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Abstract

In this paper we consider the teaching of Hermite interpolation. We pro-
pose here two nonstandard approaches for exploring Hermite interpolation
polynomials in a computer supported environment.

As an extension to the standard construction of the interpolation poly-
nomials based on either on the fundamental polynomials or the triangular
shaped divided difference table, we first investigate the generalization of the
Neville type recursive scheme which may be familiar to the reader or to the
student from the chapter about Lagrangian interpolation.

Second, we propose an interactive demo tool where by the step-by-step
construction of the interpolation polynomial, the interpolation constraints
can be considered in an almost arbitrary order. Thus the same interpolating
polynomial can be constructed in several different ways. As a by-product, one
can also ask an interesting combinatorial problem from the students about the
number of compatible orders of the constraints depending on the cardinality
of node system.
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1. Introduction

Numerical methods are taught to a wide variety of university students. The author
itself teaches numerical mathematics at the University of Szeged for several years.
Approximation of functions and thus polynomial interpolation is a standard part
of numerical mathematics. However, the instructor can choose between different
approaches when introducing the simplest polynomial interpolation problems such
as the univariate Lagrange and Hermite interpolation. The classic approach usually
considers the Lagrangian and Newtonian form of the interpolation polynomial [3,
5, 7, 9, 10] and mostly because of time constraints, some very powerful ideas and
interesting relations remain hidden related to the topic. Some argued for a linear
algebra approach [8] and it is worth to mention that the topic can be also seen
as a special case of Chinese remaindering from the more abstract point of view
[11]. As an extension to the classic approach, in this paper we propose to show
the students Neville’s simple but powerful idea to solve the Hermite interpolation
problem recursively.

Linking a Neville type algorithm with Hermite interpolation is not new in com-
putational mathematics and is often emphasized by computer aided geometric
design (CAGD) researchers, see e.g. [2, Chap. 3]. However, to our best knowl-
edge, in teaching Hermite interpolation Neville is not the most frequent approach.
Therefore, based on the Neville recursive algorithm in the literature, in this article
we propose to explore the construction of Hermite interpolation polynomials by
combining small degree Lagrange interpolation and Taylor polynomials as basic
building blocks into an interpolating polynomial. The exploration path is aided by
interactive graphical tools which were developed in Wolfram Mathematica [12].

We also reconsider the recursive algorithm which leads to the Newtonian form of
the Hermite interpolation polynomial. We investigate all the bases in a vector space
which arise when by the step-by-step construction of the interpolation polynomial
the interpolation constraints are reordered [6]. For investigating the possible orders
and finite polynomial sequences, another interactive graphical tool is offered for
the students. As a by-product, we also come across an interesting elementary
combinatorial problem.

The paper is structured as follows. Section 2.1 introduces the problem, Sec-
tion 2.2 reviews Neville’s solution for the Lagrange problem. Section 2.3 contains
the generalization of Neville’s scheme to the Hermite problem. Section 2.4 con-
siders the Hermite interpolation polynomials in different bases. The last section
concludes.

2. The Hermite problem

2.1. Problem specification

First we give some basic definitions and specify the problem exactly, that we want to
solve together with the students. We want to keep the technicalities in a minimum
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level and therefore we do not consider here problems with higher order derivatives
and we assume that in all nodes information about both the zero-order and first-
order derivatives are given. We work over the reals, that is, we assume that both
the nodes and the given function values are real numbers. This approach is taken
e.g. in [3, 9].

Given three finite lists X,F,DF with cardinality |X| = |F | = |DF | = n ∈ N.

Definition 2.1. Assume that the list X consists of n distinct real numbers, we
may also assume that elements of X are ordered:

X = {x1, x2, . . . , xn−1, xn}, x1 < x2 < · · · < xn−1 < xn. (2.1)

We call the xi’s in (2.1) the interpolation nodes and the grid X the node system.

No further assumptions over the values in F = {f1, . . . , fn} (function values,
zeroth derivatives) and DF = {df1, . . . , dfn} (first derivatives) are made. We wish
to construct an interpolating polynomial H with the following constraints:

H(xj) = fj ∧ H ′(xj) = dfj (1 ≤ j ≤ n). (2.2)

Definition 2.2. (A) polynomial H which satisfies all constraints is called (an)
Hermite interpolation polynomial and we also denote it byH(1,1,...,n,n) to emphasize
that it satisfies two interpolation constraints at all nodes.

In the sequel we explore the existence and uniqueness of the interpolation poly-
nomial in a computer supported environment. The learning unit about Hermite
interpolation usually follows the Lagrange interpolation unit, which is the simplest
interpolation problem type, since only function values fj ’s (zeroth derivatives) are
known in the nodes. We assume that the students are already familiar with La-
grange interpolation. For the exploration we use the general purpose CAS Mathe-
matica, but the exploration can be adapted to any other computer algebra system.
We wish to challenge the students to generalize the Neville recursive scheme to
the solve the Hermite problem. Therefore as a first step, we quickly review the
Neville’s main idea for solving Lagrange interpolation in the next subsection. All
steps are elementary.

2.2. Neville solution for the Lagrange problem

Assume that we wish to solve the Lagrangian problem with three nodes, i.e., the
Lagrange interpolation problem with initial data (x1, f1), (x2, f2), (x3, f3) is given.
We wish to find a polynomial L that satisfies all the three constraints:

L(x1) = f1, L(x2) = f2, L(x3) = f3.

Assume moreover, that L(1,2) is the linear polynomial which fits to (x1, f1) and
(x2, f2) and L(2,3) is the linear polynomial which fits to (x2, f2) and (x3, f3).
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Neville’s beautiful and powerful idea is to combine L(1,2) and L(2,3) into a polyno-
mial L = L(1,2,3) which satisfies all the three initial interpolation constraints: As a
first step we ask the student to construct the quadratics

q1 =
x− x3
x1 − x3

L(1,2), q2 =
x− x1
x3 − x1

L(2,3). (2.3)

It is easy to see (as Figure 1 indicates) that

q1(x1) = f1, q1(x3) = 0; q2(x1) = 0, q2(x3) = f3,
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Figure 1: Combining two quadratics into one Lagrange interpola-
tion polynomial

and therefore their sum q1 + q2 satisfies the first and the last initial interpolation
constraints, that is,

(q1 + q2)(x1) = f1 + 0 = f1, (q1 + q2)(x3) = 0 + f3 = f3.

But what about the middle point x2? Is it true that (q1 + q2)(x2) = f2? A short
calculation shows that

L(x2) = L(1,2,3)(x2) = (q1 + q2)(x2)

=
x2 − x3
x1 − x3

f2 +
x2 − x1
x3 − x1

f2 = f2
(x3 − x2) + (x2 − x1)

x3 − x1
= f2.

In a similar way, we can combine the two polynomials L(1,...,n−1) and L(2,...,n)

satisfying all except for the last, and all except for the first interpolating constraints
into

L =
x− xn
x1 − xn

L(1,...,n−1) +
x− x1
xn − x1

L(2,...,n),

which satisfies all the n constraints,

L(xj) = fj (j = 1, . . . , n).
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In the next subsection we try to challenge the students to apply the same recur-
sive scheme in order to solve the Hermite interpolation problem given above. We
start again with building up an interpolation polynomial satisfying three inter-
polation constraints by combining two smaller interpolation polynomials. Both
smaller polynomials satisfy two interpolation constraints from the initial Hermite
constraint-set. However, this time some of the constraint corresponds to the slope
of the tangent.

2.3. Neville solution for the Hermite problem

The problem specification of the Hermite interpolation as given in Section 2.1 may
make it difficult to come up with the right recursive analog of the idea discussed
in the previous Section 2.2. It is clear that uniqueness can be guaranteed by
a suitable degree bound. Let us denote the (formally) cubic polynomial which
satisfies the constraints of (2.2) on two nodes by H(1,1,2,2), i.e., H(1,1,2,2)(x1) =
f1, (H

(1,1,2,2))′(x1) = df1, H
(1,1,2,2)(x2) = f2, (H

(1,1,2,2))′(x2) = df2. It can be
shown that we cannot combine the two Hermite (Taylor) polynomials H(1,1) =
T (1,1) and H(2,2) = T (2,2) into H(1,1,2,2), but we should rather consider linear
Taylor and Lagrange polynomials as atoms for the construction (cf. [7, p. 53]).
Therefore we will work with intermediate polynomials which were not present in
the initial problem specification.

Definition 2.3. We extend the notation introduced in Definition 2.2 to cover the
intermediate polynomials. H(1,1,2) denotes the polynomial which satisfies only the
three constraints H(1,1,2)(x1) = f1, (H(1,1,2))′(x1) = df1, H(1,1,2)(x2) = f2 and
H(1,2) is simply L(1,2).

As a useful hint, we suggest the students to build up the polynomial H(1,1,2)

from T (1,1) and L(1,2). Forming again the two quadratics Q1 = x−x2

x1−x2
T (1,1) and

Q2 = x−x1

x2−x1
L(1,2) by just multiplying T (1,1) and L(1,2) with a suitable linear factor

as in (2.3), we easily verify that (see also Figure 2).

(Q1 +Q2)(x1) = Q1(x1) = f1, (Q1 +Q2)(x2) = Q2(x2) = f2.

But what about the derivative at x1? Let us compute it!

(Q1 +Q2)
′(x1) =

f1
x1 − x2

+ df1 +Q′2(x1) =
f1

x1 − x2
+ df1 +

f1
x2 − x1

= df1

Thus
H(1,1,2) = Q1 +Q2 =

x− x2
x1 − x2

H(1,1) +
x− x1
x2 − x1

H(1,2).

At this point we may already see the generalization of the recursive scheme (Fig-
ure 3). In a similar way we construct H(1,2,2) and finally combine H(1,1,2) and
H(1,2,2) to get the polynomial H(1,1,2,2).
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Figure 2: Combining two quadratics into one Hermite interpolation
polynomial
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Figure 3: Recursive scheme for the Hermite polynomial H(1,1,2,2)

Especially with computer science students, we develop a prototype code in
Mathematica for the construction of the Hermite polynomial following the Neville’s
scheme (H0 is the main function, the base cases and the general recursive case are
separated using Mathematica’s pattern matching capabilities):

H0[X_,F_,DF_,var_]:=H[Flatten[Transpose[{X,X}]],Flatten[Transpose[{F,DF}]],var]
H[{x_},{ff_},var_]=ff;
H[{x_,x_},{ff_,df_},var_]=ff+df(var-x);

H[X_,FF_,var_]:=1/(Last(X)-First[X])
((var-First[X]) H[Drop[X,1],Drop[FF,If[X[[1]] === X[[2]], {2}, {1}]],var] -
(var-Last[X]) H[Drop[X,-1],Drop[FF,-1],var])
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2.4. Order of the interpolation constraints

The classic Newtonian form of the interpolation polynomial using a non-monomial
basis

B : b0 = 1, b1 = (x− x1)1, b2 = (x− x1)2, b3 = (x− x1)2(x− x2)1, . . .

is widely known and taught, see [7, 9, 10]. The construction of the triangular
shaped difference table and the Newton polynomial corresponds to a specific order
of the 2n interpolation constraints. We build up the polynomial H = H(1,1,...,n,n)

starting from a constant polynomial by successively considering one constraint at
a time and forming the finite polynomial sequence

h : h0 = H(1) = f1, h1 = H(1,1) = f1 + df1(x− x1), . . . , h2n−1 = H.

Recall that the first raw of the triangular table containing the generalized divided
differences is the coefficient-sequence of the Hermite interpolation polynomial in
the basis B. Computation of the coefficients means solving linear equations suc-
cessively.

In this subsection we reconsider the Hermite interpolation sequence leading
to H: We challenge the students to build up H in many different ways, e.g., by
extending the Lagrange interpolation polynomial L(1,2,...,n) to H(1,1,...,n,n). To
consider the options we have, we introduce the following definition:

Definition 2.4. We call the order of the interpolation constraints admissible or
compatible, if at each node xj , we use the constraint on the first derivative dfj only
after the constraint on fj .

To be able to play interactively with the possible interpolation sequences, we
developed a Mathematica graphical tool. The user can select successively con-
straints via a button controller on the right. At the beginning of the experiment,
no constraint is selected. Once a constraint is selected and added to the list of
used constraints, the user gets a real-time visual feedback: The application shows
the graphs of the previous and current interpolation polynomial in the sequence
h. Interpolation constraints are also visualized. Moreover, a graph in the middle
of the main panel indicates the already used constraints, the last used constraint
and the still available constraints. The formula of the last element of the poly-
nomial sequence h is also shown. The following screenshots (Figure 4 and Figure
5) show two possible starting sequences for the same three-node Hermite problem
(X = {1, 2, 4}, F = {3, 5, 2}, DF = {1, 0,−1}).
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sponding to the classic difference scheme (“zigzag”)
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Figure 5: Starting sequence H(1), H(1,2), H(1,2,3), H(1,1,2,3) corre-
sponding to the extension of the Lagrangian polynomial

After the experiment, an interesting question about the number of compatible
constraint orderings may pop up among the students. This leads to an elementary
combinatorial problem. We identify this scenario as an important by-product of
the experiments above: The (oriented) exploration may lead unexpectedly to new
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nice mathematical questions and conjectures and can connect seemingly distinct
areas.

We close this subsection with resolving this question by a different type of com-
puter support. Assuming that the node system X consists of n = 1, 2, 3, 4, . . .
distinct elements, we have 1, 6, 90, 2520, . . . many compatible orders. Doesn’t that
integer sequence look familiar? Typing the first few elements into On-Line Ency-
clopedia of Integer Sequences (OEIS) [4], we learn that the sequence can be found
as A600680 and has a closed form

an =
(2n)!

2n
.

It is also very insightful that nth element of the number sequence can be interpreted
as the number of ways that 2n people of different heights can be arranged (for a
photograph) in two rows of equal length so that every person in the front row is
shorter than the person immediately behind them in the back row.

3. Conclusion and future work

We reviewed the possible approaches to the teaching of Hermite interpolation and
as an extension to the classic Lagrangian and Newtonian solutions, we proposed to
show the students the generalization of Neville’s simple and nice recursive idea. We
developed several tools which facilitate the exploration of Hermite interpolation in
a computer supported environment. One of the tools enabled the interactive ex-
ploration of the different forms of the Hermite interpolation polynomial depending
on the order in which the interpolation constraints are considered. In the future, in
the frame of an Austro-Hungarian project we are also interested in the computer
supported verification of the correctness of the generalized Neville algorithm.
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