
Finding frequent closed itemsets with an
extended version of the Eclat algorithm

Laszlo Szathmary

University of Debrecen, Faculty of Informatics, Department of IT
H-4002 Debrecen, Pf. 400, Hungary
szathmary.laszlo@inf.unideb.hu

Submitted March 5, 2018 — Accepted September 13, 2018

Abstract

Apriori is the most well-known algorithm for finding frequent itemsets
(FIs) in a dataset. For generating interesting association rules, we also need
the so-called frequent closed itemsets (FCIs) that form a subset of FIs. Apri-
ori has a simple extension called Apriori-Close that can filter FCIs among
FIs. However, it is known that vertical itemset mining algorithms outperform
the Apriori-like levelwise algorithms. Eclat is another well-known vertical
miner that can produce the same output as Apriori, i.e. it also finds the FIs
in a dataset. Here we propose an extension of Eclat, called Eclat-Close that
can filter FCIs among FIs. This way Eclat-Close can be used as an alternative
of Apriori-Close. Experimental results show that Eclat-Close performs much
better than Apriori-Close, especially on dense, highly-correlated datasets.

Keywords: data mining, frequent itemsets, association rules, algorithms

MSC: 97R40

1. Introduction

In data mining, frequent itemsets (FIs) and association rules play an important
role [1]. Due to the high number of patterns, various concise representations of FIs
have been proposed, of which the most well-known representations are the frequent
generators (FGs) and the frequent closed itemsets (FCIs) [2, 3]. There are a num-
ber of methods in the literature that target FCIs and/or FGs, but most of these

Annales Mathematicae et Informaticae
48 (2018) pp. 75–82
http://ami.uni-eszterhazy.hu

75

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EKE Repository of Publications

https://core.ac.uk/display/189170112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

algorithms are levelwise methods [4, 5]. It is known that depth-first algorithms
usually outperform their levelwise competitors.

In this paper, we present an algorithm called Eclat-Close, which is a single-pass,
depth-first, vertical FI+FCI miner. The approach behind Eclat-Close is derived
from the one used in the Eclat [6] vertical miner. Eclat outputs the entire family
of FIs hence what we needed to design was a mechanism to recognize FCIs among
FIs. The task performed by Eclat-Close can be described as the computation of
frequent equivalence classes. The nice surprise with Eclat-Close came when we
measured its performance. Despite its relatively low level of optimization, our
algorithm systematically outperformed its levelwise competitor, Apriori-Close.

The remainder of the paper is organized as follows. Basic concepts are provided
in Section 2. Section 3 presents the Apriori-Close algorithm, which is our levelwise
competitor. Section 4 introduces Eclat-Close, which is the main contribution of the
paper. Experimental results are provided in Section 5. Finally, Section 6 concludes
the paper.

2. Basic Concepts

The following 5 × 5 sample dataset: D = {(1, ABDE), (2, AC), (3, ABCE),
(4, BCE), (5, ABCE)} will be used as a running example. Henceforth, we refer
to it as dataset D.

We consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of
attributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O × A. A set of
items is called an itemset. Each transaction has a unique identifier (tid), and a
set of transactions is called a tidset. The tidset of all transactions sharing a given
itemset X is its image, denoted by t(X). For instance, the image of {A,B} in
D is {1, 3, 5}, i.e., t(AB) = 135 in our separator-free set notation. The length
of an itemset X is |X|, whereas an itemset of length i is called an i-itemset. The
(absolute) support of an itemset X, denoted by supp(X), is the size of its image, i.e.
supp(X) = |t(X)|. An itemset X is called frequent, if its support is not less than a
given minimum support (denoted by min_supp), i.e. supp(X) ≥ min_supp. An
equivalence relation is induced by t on the power-set of items ℘(A): equivalent
itemsets share the same image (X ∼= Z iff t(X) = t(Z)). Consider the equivalence
class of X, denoted [X]. The equivalence class [X] has a unique maximum w.r.t.
set inclusion (a closed itemset).

Definition 2.1. An itemset X is closed if it has no proper superset with the same
support.

A closure operator underlies the set of closed itemsets; it assigns to X the
maximum of [X] (denoted by γ(X)). Naturally, X = γ(X) for closed X. For
instance, in our dataset D, the closure of B is BE, while the closure of BC is
BCE.

76 L. Szathmary

3. Levelwise Exploration with Apriori-Close

The most well-known levelwise algorithm, without doubt, is Apriori [7]. This algo-
rithm addresses the problem of finding all frequent itemsets in a dataset. Apriori
has been followed by lots of variations, and several of these levelwise algorithms
concentrate on a special subset of frequent itemsets, like closed itemsets or genera-
tors. Mannila and Toivonen provided a general framework for levelwise algorithms
in [8]. The levelwise algorithm for finding all FIs is a breadth-first, bottom-up algo-
rithm, which means the following. First it finds all 1-long frequent itemsets1, then
at each ith iteration it identifies all i-long frequent itemsets. The algorithm stops
when it has identified the largest frequent itemset. Frequent itemsets are computed
iteratively, in ascending order by their length. At each iteration one database pass
is needed to count support values, thus the number of database passes is equal
to the length of the largest frequent itemset. This approach is very simple and
efficient for sparse, weakly correlated data. The levelwise algorithm is based on
two basic properties.

Property 3.1 (downward closure). All subsets of a frequent itemset are frequent.2

Property 3.2 (anti-monotonocity). All supersets of a non-frequent itemset are
non-frequent.

Apriori-Close was proposed in [9]. This algorithm is an extension of Apriori and
it can identify not only frequent, but frequent closed itemsets too simultaneously.
The idea is the following. By definition, a closed itemset has no proper superset
with the same support. At each ith step all i-long frequent itemsets are marked as
“closed”. At the next (i+1)th iteration for each (i+1)-long itemset we test if it has
an i-long subset with the same support. If so, then the i-long frequent itemset is
not a closed itemset and we mark it as “not closed”. When the algorithm terminates
with the enumeration of all frequent itemsets, the itemsets still marked as “closed”
are the frequent closed itemsets of the dataset. Experiments show that this kind
of filtering of closed itemsets does not induce any serious additional computation
time.

4. The Eclat-Close Algorithm

In this section we present the Eclat algorithm [6], which serves as a basis for Eclat-
Close. Eclat can only find FIs, while Eclat-Close makes it possible to filter FCIs
among FIs. Eclat-Close is our extension and this section is the main contribution
of the paper.

1That is, first it identifies all frequent items (attributes).
2The name of the property comes from the fact that the set of frequent itemsets is closed w.r.t.

set inclusion.

Finding frequent closed itemsets with an extended version of the Eclat algorithm 77

root

A x 1235 B x 1345 C x 2345 E x 1345

AB x 135 AC x 235 AE x 135

ABC x 35 ABE x 135

ABCE x 35

ACE x 35 BC x 345 BE x 1345

BCE x 345

CE x 345

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 1: IT-tree: Itemset-Tidset search tree of dataset D with
min_supp = 2

4.1. Eclat

Eclat was the first FI-miner using a vertical encoding of the database combined
with a depth-first traversal of the search space (organized in a prefix-tree) [6].

Vertical miners rely on a specific layout of the database that presents it in an
item-based, instead of a transaction-based, fashion. Thus, an additional effort is
required to transpose the global data matrix in a pre-processing step. However,
this effort pays back since afterwards the secondary storage does not need to be
accessed anymore. Indeed, the support of an itemset can be computed by explicitly
constructing its tidset which in turn can be built on top of the tidsets of the
individual items. Moreover, in [10], it is shown that the support of any k-itemset
can be determined by intersecting the tid-lists of any two of its (k−1)-long subsets.

The central data structure in a vertical FI-miner is the IT-tree that represents
both the search space and the final result. The IT-tree is an extended prefix-tree
whose nodes are X × t(X) pairs. With respect to a classical prefix-tree or trie,
in an IT-tree the itemset X provides the entire prefix from the root to the node
labeled by it (and not the difference with the parent node prefix).

Example. Figure 1 presents the IT-tree of our example. The traversal order is
indicated above the nodes. Observe that the node ABC × 35 for instance can be
computed by combining the nodes AB × 135 and AC × 235. To that end, tidsets
are intersected and itemsets are joined. The support of ABC is readily established
to 2.

4.2. Eclat-Close

In this subsection we present the Eclat-Close algorithm in detail. As mentioned
before, Eclat-Close is based on Eclat. Eclat-Close traverses the IT-tree in a pre-
order way, from left to right (see Figure 1), and it filters FCIs while extracting FIs
from a dataset. The output of Eclat-Close is the list of frequent equivalence classes
(see Table 1).

78 L. Szathmary

tidset eq. class members closure support
(optional)

1235 A A 4
135 AB, ABE, AE ABE 3
35 ABC, ABCE, ACE ABCE 2
235 AC AC 3
1345 B, BE, E BE 4
345 BC, BCE, CE BCE 3
2345 C C 4

Table 1: Eclat-Close builds this table, which is actually a hash
table. The key is a tidset and the value is a row

Eclat-Close builds a hash table, as depicted in Table 1. The key of the hash is
a tidset, while the value of the hash is a row object. A row object represents an
equivalence class and it has the following fields: (1) tidset (by definition all item-
sets in an equivalence class have the same tidset), (2) equivalence class members,
(3) closure (the largest element in an equivalence class; this is a unique element),
and (4) support (this is the cardinality of the tidset).

The algorithm works the following way. When a new FI is found in the IT-tree,
it is tested if it belongs to an already discovered equivalence class, i.e. we test if
its tidset is in the hash. If it is not present in the hash, then it belongs to a new
equivalence class, thus a new row is added to the hash. If its tidset is in the hash,
then the following steps are performed. First, the itemset is added to the row’s list
of equivalence class members. Second, the itemset is added to the row’s closure
using a union operation.

Example. Eclat-Close builds a hash table, as depicted in Table 1. A row object
represents an equivalence class. The algorithm starts enumerating the 15 FIs of
D using the traversal strategy of Eclat (as seen in Figure 1). The first node is
A× 1235. The tidset 1235 is not yet in the hash, thus a new row is added in the
hash table (tidset: 1235; eq. class members: A; closure: A; support 4). The nodes
AB × 135 and ABC × 35 are also added as new rows. The next FI is ABCE × 35,
but its tidset is an existing key in the hash. Let r denote the row whose tidset is
35. ABCE is added to r’s “eq. class members” and “closure” fields. The “closure”
column is the union of its former value ABC and ABCE, which yields ABCE.
The end result is shown in Table 1.

When the algorithm stops, the itemsets in the “closure” field are completed, i.e.
they represent the closures of the equivalence classes. If we are only interested in
FCIs, the column “eq. class members” can be omitted. This way Eclat-Close can
be used as a pure FCI-miner algorithm. The pseudo code of Eclat-Close is provided
in Algorithm 1.

Finding frequent closed itemsets with an extended version of the Eclat algorithm 79

Algorithm 1 (pseudo code of Eclat-Close):

hashTable: the table structure (as seen in Table 1)

1) start the Eclat algorithm and assign the current node to the variable curr

2) {
3) if curr.tidset not in hashTable:
4) row.tidset← curr.tidset

5) row.eq_class_members← curr.itemset // optional
6) row.closure← curr.itemset

7) row.support← cardinality(row.tidset)

8) hashTable.add(row)

9) else:
10) row ← hashTable.get(curr.tidset)
11) row.eq_class_members.add(curr.itemset) // optional
12) row.closure← row.closure ∪ curr.itemset

13) }
14) // hashTable is filled; it contains all the frequent equivalence classes

5. Experimental Results

In our experiments, we compared Eclat-Close with Apriori-Close and Charm [11].
Apriori-Close was presented in Section 3. Charm is a very efficient vertical algo-
rithm, also based on Eclat. Charm reduces the search space to the minimum, i.e.
it explores FCIs only. Since Charm is a state-of-the-art algorithm, we also compare
Eclat-Close against it. All three algorithms were implemented in Java. The exper-
iments were carried out on an Intel Quad Core i5-2500 3.3 GHz machine running
under Manjaro GNU/Linux with 4 GB RAM. All times reported are real, wall clock
times as obtained from the Unix time command between input and output. For
the experiments we have used the following datasets: T20I6D100K, T25I10D10K,
C20D10K, C73D10K and Mushrooms. The T20 and T253 are sparse datasets,
constructed according to the properties of market basket data that are typical
weakly correlated data. The C20 and C73 are census datasets from the PUMS
sample file, while the Mushrooms4 describes mushrooms characteristics. The
last three are highly correlated datasets.

The execution times of the algorithms are illustrated in Table 2. The table also
shows the number of FIs and FCIs. Apriori-Close finds all FIs and filters FCIs.
Eclat-Close does the same thing, but in a vertical, depth-first fashion. Charm is
similar to Eclat, but it reduces the search space to FCIs only.

The experiments show that Eclat-Close outperforms Apriori-Close on all data-
sets. The difference is especially spectacular on dense datasets. Eclat-Close per-
forms very similarly to Charm, though it explores a much larger search space. It

3http://www.almaden.ibm.com/software/quest/Resources/
4http://kdd.ics.uci.edu/

80 L. Szathmary

min_supp execution time (sec.) # FIs # FCIs
Apriori-Close Eclat-Close Charm

T20I6D100K
10% 1.30 0.87 0.69 7 7
0.75% 10.15 1.01 2.70 4,710 4,710
0.50% 16.98 1.44 3.64 26,836 26,208
0.25% 43.03 4.62 7.38 155,163 149,217

T25I10D10K
10% 0.42 0.31 0.27 20 20
0.75% 2.97 0.47 0.79 17,073 7,841
0.50% 16.54 1.04 1.30 302,284 52,033

C20D10K
30% 7.90 0.31 0.29 5,319 951
20% 19.82 0.35 0.34 20,239 2,519
10% 48.58 0.55 0.47 89,883 8,777
5% 106.75 0.77 0.65 352,611 21,213

C73D10K
95% 10.09 0.58 0.37 1,007 93
90% 144.64 0.63 0.43 13,463 942
85% 440.65 0.70 0.53 46,575 2,359

Mushrooms
40% 1.00 0.29 0.27 505 124
30% 2.83 0.32 0.28 2,587 425
15% 45.20 0.43 0.34 99,079 2,210
10% 184.84 0.76 0.40 600,817 4,850

Table 2: Response times of Eclat-Close

can be due to the fact that Charm needs to apply several tests on an itemset to
decide if it is closed. These extra tests give some overhead to Charm.

As a conclusion, we can say that Eclat-Close performs much better than its
levelwise competitor Apriori-Close, and it is comparable to Charm.

6. Conclusion

In this paper we presented a vertical, depth-first algorithm that finds frequent
equivalence classes, i.e. it explores FIs and filters FCIs among them.

When testing the performance of Eclat-Close w.r.t. efficient comparable alter-
natives from the literature, it came out that our algorithm performed surprisingly
well for its level of optimization. We tend to see that fact as an indication that
any improvement that avoids exploring the entire family of FIs has good chances
of becoming the best performing algorithm in its class.

Currently, we only concentrated on FCIs among FIs, but it would be interesting
to filter frequent generators as well. Having the generators in an equivalence class

Finding frequent closed itemsets with an extended version of the Eclat algorithm 81

as well, we could produce interesting association rules easily. We plan to extend
Eclat-Close in this direction.

References

[1] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB ’94), San Francisco, CA, Morgan Kaufmann (1994) 487–499

[2] Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining Minimal Non-
Redundant Association Rules Using Frequent Closed Itemsets. In: Proceedings of
the Computational Logic (CL ’00). Volume 1861 of LNAI., Springer (2000) 972–986

[3] Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proceedings of
the ESF Exploratory Workshop on Pattern Detection and Discovery. (2002) 92–109

[4] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules. In: Proceedings of the 7th International Conference
on Database Theory (ICDT ’99), Jerusalem, Israel (1999) 398–416

[5] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with Titanic. Data and Knowl. Eng. 42(2) (2002) 189–222

[6] Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Dis-
covery of Association Rules. In: Proceedings of the 3rd International Conference on
Knowledge Discovery in Databases. (August 1997) 283–286

[7] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In: Advances in knowledge discovery and data mining. American
Association for Artificial Intelligence (1996) 307–328

[8] Mannila, H., Toivonen, H.: Levelwise Search and Borders of Theories in Knowledge
Discovery. Data Mining and Knowledge Discovery 1(3) (1997) 241–258

[9] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed set based discovery of small
covers for association rules. In: Proceedings 15emes Journees Bases de Donnees
Avancees (BDA). (1999) 361–381

[10] Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering 12(3) (2000) 372–390

[11] Zaki, M.J., Hsiao, C.J.: CHARM: An Efficient Algorithm for Closed Itemset Mining.
In: SIAM International Conference on Data Mining (SDM’ 02). (Apr 2002) 33–43

82 L. Szathmary

