Annales Mathematicae et Informaticae 47 (2017) pp. 119–128 http://ami.uni-eszterhazy.hu

The $h(x)$ -Lucas quaternion polynomials

Nayil Kilic

Department of Mathematics Sinop University, Sinop, Turkey nayilkilic@gmail.com

Submitted May 16, 2017 – Accepted November 30, 2017

Abstract

In this paper, we study $h(x)$ -Lucas quaternion polynomials considering several properties involving these polynomials and we present the exponential generating functions and the Poisson generating functions of the $h(x)$ -Lucas quaternion polynomials. Also, by using Binet's formula we give the Cassini's identity, Catalan's identity and d'Ocagne's identity of the $h(x)$ -Lucas quaternion polynomials.

Keywords: Lucas polynomials, recurrences, quaternion.

MSC: 11B39, 11B37, 11R52

1. Introduction

The Lucas sequence, $\{L_n\}$, is defined by the recurrence relation, for $n > 1$

$$
L_{n+1} = L_n + L_{n-1}
$$

where $L_0 = 2, L_1 = 1.$

In [13], Nalli and Haukkanen introduced the $h(x)$ -Lucas polynomials.

Definition 1.1 ([13]). Let $h(x)$ be a polynomial with real coefficients. The $h(x)$ -Lucas polynomials $\{L_{h,n}(x)\}_{n=0}^{\infty}$ are defined by the recurrence relation

$$
L_{h,n+1}(x) = h(x)L_{h,n}(x) + L_{h,n-1}(x), n \ge 1,
$$
\n(1.1)

with initial conditions $L_{h,0}(x) = 2$, $L_{h,1}(x) = h(x)$.

The quaternions are such numbers which extend the complex numbers. They are members of noncommutative algebra. A quaternion p is defined in the form

$$
p = a_0 + a_1 i + a_2 j + a_3 k
$$

where a_0 , a_1 , a_2 and a_3 are real numbers and i, j, k are standart orthonormal basis in \mathbb{R}^3 which satisfy the quaternion multiplication rules as

$$
i^2 = j^2 = k^2 = -1
$$
, $ij = -ji = k$, $jk = -kj = i$ $ki = -ik = j$.

The conjugate of the quaternion p is denoted by \bar{p} and $\bar{p} = a_0 - a_1i - a_2j - a_3k$.

We start by recalling some basic results concerning quaternion algebra H, it is well known that the algebra $\mathbb{H} = \{a = a_0e_0 + a_1e_1 + a_2e_2 + a_3e_3 | a_i \in \mathbb{R}, i =$ {0, 1, 2, 3}} of real quaternions define a four− dimensional vector space over R having basis $e_0 \cong 1, e_1 \cong i, e_2 \cong j$ and $e_3 \cong k$ which satisfies the following multiplication rules.

$$
e_s^2 = -1, s \in \{1, 2, 3\},
$$
 $e_1e_2 = -e_2e_1 = e_3,$ $e_2e_3 = -e_3e_2 = e_1,$ (1.2)
 $e_3e_1 = -e_1e_3 = e_2.$

In [8], Horodam defined the nth Lucas quaternions as follows.

Definition 1.2 ([8]). The Lucas quaternion numbers that are given for the *n*th classic Lucas L_n number are defined by the following recurrence relations:

$$
T_n = L_n + iL_{n+1} + jL_{n+2} + kL_{n+3}
$$

where $n = 0, \pm 1, \pm 2, \ldots$

The Lucas quaternions have been studied in several papers (see, for example $[1, 2, 7, 10, 15]$. Recently, in $[2]$, Ari considered the $h(x)$ -Lucas quaternion polynomials, he derived the Binet formula and generating function of $h(x)$ -Lucas quaternion polynomial sequence.

In this paper, we study $h(x)$ -Lucas quaternion polynomials considering several properties involving these polynomials and we present the exponential generating functions and the Poisson generating functions of the $h(x)$ -Lucas quaternion polynomials. Also, by using Binet's formula we give the Cassini's identity, the Catalan's identity and the d'Ocagne's identity of the $h(x)$ -Lucas quaternion polynomials.

2. The $h(x)$ -Lucas quaternion polynomials and some properties

Let e_i $(i = 0, 1, 2, 3)$ be a basis of H, which satisfy the multiplication rules (1.2). Let $h(x)$ be a polynomial with real coefficients. In [2], Ari introduced the $h(x)$ -Lucas quaternion polynomials as follows:

Definition 2.1 ([2]). Let $h(x)$ be a polynomial with real coefficients. The $h(x)$ -Lucas quaternion polynomials ${T_{h,n}(x)}_{n=0}^{\infty}$ are defined by the recurrence relation

$$
T_{h,n}(x) = \sum_{s=0}^{3} L_{h,n+s}(x)e_s
$$
 (2.1)

where $L_{h,n}(x)$ is the *n*th $h(x)$ -Lucas polynomial.

The conjugate of $T_{h,n}(x)$ is given by

$$
\overline{T_{h,n}(x)} = L_{h,n}(x)e_0 - L_{h,n+1}(x)e_1 - L_{h,n+2}(x)e_2 - L_{h,n+3}(x)e_3.
$$

For $n = 0$,

$$
T_{h,0}(x) = \sum_{s=0}^{3} L_{h,s}(x)e_s
$$

= $L_{h,0}(x)e_0 + L_{h,1}(x)e_1 + L_{h,2}(x)e_2 + L_{h,3}(x)e_3$
= $2e_0 + h(x)e_1 + (h^2(x) + 2)e_2 + (h^3(x) + 3h(x))e_3.$

For $n = 1$,

$$
T_{h,1}(x) = \sum_{s=0}^{3} L_{h,s+1}(x)e_s
$$

= $L_{h,1}(x)e_0 + L_{h,2}(x)e_1 + L_{h,3}(x)e_2 + L_{h,4}(x)e_3$
= $h(x)e_0 + (h^2(x) + 2)e_1 + (h^3(x) + 3h(x))e_2$
+ $(h^4(x) + 4h^2(x) + 2)e_3$.

From the recurrence relation (2.1) , using the recurrence relation (1.1) and some properties of summation formulas, we obtain that

$$
T_{h,n+1}(x) = \sum_{s=0}^{3} L_{h,s+1+n}(x)e_s
$$

=
$$
\sum_{s=0}^{3} \left(h(x)L_{h,s+n}(x) + L_{h,s+n-1}(x) \right) e_s
$$

=
$$
h(x) \sum_{s=0}^{3} L_{h,s+n}(x)e_s + \sum_{s=0}^{3} L_{h,s+n-1}(x)e_s
$$

=
$$
h(x)T_{h,n}(x) + T_{h,n-1}(x)
$$

and so

$$
T_{h,n+1}(x) = h(x)T_{h,n}(x) + T_{h,n-1}(x).
$$

In [13], authors studied some combinatorial properties of $h(x)$ -Fibonacci and $h(x)$ -Lucas polynomials and present properties of these polynomials. They obtained the following Binet's formula for $L_{h,n}(x)$

$$
L_{h,n}(x) = \alpha^n(x) + \beta^n(x) \tag{2.2}
$$

where

$$
\alpha(x) = \frac{h(x) + \sqrt{h^2(x) + 4}}{2}, \qquad \beta(x) = \frac{h(x) - \sqrt{h^2(x) + 4}}{2} \tag{2.3}
$$

are roots of the characteristic equation $y^2 - h(x)y - 1 = 0$ of the recurrence relation (1.1).

Ari in [2] calculated the Binet-style formula for $T_{h,n}(x)$,

$$
T_{h,n}(x) = \alpha^*(x)\alpha^n(x) + \beta^*(x)\beta^n(x)
$$
\n(2.4)

where $\alpha(x)$ and $\beta(x)$ as in (2.3) and $\alpha^*(x) = \sum^3$ $\sum_{s=0}^{3} \alpha^{s}(x) e_s, \ \beta^{*}(x) = \sum_{s=0}^{3}$ $\sum_{s=0} \beta^s(x) e_s.$ The following basic identities are needed for our purpose in proving.

$$
\alpha(x) + \beta(x) = h(x), \quad \alpha(x)\beta(x) = -1, \quad \alpha(x) - \beta(x) = \sqrt{h^2(x) + 4}
$$
\n(2.5)

and

$$
\frac{\alpha(x)}{\beta(x)} = -\alpha^2(x), \qquad \frac{\beta(x)}{\alpha(x)} = -\beta^2(x).
$$

Also,

$$
1 + h(x)\alpha(x) = \alpha^{2}(x), \qquad 1 + h(x)\beta(x) = \beta^{2}(x), \tag{2.6}
$$

and

$$
1 + \alpha^{2}(x) = \alpha(x)\sqrt{h^{2}(x) + 4}, \qquad 1 + \beta^{2}(x) = -\beta(x)\sqrt{h^{2}(x) + 4}.
$$
 (2.7)

The following Lemma, related with the $h(x)$ -Lucas polynomials and it will be useful in the proof of one property of the $h(x)$ -Lucas quaternion polynomials in the next Theorem.

Lemma 2.2. For $n \geq 0$,

$$
L_{h,n}(x) + L_{h,n+1}(x) = L_{h,2n}(x) + L_{h,2n+2}(x).
$$

Proof. Using (2.2) and (2.5) , we get

$$
L_{h,n}(x) + L_{h,n+1}(x) = (\alpha^n(x) + \beta^n(x))^2 + (\alpha^{n+1}(x) + \beta^{n+1}(x))^2
$$

= $\alpha^{2n}(x) + 2\alpha^n(x)\beta^n(x) + \beta^{2n}(x)$
+ $\alpha^{2n+2}(x) + 2\alpha^{n+1}(x)\beta^{n+1}(x) + \beta^{2n+2}(x)$
= $\alpha^{2n}(x) + \beta^{2n}(x) + \alpha^{2n+2}(x) + \beta^{2n+2}(x)$
= $L_{h,2n}(x) + L_{h,2n+2}(x)$.

So the proof is complete.

Theorem 2.3. For $n \geq 0$, the following statements hold:

$$
(i) (T_{h,n}(x))^2 + (T_{h,n+1}(x))^2 = (\alpha^{2*}(x)\alpha^{2n+1}(x) - \beta^{2*}(x)\beta^{2n+1}(x))(\alpha(x) - \beta(x)).
$$

$$
(ii) \ \frac{(T_{h,n}(x))^2 + (T_{h,n+1}(x))^2}{(\alpha(x) - \beta(x))} = (\alpha^{2*}(x)\alpha^{2n+1}(x) - \beta^{2*}(x)\beta^{2n+1}(x)).
$$

$$
(iii) \ \overline{T_{h,n}(x)} + T_{h,n}(x) = 2L_{h,n}(x)e_0.
$$

 (iv) $\frac{(T_{h,n}(x))^{2}}{2} = 2L_{h,n}(x)e_{0}T_{h,n}(x) - T_{h,n}(x)T_{h,n}(x) = T_{h,n}(x)(2L_{h,n}(x)e_{0} T_{h,n}(x)$).

$$
(v) T_{h,n}(x) \overline{T_{h,n}(x)} = ((h(x))^2 + 2)(L_{h,2n+4}(x) + L_{h,2n+2}(x)).
$$

(vi) $T_{h,1}(x) - \alpha(x) T_{h,0}(x) = -\beta^*(x) \sqrt{h^2(x) + 4}.$ In particular $\frac{T_{h,1}(x) - \alpha(x)T_{h,0}(x)}{\alpha(x) - \beta(x)} = -\beta^*(x)$.

$$
\begin{aligned} (vii) \ \ T_{h,1}(x) - \beta(x)T_{h,0}(x) &= \alpha^*(x)\sqrt{h^2(x) + 4}.\\ \text{In particular } \frac{T_{h,1}(x) - \beta(x)T_{h,0}(x)}{\alpha(x) - \beta(x)} &= \alpha^*(x). \end{aligned}
$$

Proof. (*i*) From (2.4) , (2.5) and (2.7) , we obtain

$$
(T_{h,n}(x))^2 + (T_{h,n+1}(x))^2
$$

= $(\alpha^*(x)\alpha^n(x) + \beta^*(x)\beta^n(x))^2 + (\alpha^*(x)\alpha^{n+1}(x) + \beta^*(x)\beta^{n+1}(x))^2$
= $\alpha^{2*}(x)\alpha^{2n}(x)(1 + \alpha^2(x)) + \beta^{2*}(x)\beta^{2n}(x)(1 + \beta^2(x))$
= $\alpha^{2*}(x)\alpha^{2n+1}(x)\sqrt{h^2(x) + 4} - \beta^{2*}(x)\beta^{2n+1}(x)\sqrt{h^2(x) + 4}$
= $(\alpha^{2*}(x)\alpha^{2n+1}(x) - \beta^{2*}(x)\beta^{2n+1}(x))(\alpha(x) - \beta(x)).$

- (ii) The proof of (ii) follows immediately from (i) .
- (*iii*) Using the definition of $\overline{T_{h,n}(x)}$ and some computations, we have

$$
\overline{T_{h,n}(x)} = L_{h,n}(x)e_0 - L_{h,n+1}(x)e_1 - L_{h,n+2}(x)e_2 - L_{h,n+3}(x)e_3
$$

= $2L_{h,n}(x)e_0 - \sum_{s=0}^{3} L_{h,n+s}(x)e_s$
= $2L_{h,n}(x)e_0 - T_{h,n}(x),$

and the result follows.

 (iv) By (iii) , (iv) holds.

(v) Using Definition 2.1, the definition of $\overline{T_{h,n}(x)}$, Lemma 2.2 and (1.1) we obtain

$$
T_{h,n}(x)\overline{T_{h,n}(x)} = \sum_{s=0}^{3} L_{h,n+s}(x)e_s\overline{T_{h,n}(x)}
$$

= $(L_{h,n}(x)e_0 + L_{h,n+1}(x)e_1 + L_{h,n+2}(x)e_2 + L_{h,n+3}(x)e_3)$

$$
\times (L_{h,n}(x)e_0 - L_{h,n+1}(x)e_1 - L_{h,n+2}(x)e_2 - L_{h,n+3}(x)e_3)
$$

= $L^2_{h,n}(x) + L^2_{h,n+1}(x) + L^2_{h,n+2}(x) + L^2_{h,n+3}(x)$
= $L_{h,2n}(x) + L_{h,2n+2}(x) + L_{h,2n+4}(x) + L_{h,2n+6}(x)$
= $L_{h,2n}(x) + L_{h,2n+2}(x) + L_{h,2n+4}(x) + h(x)L_{h,2n+5}(x)$
+ $L_{h,2n+4}(x)$
= $2L_{h,2n+2}(x) + h^2(x)L_{h,2n+2}(x) + 2L_{h,2n+4}(x)$
+ $h^2(x)L_{h,2n+4}(x)$
= $(2 + (h(x))^2)(L_{h,2n+2}(x) + L_{h,2n+4}(x)).$

(vi) Since

$$
L_{h,s+1}(x) - \beta(x)L_{h,s}(x) = \alpha^{s}(x)\big(\alpha(x) - \beta(x)\big)
$$

and

$$
L_{h,s+1}(x) - \alpha(x)L_{h,s}(x) = \beta^{s}(x)(\alpha(x) - \beta(x)),
$$

using the definition of $\beta^*(x)$, Definition2.1 and Eq.(2.5), we have

$$
T_{h,1}(x) - \alpha(x)T_{h,0}(x)
$$

= $L_{h,1}(x)e_0 + L_{h,2}(x)e_1 + L_{h,3}(x)e_2 + L_{h,4}(x)e_3$
 $-\alpha(x)(L_{h,0}(x)e_0 + L_{h,1}(x)e_1 + L_{h,2}(x)e_2 + L_{h,3}(x)e_3)$
= $(L_{h,1}(x) - \alpha(x)L_{h,0}(x))e_0 + (L_{h,2}(x) - \alpha(x)L_{h,1}(x))e_1$
+ $(L_{h,3}(x) - \alpha(x)L_{h,2}(x))e_2 + (L_{h,4}(x) - \alpha(x)L_{h,3}(x))e_3$
= $-\beta^0(x)(\alpha(x) - \beta(x))e_0 - \beta^1(x)(\alpha(x) - \beta(x))e_1$
 $-\beta^2(x)(\alpha(x) - \beta(x))e_2 - \beta^3(x)(\alpha(x) - \beta(x))e_3$
= $-\sqrt{h^2(x) + 4}(e_0 + \beta^1(x)e_1 + \beta^2(x)e_2 + \beta^3(x)e_3)$
= $-\sqrt{h^2(x) + 4} \sum_{s=0}^3 \beta^s(x)e_s$
= $-\sqrt{h^2(x) + 4}\beta^*(x).$

which completes the first part of the proof of (vi) . The proof of the remaining part can be obtained from previous result.

(vii) The proof is similar to part (vi) and thus, omitted.

Theorem 2.4. For $n \geq 0$, $\sum_{n=1}^{n}$ $k=0$ $\binom{n}{k} (h(x))^k T_{h,k}(x) = T_{h,2n}(x).$

Proof. Using (2.4) and (2.6) , we obtain

$$
\sum_{k=0}^{n} {n \choose k} (h(x))^{k} T_{h,k}(x) = \sum_{k=0}^{n} {n \choose k} (h(x))^{k} [\alpha^{*}(x) \alpha^{k}(x) + \beta^{*}(x) \beta^{k}(x)]
$$

$$
= \alpha^*(x) \sum_{k=0}^n {n \choose k} (h(x))^k \alpha^k(x)
$$

+ $\beta^*(x) \sum_{k=0}^n {n \choose k} (h(x))^k \beta^k(x)$
= $\alpha^*(x) (1 + h(x) \alpha(x))^n + \beta^*(x) (1 + h(x) \beta(x))^n$
= $\alpha^*(x) \alpha^{2n}(x) + \beta^*(x) \beta^{2n}(x)$
= $T_{h,2n}(x)$.

Theorem 2.5. The sum of the first m terms of the sequence ${T_{h,m}(x)}_{m=0}^{\infty}$ is given by

$$
\sum_{k=0}^{m} T_{h,k}(x) = \frac{T_{h,0}(x) - T_{h,m}(x) - T_{h,m+1}(x) - \alpha^*(x)\beta(x) - \beta^*(x)\alpha(x)}{(1 - \alpha(x))(1 - \beta(x))}.
$$

Proof. From (2.4) , (2.5) and some calculations, we get

$$
\sum_{k=0}^{m} T_{h,k}(x) = \sum_{k=0}^{m} (\alpha^*(x)\alpha^k(x) + \beta^*(x)\beta^k(x))
$$

\n
$$
= \alpha^*(x)\sum_{k=0}^{m} \alpha^k(x) + \beta^*(x)\sum_{k=0}^{m} \beta^k(x)
$$

\n
$$
= \alpha^*(x)\left(\frac{1-\alpha^{m+1}(x)}{1-\alpha(x)}\right) + \beta^*(x)\left(\frac{1-\beta^{m+1}(x)}{1-\beta(x)}\right)
$$

\n
$$
= \frac{\alpha^*(x) - \alpha^*(x)\beta(x) - \alpha^*(x)\alpha^{m+1}(x) + \alpha^*(x)\alpha^m(x)\alpha(x)\beta(x)}{(1-\beta(x))(1-\alpha(x))}
$$

\n
$$
+ \frac{\beta^*(x) - \beta^*(x)\alpha(x) - \beta^*(x)\beta^{m+1}(x) + \beta^*(x)\alpha(x)\beta(x)\beta^m(x)}{(1-\beta(x))(1-\alpha(x))}
$$

\n
$$
= \frac{T_{h,0}(x) - T_{h,m}(x) - T_{h,m+1}(x) - \alpha^*(x)\beta(x) - \beta^*(x)\alpha(x)}{(1-\alpha(x))(1-\beta(x))}.
$$

So the proof is complete.

3. Exponential generating functions for the $h(x)$ -Lucas quaternion polynomials

In this section, we give the exponential generating functions for the sequence of the $h(x)$ -Lucas quaternion polynomials. The exponential generating function of a sequence ${b_k}_{k=0}^{\infty}$ is given by

$$
EG(b_k, l) = \sum_{k=0}^{\infty} b_k \frac{l^k}{k!}.
$$

Theorem 3.1. The exponential generating function for the $h(x)$ -Lucas quaternion polynomials are

$$
\sum_{k=0}^{\infty} \frac{T_{h,k}(x)}{k!} l^k = \alpha^*(x) e^{\alpha(x)l} + \beta^*(x) e^{\beta(x)l}.
$$
 (3.1)

Proof. From the Binet-style formula for the $h(x)$ -Lucas quaternion polynomials, we have

$$
\sum_{k=0}^{\infty} \frac{T_{h,k}(x)}{k!} l^k = \sum_{k=0}^{\infty} \left(\alpha^*(x) \alpha^k(x) + \beta^*(x) \beta^k(x) \right) \frac{l^k}{k!}
$$

= $\alpha^*(x) \sum_{k=0}^{\infty} \frac{(\alpha(x)l)^k}{k!} + \beta^*(x) \sum_{k=0}^{\infty} \frac{(\beta(x)l)^k}{k!}$
= $\alpha^*(x) e^{\alpha(x)l} + \beta^*(x) e^{\beta(x)l}.$

4. Poisson generating functions for the $h(x)$ -Lucas quaternion polynomials

In this section, we present Poisson generating functions for the sequence of the $h(x)$ -Lucas quaternion polynomials.

Lemma 4.1. The Poisson generating functions for the $h(x)$ -Lucas quaternion polynomials are

$$
\sum_{k=0}^{\infty} \frac{T_{h,k}(x)}{k!} l^k e^{-l} = \frac{\alpha^*(x)e^{\alpha(x)l} + \beta^*(x)e^{\beta(x)l}}{e^l}.
$$
\n(4.1)

Proof. Since $PG(b_n, x) = e^{-l}EG(b_n, x)$, we have the result by Theorem 3.1. \Box

5. Catalan's, Cassini's and d'Ocagne's identity for the $h(x)$ -Lucas quaternion polynomials

In this section, we compute Catalan's identity, Cassini's identity and d'Ocagne's identity for the $h(x)$ -Lucas quaternion polynomials, we start with Catalan's identity.

Theorem 5.1. For $n \geq m \geq 1$, Catalan identity for the $h(x)$ -Lucas quaternion polynomials is

$$
T_{h,n+m}(x)T_{h,n-m}(x) - T_{h,n}^{2}(x) = (-1)^{n-m}(\alpha^{m}(x) - \beta^{m}(x))
$$

$$
\times 1(\alpha^{*}(x)\beta^{*}(x)\alpha^{m}(x) - \beta^{*}(x)\alpha^{*}(x)\beta^{m}(x)).
$$

Proof. Using (2.4) and (2.5) , we obtain

$$
T_{h,n+m}(x)T_{h,n-m}(x) - T_{h,n}(x)
$$

= $(\alpha^*(x)\alpha^{n+m}(x) + \beta^*(x)\beta^{n+m}(x))(\alpha^*(x)\alpha^{n-m}(x) + \beta^*(x)\beta^{n-m}(x))$
 $- (\alpha^*(x)\alpha^n(x) + \beta^*(x)\beta^n(x))^2$
= $\alpha^*(x)\beta^*(x)\alpha^{n+m}(x)\beta^{n-m}(x) + \beta^*(x)\alpha^*(x)\beta^{n+m}(x)\alpha^{n-m}(x)$
 $-\alpha^*(x)\beta^*(x)\alpha^n(x)\beta^n(x) - \beta^*(x)\alpha^*(x)\alpha^n(x)\beta^n(x)$
= $\alpha^*(x)\beta^*(x)(\alpha(x)\beta(x))^n(\frac{\alpha^m(x)}{\beta^m(x)} - 1)$
+ $\beta^*(x)\alpha^*(x)(\alpha(x)\beta(x))^n(\frac{\beta^m(x)}{\alpha^m(x)} - 1)$
= $\alpha^*(x)\beta^*(x)(-1)^n\alpha^m(x)(\frac{\alpha^m(x) - \beta^m(x)}{(\alpha(x)\beta(x))^m})$
+ $\beta^*(x)\alpha^*(x)(-1)^n\beta^m(x)(\frac{\beta^m(x) - \alpha^m(x)}{(\alpha(x)\beta(x))^m})$
= $(-1)^{n-m}(\alpha^m(x) - \beta^m(x))(\alpha^*(x)\beta^*(x)\alpha^m(x) - \beta^*(x)\alpha^*(x)\beta^m(x)).$

So Theorem 5.1 is proved.

Theorem 5.2. For any natural number n, Cassini identity for the $h(x)$ -Lucas quaternion polynomials is

$$
T_{h,n+1}(x)T_{h,n-1}(x) - T^2_{h,n}(x) = (-1)^{n-1}(\alpha(x) - \beta(x))
$$

$$
\times \left(\alpha^*(x)\beta^*(x)\alpha(x) - \beta^*(x)\alpha^*(x)\beta(x)\right).
$$

Proof. Taking $m = 1$ in Catalan's identity, the proof is completed.

Theorem 5.3 (d'Ocagne's identity). Suppose that n is a nonnegative integer number and m any natural number. If $m > n$, then

$$
T_{h,m}(x)T_{h,n+1}(x) - T_{h,m+1}(x)T_{h,n}(x)
$$

= $(-1)^n(\alpha(x) - \beta(x))(\beta^*(x)\alpha^*(x)\beta^{m-n}(x) - \alpha^*(x)\beta^*(x)\alpha^{m-n}(x)).$

Proof. From (2.4) and (2.5) , we obtain

$$
T_{h,m}(x)T_{h,n+1}(x) - T_{h,m+1}(x)T_{h,n}(x)
$$

= $(\alpha^*(x)\alpha^m(x) + \beta^*(x)\beta^m(x))(\alpha^*(x)\alpha^{n+1}(x) + \beta^*(x)\beta^{n+1}(x))$
 $-(\alpha^*(x)\alpha^{m+1}(x) + \beta^*(x)\beta^{m+1}(x))(\alpha^*(x)\alpha^n(x) + \beta^*(x)\beta^n(x))$
= $\alpha^*(x)\beta^*(x)\alpha^m(x)\beta^n(x)(\beta(x) - \alpha(x)) + \beta^*(x)\alpha^*(x)\beta^m(x)\alpha^n(x)$

 \Box

 \Box

$$
\times \left(\alpha(x) - \beta(x) \right)
$$

= $\alpha^*(x)\beta^*(x)\alpha^{m-n}(x)\left(\alpha(x)\beta(x) \right)^n \left(\beta(x) - \alpha(x) \right) + \beta^*(x)\alpha^*(x)\beta^{m-n}(x)$
 $\times \left(\alpha(x)\beta(x) \right)^n \left(\alpha(x) - \beta(x) \right)$
= $(-1)^n (\alpha(x) - \beta(x)) \left(\beta^*(x)\alpha^*(x)\beta^{m-n}(x) - \alpha^*(x)\beta^*(x)\alpha^{m-n}(x) \right).$

So, the proof is complete.

References

- [1] Akyigit, M., Kosal, H. H., Tosun, M., Fibonacci Generalized Quaternions, Advances in Applied Clifford Algebras, Vol. 24(3) (2014), 631–641.
- [2] Ari, K., On $h(x)$ -Lucas quaternion polynomials, Ars Combinatoria, Vol. 121 (2015), 291–303.
- [3] CATARINO, P., A note on $h(x)$ − Fibonacci quaternion polynomials, *Chaos, Solitons* Fractals, Vol. 77 (2015), 1–5.
- [4] CATARINO, P., A note on certain matrices with $h(x)$ − Fibonacci quaternion polynomials, Journal of Difference Equations and Applications, Vol. 22(2) (2016), 343–351.
- [5] Catarino, P., The h(x)− Fibonacci Quaternion Polynomials: Some Combinatorial Properties, Advances in Applied Clifford Algebras, Vol. 26 (2016), 71–79.
- [6] Falcón, S., On the generating matrices of the k− Fibonacci numbers, Proyecciones J. Math. Vol. 32(4) (2013), 347–357.
- [7] Halici, S., On Fibonacci quaternions, Advances in Applied Clifford Algebras, Vol. 22(2) (2012), 321–327.
- [8] Horodam, A. F., Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Mon. Vol. 70 (1963), 289–291.
- [9] HORODAM, A. F., Recurrence relations, *Ulam Q.* Vol. 2(2) (1993), 23-33.
- [10] Iyer, M. R., Some results on Fibonacci quaternions, Fibonacci Q. Vol. 7(2) (1969), 201–210.
- [11] Iyer, M. R., Note on Fibonacci quaternions, Fibonacci Q. 7(3) (1969), 225–229.
- [12] Kilic, E., Tasci, D., Haukkanen, P., On the generalized Lucas sequences by Hessenberg matrices, Ars Combinatoria, Vol. 95 (2010), 383–395.
- [13] Nalli, A., Haukkanen, P., On generalized Fibonacci and Lucas polynomials, Chaos, Solitons Fractals, Vol. 42 (2009), 3179–3186.
- [14] POLATLI, E., KESIM, S., A Note on Catalan's identity for the k -Fibonacci quaternions, Journal of Integer Sequences, Vol. 18 (2015), 1–4.
- [15] Tan, E., Yilmaz, S., Sahin, M., On a new generalization of Fibonacci Quaternions, Chaos, Solitons Fractals, Vol. 82 (2016), 1–4.