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Abstract

A geometric Hermite arc is a cubic curve in the plane that is specified
by its endpoints along with unit tangent vectors and signed curvatures at
them. This problem has already been solved by means of numerical proce-
dures. Based on projective geometric considerations, we deduce the problem
to finding the base points of a pencil of conics, that reduces the original
quartic problem to a cubic one that easier can exactly be solved. A simple
solvability criterion is also provided.
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1. Introduction

In Computer Aided Geometric Design curves are often specified by means of some
constraints that the required curve has to fulfill, instead of by those data that are
necessary for a certain representation form (e.g. Bézier or B-spline). A classical
example is the Hermite arc, where endpoints are given along with the tangent
vector (i.e. the first derivative of the curve with respect to the parameter) at them
from which data a cubic arc has to be determined. This task always has a unique
solution.

A slight modification of the previous problem is the so called geometric Hermite
arc, where endpoints of a cubic arc in plane with unit tangent vectors and signed
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curvatures at them are given. Unlike in the classical Hermite arc, a solution to this
problem does not always exist.

This problem pops up in [1] in connection with equidistants of plane cubic spline
curves. In [2] G2 cubic plane interpolating splines are constructed with geometric
Hermite arcs, moreover a thorough analysis and a criterion for solvability is pro-
vided. In [3] G2 end conditions are discussed for C2 planar cubic interpolating
splines (Ferguson splines). [4] studies transition curves between circular and conic
arcs meeting G2 continuity requirements, while [5] provides G2 transition curves
between two circles. There are several generalizations of the problem. [6] gener-
alizes the problem to rational cubics and [7] to interpolating spline surfaces, while
[8] restricts the solution to Pythagorean-hodograph cubics.

No matter in what way we seek the solution to the original problem, it always
ends in a system of quadratic equations in two variables. In all the cited publica-
tions this system is solved numerically. Equations of the system are quite special
that gives the hope of a simple exact solution. In this contribution we provide such
a solution based on projective geometric considerations.

2. Bézier points of the arc

Let us denote the endpoints by p0 and p1, the signed curvatures at them by κ0
and κ1, and the unit tangent vectors by t0 and t1.We want to produce the Bézier
representation

b (u) =
3∑

i=0

B3
i (u)bi, u ∈ [0, 1]

of the cubic Hermite arc, where B3
i (u) denotes the ith cubic Bernstein polynomial.

Its control points {bi}3i=0 can be expressed in the form

b0 = p0,
b3 = p1,
b1 = p0 + l0t0, (2.1)
b2 = p1 − l1t1, (2.2)

in which positive lengths l0 and l1 are unknown.
The signed curvature of a cubic planar Bézier curve is of the form

κ (u) =
ḃ (u) ∧ b̈ (u)∣∣∣ḃ (u)

∣∣∣
3 ,

where ḃ (u)∧ b̈ (u) is the third component of the cross product of the vectors ḃ (u)
and b̈ (u). Its value at the first and last points are

κ0 := κ (0) =
2 (b1 − b0) ∧ (b2 − b1)

3l30
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=
2A (b0,b1,b2)

3l30

and

κ1 := κ (1) =
2 (b2 − b1) ∧ (b3 − b2)

3l31

=
2A (b1,b2,b3)

3l31

respectively, where A (a,b, c) stands for the signed area of the triangle determined
by the sequence of vertices a,b, c. Denoting the signed distance of the control
point b2 from the directed straight line b0,b1 by d0 (cf. Fig. 1) we obtain for the
signed area

A (b0,b1,b2) =
l0d0
2

and for the signed curvature

κ0 =
2

3

d0
l20
. (2.3)

Analogously, the signed curvature κ1 is of the form

κ1 =
2

3

d1
l21
, (2.4)

where d1 is the signed distance of the control point b1 from the directed line b2,b3.

Figure 1: The signed curvature at the first point of a Bézier
curve is proportional to the signed area of the triangle with ver-

tices b0,b1,b2

2.1. Parallel tangent vectors
If t0‖t1 then Eqs. (2.1) and (2.2) imply equality d = |d0| = |d1|, where d is the
distance between the parallel lines determined by point and direction vector pairs
p0, t0 and p1, t1.
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If d = 0 then on the basis of Eqs. (2.3) and (2.4) it is obvious that a solution to
the problem exists if and only if κ0 = κ1 = 0, in which case the number of solutions
is infinite since both l0 and l1 can be considered as free parameters. The resulted
curve is always a straight line segment, i.e. the cubic curve degenerates.

Assumption d 6= 0 implies κ0 6= 0 and κ1 6= 0, and for any such a pair of signed
curvatures there is the unique solution

l0 =

√
2

3

d

κ0
and l1 =

√
2

3

d

κ1

that can be obtained by Eqs. (2.3) and (2.4).

2.2. Generic case

Figure 2: Determination of Bézier points

Hereafter we assume that t0 ∦ t1. Using the notations of Fig. 2, distance d1 is
of the form

d1 = (b1 − b3) · t+1 = (p0 + l0t0 − p1) · t+1
= l0t0 · t+1 − (p1 − p0) · t+1

and the distance d0 is

d0 = (b2 − b0) · t+0 = (p1 − l1t1 − p0) · t+0
= (p1 − p0) · t+0 − l1t1 · t+0 .

Introducing notations a = t0·t+1 = −t1·t+0 , b = (p1 − p0)·t+1 and c = (p1 − p0)·t+0 ,
where t+i denotes the positive normal vector of ti, i.e. ti is rotated through π/2 in
counterclockwise direction, we obtain equalities

d0 = al1 + c, (2.5)
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d1 = al0 − b. (2.6)

Eqs. (2.3) and (2.5) yield equation

3κ0l
2
0 − 2al1 − 2c = 0 (2.7)

and Eqs. (2.4) and (2.6)
3κ1l

2
1 − 2al0 + 2b = 0 (2.8)

for the unknown distances l0 and l1. Therefore, the solution of the geometric Her-
mite interpolation is reduced to the solution of the system of quadratic equations
(2.7), (2.8) of unknowns l0 and l1. This system does not always has a solution, or
if it has, the the obtained values of l0 and l1 are not necessarily positive.

Before we solve the generic case, we have a look at those special cases when one
or both of the curvatures vanish. If, e.g. κ0 = 0 and κ1 6= 0 then the problem is
reduced to a linear one, the solution is

l0 =
3

2
κ1
c2

a3
+
b

a
,

l1 = − c
a

and control points b0,b1 and b2 become collinear, since κ0 = 0 implies d0 = 0.
This case is illustrated in Fig. 3.

Figure 3: The case κ0 = 0 and κ1 6= 0

If both curvatures vanish, then κ0 = κ1 = 0 involves d0 = d1 = 0 thus control
points b1 and b2 coincide and are the point of intersection of the two tangent lines
that must exist due to the assumption t0 ∦ t1 (cf. Fig. 4).

3. An exact solution of the quadratic system

Hereafter we assume that t0 ∦ t1 and κ0 6= 0, κ1 6= 0. In this case equalities (2.7)
and (2.8) describe parabolas in the coordinate system (l0, l1) the axis of which are
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Figure 4: The case κ0 = κ1 = 0

perpendicular. Using homogeneous coordinates, the matrices of these parabolas
are

A =




0 0 −a
0 3κ1 0
−a 0 2b


 and B =




3κ0 0 0
0 0 −a
0 −a −2c


 .

To solve the system means to find points of intersection of these parabolas. These
two parabolas establish a pencil of conics, the elements of which are of the form

C = αA+ βB, α, β ∈ R, |α|+ |β| 6= 0. (3.1)

To find points of intersection of the parabolas is equivalent to determine the base
points of the pencil. One of the parameters can be eliminated from matrix (3.1),
since matrices C and γC, (0 6= γ ∈ R) determine the same conic, therefore we will
study the matrix

C (λ) = λA+B

=




3κ0 0 −λa
0 3λκ1 −a
−λa −a 2 (λb− c)


 , λ ∈ R. (3.2)

If we can find a degenerate element of this pencil, i.e. an element that is
composed of a pair of straight lines, then we can reduce the original quartic problem
to a quadratic one. The degenerate element of the pencil is provided by such a λ
for which det (C (λ)) = 0, that yields the cubic polynomial

κ1a
2λ3 − 6bκ0κ1λ

2 + 6cκ0κ1λ+ κ0a
2 = 0.

One real root of this cubic polynomial has to be determined, that always exists.
After all, the quartic problem can only be reduced to a cubic one using this method,
however this can exactly be solved in a simple way without a numerical procedure.

Parabolas (2.7) and (2.8) are of special position, their axes are perpendicular,
and the pencil determined by them always contains an element which is a circle.
Indeed, it is easy to check that absolute (or imaginary) circle points (points at
which the line at infinity intersects any circle)

[
1 i 0

]T and
[
−1 i 0

]T
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Figure 5: One positive solution (right) along with the correspond-
ing pair of parabolas and a degenerated element (blue dotted) of
the pencil determined by them (left). Settings are p0 = [2 0]T ,
p1 = [−1 0]T , t0 = [−1 1]T , t1 = [−1 − 1]T , κ0 = 1.5, κ1 = 1 (For
interpretation of the references to color in this figure legend, the

reader is referred to the pdf version of this article.)

are on the element of the pencil (3.2) that corresponds to

λ =
κ0
κ1

,

provided κ1 6= 0, that we have already excluded. The matrix of this circle is



3κ0 0 −κ0

κ1
a

0 3κ0 −a
−κ0

κ1
a −a 2

(
κ0

κ1
b− c

)


 ,

therefore the square of its radius is

r2 =
2

3κ0

(
c− κ0

κ1
b

)
. (3.3)

If (3.3) is positive (note that the circle can be imaginary as well) then parabolas
(2.7) and (2.8) have real points on common, i.e. the system of quadratic equations
has a solution. Note, that this is a criterion just for the solvability of the system
and not for the positive solution.

In practice, positive solutions (both l0 and l1 are positive) are used in general,
since only in this case will the direction of tangent vectors be kept. In the coordinate
system (l0, l1) the axis of parabolas (2.7) and (2.8) coincide with the axes l0 and
l1 of the coordinate system, respectively, thus the number of positive solutions can
be 0, 1, 2 or 3.
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As it is specified in [2], in the generic case there can be a positive solution if
products

t0 ∧ t1, (p1 − p0) ∧ t1, t0 ∧ (p1 − p0)

have the same sign that coincides with the sing of κ0 and κ1. In this case the
existence of a positive solution can be guaranteed by adjusting the magnitude of
curvatures, i.e. curvatures can be used as shape parameters. Fig. 5 illustrates a
case of one positive solution.
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