively evaluating the health impact of an LEZ.55

Our aims for this paper are two-fold, with the first being to provide up-56

to-date policy relevant evidence about the impact of long-term exposure to57

coarse and fine particulate matter (PM10 and PM2.5) and oxides of nitrogen58

(NO2 and NOx) on a range of health outcomes to address the gap in the59

4

http://www.scottishairquality.co.uk/assets/documents//Glasgow_LAQM_Annual_Progress_Report_2017.pdf
http://www.scottishairquality.co.uk/assets/documents//Glasgow_LAQM_Annual_Progress_Report_2017.pdf
http://www.scottishairquality.co.uk/assets/documents//Glasgow_LAQM_Annual_Progress_Report_2017.pdf


evidence base about the health impacts of current levels of air pollution60

concentrations in Scotland. Existing studies include Lee et al. (2009); Lee61

(2012); Willocks et al. (2012); Dibben and Clemens (2015) and Huang et al.62

(2015), but are based on relatively old data up to 2011. Our second aim is63

to use our modelling results to estimate the spatially-varying health benefits64

of reducing air pollution concentrations in Scotland’s cities, specifically in65

city centres where LEZs are most likely to be located. The data and study66

region are presented in Section 2, while the proposed statistical methodology67

is outlined in Section 3. The results of the study are presented in Section 4,68

while a note of caution about comparing the results here to other studies is69

presented in Section 5. Finally, the key conclusions are presented in Section70

6.71

2. Data and study design72

The study is based in mainland Scotland for the two-year period 2015-73

2016, and the study region has been spatially partitioned into K = 125274

Intermediate Zones (IZ) that have an average population of around 4,000.75

The health e↵ects associated with air pollution are estimated from the spatial76

contrasts in population-level disease incidence and air pollution concentra-77

tions across the study region, after adjusting for population demographics78

and socio-economic deprivation.79

2.1. Disease data80

The data are counts of the numbers of disease events from the populations81

living in each IZ in the two-year study period, and we consider the follow-82

ing 5 outcomes: respiratory hospitalisations and mortalities (ICD-10 codes83
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J00-J99), cardiovascular hospitalisations and mortalities (ICD-10 codes I00-84

I99), and total non-accidental mortalities. For the hospitalisation outcomes85

the data relate to the total numbers of events rather than the number of86

first events, so that an individual who has multiple hospitalisation events87

within the two-year period will contribute more than one event to the count88

data. All of these outcomes have been associated with air pollution in the89

existing literature (see Schwartz et al., 2001; Brook et al., 2004 and Lee90

et al., 2009), and cardiovascular and respiratory disease are two of Scotland’s91

leading causes of deaths (see http://www.gov.scot/Topics/Statistics/92

Browse/Health/TrendMortalityRates). These data are summarised in Ta-93

ble 1, where the figure for 0% represents the minimum number of counts94

recorded for the health outcome in any of the IZs and 100% of the distribu-95

tion represents the maximum count recorded among all the IZs.96

The area level disease counts depend on the size and age-sex structure of97

the population at risk within each areal unit (IZ), which is accounted for by98

computing the expected number of disease events in each IZ using indirect99

standardisation. Specifically, the population living within each IZ is split100

into strata based on 5-year age bands and sex, and the number of people in101

each strata is multiplied by national strata specific disease rates, which are102

then summed over strata to compute the expected count. Letting (Yk, ek)103

respectively denote the observed and expected numbers of disease events104

in the kth IZ, an exploratory measure of disease risk is the Standardised105

Morbidity / Mortality Ratio (SMR), which is computed as SMRk = Yk/ek.106

An SMR of one corresponds to an average risk area, while an SMR of 1.2107

corresponds to a 20% increased risk of disease compared to the Scottish108

6

http://www.gov.scot/Topics/Statistics/Browse/Health/TrendMortalityRates
http://www.gov.scot/Topics/Statistics/Browse/Health/TrendMortalityRates
http://www.gov.scot/Topics/Statistics/Browse/Health/TrendMortalityRates


average.109

The spatial distribution of the SMR is summarised in Table 1, which110

shows that the average SMR is close to 1 in all cases, and that generally111

the mortality outcomes have a wider range of SMR values than the hospi-112

talisation outcomes due to the mortality outcomes having smaller numbers113

of incidents and hence being a more unstable ratio. The spatial pattern in114

the SMR for respiratory hospitalisations is displayed in panel A of Figure 2,115

which shows that the majority of the IZs are in the heavily populated central116

belt of Scotland containing the two largest cities Glasgow and Edinburgh. A117

large number of the high SMRs (dark colours) are in the city of Glasgow,118

which is known to exhibit some of the worst health in the United Kingdom119

(Walsh et al., 2017). The SMRs for the remaining disease outcomes exhibit120

similar spatial patterns, with correlations ranging between 0.48 (between car-121

diovascular and respiratory mortality) and 0.77 (between cardiovascular and122

total non-accidental mortality).123

2.2. Air pollution data124

The network of air pollution monitors and di↵usion tubes is relatively125

sparse in Scotland (see http://www.scottishairquality.co.uk), and is126

not su�cient for the small-area scale of this study. Therefore in common127

with Haining et al. (2010) and Lee et al. (2009) we utilise modelled concen-128

trations instead, specifically annual averages for 2015 and 2016 from the Pol-129

lution Climate Mapping (PCM) model (https://uk-air.defra.gov.uk/130

data/pcm-data) developed for the Department for the Environment, Food131

and Rural A↵airs (DEFRA). This model estimates concentrations on a 1km132

square grid, which are spatially misaligned with the irregularly shaped Inter-133
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Table 1: Summary of the spatial distribution of the disease and pollution data across the

1252 Intermediate Zones.

Variable
Percentiles of the distribution

0% 25% 50% 75% 100%

Disease incidents (total counts)

Cardiovascular hospitalisation 26 101 131 166 354

Cardiovascular mortality 2 16 22 30 90

Respiratory hospitalisation 34 108 148 200 530

Respiratory mortality 0 7 11 15 50

Total non-accidental mortality 7 63 84 109 303

Disease risk (SMR)

Cardiovascular hospitalisation 0.44 0.83 0.98 1.17 2.16

Cardiovascular mortality 0.19 0.80 0.99 1.20 2.76

Respiratory hospitalisation 0.33 0.75 1.00 1.32 2.48

Respiratory mortality 0.00 0.67 0.96 1.31 3.44

Total non-accidental mortality 0.28 0.82 0.99 1.18 2.27

Air pollutants (in µg m�3)

NO2 1.3 5.8 9.8 14.0 38.3

NOx 1.7 7.6 13.3 19.8 74.7

PM2.5 3.2 5.6 6.1 6.5 9.1

PM10 5.5 9.0 10.0 10.8 13.9
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mediate Zones that the disease data relate to. Such spatial misalignment is134

often addressed by simple averaging (see Haining et al., 2010), which is the135

approach adopted here. Specifically, each 1km grid square has an associated136

centroid (central point), and the estimated pollution concentration for an137

IZ is the mean of the grid square concentrations whose centroids lie within138

the IZ. Any IZ that does not contain a grid square centroid is assigned the139

pollution concentration from the nearest grid square.140

In this study we consider concentrations of nitrogen dioxide (NO2), nitro-141

gen oxides (NOx), and coarse (PM10) and fine (PM2.5) particulate matter, all142

of which are measured in µg m�3. These pollutants are chosen because they143

are the ones responsible for all but one of Scotland’s air quality management144

areas. The spatial distribution of PM2.5 is displayed in panel B of Figure145

2, which shows it is highest in the cities of Glasgow and Edinburgh as well146

as around the east and south east coasts, the latter due to transboundary147

pollution from continental Europe and England respectively.148

A summary of the spatial distributions of all 4 pollutants is displayed149

in Table 1, which shows that the 2-year annual average concentrations are150

generally low. They also exhibit relatively little variation, with standard151

deviations of 5.5 (NO2), 8.8 (NOx), 0.8 (PM2.5) and 1.4 (PM10) respectively.152

Thus presenting the estimated PM10-disease associations as relative risks for a153

10µg m�3 increase in concentrations, as is done in existing time series studies154

(see Dominici et al., 2004), would not be sensible, because 10µg m�3 does155

not represent a plausible increase given the data. Therefore in the results we156

specify relative risks based on a 5µg m�3 increase for NO2 and NOx, and a157

1µg m�3 increase for PM2.5 and PM10, although we accept this is, as it has158
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to be, a somewhat arbitrary choice. Finally, the four pollutants are highly159

correlated spatially, with correlations of: 0.99 between NOx and NO2; 0.98160

between PM10 and PM2.5; and between 0.66 and 0.69 for all other pairs of161

pollutants.162

2.3. Confounder data163

One of the main factors a↵ecting cardio-respiratory disease incidence is164

smoking (Hawthorne and Fry, 1978), and therefore areas with higher smok-165

ing prevalences are likely to exhibit higher numbers of disease incidents.166

However smoking prevalence data are unavailable at the IZ scale, but Klein-167

schmidt et al. (1995) have shown a strong link between smoking rates and168

socio-economic deprivation. Therefore we use the Scottish Index of Multi-169

ple Deprivation (SIMD, http://www.gov.scot/Topics/Statistics/SIMD)170

in our models as a proxy for smoking. The SIMD is a composite index con-171

sisting of deprivation indicators in the domains of access to services, crime,172

education, employment, health, housing and income, which are weighted and173

combined to create the final index.174

However, as the health domain in this overall index contains similar vari-175

ables to the disease outcome variables, it cannot be used as a covariate in176

the models. Therefore in the modelling described in Section 4 we consider177

the indicators for the 6 individual domains, excluding health, as possible co-178

variates. The crime indicator has a single IZ with a missing value, which is179

imputed by computing the average value from geographically neighbouring180

areas (those sharing a common border). Naturally however these six indi-181

cators are highly correlated, with the highest correlation being between the182

income and employment domains (correlation of 0.98), which thus means183
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Figure 2: Display of the data. The left panel (A) shows the standardised morbidity ratio

for respiratory hospitalisations, while the right panel (B) presents the average concentra-

tions of PM2.5.
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we do not include them in the same model. Finally, we also have the aver-184

age number of dwellings per hectare, which is a proxy measure of property185

density and hence urbanicity.186

2.4. Assessment of residual spatial autocorrelation187

Here we examine whether the disease outcomes contain residual spatial188

autocorrelation after covariate adjustment, because this will a↵ect the choice189

of model that is appropriate for these data. To assess the presence or ab-190

sence of such correlation, overdispersed quasi-Poisson log-linear models were191

fitted to each disease outcome separately, where the expected disease counts192

ek were included as an o↵set term. The covariates included in the models193

were selected from the set described in the previous section, where the se-194

lection was based on the significance (at the 5% level) of their association195

with the disease outcomes and their pairwise correlations. The residuals196

from these models contained substantial overdispersion, with the estimated197

overdispersion parameter !̂ (where Var[Yk] = !E[Yk]) ranging between 1.35198

and 6.41 across the 5 disease outcomes. The residuals also contained substan-199

tial spatial autocorrelation, which was assessed by performing permutation200

tests based on Moran’s I statistic (Moran, 1950). The Moran’s I statistics201

ranged between 0.04 and 0.38 and had p-values less than 0.01 in all cases,202

which suggests that spatially correlated random e↵ects that also account for203

overdispersion should be included in the final model.204

However, the residual surfaces do not vary smoothly in space, and instead205

exhibit subregions of spatial smoothness separated by abrupt step changes.206

This is illustrated in Section 1 of the supplementary material, which displays207

maps of the residuals from the model applied to the respiratory hospitali-208
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sations data zoomed in to the cities of Glasgow and Edinburgh. The maps209

show that while most pairs of spatially neighbouring IZs exhibit similar resid-210

ual values suggesting spatial autocorrelation, there are numerous examples211

of large step-changes between spatially neighbouring IZs. This suggests that212

a globally smooth spatial autocorrelation structure is unlikely to be appro-213

priate for these data, which motivates the use of the locally adaptive spatial214

smoothing model described in the next section.215

3. Methodology216

We quantify the impact of air pollution on disease risk using the spa-217

tial hierarchical regression model proposed by Lee and Mitchell (2013), be-218

cause it allows for localised spatial autocorrelation that is present between219

some pairs of neighbouring areas but absent between other pairs. Infer-220

ence is undertaken in a Bayesian paradigm using Integrated Nested Laplace221

Approximations (INLAs, Rue et al., 2009), utilising the R package INLA222

(http://www.r-inla.org). The overall model is presented in Section 3.1,223

while the iterative estimation algorithm is presented in Section 3.2. The224

model is fitted separately for each disease outcome, because this ensures225

that the cross correlations between the disease outcomes do not a↵ect the226

estimated pollution-health relationships.227

3.1. Overall model228

Recall that (Yk, ek) respectively denote the observed and expected num-229

bers of disease events in IZ k for k = 1, . . . , K, while xk denotes the concen-230

tration of a single pollutant and zk = (1, zk1, . . . , zkp) denotes a vector of p231

13
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confounders including an intercept term. The data likelihood model is given232

by233

Yk ⇠ Poisson(ek✓k) for k = 1, . . . , K (1)

ln(✓k) = z>k ↵+ xk� + �k,

where ✓k is the risk of disease relative to ek and can be interpreted on234

the same scale as the SMR. The regression parameters corresponding to235

each confounder (↵ = (↵1, . . . ,↵p)) and the air pollution covariate (�) are236

assigned independent weakly informative Gaussian prior distributions, with237

a mean of zero and a variance of 100,000. The remaining term in the linear238

predictor is a set of random e↵ects � = (�1, . . . ,�K), which account for the239

residual overdispersion and spatial autocorrelation in the disease data not240

captured by the covariates. The spatial structure of the K IZs is quantified241

by a non-negative symmetric K ⇥K neighbourhood matrix W, and here we242

use the common binary specification where wki = 1 if areas (k, i) share a243

common border (denoted k ⇠ i) and wki = 0 otherwise (also wkk = 0 8k).244

Then based on W we model � using the conditional autoregressive (CAR)245

prior proposed by Leroux et al. (2000):246

�k|��k,W, ⌧ 2, ⇢ ⇠ N

 
⇢
PK

i=1 wki�i

⇢
PK

i=1 wki + 1� ⇢
,

⌧ 2

⇢
PK

i=1 wki + 1� ⇢

!
(2)

⌧ 2 ⇠ Inverse-gamma(1, 0.01)

⇢ ⇠ Uniform(0, 1),

where ��k denotes the vector of random e↵ects except �k. The prior mean247

of �k is a weighted average of the random e↵ects �i in neighbouring areas248
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(those for which wki = 1), which thus induces spatial autocorrelation into �.249

The strength of this spatial autocorrelation is controlled by ⇢, where ⇢ = 1250

corresponds to strong spatial autocorrelation and simplifies to the intrinsic251

CAR model of Besag et al. (1991), while ⇢ = 0 corresponds to independence252

(�k ⇠ N(0, ⌧ 2)). However, model (2) enforces the random e↵ects to exhibit253

a single global level of spatial smoothness controlled by ⇢, which can be seen254

from its implied partial autocorrelations:255

Corr[�k,�i|��ki] =
⇢wkiq

(⇢
PK

j=1 wkj + 1� ⇢)(⇢
PK

j=1 wij + 1� ⇢)
. (3)

Thus if ⇢ is close to one then all pairs of random e↵ects in neighbouring256

areas where wki = 1 will be partially autocorrelated, whilst if ⇢ is zero then257

they will all be independent. However, the exploratory analysis showed that258

such global spatial smoothness is inappropriate for our data, because some259

pairs of neighbouring areas have very similar values, suggesting ⇢ should260

be close to one, whilst other neighbouring pairs have very di↵erent values,261

suggesting ⇢ should be close to zero.262

Therefore we take the approach of Lee and Mitchell (2013) and estimate263

each element in the set {wki|k ⇠ i} as 0 or 1, rather than assuming it is fixed264

equal to 1. Equation (3) shows that if wki = 1 then (�k,�i) will be modelled265

as partially autocorrelated and hence smoothed over in the modelling, while266

if wki = 0 then (�k,�i) are modelled as conditionally independent and no267

such spatial smoothing will be enforced. This potentially allows for isolated268

islands of correlation, where an area is not correlated to any of its neighbours.269

The major challenge when estimating {wki|k ⇠ i} is overparameterisation,270
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because there are K = 1252 data points and 3281 neighbourhood elements271

{wki|k ⇠ i} to be estimated. Therefore we update {wki|k ⇠ i} determin-272

istically based on the remaining model parameters ⇥ = (↵, �,�, ⌧ 2, ⇢) in273

an iterative algorithm, rather than assigning each wki parameter a Bernoulli274

prior distribution. The algorithm proposed by Lee and Mitchell (2013) and275

used here is outlined below.276

3.2. Iterative estimation algorithm277

The algorithm iterates between updating: (i) ⇥|W and (ii) W|⇥ until278

convergence of W as follows.279

Estimation Algorithm280

1: Estimate a starting posterior distribution for ⇥, by fitting model (1)-281

(2) based on the assumption that the random e↵ects are independent282

(⇢ = 0).283

2: Iterate the following two steps for j = 1, 2, . . . , j⇤, until one of the two284

termination conditions for W outlined in step 3 are met.285

a: Estimate W(j) deterministically based on the current posterior dis-286

tribution f(⇥(j�1)|Y,W(j�1)), by setting w(j)
ki = w(j)

ik = 1 if the287

marginal 95% posterior credible intervals for (�(j�1)
k ,�(j�1)

i ) over-288

lap and areas (k, i) share a common border. Otherwise, set w(j)
ki =289

w(j)
ik = 0.290

b: Estimate the posterior distribution f(⇥(j)|Y,W(j)) by fitting model291

(1)-(2) using INLA.292
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3: After j⇤ iterations one of the following termination conditions will apply.293

Case 1 - The sequence of W estimates is such that W(j⇤) = W(j⇤+1),294

which is the estimated hyperparameter matrix Ŵ.295

Case 2 - The sequence of W estimates forms a cycle of m di↵erent296

states (W(j⇤),W(j⇤+1), . . . ,W(j⇤+m�1),W(j⇤+m)), where W(j⇤) =297

W(j⇤+m). In this case the estimated hyperparameter matrix Ŵ298

is the value from the cycle of m states that has the minimal level299

of residual spatial autocorrelation, as measured by the absolute300

value of Moran’s I statistic.301

When one of the termination conditions has been met Ŵ is the esti-302

mated spatial structure of the random e↵ects, and ⇥ is summarised by303

the posterior distribution f(⇥|Y,Ŵ).304

The algorithm is initialized by assuming the random e↵ects are indepen-305

dent so that initial spatial smoothness constraints are not imposed on the306

random e↵ects. The update of W in step 2a assumes that if there is a sub-307

stantial di↵erence between the current estimates of (�k,�i), that is their 95%308

credible intervals do not overlap, then they should be modelled as condition-309

ally independent, otherwise they are modelled as autocorrelated. In practice,310

the W estimates converge to a single value (Case 1) after a small number of311

iterations in almost all cases, and full details of the algorithm are given in312

Lee and Mitchell (2013).313
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4. Results314

This section presents the results of the study, including the model build-315

ing process, pollution-health relative risk estimates, and the impact of air316

pollution reductions on health.317

4.1. Model building318

We fit single disease and single pollutant models in this study, resulting319

in 20 di↵erent disease-pollutant combinations. Single disease models ensure320

that any cross correlations between the disease outcomes do not a↵ect the321

estimated pollution-health relationships, while single pollutant models are322

used because of the high collinearity between the four pollutants (pairwise323

correlations range between 0.66 and 0.99) which hinders reliable joint estima-324

tion. To assess the robustness of our results to model choice we fit 2 di↵erent325

spatial autocorrelation models to the data, which are the Poisson log-linear326

Leroux CAR model ((1) and (2)), and the Poisson log-linear locally adaptive327

CAR model ((1) and (2) with the estimation of W as described in Section328

3.2).329

Each disease outcome is modelled by the expected numbers of disease330

events as an o↵set, one of the four pollutants, and a subset of the confounders331

outlined in Section 2, the latter including the dwellings per hectare variable332

and the 6 domain specific indicators of the SIMD. The main challenge with333

confounder selection is collinearity, because the education, employment and334

income domains all have high pairwise correlations above 0.86. Fitting mod-335

els with each of these variables separately shows that the income domain336

variable describes the most variation in the data, and thus is the one re-337
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tained with the other two being discarded. The remaining confounders do338

not exhibit this collinearity problem, and as they are all significantly related339

to most of the disease outcomes, they are retained in all models for con-340

sistency. Therefore, the set of confounders included in each model are the341

access to services, crime, housing and income domains of the SIMD, as well342

as the dwellings per hectare variable.343

The overall fits to the data of each model are presented in Table 2, which344

displays their Watanabe Akaike Information Criterion (WAIC, Watanabe,345

2010) value and the estimated e↵ective number of independent parameters346

(p.w). The results presented relate to when PM2.5 was the pollutant included347

in the model, but the results for the other pollutants are almost identical and348

are not shown for brevity. The locally adaptive CAR model fits the two hos-349

pitalisation outcomes and total non-accidental mortality outcome better than350

the Leroux CAR model, with reductions in WAIC of 135 (cardiovascular),351

209 (respiratory) and 22 (mortality) respectively. These improvements in352

model fit are achieved despite the locally adaptive model having a smaller ef-353

fective number of independent parameters than the Leroux model. This phe-354

nomenon occurs because the random e↵ects from the Leroux CAR model are355

globally spatially smooth, which hence forces smoothness between residual356

risks in geographically neighbouring IZs, even if those residual risks are very357

di↵erent. This inflates the random e↵ects variance ⌧ 2 because the residual358

risks are not spatially smooth, which results in a greater number of e↵ective359

parameters. In contrast, the locally adaptive model does not smooth resid-360

ual risks in geographically adjacent IZs where those residual risks are very361

di↵erent, because it sets the corresponding wki = wik elements equal to zero362
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Table 2: Watanabe-Akaike Information Criterion (WAIC) and the e↵ective number of

independent parameters from the Leroux and locally adaptive CAR models. For the

latter the number of {wki} elements estimated as zero is also presented.

Disease outcome Model WAIC p.w Number of {wki} set to zero

Cardiovascular hospitalisations Leroux 10,506 564 -

Adaptive 10,371 495 115 (3.5%)

Cardiovascular mortality Leroux 7,753 276 -

Adaptive 7,753 275 2 (0.1%)

Respiratory hospitalisations Leroux 10,706 616 -

Adaptive 10,497 522 386 (11.8%)

Respiratory mortality Leroux 6,874 244 -

Adaptive 6,871 251 0 (0%)

Total non-accidental mortality Leroux 9,782 528 -

Adaptive 9,760 489 150 (4.6%)

and thus does not assume any partial autocorrelations between the random363

e↵ects in those IZs. To illustrate the locations of these step changes in the364

random e↵ects surface, the locations of the borders for which wki = wik = 0365

are displayed for Edinburgh and Glasgow in Section 5 of the supplementary366

material.367

The largest number of {wki} elements estimated as zero is 386 (11.8%)368

for respiratory hospitalisations, while 115 (3.5%) and 150 (4.6%) were set369

to zero for cardiovascular hospitalisations and total non-accidental mortality370

respectively. In contrast, the two CAR models exhibit the same overall fit for371

the other two disease outcomes, which occurs because the locally adaptive372

model hardly estimates any wki = 0 and hence it simplifies to the Leroux373

CAR model.374
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4.2. Pollution-health e↵ects375

The e↵ects of each pollutant on each disease outcome estimated from376

the locally adaptive CAR model are presented in Table 3, while the corre-377

sponding e↵ects for the non-pollutant covariates are presented in Section 3378

of the supplementary material accompanying this paper. For completeness,379

the pollution-disease e↵ects estimated from the model with the Leroux CAR380

prior are displayed in Section 4 of the supplementary material, and show381

little change to those presented here, suggesting our results are robust to382

the choice of spatial autocorrelation model. Table 3 displays relative risks383

and 95% credible intervals for a 5µg m�3 increase in NO2 and NOx and a384

1µg m�3 increase in PM2.5 and PM10, because as discussed in Section 2.2,385

these are realistic increases for each of the pollutants.386

Table 3 shows that in this study air pollution only has a significant as-387

sociation with respiratory disease in our data. This is shown prominently388

for respiratory hospitalisations, where all four pollutants exhibit significant389

associations. For respiratory mortality the estimated associations are largely390

similar in size, and the lack of significance at the traditional 5% level (except391

for PM2.5) is because of the much wider credible intervals for this disease out-392

come, resulting from the much lower numbers of disease counts (less data)393

compared with respiratory hospitalisations. The e↵ect sizes for respiratory394

hospitalisations range between a 1.4% and a 5.8% increased risk for the given395

pollutant increases, although given the di↵ering levels of spatial variation in396

the pollutants these risks are not directly comparable. Cardiovascular disease397

and total non-accidental mortality appear to have no relationship with any398

of the four pollutants, because all 12 of the 95% credible intervals contain399
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Table 3: Estimated relative risks and 95% credible intervals for the pollution-disease e↵ects

from the model with the locally adaptive CAR prior. The results for NO2 and NOx relate

to a 5µg m�3
increase whilst those for PM2.5 and PM10 relate to a 1µg m�3

increase. The

significant associations are shown in bold.

Disease outcome

Pollutant

NO2 NOx PM2.5 PM10

Cardiovascular hospitalisations 1.012 1.006 1.018 1.006

(0.994, 1.030) (0.995, 1.016) (0.997, 1.040) (0.995, 1.017)

Cardiovascular mortality 0.988 0.993 0.995 0.997

(0.970, 1.006) (0.982, 1.005) (0.994, 1.016) (0.987, 1.008)

Respiratory hospitalisations 1.028 1.014 1.058 1.023

(1.008, 1.048) (1.002, 1.025) (1.034, 1.083) (1.011, 1.035)

Respiratory mortality 1.032 1.017 1.045 1.014

(0.997, 1.067) (0.996, 1.038) (1.002, 1.090) (0.992, 1.035)

Total non-accidental mortality 1.003 1.001 1.012 1.005

(0.986, 1.020) (0.990, 1.011) (0.992, 1.033) (0.995, 1.016)

the null risk of one, and the estimated risks are mostly very close to one.400

4.3. Estimating the health impact of pollution reductions401

We now use the modelling results to quantify the health impact of re-402

ducing air pollution concentrations in each IZ within the four main Scottish403

cities, Aberdeen, Dundee, Edinburgh and Glasgow, which will illustrate the404

potential health impact of the planned LEZs. We do this by computing the405

expected reduction in the numbers of disease cases (hospital admissions or406

mortalities) in each IZ over 2015-2016 if average concentrations over that407

two-year period had reduced by !µg m�3. We undertake this analysis for408

each pollutant and disease outcome separately because we have implemented409
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single pollutant and single disease models, and note that these estimated410

reductions should not be summed over pollutants or diseases as they are not411

independent. From equation (1) the estimated reduction in the expected412

number of disease events for the kth IZ, E[Yk], if pollutant xk reduced by413

!µg m�3 is given by:414

Reductionk = E[Yk|xk]� E[Yk|xk � !] (4)

= ek exp(z
>
k ↵̂+ xk�̂ + �̂k)� ek exp(z

>
k ↵̂+ (xk � !)�̂ + �̂k)

= ek exp(z
>
k ↵̂+ xk�̂ + �̂k)[1� exp(�!�̂)]

= ek✓̂k[1� exp(�!�̂)].

This reduction depends on the estimated air pollution and health e↵ect415

�̂, the pollution reduction !µg m�3, the underlying size and demographics416

of the population at risk via ek, and the estimated level of disease risk via417

✓̂k = exp(z>k ↵̂ + xk�̂ + �̂k). To understand the range of reductions that418

might be observed, Table 4 displays the estimated total reductions across419

the four cities resulting from the following pollutant reductions: NO2 / NOx420

- 2µg m�3, 5µg m�3 and 10µg m�3; and PM2.5 / PM10 - 0.5µg m�3, 1µg m�3
421

and 3µg m�3. Here each city is defined by its local authority region, and the422

pollution-disease combinations listed in the table relate to the significant423

associations from Table 3.424

The table shows that the estimated reductions in disease cases scales with425

the chosen pollution reductions, as for example increasing the reduction of426

PM2.5 from 0.5µg m�3 to 1µg m�3 in Edinburgh results in around 400 and427

800 fewer respiratory hospitalisations respectively. The biggest reductions428

23



are in Glasgow because it has the largest population in Scotland, with an429

estimated reduction of 1,576 fewer admissions to hospital over the two year430

study period (an average of 788 per year) due to respiratory disease if PM2.5431

reduced by 1µg m�3. In contrast, Dundee, the smallest of the four cities,432

had an estimated reduction in admissions of 352 over the two-year period433

(on average 176 per year) for the same 1µg m�3 decrease in concentrations.434

Finally, as mortalities are much rarer than hospital admissions, the estimated435

reductions in respiratory mortalities are much smaller than the corresponding436

reductions for respiratory hospitalisations.437

Equation (4) shows that the health impact of a fixed !µg m�3 reduction438

in a pollutant will vary by IZ, and thus where those reductions are highest439

would be where pollution reduction policies, such as an LEZ, would have the440

largest public health benefit. The left column of Figure 3 illustrates this, by441

displaying, for Edinburgh (top left) and Glasgow (top right), the estimated442

reductions in respiratory hospitalisations in each IZ between 2015-2016 that443

would have occurred if NO2 concentrations had been reduced by 5µg m�3.444

The right column of the figure presents the estimated NO2 concentrations for445

the two cities, allowing us to spatially compare the locations with the high-446

est concentrations and the highest health impacts of reducing concentrations.447

We have chosen to display the results for NO2 because tra�c related inter-448

ventions, such as the Glasgow LEZ, are designed to reduce this pollutant449

more than particulates. However, the same general pattern is observed for450

all 4 pollutants.451

The figure shows the same fundamental message for both cities, namely452

that reducing NO2 concentrations in a city centre where concentrations are453
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Table 4: Estimated reductions in the expected numbers of disease events in 2015-2016 in

Aberdeen, Dundee, Edinburgh and Glasgow if a pollutant decreased by !µg m�3
. The

values in brackets relate to the region containing the Glasgow LEZ.

Disease / Pollutant

City

Aberdeen Dundee Edinburgh Glasgow (LEZ)

Respiratory hospitalisations

NO2 - ! = 2 71 71 161 316 (5)

NO2 - ! = 5 176 175 398 784 (13)

NO2 - ! = 10 347 345 785 1547 (26)

NOx - ! = 2 35 35 80 158 (3)

NOx - ! = 5 88 88 199 393 (7)

NOx - ! = 10 175 175 395 781 (14)

PM2.5 - ! = 0.5 179 178 405 799 (14)

PM2.5 - ! = 1 354 352 798 1,576 (27)

PM2.5 - ! = 3 1005 999 2265 4474 (77)

PM10 - ! = 0.5 73 73 165 325 (6)

PM10 - ! = 1 144 143 325 641 (11)

PM10 - ! = 3 409 406 923 1820 (31)

Respiratory mortality

PM2.5 - ! = 0.5 12 10 22 39 (1)

PM2.5 - ! = 1 23 19 44 78 (1)

PM2.5 - ! = 3 66 55 126 224 (3)
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highest and hence where LEZs are typically located, will likely have a rel-454

atively low public health impact in terms of the number of cases. This is455

because city centres have comparatively low resident populations at risk due456

to being mainly commercial centres, resulting in smaller estimated reductions457

in the numbers of disease events. The same observation is true for Aberdeen458

and Dundee, and the results are displayed in Section 4 of the supplementary459

material.460

The location for the Glasgow LEZ is highlighted by the blue line in Fig-461

ure 3, and the bottom right panel shows it has some of the highest NO2462

concentrations in the city. However, the bottom left panel shows that the463

health impact from reducing the concentrations in the LEZ will likely be464

small, as the three IZs that make up the LEZ combined have a total reduc-465

tion of 13 hospital admissions over 2015-2016 (on average between 6 and 7 a466

year), less than 2% of the estimated reduction for the whole city. The cor-467

responding reductions in estimated disease events for the LEZ for the other468

pollutants, health outcomes, and sizes of pollutant reduction are shown in469

brackets in Table 4, and again show very small numbers compared with the470

city of Glasgow as a whole.471

5. Comparability of epidemiological air pollution studies472

Large numbers of epidemiological air pollution studies have been con-473

ducted across the world, which has led researchers and policy-makers to474

directly compare the results from multiple studies. However this is prob-475

lematic, because the estimated e↵ect sizes will depend on both the strength476

of the pollution-health association and the amount of variation in pollution477
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Figure 3: Maps of the estimated reductions in respiratory hospitalisations in each IZ due

to a 5µg m�3
reduction in NO2 concentrations (left), and the average NO2 concentrations

(right). The top row refers to Edinburgh and the bottom row refers to Glasgow. The blue

line denotes the boundary of the proposed Glasgow LEZ.
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concentrations across the study region. To see this note that from equation478

(1) the risk for area k is given by479

✓̂k = exp(z>k ↵̂+ xk�̂ + �̂k), (5)

where the exposure xk has mean x̄ = 1
K

PK
k=1 xk and variance �2

x =480

1
n�1

PK
k=1(xk� x̄)2. Now consider a linearly scaled exposure vk = (1+ )xk�481

 x̄, where it is straightforward to show that they have the same mean (i.e.482

v̄ = x̄) and the variances are related by �2
v = ( + 1)2�2

x. Then replacing xk483

by vk in equation (1) yields:484

✓̂k = exp(z>k ↵̂
⇤ + vk�̂⇤ + �̂⇤

k) (6)

= exp(z>k ↵̂
⇤ + [(1 +  )xk �  x̄]�̂⇤ + �̂⇤

k)

= exp(z>k ↵̂
⇤ + xk(1 +  )�̂⇤ �  x̄�̂⇤ + �̂⇤

k).

Comparing (5) and (6) shows that the coe�cients for the scaled and un-485

scaled exposures (vk, xk) are related by �̂⇤ = �̂
1+ . Therefore, comparing486

estimated e↵ect sizes between studies with di↵erent levels of exposure vari-487

ation is not appropriate, because the level of exposure variation a↵ects the488

estimated regression coe�cient. This explains the large estimated e↵ect sizes489

for PM2.5 on respiratory disease outcomes observed in this study, because the490

level of variation in the 2-year average PM2.5 concentrations across Scotland491

is very low (the standard deviation is only 0.81µg m�3).492
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6. Discussion493

This paper has presented a new study of the health impact of long-term494

exposure to air pollution in Scotland using a spatial small-area design, and495

has used the results to quantify the likely health impact of air pollution re-496

duction interventions such as Low Emission Zones. Our first main finding is497

that the four pollutants considered here exhibit associations with respiratory498

disease (hospitalisations and mortality), even though for mortality three of499

the relative risks are not significant at the 5% level as a result of small num-500

bers of deaths leading to wide credible intervals. In contrast, no significant501

associations were observed for cardiovascular disease or total non-accidental502

mortality, with all relative risks being non-significant and close to one in503

magnitude (ranging between 0.988 and 1.018). No significant associations504

between cardiovascular disease and air pollution were also found by Willocks505

et al. (2012) in Scotland and Carey et al. (2013) and Dehbi et al. (2017) in506

Great Britain using time series and cohort methodologies respectively, which507

means our findings are consistent with previous studies on British popula-508

tions.509

Our second main finding is that focusing an air pollution reduction inter-510

vention, such as an LEZ, on a city centre where concentrations are highest is511

likely to have a relatively small positive health impact at the national level,512

because these areas are largely commercial and hence have small resident513

populations. Even though these areas will routinely see large numbers of514

people visiting for both shopping and working, their time spent in the area,515

especially outdoors, will likely be relatively short. The evidence presented516

here therefore suggests that the LEZ planned for Glasgow may have a rela-517
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tively small positive net health benefit. We note however that our study has518

not evaluated the e↵ect of the Glasgow LEZ directly, because the pollution519

reductions from the LEZ are not known as it will not be fully operational520

until the end of 2022. However, other studies have directly evaluated the521

impact of LEZs across Europe, including studies in Amsterdam (Panteliadis522

et al., 2014) and Munich (Fensterer et al., 2014) where the LEZ appeared to523

reduce concentrations, and in the UK (London and Birmingham, Jones et al.,524

2012; Wood et al., 2015) where it did not appear to reduce concentrations.525

A thorough review of LEZs is beyond the scope of this paper, and the reader526

is referred to Holman et al. (2015) and AIRUSE (2016).527

The choice of where one should locate an air pollution intervention, such528

as an LEZ, depends on the ultimate goal. If the main aim is to reduce529

the number of preventable disease cases attributable to air pollution, then530

Figure 3 suggests that an intervention should be targeted at areas that have531

both relatively high pollutant concentrations and a relatively large and more532

vulnerable population. In contrast, if compliance with air quality limits is the533

key requirement, such as reducing pollution concentrations below European534

Union limits (European Parliament, 2008), then interventions need only be535

targeted at areas with the highest concentrations that are not in compliance.536

Finally, if the aim is an overall reduction in the risk of air pollution, then more537

geographically wide-reaching air pollution reduction policies are needed.538

The main limitation of our work (shared by all other epidemiological air539

pollution studies) in respect of attempting to predict the potential health im-540

pacts of LEZs is the use of ambient residential concentrations as a proxy for541

personal exposures, which ignores peoples movements such as daily commut-542
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ing patterns. In future work we will combine the methodology developed here543

with population movement models, to identify the possible health impacts544

of reducing air pollution in city centres on personal exposures. Additionally,545

we will consider the impact of an LEZ on air pollution concentrations in the546

rest of the city, which are likely to occur because an LEZ will require cleaner547

buses that will service routes that travel out-with the LEZ area.548

A second limitation with this study is that the pollution data are assumed549

to be true and measured without error, where as in fact they come from the550

atmospheric PCM model and thus are subject to error and uncertainty. Nu-551

merous solutions have been proposed to allow for pollution uncertainty in552

disease models, and a recent example using fusion modelling (Berrocal et al.,553

2010) is provided by Blangiardo et al. (2016). A further limitation is the554

ecological nature of this small-area study, which in common with time series555

studies (e.g. Dominici et al., 2004), uses population-level disease summaries556

rather than individual-level data. This means that only group level associ-557

ations rather than individual-level cause and e↵ect can be estimated, which558

provides a weaker evidence base. However, individual-level disease data are559

not available for confidentiality purposes, and population-level small-area560

studies are commonplace and are critiqued by Wakefield (2007).561
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