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Abstract

In this paper, we study and compare different types of generalized bary-
centric coordinates in detail, including Wachspress, discrete harmonic and
mean value coordinates for convex, n-sided polygons. Contour lines are com-
puted in each barycentric coordinate method, and curvature plots of these
contour line curves are visualized. Moreover, different distortions of uniform
patterns are also shown, providing exact visual method to compare these
methods. To overcome the shortcomings of different generalized barycentric
computations, affine combination of methods is provided.
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1. Introduction

Barycentric coordinates were first introduced by Möbius [1] in 1827. Any point v
inside a triangle v1, v2, v3 can be obtained by weighted sum of these vertices, if cor-
responding weights w1, w2, w3 are placed at the vertices of triangle. These weights
w1, w2, w3 are the barycentric coordinates of point v. This can be generalized for
arbitrary n-sided polygons in the plane where an inner point v can be defined as
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the weighted sum of vertices v1, . . . , vn as

v =
w1(v)v1 + . . .+ wn(v)vn
w1(v) + . . .+ wn(v)

.

These barycentric coordinates can be normalized that values sum to one, thus they
vary linearly inside the polygon. Therefore many applications often use them to
interpolate different values which are placed at the vertices of the polygon. In com-
puter graphics, this interpolation is used e.g. for shading or geometry deformation.

In the last couple of years, many approaches have been released which tried to
generalize the barycentric coordinates. The first generalization appeared in Wach-
spress’s pioneering work [2] in 1975. The computation of Wachspress coordinates
is simple for any convex polygons, because they are rational functions and their
derivatives can also be easily evaluated. They have many nice properties [3] such
as affine invariance or smoothness, but they are not well-defined for star-shaped
polygons and for arbitrary concave polygons.

Later, new generalizations of barycentric coordinates are published, such as
discrete harmonic [4] and mean value coordinates [5]. The discrete harmonic co-
ordinates have the same requirements as Wachspress coordinates. They are well
defined for convex polygons and they are based on the minimization of an energy
function, but unlike Wachspress or mean value functions these coordinates are not
necessarily positive over the interior of any convex polygon. The mean value coor-
dinates are probably the most popular type of generalized barycentric coordinates.
They are well defined everywhere in the plane for any simple, star-shaped or ar-
bitrary polygon. If the polygon is not star-shaped or convex, these coordinates
are not necessarily positive, but in case of complex geometric shapes they are very
robust. Owing to the above-mentioned properties and advantages, the general-
ized barycentric coordinates are commonly used in computer graphics and image
processing for parameterization of meshes [9, 10, 12], mesh deformation [7, 6, 8],
transfinite interpolation [18], image warping [17], cloning [13] or symmetrization
[11].

Floater et al. [14] had already provided an overall picture of barycentric coor-
dinates and visualized these coordinates using the contour lines of the coordinate
functions. These contour lines mean those points of the polygon where one of the
barycentric coordinates is constant. In this paper, we provide a much detailed com-
parison of the three different methods, we examine the Wachspress, the harmonic
and the mean value coordinates and compare these functions for convex, n-sided
polygons in an exact way. Moreover, to overcome the drawbacks of each method,
we investigate an affine combination of these generalized barycentric coordinates.

In the next section, we give a short overview of some important definitions
and properties of these barycentric coordinate methods. In Section 3, we discuss
how the different coordinate functions can be comparable. Then, in Subsection
3.3, we present our results and we highlight the advantages and disadvantages of
the distinct barycentric coordinates. The affine combination of the methods is
described in Section 4.
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2. Barycentric coordinates on n-sided polygons

Definition 2.1. Let P be a convex polygon in the plane, with vertices v1, v2, . . . , vn
and n ≥ 3. We call any functions bi : P → R, i = 1 . . . n, barycentric coordinates,
if they satisfy the following properties for all v ∈ P :

bi(v) ≥ 0, i = 1, . . . , n,
n∑

i=1

bi(v) = 1,

n∑

i=1

bi(v)vi = v.

2.1. Wachspress coordinates

Wachspress coordinates are the simplest and earliest generalized barycentric coor-
dinate functions and they have some important properties, for example, they are
affine invariant, smooth (C∞) and can be comuted by rational polynomials. These
coordinate functions were published by Wachspress [2] and Warren [15], then Meyer
et al. [3] simplified the formula and defined the coordinates in the following way:

bi(v) =
wi(v)∑n
j=1 wj(v)

,

with

wi(v) =
Ci(v)

Ai−1(v)Ai(v)
,

where Ci(v), Ai−1(v), Ai(v) are areas of triangles shown in Figure 1.

2.2. Discrete harmonic coordinates

Discrete harmonic coordinates were first appeared in the work of Pinkall et al.
[16], and the method is based on the minimization of discrete Dirichlet energy. It
is an interesting fact, that the discrete harmonic coordinates and the Wachspress
coordinates are identical in case of cyclic polygons, i.e. if the vertices of the polygon
lie on a circle [14]. The discrete harmonic coordinates on convex polygons are
defined by the following equation (following the notation of Figure 1):

bi(v) =
wi(v)∑n
j=1 wj(v)

,

where

wi(v) =
r2i+1(v)Ai−1(v)− r2i (v)Bi(v) + r2i−1(v)Ai(v)

Ai−1(v)Ai(v)
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and
Bi(v) = ri−1(v)ri+1(v)sin(αi−1(v) + αi(v))/2

are signed triangle areas while

ri(v) = ||vi − v||

is the Euclidean distance of points vi and v.

2.3. Mean value coordinates
Another popular type of barycentric coordinates is the mean value method [5]
which can be generalized to non-convex polygons, unlike the previously mentioned
coordinate functions. If the polygon P is convex, the mean value coordinates are
defined by

bi(v) =
wi(v)∑n
j=1 wj(v)

,

where
wi(v) =

tan(αi(v)/2) + tan(αi−1(v)/2)
||vi − v||

following again the notations of Figure 1.

Figure 1: Notations for various barycentric coordinate functions

3. Comparison of different barycentric coordinate
methods

As we have mentioned previously, in the work of Floater et al. [5], the authors
had provided an overall picture of the so-called contour lines of the coordinate
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functions, but without any analysis. By contour lines we mean those points of
the polygon P where one of the barycentric coordinates, say, the one assigned
with vertex vi, is constant. Evidently, the plot of these contour lines gives only a
superficial image of the (dis)similarity of the functions. With all this in mind, our
aim here is to examine the three different barycentric coordinates defined above
and compare the behavior of these functions in similar conditions by contour lines
and their patterns. For the comparison of the barycentric coordinate functions,
first we use the curvature plot of the contour lines, thus we get more precise results
than the aforementioned work.

3.1. The extraction of contour lines

In order to compare the curvature functions of the contour lines of the different
barycentric coordinate functions, we need to compute these contour lines. Since
it cannot be expressed and computed in a closed form, we consider a coordinate
value bi ∈ [0, 1] assigned with vertex vi of polygon P with fixed i, and find those
interior points of P , where the chosen barycentric coordinate bi is equal or within
a predefined limit (in our case it is 0.01) to the given value with respect to the
vertex vi of P . This way we get a set of points (see Figure 2) in P . Now if we fit a
curve to these points, we get the contour line of the chosen barycentric coordinate
value bi with respect to the vertex vi.

Figure 2: Blue pixels mark those points where barycentric coordi-
nate bi is in [0.3, 0.32] with respect to the vertex vi, while red line

shows the fitted contour line curve

To fit the contour line curve to this set of points (see Figure 2), we use a
polynomial fitting algorithm. At first, we compute the coefficients of the fitted
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polynomial p(x) of degree n which best fits for the given point set (xi, yi). With
these points, we can construct the following system of linear equations:




xn+1
1 xn1 · · · 1
xn+1
2 xn2 · · · 1
...

...
. . .

...
xn+1
n xnn · · · 1







p1
p2
...
pn


 =




y1
y2
...
yn


 ,

where the matrix on the left is a Vandermonde matrix.
We have to solve this system to get the coefficients of p(x). With the resulted

coefficients, we can compute the contour line by the following explicit equation:

y = p1x
n + p2x

n−1 + · · ·+ pnx+ pn+1.

3.2. The curvature function of the contour lines
As we have already stated, we use curvature functions for the comparison of the
distinct coordinate functions, because it provides a precise image of the behavior
of the contour line curves. After we have computed a contour line of the different
barycentric coordinate functions as f(x, y) = 0 by simply converting the above
equation to implicit form, the curvature of this curve at a regular point x0 can be
calculated easily by the well-known equation below:

κ(xo) =
f ′′(x0)

(1 + f ′(x0)2)3/2
.

For each contour line, we calculate the curvature at every point of the curve,
then we visualize these values on a curvature plot (see the right side of the figures
below). The characteristic of the contour line curves can be assessed properly with
these functions and they provide a good basis for the comparison, especially in
terms of inflection points.

3.3. Curvature plot and inflection points
In this subsection, we present our results of the comparison and we also discuss
the advantages and disadvantages of the studied methods. We compare the Wach-
spress, the discrete harmonic and the mean value coordinates for convex, n-sided
polygons. In all cases, we compute the contour lines of each barycentric coordi-
nate functions for various values bi with respect to the vertex vi, then visualize the
curvature plot of the contour curves.

In the first example (see Figures 3a to 3c) we displayed contour lines for three
different values of the barycentric coordinate assigned to the corresponding vertex
v1, that is for the value b1. The Wachspress and the harmonic coordinate functions
are identical in every figures, because regular polygons are all cyclic polygons (see
Figure 5) [14]. We can also observe, that close to the corresponding vertex v1,
the three different coordinate functions almost behave like a circular arc (shown in
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(a) Contour lines of coordinate functions at b1 = 0.8

(b) The contour lines of coordinate functions at b1 = 0.4

(c) The contour lines of coordinate functions at b1 = 0.1

Figure 3: Left: Barycentric coordinate functions for regular poly-
gons with respect to vertex v1. Right: Curvature plots of the con-

tour line curves

Figure 3b), with near constant curvature plot, but in lower regions the mean value
coordinates produce unwanted inflection points (see Figure 3c).

As shown in Figure 4, the larger the angle of the regular polygon at the cor-
responding vertex v1, the larger the difference between the mean value and the
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other two coinciding coordinate functions. Again, Wachspress and discrete har-
monic coordinates produce contour lines much closer to circular arcs with constant
curvature.

(a) A regular octagon

(b) A regular dodecagon

Figure 4: Left: Barycentric coordinate functions for regular poly-
gons with respect to the vertex v1. Right: Curvature plots of the

contour line curves at b1 = 0.25

As we have mentioned above, the Wachspress and the harmonic coordinate
functions are identical in the case of cyclic polygons (shown in Figure 5). Moreover,
it can be stated generally that the Wachspress and the harmonic coordinates do
not generate inflection points for regular and cyclic polygons, while it can happen
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in case of mean value coordinate functions, as it can be seen e.g. in the curvature
plots of Figure 5.

(a) The contour lines of coordinate functions at b1 = 0.25

(b) The contour lines of coordinate functions at b1 = 0.15. The blue dots mark the
intersections of the line with the curve of the mean value function, while the yellow

ones mark the intersections of the line with the polygon

Figure 5: Left: Barycentric coordinate functions for cyclic polygons
with respect to the vertex v1. Right: Curvature plots of the contour

line curves

Therefore, we can say that the Wachspress and the harmonic coordinate func-
tions satisfy the variation diminishing property in the case of cyclic polygons, while
the mean value method does not fulfill this requirement. This property is origi-
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nally required to be fulfilled by free-form curves: the number of intersections of a
straight line with the curve is less than or equal to the number of intersections of
the line with the control polygon. In our case the basis polygon P plays the role
of the control polygon (see Figure 5b).

Now let us consider a polygon of irregular shape, where the different barycentric
methods have significantly different types of contour lines. In the case of Wach-
spress coordinate functions, the contour line curve is closer to those vertices vj ,
where the area of the triangle Cj (see Figure 1), which is specified by the given
vertex vj and its neighbors vj−1, vj+1, is larger. This behavior is clearly visible in
Figure 6, where we display some non-cyclic polygons with vertices where the cor-
responding area of the triangle is much smaller than neighbouring triangle areas.
Furthermore, it is worth examining the curvature plots of the Wachspress coordi-
nate contour lines in these examples, because it shows the behavior of the curve
perfectly. In Figure 6a, the area of the triangle C4 at the vertex v4 is evidently
larger than the others, thus the curve is predominantly closer to this vertex and
the curvature function is increasing on the interval [0.5, 0.8] significantly. In the
same way, we can observe in Figure 6b that the areas of the triangles C3 and C5

are the same, thus the curve is almost equally close to vertices v3 and v5, but be-
cause the area of the triangle C4 is very small, the middle part of the curve flattens
and it behaves like a straight line. The curvature plot also displays this behavior,
because it is almost identical at interval [0.1, 0.4] and [0.6, 0.9], and the value of it
at x = 0.5 is close to zero.

The contour line of the harmonic coordinate function is close to the corre-
sponding vertex vi, if the angles βi−1 and γi (see Figure 1) are obtuse. Therefore,
in Figure 6a, it behaves contrary to the Wachspress coordinates, because the angles
of the polygon at vertices v2 and v5 are obtuse. Furthermore, the harmonic coor-
dinate method often produces inflection points on the contour line curve in these
cases (shown in Figure 6a and 6b).

The mean value coordinate function is more robust than the other methods, as
it is clearly visible in all examples of Figure 6.

3.4. Patterns of the barycentric coordinates

In the following examples, we displayed the contour line patterns of the three differ-
ent barycentric coordinate functions with respect to the vertex vi, from zero to one
by step 0.05. These patterns clearly show the differences between the coordinate
functions.

In the case of heavily non-cyclic polygons (see Figure 7a), the three methods
produce significantly different patterns. The Wachspress coordinate function pro-
vides the most uniform shape of contour line pattern, which we may naively expect
from this kind of shapes. We can also see, that there are significantly thicker
stripes in the last intervals of the mean value coordinates than in the others, while
the stripes of the harmonic coordinate function pattern behave unconventionally,
because the upper ones approximate the corresponding vertex vi. This behavior
occurs, when the angles of the polygon at the neighbor vertices of the correspond-
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(a) A non-cyclic pentagon

(b) A non-cyclic hexagon

Figure 6: Left: Barycentric coordinate functions for non-cyclic
polygons with respect to the vertex v1. Right: Curvature plots of

the contour line curves at b1 = 0.25

ing vertex vi are obtuse, because if the angles βi−1 + γi > π (see Figure 1), there
may be some interior vertices of the polygon the barycentric coordinate of which
is negative with respect to vi [14].

Furthermore, if we consider a nearly regular polygon (shown in Figure 7b),
we can notice that the Wachspress coordinate method almost behaves like in the
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(a) A non-cyclic polygon

(b) A nearly regular polygon

Figure 7: Iso-barycentric contour line patterns of the three different
functions with respect to the vertex v1 from zero to one by step 0.05

previous figure (see Figure 7a), while the other two work differently, providing more
uniform shapes in this case.

4. Affine combination of barycentric functions

As we have seen in the previous sections, each generalized barycentric method
has its advantages and drawbacks. For example, discrete harmonic coordinate
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functions are based on the minimization of the Dirichlet energy, but provide unusual
and irregular shape of contour line patterns. In every application, one has to
decide which method fits better to the problem. To overcome this restriction, in
this section we introduce the affine combination of barycentric functions. Suppose
a polygon P with n vertices is given and the Wachspress coordinates bWi and
discrete harmonic coordinates bHi are computed, respectively. Now consider the
affine combination bAi of these coordinates

bAi (λ) = (1− λ)bWi + λbHi ,

where λ ∈ [0, 1] is a free parameter. The new coordinates evidently satisfy the
requirements formulated in Section 2 to be barycentric coordinates: bAi (λ) ≥ 0 for
each i = 1, ..., n, and the sum of these coordinates is as follows

n∑

i=1

bAi (v) =

n∑

i=1

(
(1− λ)bWi (v) + λbHi (v)

)
= (1− λ)

n∑

i=1

bWi (v) + λ

n∑

i=1

bHi (v) = 1.

This affine combination is a tool to merge advantages of two barycentric methods.
The choice of the free parameter λ gives us an extra flexibility in order to weight
the two methods, which can yield different versions of affine combinations, various
trade-offs between uniform patterns and energy minimization, as we can observe
in Figure 8.

5. Conclusions

In this paper, we studied the different types of the generalized barycentric co-
ordinates (Wachspress, discrete harmonic, mean value) and we compared these
functions for convex, n-sided polygons in detail. For the comparison, we used the
curvature functions of the contour line curves which are defined by a polynomial
fitting algorithm. The curvature functions provided descriptions of the behavior of
the contour line curves.

In the case of regular and cyclic polygons, the behavior of the Wachspress and
the harmonic coordinate functions is equivalent, and they satisfy the property of
variation diminishing, while the mean value coordinates may generate unnecessary
inflection points. It is also shown that angle of the polygon at the corresponding
vertex heavily affects the different barycentric coordinate methods. The larger
the angle, the larger the divergence of the mean value from the other coordinate
functions.

With regard to non-cyclic polygons, the three different coordinate methods
provide significantly different patterns of contour lines. It can be said generally
that the Wachspress coordinates follow the sides of the polygon better, than the
others, and provide more uniform patterns, while the harmonic coordinate method
behaves unconventionally in some cases, because it produces negative coordinates.
Moreover, we can say that the mean value coordinate function is the most robust
for non-cyclic polygons.
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(a) Iso-barycentric contour line patterns of Wachspress and discrete har-
monic coordinates (top) and their affine combination (bottom) with

λ = 0.12, 0.5 and 0.81, respectively

(b) Contour line curves of Wachspress and harmonic coordinates and
their affine combination with λ = 0.22, 0.5 and 0.83, respectively

Figure 8: The affine combination of Wachspress and discrete har-
monic coordinate functions with respect to the vertex v1
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In order to overcome the shortcomings of these methods, we introduced the
affine combination of two barycentric coordinate functions which method also gives
us an extra flexibility by the free parameter λ. This way one can provide a trade-off
between various advantageous properties and drawbacks of the methods.
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