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Abstract
In this paper, we consider a (p, q)-generalization of the r-Whitney num-

ber sequence of the first kind that reduces to it when p = q = 1. We obtain
generalizations of some earlier results for the r-Whitney sequence, including
recurrence and generating function formulas. We develop a combinatorial
interpretation for our generalized numbers in terms of a pair of statistics
on the set of r-permutations in which the elements within cycles of a per-
mutation are assigned colors according to certain rules. This allows one to
provide combinatorial proofs of various identities, including orthogonality re-
lations. Finally, we consider the (p, q)-Whitney matrix of the first kind and
find various factorizations for it.

Keywords: q-generalization, r-Whitney numbers, Stirling numbers, Whitney
matrix
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1. Introduction

We will make use of the following notation. If m and n are positive integers, then
let [m,n] = {m,m+ 1, . . . , n} if m ≤ n, with [m,n] = ∅ if m > n. We will denote
the special case [1, n] by [n]. Given a positive integer k and an indeterminate q, let
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[k]q = 1 + q + · · ·+ qk−1, with [0]q = 0. Throughout, empty sums will assume the
value 0, and empty products the value 1.

Suppose r ≥ 0 and m ≥ 1 are given integers. Let w(n, k) = w(n, k; r,m) denote
the r-Whitney numbers of the first kind (see, e.g., [7, 15]), which are defined as
connection constants in the polynomial identities

mnx(x− 1) · · · (x− n+ 1) =

n∑

k=0

w(n, k)(mx+ r)k, n ≥ 0.

See also [1, 18] for further properties of the w(n, k). Equivalently, the w(n, k) array
is determined by the recurrence

w(n, k) = w(n− 1, k − 1)− (r +m(n− 1))w(n− 1, k), n, k ≥ 1,

with initial values w(n, 0) = (−1)n
∏n−1
i=0 (r + mi) and w(0, k) = δk,0 for n, k ≥ 0.

Note that w(n, k; 0, 1) = s(n, k) and w(n, k; 1, 1) = s(n + 1, k + 1), where s(n, k)
is the Stirling number of the first kind. In [10], a combinatorial interpretation
for w(n, k) when r = 0 is given in terms of the coefficients of the characteristic
polynomial for the rank function on the Dowling lattice of rank n over a finite
group of order m. An interpretation for w(n, k) was given in [7] for arbitrary r.

Here, we consider a polynomial generalization of the r-Whitney numbers of the
first kind, which we will denote by wp,q(n, k) = wp,q(n, k; r,m). It is defined by the
recurrence

wp,q(n, k) = wp,q(n− 1, k− 1)− ([r]p +m[n− 1]q)wp,q(n− 1, k), n, k ≥ 1, (1.1)

with initial values wp,q(n, 0) = (−1)n
∏n−1
i=0 ([r]p + m[i]q) and wp,q(0, k) = δk,0 for

n, k ≥ 0. Note that w1,1(n, k) = w(n, k) for all n and k. The numbers wp,q(n, k)
when p = 1 differ slightly from the (q, r)-Whitney numbers wm,r,q(n, k) studied in
[12] due to the absence of extra factors of q in the defining recurrence. In contrast
to [12], where identities for wm,r,q(n, k) were shown by algebraic methods using q-
boson operators, we provide a combinatorial interpretation for our wp,q(n, k) which
allows one to explain identities bijectively. Moreover, on account of its simpler re-
currence, it seems that the numbers wp,q(n, k) provide a more natural combinatorial
generalization of the r-Whitney numbers than those studied in [12] which arose in
a physical setting. Furthermore, the w(n, k) form an orthogonal pair with the gen-
eralized version of the r-Whitney numbers of the second kind considered in [13].
This orthogonality relation generalizes one between the r-Whitney numbers of the
first and second kind (see [7]).

In the next section, we give several algebraic properties satisfied by wp,q(n, k),
including a connection between it and the elementary symmetric functions. We
then develop in the third section a combinatorial interpretation for wp,q(n, k) in
terms of statistics on a structure A enumerated by |w(n, k)| and use this to pro-
vide bijective proofs of identities satisfied by wp,q(n, k), including orthogonality
relations. The p- and q- variables will be seen here to play different combinatorial
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roles, with the former marking a statistic on A related only to those cycles contain-
ing the elements of [r] no two of which are to belong to the same cycle, while the
latter marks a statistic on A related to the positions of the elements of [r+1, r+n]
within all cycles. In the case r = 0 and m = 1, these statistics appear to be new
on the set of permutations. In the final section, we consider the (p, q)-Whitney
matrix of the first kind and find some factorizations of this matrix in analogy with
the results of [16].

Let W (n, k) = W (n, k; r,m) denote the r-Whitney number of the second kind
(see [7]). We now recall a (p, q)-generalization of W (n, k) from [13] defined by the
recurrence

Wp,q(n, k) = Wp,q(n− 1, k − 1) + ([r]p +m[k]q)Wp,q(n− 1, k), n, k ≥ 1,

with initial values Wp,q(n, 0) = [r]np and Wp,q(0, k) = δk,0. Among the results, it
was shown that the Wp,q(n, k) are determined by the identities

(mx+ [r]p)
n =

n∑

k=0

Wp,q(n, k)mk[x]kq , n ≥ 0, (1.2)

where

[x]nq =

{
x(x− [1]q) · · · (x− [n− 1]q), if n ≥ 1;
1, if n = 0,

or equivalently by the generating function

∑

n≥k
Wp,q(n, k)xn =

xk

(1− ([r]p +m[0]q)x) · · · (1− ([r]p +m[k]q)x)
, k ≥ 0. (1.3)

Various connections will be made between wp,q(n, k) andWp,q(n, k) in the next two
sections. Note that Wp,q(n, k) reduces to W (n, k) when p = q = 1. Let us denote
by sq(n, k) and Sq(n, k) the r = 0,m = p = 1 case of wp,q(n, k) and Wp,q(n, k),
respectively. The sq(n, k) and Sq(n, k) are q-Stirling polynomials of the first and
second kind which were originally considered by Carlitz [5, 6] and have since been
studied [20, 21] (see also [8, 9] for a related generalization).

2. Identities of the generalized r-Whitney numbers

In this section, we prove various algebraic properties of the array wp,q(n, k). We
first show that the wp,q(n, k) serve as connection constants as follows.

Theorem 2.1. If n ≥ 0, then

mn[x]nq =
n∑

k=0

wp,q(n, k)(mx+ [r]p)
k. (2.1)
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Proof. We proceed by induction on n. The equality clearly holds for n = 0. Now
assume that the claim holds for n, and let us prove it for n + 1. From recurrence
(1.1), we have

n+1∑

k=0

wp,q(n+ 1, k)(mx+ [r]p)
k =

n∑

k=0

wp,q(n+ 1, k)(mx+ [r]p)
k + (mx+ [r]p)

n+1

=

n∑

k=0

wp,q(n, k − 1)(mx+ [r]p)
k − ([r]p +m[n]q)

n∑

k=0

wp,q(n, k)(mx+ [r]p)
k

+ (mx+ [r]p)
n+1

=
n−1∑

k=0

wp,q(n, k)(mx+ [r]p)
k+1 − ([r]p +m[n]q)m

n[x]nq + (mx+ [r]p)
n+1

=

n∑

k=0

wp,q(n, k)(mx+ [r]p)
k+1 − ([r]p +m[n]q)m

n[x]nq

= (mx+ [r]p)m
n[x]nq − ([r]p +m[n]q)m

n[x]nq

= mn+1[x]
n+1
q ,

which completes the induction.

We next give the generating function of the array wp,q(n, k) for fixed n.

Theorem 2.2. If n ≥ 0, then

n∑

k=0

wp,q(n, n− k)xk =
n−1∏

k=0

(1− ([r]p +m[k]q)x). (2.2)

Proof. We proceed by induction on n. The equality clearly holds for n = 0. Now
assume that the claim holds for n, and let us prove it for n + 1. From recurrence
(1.1), we have

n+1∑

k=0

wp,q(n+ 1, n+ 1− k)xk

=

n∑

k=0

wp,q(n, n− k)xk − ([r]p +m[n]q)

n+1∑

k=0

wp,q(n, n+ 1− k)xk

=

n−1∏

k=0

(1− ([r]p +m[k]q)x)− ([r]p +m[n]q)

n∑

k=0

wp,q(n, n− k)xk+1

=
n−1∏

k=0

(1− ([r]p +m[k]q)x)− ([r]p +m[n]q)x
n−1∏

k=0

(1− ([r]p +m[k]q)x)

=
n∏

k=0

(1− ([r]p +m[k]q)x),
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which completes the induction.

Given a set of variables x1, x2, . . . , xn, the k-th elementary and complete sym-
metric functions are defined, respectively, by

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n
xi1xi2 · · ·xik , 1 ≤ k ≤ n,

hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n
xi1xi2 · · ·xik , k ≥ 1,

with initial conditions e0(x1, x2, . . . , xn) = h0(x1, x2, . . . , xn) = 1. Note that
ek(x1, x2, . . . , xn) = 0 if k > n. The generating functions for the ek and hk are
given by

n∑

k=0

ek(x1, x2, . . . , xn)zk =

n∏

i=1

(1 + xiz),

∑

k≥0

hk(x1, x2, . . . , xn)zk =
n∏

i=1

1

1− xiz
.

Using (2.2) and (1.3), it is not difficult to show that the (p, q)-Whitney numbers
are the specializations of the elementary and complete symmetric functions given
by

wp,q(n+ 1, n+ 1− k)

= (−1)kek([r]p,m[1]q + [r]p,m[2]q + [r]p, . . . ,m[n]q + [r]p), (2.3)

Wp,q(n+ k, n)

= hk([r]p,m[1]q + [r]p,m[2]q + [r]p, . . . ,m[n]q + [r]p). (2.4)

In particular, the q-Stirling numbers of the first and second kind satisfy

sq(n+ 1, n+ 1− k) = (−1)kek([1]q, [2]q, . . . , [n]q),

Sq(n+ k, n) = hk([1]q, [2]q, . . . , [n]q).

Lemma 2.3 (Merca [14]). Let k and n be positive integers. Then

fk(t+ x1, t+ x2, . . . , t+ xn) =
k∑

i=0

(
n− ci
k − i

)
fi(x1, x2, . . . , xn)tk−i

and

fk(x1, x2, . . . , xn) =

k∑

i=0

(
n− ci
k − i

)
fi(t+ x1, t+ x2, . . . , t+ xn)(−t)k−i,
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where t, x1, x2, . . . , xn are variables, fi is either the i-th elementary or complete
symmetric function for all i, and

ci =

{
i, if fi = ei;
1− k, if fi = hi.

Using the prior lemma, one can obtain the following formulas for the (p, q)-
Whitney numbers.

Proposition 2.4. If r ≥ s ≥ 0, then

wp,q(n, k; r,m) =
n∑

i=k

(
i

k

)
wp,q(n, i; s,m)([s]p − [r]p)

i−k (2.5)

=
n∑

i=k

(−1)i−kps(i−k)

(
i

k

)
wp,q(n, i; s,m)[r − s]i−kp

and

Wp,q(n, k; r,m) =
n∑

i=k

(
n

i

)
Wp,q(i, k; s,m)([r]p − [s]p)

n−i (2.6)

=

n∑

i=k

ps(n−i)
(
n

i

)
Wp,q(i, k; s,m)[r − s]n−ip .

Proof. By (2.3), (2.4), and Lemma 2.3, we have

wp,q(n, n− k; r,m) = (−1)kek([r]p,m[1]q + [r]p, . . . ,m[n− 1]q + [r]p)

= (−1)k
k∑

i=0

(
n− i
k − i

)
ei([s]p,m[1]q + [s]p, . . . ,m[n− 1]q + [s]p)([r]p − [s]p)

k−i

=
k∑

i=0

(
n− i
k − i

)
(−1)iei([s]p,m[1]q + [s]p, . . . ,m[n− 1]q + [s]p)([s]p − [r]p)

k−i

=
k∑

i=0

(
n− i
k − i

)
wp,q(n, n− i; s,m)([s]p − [r]p)

k−i

and

Wp,q(n+ k, n; r,m) = hk([r]p,m[1]q + [r]p, . . . ,m[n]q + [r]p)

=
k∑

i=0

(
n+ k

k − i

)
hi([s]p,m[1]q + [s]p, . . . ,m[n]q + [s]p)([r]p − [s]p)

k−i

=
k∑

i=0

(
n+ k

k − i

)
Wp,q(n+ i, n; s,m)([r]p − [s]p)

k−i,

from which the identities may be obtained.
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Taking p = q = 1 in (2.6) gives the following identity which was shown previ-
ously by a different method using Riordan matrix groups.

Corollary 2.5 (Cheon and Jung [7]). If r ≥ s ≥ 0, then

W (n, k; r,m) =
n∑

i=k

(
n

i

)
W (i, k; s,m)(r − s)n−i.

The following proposition shows how to express the (p, q)-Whitney numbers of
both kinds in terms of the q-Stirling numbers and vice-versa.

Proposition 2.6. If n, k ≥ 0, then

wp,q(n, k) =
n∑

i=k

mn−i
(
i

k

)
(−[r]p)

i−ksq(n, i), (2.7)

sq(n, k) =
1

mn−k

n∑

i=k

(
i

k

)
[r]i−kp wp,q(n, i), (2.8)

Wp,q(n, k) =

n∑

i=k

mi−k
(
n

i

)
[r]n−ip Sq(i, k), (2.9)

Sq(n, k) =
1

mn−k

n∑

i=k

(
n

i

)
(−[r]p)

n−iWp,q(i, k). (2.10)

Proof. To show (2.9), note that

Wp,q(n+ k, n) = hk([r]p,m[1]q + [r]p, . . . ,m[n]q + [r]p)

=
k∑

i=0

(
n+ k

k − i

)
hi(m[1]q,m[2]q, . . . ,m[n]q)[r]

k−i
p

=

k∑

i=0

(
n+ k

k − i

)
mihi([1]q, [2]q, . . . , [n]q)[r]

k−i
p

=
k∑

i=0

(
n+ k

k − i

)
miSq(n+ i, n)[r]k−ip ,

and then replace n by n− k, k by n− k, and i by i− k in that order.
For (2.10), observe that

Sq(n+ k, n) = hk([1]q, [2]q, . . . , [n]q)

=
1

mk
hk(m[1]q,m[2]q, . . . ,m[n]q)

=

k∑

i=0

1

mk

(
n+ k

k − i

)
hi([r]p,m[1]q + [r]p, . . . ,m[n]q + [r]p)(−[r]p)

k−i
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=

k∑

i=0

1

mk

(
n+ k

k − i

)
Wp,q(n+ i, n)(−[r]p)

k−i.

The proofs of (2.7) and (2.8) are similar.

Let s(n, k) and S(n, k) denote the Stirling numbers of the first and second kind,
respectively. Taking p = q = 1 in (2.7) and (2.9) gives the following formulas.

Corollary 2.7 (Cheon and Jung [7]). If n, k ≥ 0, then

w(n, k) =
n∑

i=k

mn−i
(
i

k

)
(−r)i−ks(n, i)

and

W (n, k) =

n∑

i=k

mi−k
(
n

i

)
rn−iS(i, k).

The p = q = r = 1 case of (2.8) is also previously known.

Corollary 2.8 (Benoumhani [2]). If n, k ≥ 0, then

s(n, k) =
1

mn−k

n∑

i=k

(
i

k

)
w(n, i; 1,m).

3. Combinatorial interpretation and properties

In this section, we develop a combinatorial interpretation for the array wp,q(n, k)
and use it to explain various relations that it satisfies, including its orthogonality
with Wp,q(n, k). We first recall the concept of an r-permutation, see [3].

Definition 3.1. Given 0 ≤ r ≤ m, by an r-permutation of [m], it is meant a
member of Sm in which the elements of [r] belong to distinct cycles. If n, k, r ≥ 0,
then let Ωr(n, k) denote the set of all r-permutations of [n+r] having exactly k+r
cycles and let Ωr(n) = ∪nk=0Ωr(n, k).

When r = 0, a member of Ωr(n) is the same as an ordinary permutation of [n].
Note that the cardinality of Ωr(n, k) is given by the (signless) r-Stirling number of
the first kind (see, e.g., [3]), while the cardinality of Ωr(n) is seen to be (r + 1)n.

Within a member of Ωr(n, k), we will refer to the cycles containing an element
of [r] as special and to the remaining cycles comprised exclusively of elements of
I = [r + 1, r + n] as non-special. (The members of [r] themselves will also at
times be described as special.) In addition, we will refer to an element within a
member of Ωr(n, k) that is the smallest within its cycle as minimal, and to all other
elements as non-minimal. Throughout, we will assume that members of Ωr(n, k)
are expressed in standard cycle form, i.e., minimal elements first within each cycle,
with cycles arranged left-to-right in ascending order of minimal elements.

We now consider a certain subset of the elements within a permutation ex-
pressed in standard form.
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Definition 3.2. Suppose σ ∈ Ωr(n) is in standard cycle form and i ∈ I, with i
not the first element of a cycle of σ. Consider the word w obtained by writing
all elements of the cycle C containing i, except for the first, left-to-right as they
appear within C. Then we will say that i is a left-to-right cycle minimum (l-r cycle
min) if i is a left-to-right minimum within w in the usual sense.

For example, let

σ = (1, 7, 13, 12, 4, 15)(2, 6, 10, 8, 5)(3, 9)(11, 14) ∈ Ω3(12, 1).

Then the first three cycles are special, the final cycle is non-special, and the l-r
cycle min are 7, 4, 6, 5, 9, 14. Note that the second element and the second smallest
element within a cycle are always l-r cycle min, by definition. We now allow for
certain elements within an r-permutation to be colored.

Definition 3.3. Given a positive integer m, let Ωr,m(n, k) denote the set of r-
permutations of [n+ r] having k + r cycles in which elements within the following
two classes are each assigned one of m colors: (i) non-minimal elements within
non-special cycles, and (ii) non-minimal elements within special cycles that do not
correspond to left-to-right cycle minima. Define Ωr,m(n) = ∪nk=0Ωr,m(n, k).

Within the permutation σ above, the elements that would be assigned colors
are (i) 14 and (ii) 13, 12, 15, 10, 8.

Let v(n, k) = v(n, k; r,m) = |Ωr,m(n, k)|; note that v(n, k) = (−1)n−kw(n, k)
upon comparing recurrences and initial values. See also Mihoubi and Rahmani [17]
for an interpretation of v(n, k; r,m) in terms of their partial r-Bell polynomials. In
the formulation above, one may also regard m as an indeterminate marking the
statistic on Ωr(n) that records the sum of the number of non-minimal elements in
non-special cycles and the number of non-minimal elements in special cycles not
corresponding to l-r cycle min. For a combinatorial interpretation of w(n, k) in
terms of Dowling lattices, the reader is referred to [7, Section 2].

Definition 3.4. Suppose σ ∈ Ωr,m(n) and that i ∈ I belongs to cycle C of σ, with
i not the first element of C. Then the predecessor of i is the first element of I to
the left of i in C and smaller than i, provided such an element exists, which we
will denote by pred(i). Define Sσ to be the set of all i ∈ I that have a predecessor
(possibly empty).

Observe that all non-minimal elements in non-special cycles of σ ∈ Ωr,m(n)
have predecessors, whereas only non-minimal elements not corresponding to l-r
cycle min in special cycles have them. For example, if

σ = (1, 6, 4, 5)(2, 8, 7, 9)(3, 11, 13, 14)(10, 12)(15) ∈ Ω3,1(12, 2),

then we have Sσ = {5, 9, 12, 13, 14}. Given σ ∈ Ωr,m(n) and 1 ≤ i ≤ r, let `i
denote the number of l-r cycle min within the i-th special cycle of σ. In the last
example, we have r = 3, with `1 = `2 = 2 and `3 = 1.

We now introduce a pair of statistics on the set Ωr,m(n).
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Definition 3.5. Define the statistics v1 and v2 on Ωr,m(n) by letting

v1(σ) =
r∑

i=1

(i− 1)`i

and
v2(σ) =

∑

i∈Sσ
(pred(i)− r − 1).

Note that the statistic v1 appears to be new even in the case r = 0 and m =
1, though in this case it has the same distribution on Sn as a certain type of
inversion statistic originally considered by Carlitz [6] and later studied [20]. We
found no special cases in the literature of the statistic v2. We now consider a
(p, q)-generalization of the r-Whitney number of the first kind in terms of these
statistics.

Definition 3.6. Define vp,q(n, k) = vp,q(n, k; r,m) as the joint distribution poly-
nomial for the v1 and v2 statistics on the set Ωr,m(n, k), that is,

vp,q(n, k) =
∑

σ∈Ωr,m(n,k)

pv1(σ)qv2(σ), n, k ≥ 0.

The vp,q(n, k) are determined recursively as follows.

Proposition 3.7. The array vp,q(n, k) satisfies the recurrence

vp,q(n, k) = vp,q(n− 1, k − 1) + ([r]p +m[n− 1]q)vp,q(n− 1, k), n, k ≥ 1, (3.1)

and has initial values vp,q(n, 0) =
∏n−1
i=0 ([r]p + m[i]q) and vp,q(0, k) = δk,0 for

n, k ≥ 0.

Proof. The initial condition vp,q(0, k) = δk,0 is clear from the definitions. To show
vp,q(n, 0) =

∏n−1
i=0 ([r]p+m[i]q), we add the elements of I sequentially to the special

cycles starting with r+ 1. The element r+ i contributes a factor of [r]p+m[i−1]q,
upon considering whether it is inserted directly following a member of [r] or a
member of [r+1, r+ i−1]; note that there are 1+p+ · · ·+pr−1 = [r]p possibilities
in the former case where r + i would correspond to a l-r cycle min and m(1 + q +
· · ·+ qi−2) = m[i− 1]q possibilities in the latter. To show (3.1), first observe that
the weight of all members of Ω = Ωr,m(n, k) in which n+r belongs to its own cycle
is vp,q(n−1, k−1), since neither the v1 nor the v2 statistic values are changed by its
addition in this case. On the other hand, the weight of all members of Ω in which
n+ r is a l-r cycle min within a special cycle is given by [r]pvp,q(n− 1, k). Finally,
members of Ω in which n + r directly follows some member of [r + 1, r + n − 1]
within a cycle are seen to have weight m[n − 1]qvp,q(n − 1, k). Observe that the
addition of n + r to a cycle does not affect the predecessors of smaller elements
already occupying the cycle. Combining the three previous cases gives (3.1).
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Note that wp,q(n, k) = (−1)n−kvp,q(n, k), upon comparing recurrences. One
has the following further recurrence satisfied by wp,q(n, k).

Proposition 3.8. If n, k ≥ 1, then

wp,q(n, k) =

n∑

j=k

(−1)n−jwp,q(j − 1, k − 1)

n−j−1∏

i=0

([r]p +m[j + i]q).

Proof. We show, equivalently, the relation

vp,q(n, k) =
n∑

j=k

vp,q(j − 1, k − 1)

n−j−1∏

i=0

([r]p +m[j + i]q). (3.2)

To do so, consider the smallest element, r + j, within the k-th non-special cycle
of a member of Ωr,m(n, k); note that k ≤ j ≤ n. Then the elements of [r + j − 1]
may be positioned according to any member of Ωr,m(j − 1, k − 1), and thus there
are vp,q(j − 1, k − 1) possibilities concerning their arrangement. After placing the
element r+ j in its own cycle, we insert the members of [r+ j+1, r+n] one-by-one
starting with r+ j+ 1. For 1 ≤ i ≤ n− j, there are [r]p +m[j+ i− 1]q possibilities
concerning the placement of the element r + j + i, upon considering whether it
directly follows a member of [r] or a member of [r + 1, r + j + i− 1]. Thus, there
are

∏n−j
i=1 ([r]p +m[j+ i− 1]q) possibilities concerning the placement of elements of

[r + j + 1, r + n]. Summing over j gives (3.2) and completes the proof.

Using our combinatorial interpretation for wp,q(n, k), it is possible to prove
bijectively the formulas for wp,q(n, k) and sq(n, k) given above in Proposition 2.6.

Combinatorial proofs of (2.7) and (2.8) in Proposition 2.6. We first prove formula
(2.7), rewritten in the form

vp,q(n, k) =
n∑

j=k

mn−j
(
j

k

)
[r]j−kp cq(n, j), n ≥ k ≥ 0, (3.3)

where cq(n, j) = (−1)n−jsq(n, j). To show (3.3), we count members of Ωr,m(n, k)
according to the number, j − k, of l-r cycle min in special cycles, where k ≤ j ≤ n.
To form a member of Ωr,m(n, k) for which the number of l-r cycle min in special
cycles is j − k, we first consider ρ ∈ Ω0,1(n, j) in standard cycle form, i.e., ρ
is a permutation of [n] having j cycles, and count all such ρ according to the
value of the v2 statistic. Note that there are cq(n, j) possibilities for ρ, each of
whose n − j non-minimal elements is assigned one of m colors. Next, we add r
to all of the letters of ρ. We then select j − k of the j cycles of ρ, remove the
enclosing parentheses, and let w1, w2, . . . , wj−k denote the resulting words, where
min(w1) < min(w2) < · · · < min(wj−k).

We insert the words wi into r urns labeled 1, 2, . . . , r. Assign the weight of pi−1

to each word added to the i-th urn for 1 ≤ i ≤ r, which we multiply to obtain the
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total weight. Thus, there are [r]j−kp possibilities concerning the placement of the
words wi. Within urns, words are ordered from left-to-right in descending order of
first (= smallest) elements and then concatenated, with the number labeling the
urn written at the beginning. That is, if wi1 , . . . , wis , with i1 < · · · < is, are the
words in urn j, we form the long word jwis · · ·wi1 . The contents of urn j then
becomes that of the j-th special cycle. Note that the first letter of each wi becomes
a l-r cycle min, by the ordering of words within urns. Taken together with the k
cycles of ρ that were not selected, we obtain a member π ∈ Πr,m(n, k) in which
the l-r cycle min in special cycles number j − k. Upon considering all possible
ρ, the weight of such members of Πr,m(n, k) is seen to be mn−j(j

k

)
[r]j−kp cq(n, j).

Summing over all j then gives (3.3).
We illustrate the above procedure for transforming ρ into π, where n = 20,

k = 2, r = 4 and m = 1. Let j = 8 and

ρ = (1, 7, 3)(2)(4, 18, 9, 5)(6)(8, 10, 20, 11)(12, 16, 13, 19)(14)(15, 17) ∈ Ω0,1(20, 8).

Increase each element of ρ by r = 4 and then, in the resulting permutation of
[5, 24], select j − k = 6 of the cycles, shown below:

(5, 11, 7), (8, 22, 13, 9), (10), (12, 14, 24, 15), (16, 20, 17, 23), (18),

which will be denoted by wi, 1 ≤ i ≤ 6, from left to right. Insert these words
randomly into four urns Ui as shown:

U1 U2 U3 U4

w6, w2 | | w4, w3, w1 | w5.

From this arrangement, we form the cycles (1, w6, w2) = (1, 18, 8, 22, 13, 9), (2),
(3, w4, w3, w1) = (3, 12, 14, 24, 15, 10, 5, 11, 7) and (4, w5) = (4, 16, 20, 17, 23). Con-
sidering these cycles together with the two that were not selected, one obtains
π ∈ Π4,1(20, 2) given by

π = (1, 18, 8, 22, 13, 9)(2)(3, 12, 14, 24, 15, 10, 5, 11, 7)(4, 16, 20, 17, 23)(6)(19, 21).

We now prove formula (2.8), rewritten in the form

mn−kcq(n, k) =
n∑

j=k

(−1)j−k
(
j

k

)
[r]j−kp vp,q(n, j), n ≥ k ≥ 0. (3.4)

To show (3.4), let Ω′r,m(n, k) denote the set obtained from members of Ωr,m(n, k)
by marking some subset of the l-r cycle min belonging to special cycles. Define
the sign λ ∈ Ω′r,m(n, k) to be (−1)j−k, where j − k denotes the number of marked
l-r cycle min of λ, and define the weight of λ as we did before for members of
Ωr,m(n, k). We first show that the right-hand side of (3.4) gives the total (signed)
weight of all the members of Ω′r,m(n, k). To do so, it is enough to show that the
weight of the members of Ω′r,m(n, k) in which there are j − k marked cycle min is(
j
k

)
[r]j−kp vp,q(n, j) for k ≤ j ≤ n.
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To form such members of Ω′r,m(n, k), we first choose τ ∈ Ωr,m(n, j) for some
j ≥ k and select exactly j−k of the j non-special cycles of τ . We insert the contents
of these j−k cycles into the special cycles of τ as follows. Let b = b1b2 · · · bs denote
the contents of a selected cycle in the order that the letters appear within the cycle.
We will insert b into one of the r special cycles of τ so that b1 will become a l-r
cycle min. Let C = jw1w2 · · ·w` denote the contents of the cycle in which we are
to insert b, where j ∈ [r] and wi denotes all of the letters from the i-th largest
cycle min of C up to but not including the (i+ 1)-st largest cycle min. That is, we
have min(w1) > min(w2) > · · · > min(w`), with min(wi) also the first letter of the
subword wi for each i.

If b1 > min(w1) or if C contains only j, then we write the letters in b directly
after the letter j in C. Otherwise, let i0 be the index i ∈ [`] such that min(wi) >
b1 > min(wi+1), where min(w`+1) = 0. We then write the letters of b between
the subwords wi0 and wi0+1 in C if i0 < ` or after w` if i0 = `. Next, we mark
the letter b1; note that b1 is a cycle min, as are still the first letters of each of the
wi. Repeat the above procedure for each of the j − k selected cycles, where cycles
are inserted one after another, sequentially, and we consider also the subwords
arising from previously inserted cycles when deciding on the position of the current
cycle. Since the first letter of each selected cycle becomes a l-r cycle min, there are
[r]j−kp possibilities concerning the insertion of these cycles. Furthermore, since the
predecessors of the non-minimal elements within the selected non-special cycles of
τ remain the same once their contents have been added to the special cycles as
described, the contribution of these non-minimal elements towards the q-weight
(and also the m-weight) remains the same.

We illustrate the procedure described above for creating members of Ω′r,m(n, k),
where n = 21, k = 2, r = 3 and m = 1. Let j = 6 and τ ∈ Ω3,1(21, 6) given by

τ = (1, 7, 5, 19)(2)(3, 18, 12, 4)(6, 9)(8, 13, 10)(11)(14, 22, 16)(15, 24, 21, 17)(20, 23).

Suppose now that we select the four non-special cycles (6, 9), (11), (15, 24, 21, 17)
and (20, 23), and stipulate that (6, 9) and (20, 23) go in the first and second spe-
cial cycle of τ , respectively, while the other two go in the third. This yields the
permutation λ ∈ Ω′3,1(21, 2) given by

λ = (1, 7, 6, 9, 5, 19)(2, 20, 23)(3, 18, 15, 24, 21, 17, 12, 11, 4)(8, 13, 10)(14, 22, 16),

where the marked cycle min are underlined. Upon considering the marked letters
of λ, the above process is seen to be reversible. Allowing τ to vary thus yields all
members of Ω′r,m(n, k) having exactly j − k marked cycle min, which are seen to
have weight

(
j
k

)
[r]j−kp vp,q(n, j), as desired.

Now consider the smallest l-r cycle min belonging to a special cycle within a
member of Ω′r,m(n, k). Either mark it if it is unmarked, or remove the marking
from it. For example, this would entail underlining the element 4 in the permu-
tation λ above. This operation is a sign-changing, weight-preserving involution
of Ω′r,m(n, k), which is not defined whenever all of the special cycles are single-
tons. The sign of each such member of Ω′r,m(n, k) is positive, and the weight of all
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such members is seen to be mn−kcq(n, k), which implies (3.4) and completes the
proof.

We now provide a combinatorial proof of the orthogonality relations between
wp,q(n, k) and Wp,q(n, k). Before doing so, we first recall a combinatorial interpre-
tation for the array Wp,q(n, k) from [13]. Given 0 ≤ r ≤ m, by an r-partition of
[m], we will mean a partition of the set [m] in which the elements of [r] belong to
distinct blocks. If n, k, r ≥ 0, then let Πr(n, k) denote the set of all r-partitions of
[n+r] having k+r blocks and let Πr(n) = ∪nk=0Πr(n, k). Note that when r = 0, an
r-partition of [m] is the same as an ordinary partition. We will apply the terms spe-
cial and minimal with regard to the members of Πr(n, k) in a manner completely
analogous to how those terms were applied above towards members of Ωr(n, k)
(with “cycles” replaced by “blocks” at the appropriate points in the definitions).

Elements of r-partitions will be assigned colors in the following manner.

Definition 3.9 (Mansour et al. [13]). Given an integer m ≥ 1, let Πr,m(n, k)
denote the set of r-partitions of [n + r] having k + r blocks wherein within each
non-special block, every non-minimal element is assigned one of m colors, and let
Πr,m(n) = ∪nk=0Πr,m(n, k).

Upon making a comparison of the recurrences and initial values, we see that
|Πr,m(n, k)| = W (n, k; r,m) for all r and m. We now recall a couple of statistics
on Πr,m(n, k).

Definition 3.10 (Mansour et al. [13]). Suppose π ∈ Πr,m(n, k) is represented as

π = A1/A2/ · · · /Ar/B1/B2/ · · · /Bk,

where Ai denotes the special block containing the element i for i ∈ [r] and non-
special blocks are denoted by Bj , with min(B1) < min(B2) < · · · < min(Bk).
Define the statistics w1 and w2 on Πr,m(n, k) by letting

w1(π) =

r∑

i=1

(i− 1)(|Ai| − 1)

and

w2(π) =
k∑

i=1

(i− 1)(|Bi| − 1).

In [13], it was shown that

Wp,q(n, k) =
∑

π∈Πr,m(n,k)

pw1(π)qw2(π), n, k ≥ 0.

Note that Wp,q(n, k) reduces to W (n, k) when p = q = 1. Using (1.2) and (2.1),
one can obtain orthogonality relations between the arrays wp,q(n, k) andWp,q(n, k).
Here, we give bijective proofs by making use of our combinatorial interpretations
for these arrays.
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Theorem 3.11. If n ≥ k ≥ 0, then

n∑

j=k

Wp,q(n, j)wp,q(j, k) =
n∑

j=k

wp,q(n, j)Wp,q(j, k) = δn,k. (3.5)

Proof. To show the first relation in (3.5), we consider sets Aj where k ≤ j ≤ n
of ordered pairs (α, β) in which α ∈ Πr,m(n, j) and β is an arrangement of the
blocks of α according to some member of Ωr,m(j, k). Within β, blocks of α are
ordered according to the size of their smallest elements, with the special blocks
of α (i.e., those containing a member of [r]) regarded as special elements of β.
Thus, the special cycles of β are those that contain a special block of α. Define
the sign of (α, β) ∈ Aj by (−1)j−k and the weight by pw1(α)+v1(β)qw2(α)+v2(β). Let
A = ∪nj=kAj . For example, if n = 10, k = 1, r = 2, m = 1 and j = 4, then
(α, β) ∈ A4, where

α = {1, 3, 5}, {2, 4, 8}, {6}, {7, 11}, {9}, {10, 12}

and
β = ({1, 3, 5})({2, 4, 8}, {9}, {6})({7, 11}, {10, 12}),

has sign (−1)4−1 = −1 and weight p2+2q4+1 = p4q5. The first sum in (3.5) then
gives the total (signed) weight of all the members of A. To complete the proof, we
define a sign-changing, weight-preserving involution of A.

In order to do so, given (α, β) ∈ A, let x be the largest i ∈ I such that it is
not the case that a cycle of the form ({i}) containing only the block {i} occurs in
β. Let B be the block of α containing the element x. Note that B cannot have
smallest element x, lest B be a singleton. If |B| ≥ 2, then break off x and form the
singleton {x} to directly follow B − {x} within its cycle of β. Observe that if {x}
occurs as a block of α, then it cannot be first within its cycle of β, by the ordering
of blocks of α within β and the assumption on x (note that all i > x must occur
within β as 1-cycles of the form ({i})). Thus, if {x} occurs, one may move it to the
block within its cycle of β that directly precedes it. Combining the two previous
mappings defines an involution of A if n > k since at least one cycle of β in this
case always contains at least two elements of [n + r] altogether, with at least one
member of I belonging to a block within such a cycle. If n = k, then A contains
only a single element having weight 1.

Clearly, the involution defined in the previous paragraph changes the sign since
the number of (non-special) blocks of α changes by one. We now show that it
always preserves the weight. First suppose that B belongs to a non-special cycle of
β. Then moving x as described in the first mapping preserves the sum w2(α)+v2(β)
since if x belonged to the i-th non-special block of α to start with, then breaking
off {x} reduces w2(α) by i − 1 but increases v2(β) by the same amount since {x}
has predecessor B − {x}, which is now the i-th smallest non-special element of
β. Note that {x} then becomes the largest element within its cycle of β, and
hence {x} following B − {x} does not affect a possible contribution to v2(β) from
a block succeeding B in this cycle. Moreover, since all i > x occur as singletons in
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α, reordering the blocks of α after forming {x} does not further affect the w2(α)
value. Note that the value of w1(α) + v1(β) is unaffected since neither statistic is.
Finally, the color that the element x would have been assigned being a non-minimal
element of a non-special block of α is transferred to the color assigned the block {x}
for having a predecessor. Thus, the weight of (α, β) is preserved by the involution
in this case.

Now suppose that the block B belongs to a special cycle of β (i.e., one that
has a block of α containing a member of [r]). If B is a non-special block of α that
does not correspond to a l-r cycle min of β, then one may use the reasoning of the
prior paragraph to show that the weight is preserved. The same also applies if B
is indeed a l-r cycle min of β. Finally, suppose B is a special block of α. Then
breaking off {x} reduces the w1(α) value by `−1 for some ` ∈ [r], while it increases
v1(β) by the same amount since {x} in this case becomes a l-r cycle min within the
`-th special cycle of β. Thus, the sum w1(α) + v1(β) is preserved. There is also no
change in w2(α) + v2(β) since neither statistic is affected in this case, with neither
the element x in α nor the block {x} in β being assigned a color. Thus, the weight
of (α, β) is once again preserved, which implies the first relation in (3.5).

A similar proof applies to the second relation in (3.5). We describe the main
differences. Here, one would consider ordered pairs (γ, δ) in which γ ∈ Ωr,m(n, j)
and δ is an arrangement of the cycles of γ according to some member of Πr,m(j, k).
The sign of (γ, δ) would be (−1)n−j and the weight pv1(γ)+w1(δ)qv2(γ)+w2(δ). Note
that a special block of δ is one that has an element of [r] contained within one of
its cycles.

To define the involution in this case, suppose that the blocks of δ are arranged
from left-to-right in ascending order of smallest elements contained therein (the
special blocks then being first). Consider the leftmost block of δ that contains
at least two elements of [n + r] altogether within its cycles. Let C denote this
block and u and v be the smallest and second smallest elements of [n + r] in C,
respectively. If u and v belong to the same cycle of γ within C, then we split this
cycle at v and form a new cycle starting with v, which we write directly following
the cycle containing u in C. If u and v belong to different cycles of γ, whence
v starts a cycle of γ, then we merge them into one large cycle. Upon considering
whether or not C is a special block of δ, one may verify that this mapping is always
a sign-changing, weight-preserving involution, which completes the proof.

4. The (p, q)-Whitney matrix of the first kind

In [13], the (p, q)-Whitney matrix of the second kind was introduced and sev-
eral properties of this matrix are proven. In this section, we introduce the (p, q)-
Whitney matrix of the first kind and find some factorizations of it in analogy with
the results of Mező and Ramírez [16].

Definition 4.1. The (p, q)-Whitney matrix of the first kind is the n × n matrix
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defined by
Lp,q(n) := L(m,r)

p,q (n) = [wp,q(i, j; r,m)]0≤i,j≤n−1 .

For example, Lp,q(4) is given by



1 0 0 0
−[r]p 1 0 0

[r]2p +m[r]p −m− 2[r]p 1 0

−[r]3p − (2 + q)m[r]2p − (1 + q)m2[r]p (1 + q)m2 + 2(2 + q)m[r]p + 3[r]2p −(2 + q)m− 3[r]p 1


.

In particular, if p = q = 1, we obtain the r-Whitney matrix of the first kind
[16]. If m = p = 1 and r = 0, we obtain the q-Stirling matrix of the first kind
S

(1)
q,n := [sq(i, j)]0≤i,j≤n−1; see, e.g., [11, 19].
Recall the generalized n× n Pascal matrix Pn [x] (see [4]) defined as

Pn [x] :=

[(
i

j

)
xi−j

]

0≤i,j≤n−1

.

If x = 1, we obtain the Pascal matrix Pn of order n. Moreover,

P−1
n [x] = Pn [−x] =

[
(−1)i−j

(
i

j

)
xi−j

]

0≤i,j≤n−1

.

From identity (2.7), we have the following factorization:

Lp,q(n) = S(1)
q,n[m]Pn[−[r]p], n ≥ 1, (4.1)

where S(1)
q,n[x] := [sq(i, j)x

i−j ]0≤i,j≤n−1.
For example,

Lp,q(4) =




1 0 0 0
0 1 0 0
0 −m 1 0
0 m2(1 + q) −(2 + q)m 1


×




1 0 0 0
−[r]p 1 0 0
[r]2p −2[r]p 1 0
−[r]3p 3[r]2p −3[r]p 1




= S
(1)
q,4 [m]P4 [−[r]p] .

Moreover, from identity (2.5), we obtain

L(m,r)
p,q (n) = L(m,s)

p,q (n)Pn[−ps[r − s]p], 0 ≤ s ≤ r.

Given n ≥ 1, let Sn[x] be the n×n matrix defined by Sn[x] :=
[
xi−j

]
0≤j≤i≤n−1

.
The following factorization of the generalized Pascal matrix is due to Zhang [22,
Theorem 1]:

Pn[x] = Gn[x]Gn−1[x] · · ·G1[x], n ≥ 1, (4.2)

where Gn[x] = Sn[x] and Gk[x] = In−k ⊕ Sk[x] for 1 ≤ k ≤ n− 1 with ⊕ denoting
the matrix direct sum.

From the preceding, we obtain the following factorization of the (p, q)-Whitney
matrix of the first kind.
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Proposition 4.2. If n ≥ 2, then

Lp,q(n)

= P 1[−mqn−2] · · ·Pn−2[−mq]Pn−1[−m]Gn[−[r]p]Gn−1[−[r]p] · · ·G1[−[r]p], (4.3)

where
P k[x] = In−k ⊕ Pk[x].

Proof. By (4.1), we have

Lp,q(n) = S(1)
q,n[m]Pn[−[r]p].

The matrix Pn[−[r]p] can be factorized by means of (4.2), while the matrix S(1)
q,n[m]

can be factorized by a result of Ernst [11] as

S(1)
q,n[m] = P 1[−mqn−2] · · ·Pn−2[−mq]Pn−1[−m],

which implies (4.3).

5. Conclusion

In this paper, we have introduced a (p, q)-generalization wp,q(n, k) of the r-Whitney
numbers of the first kind that reduces to these numbers when p = q = 1. In ad-
dition to forming an orthogonal pair with a prior generalization of the r-Whitney
numbers of the second kind, the wp,q(n, k) arise as the joint distribution for two
statistics on a set of generalized permutations. When r = 0 andm = 1, these statis-
tics are seen to be new on the usual set of permutations and the statistic marked
by the q-variable has the same distribution on Sn as an earlier statistic considered
by Carlitz. Since our wp,q(n, k) when p = 1 are closely related to the wm,r,q(n, k)
studied in [12], which arose in a physical context, modifying slightly our combi-
natorial interpretation for wp,q(n, k) furnishes a comparable interpretation for the
wm,r,q(n, k). Thus, one may obtain, via combinatorial arguments, generalizations
of identities from [12].

Furthermore, using Theorem 2.2 and a generalized version of the central limit
theorem, it is possible to show that the v1 and v2 statistics follow an asymptotically
normal distribution as n increases without bound for all r ≥ 2 and m ≥ 1. In
addition, from Theorem 2.2, it is seen that the array wp,q(n, k) when p and q are
real is log-concave by Newton’s criterion since the polynomial in identity (2.2) is
real-rooted in that case. On the other hand, we seek a general asymptotic formula
for wp,q(n, k) when p and q are positive. Non-trivial combinatorial (or algebraic)
generalizations of the sequence satisfying recurrence (3.1) are also sought, as such
generalizations would likely yield new statistics on the set of permutations. Finally,
it would be interesting to find connections between the array wp,q(n, k) and other
combinatorial structures.
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