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Zürcher Hochschule für Angewandte Wissenschaften

School of Engineering
Technikumstrasse 9

CH-8401 Winterthur, Switzerland
henr@zhaw.ch

Martin Neukom
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ABSTRACT

The synchronization of self-sustained oscillators such as
the van der Pol oscillator is a model for the adjustment
of rhythms of oscillating objects due to their weak inter-
action and has wide applications in natural and technical
processes. That these oscillators adjust their frequency or
phase to an external forcing or mutually between several
oscillators is a phenomenon which can be used in sound
synthesis for various purposes. In this paper we focus on
the influence of delays on the synchronization properties
of these oscillators. As there is no general theory yet on
this topic, we mainly present simulation results, together
with some background on the non-delayed case. Finally,
the theory is also applied in Neukom’s studies 21.1-21.9.

1. INTRODUCTION

If several distinct natural or technical systems interact with
each other, there is a tendency that these systems adjust to
each other in some sense, i.e. that they synchronize their
behavior. Put more precisely, by synchronization we mean
the adjustment of the rhythms of oscillating objects due
to their mutual interaction. Synchronization can occur in
model systems such as a chain of coupled van der Pol os-
cillators but also in more complex physical, biological or
social systems such as the coordination of clapping of an
audience. Historically, synchronization was first described
by Huygens (1629-1695) on pendulum clocks. In modern
times, major advances were made by van der Pol and Ap-
pleton. Physically, we basically distinguish between syn-
chronization by external excitation, mutual synchroniza-
tion of two interacting systems and synchronization phe-
nomena in chains or topologically more complex networks
of oscillating objects. In this paper, we will focus on the
case of either two interacting systems or a chain of a small
number of oscillators.

Clearly, the synchronizability of such a system of coupled
oscillators depends on the strength of the coupling between
the two oscillators and the detuning, i.e. the frequency mis-
match of the two systems. If the coupling between the two
systems does not happen instantaneously, but with a de-
lay, the question of the synchronizability becomes much
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more difficult to answer. The assumption of delayed feed-
back however is a vary natural one, since most natural and
technical systems do not answer instantaneously to exter-
nal inputs, but rather with a certain delay, due to physical,
biological, or other kinds of limitations. The effect of us-
ing delays can be easily modeled in sound synthesis appli-
cations and therefore allows a fruitful exchange between
theoretical and empirical results on the one hand and mu-
sical applications on the other hand.

In the absence of synchronization, other effects such as
beats or amplitude death become important, and these ef-
fects depend (besides the coupling strength and the fre-
quency detuning) on the delay of the coupling between the
oscillators as well.

Self-sustained oscillators can be used in sound synthesis
to produce interesting sounds and sound evolutions in dif-
ferent time scales. A single van der Pol oscillator, depend-
ing on only one parameter (µ, see (1)), produces a more
or less rich spectrum, two coupled oscillators can synchro-
nize after a while or produce beats depending on their fre-
quency mismatch and strength of coupling [1,2]. In chains
or networks of coupled oscillators in addition different re-
gions can synchronize (so-called chimeras), which takes
even more time. If the coupling is not immediate but af-
ter a delay it can take a long time for the whole system
to come to a steady or periodic changing state. In addi-
tion all these effects can not only be used to produce sound
but also to generate mutually dependent parameters of any
sound synthesis technique.

This paper gives an introduction to the theory of synchro-
nization [3, 4] and shows how to get discrete systems, that
is difference equations, from the differential equations and
shows their usage in electroacoustic studies of one of the
authors (Neukom, Studien 21.1 - 21.9.).

2. SYNCHRONIZATION OF COUPLED
OSCILLATORS

2.1 Self-sustained oscillators

Self-sustained oscillators are a model of natural or techni-
cal oscillating objects which are active systems, i.e. which
contain an inner energy source. The form of oscillation
does not depend on external inputs; mathematically, this
corresponds to the system being described by an autono-
mous (i.e. not explicitly time-dependent) dynamical sys-
tem. Under perturbations, such an oscillator typically re-
turns to the original amplitude, but a phase shift can remain
even under weak external forces. Typical examples of self-
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sustained oscillators are the van der Pol oscillator

ẋ = y
ẏ = −ω2

0x+ µ(1 + γ − x2)y
(1)

or the Rössler or Lorenz oscillators. Note that in the van
der Pol oscillator (1), the parameters µ and γ measure the
strength of the nonlinearity; in particular, for µ = 0 we
obtain the standard harmonic oscillator. In the case of a
single oscillators, we usually set γ = 0, in the case of sev-
eral oscillators however, we can use distinct values of γ to
describe the amplitude mismatch of the various oscillators.
Assuming γ = 0, in the nonlinear case µ �= 0, the term
µ(1 − x2)y means that for |x| > 1 and |x| < 1 there is
negative or positive damping, respectively.

In the nonlinear case, these systems cannot be integrated
analytically, and one has to use numerical algorithms (and
also take into account the stiffness of e.g. the van der Pol
system for large values of µ). One can also consider dis-
crete systems of the type

φ(k+1) = F (φ(k)), (2)

which often occurs in cases when one can measure a given
systems only at given times t0, t1, . . . .

We will discuss an implementation of the van der Pol
model (1) in section 5.

2.2 Synchronization by external excitation

The question of synchronization arises when systems of
the type (1) and (2) are externally forced or connected to-
gether. As a generalization of the van der Pol system (1),
weakly nonlinear periodically forced systems are of the
form

ẋ = F (x) + εp(t), (3)

where the unforced system ẋ = F (x) has a stable T0-
periodic limit cycle x0(t) and p(t) is a T -periodic external
force. The behavior of the system then primarily depends
on the amplitude ε of the forcing and the frequency mis-
match or detuning ν = ω − ω0, where ω0 and ω are the
frequencies of the oscillator (1) and the T -periodic exter-
nal force p(t), ω = 2π

T . One can show that in the simplest
case of a sinusoidal forcing function the dynamics of the
perturbed system (3) can be described by the Adler equa-
tion

θ̇ = −∆+ ε sin(θ) (4)

for the relative or slow phase θ = φ− ωt. A stable steady
state solution of (4) exists in the case

|∆| < |ε| (5)

and corresponds to a constant phase shift between the phases
of the oscillator and the external forcing. The condition (5)
describes the synchronization region in the ∆-ε-parameter
space. Outside the synchronization region, one observes a
beating regime with beat frequency

Ω = 2π

(∫ 2π

0

dψ√
ε sin(ψ)− ν

)−1

. (6)

2.3 Mutual synchronization and chains of oscillators

Here we consider two coupled systems of the type (3),
namely

ẋ1 = F1(x1, x2) + εp1(x1, x2),
ẋ2 = F2(x1, x2) + εp2(x1, x2)

(7)

In the case of weak coupling, i.e. ε � 1, (7) can be reduced
to an equation for the phase difference ψ = φ1 − φ2 of
the type (4), and the synchronization region is again of the
type (5), where ∆ in this case is the difference between
the frequencies of the unperturbed oscillators x1 and x2.
If the coupling becomes larger, the amplitudes have to be
considered as well.

To be specific, we consider two coupled van der Pol os-
cillators, which we assume to connected by a purely dissi-
pative coupling, which is measured by the parameter β:

ẍ1 + ω2
1x1 = µ(1− x2

1)ẋ1 + µβ(ẋ2 − ẋ1),
ẍ2 + ω2

2x2 = µ(1+γ − x2
2)ẋ2 + µβ(ẋ1 − ẋ2).

(8)

Here the two oscillators have the same nonlinearity param-
eter µ, and γ and ∆ = ω2 −ω1 describe the amplitude and
frequency mismatches. In Figure 1, we show the results
of a numerical computation of the synchronization region
(which is usually called ”Arnold tongue”) of the system (8)
in the case γ = 0 (no amplitude mismatch).

Figure 1. Synchronization area for two coupled van der Pol oscillators

If one considers an entire chain of oscillators (instead of
N = 2 ones as in (8)), the model equations are for any
1 ≤ j ≤ N

ẍj+ω2
jxj = 2ε(p−x2

j )ẋj+2εd(ẋj−1−2ẋj+ ẋj+1) (9)

together with the (free end) boundary conditions x0(t) ≡
x1(t), xN+1(t) ≡ xN (t); sometimes we also use peri-
odic boundary conditions, i.e. x0(t) ≡ xN (t), x1(t) ≡
xN+1(t). On the synchronization properties of chains as
given by (9), in particular the dependence on the various
coupling strengths (which can also vary instead of being
constant as in (9)), there exists a vast literature, we only
mention the study [5].

In this paper we restrict our attention to the model (8) of
N = 2 oscillators; in our musical application however, we
consider chains of the type (9) for N = 8. Our goal is to
study how the Arnold tongue (Figure 1) is deformed when
delays are introduced onto the model.
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If one considers an entire chain of oscillators (instead of
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constant as in (9)), there exists a vast literature, we only
mention the study [5].
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consider chains of the type (9) for N = 8. Our goal is to
study how the Arnold tongue (Figure 1) is deformed when
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3. INFLUENCE OF DELAYS ON
SYNCHRONIZATION

3.1 Arnold tongue of synchronization

If the coupling between the oscillators occurs with certain
delays, we obtain instead of (8) the following model, again
considering only dissipative coupling:

ẍ1(t) + ω2
1x1(t) = µ(1− x1(t)

2)ẋ1(t)
+µβ21(ẋ2(t−τA)− ẋ1(t−τ1)),

ẍ2(t) + ω2
2x2(t) = µ(1 + γ − x2(t)

2)ẋ2(t)
+µβ12(ẋ1(t−τB)− ẋ2(t−τ1))

(10)

Here we have 3 different delays, namely τ1, τA and τB ,
which are the delays of self-connection, from oscillator x2

to x1 and from x1 to x2, respectively. Similarly, we have
2 different feedback factors, namely β21 and β12, which
describe the feedback strength from oscillator x2 to x1 and
from x1 to x2, respectively.

To investigate the influence of the delays on the synchro-
nization of the oscillators, we simulated the system (10)
numerically again for γ = 0 (no amplitude mismatch) and
for identical delays τ := τ1 = τA = τB ranging from
τ = 0 (no delay) to τ = 2. In Figure 2 we show the
Arnold tongue of the system for various values of τ in the
described interval. Here we set β := β12 = β21; note
however that in section 4 we will also consider the case
β12 �= β21.

Figure 2. Synchronization area for two coupled van der Pol oscillators
for various delay values

An analytical investigation of the synchronization area
for growing values of τ is beyond the scope of this paper,
but can be accomplished based on the analysis of the non-
delayed case (see [3]) with additionally using methods for
dealing with time-delay systems (see [6]). For a study of
a single van der Pol oscillator with delayed self-feedback
see [7].

3.2 Dependence of the beat frequency on the delay

As explained in section 2.2, outside the synchronization
region, the dynamics of the system of coupled oscillators
can be described by the beating frequency, namely the fre-
quency of the relative phase of the two oscillators. In the
case of an externally forced single oscillator, the beating
frequency is given by the formula (6).

For large values of the coupling, besides the synchroniza-
tion and beating regimes, one also observes the phenome-
nen of oscillation death. More precisely, oscillation death
occures when the zero solution of the equations (10) be-
comes stable, which in the absence of delay it only is for
large values of the coupling β. For some results on the
dependence of the amplitude death region on the delay pa-
rameter τ in the case without detuning, we refer to [8]. We
do not discuss this topic in detail, since it is of minor inter-
est for our applications.

Of great relevance for our application however is the un-
derstanding of the beating regime, in particular the depen-
dence of the beating frequency on the delay parameter τ .
While an analytic discussion of the influence of the param-
eters τ (delay), ∆ (detuning), β (coupling strength) and µ
(nonlinearity) is beyond the scope of this paper, we present
some results of numerical simulations. In this section we
focus on investigating the combined influence of ∆ and τ
on the beat frequency Ω, i.e. the behavior of the beat fre-
quency in the delay-detuning space, while in the following
section, which is devoted to an implementation of the sys-
tem of coupled van der Pol oscillators in Max, we focus on
the behavior of Ω in the delay-coupling-space.

The following figures (Figures 3 and 4) show the beat
frequency in the τ -∆-space for µ = 1 and β = 0.5; darker
colors signify a higher beat frequency, i.e. the white region
of the space belongs to the synchronization region.

Figure 3. The beat frequency as a function of τ and ∆ for µ = 1 and
β = 0.5

One can observe that for a given value of the delay τ ,
the beat frequency grows with the detuning, which is in-
tuitively plausible, while for a given value of the detuning
∆, the beat frequency varies periodically with the delay τ ,
which is in good accordance with the results of the simu-
lations in Max presented in section 4.
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Figure 4. The beat frequency as a function of τ and ∆ for µ = 1 and
β = 0.5

4. IMPLEMENTATION IN MAX

In order to experiment in real time we implemented the
van der Pol oscillator in Max. While for the production
of the figures in sections 2.3 and 3.1 we used the ode45-
and dde23-method of Matlab, we will now show explic-
itly how to obtain discrete systems of the type (2), that is
difference equations, from the differential equations: first
by Euler’s Method used in the studies 21 and then the
classical Runge-Kutta method implemented in the Max-
patch icmc16 vdp.maxpat which we used to produce
the following figures. The examples are programmed as
mxj∼ externals. The following Java code samples are taken
from the perform routine of these externals. The externals
and Max patches can be downloaded from [9].

The implementation of Euler’s Method is straightforward,
the code is short and fast and with the sample period as
time step quite precise [1]. First the acceleration is calcu-
lated according to the differential equation above (1). Then
the velocity is incremented by the acceleration times dt and
displacement x by velocity times dt (dt = 1).

a = (− c∗x + mu∗(1 − x∗x)∗v);
// with c = (frequency∗2∗Pi/ sr )ˆ2

v += a;
x += (v + in [ i ]) ;

The classical Runge-Kutta method (often referred to as
RK4) is a fourth-order method. The values x and v of the
next sample are approximated in four steps. The following
code sample from the mxj∼ external icmc vdp shows the
calculation of the new values x and v using the function f
which calculates the acceleration.

double f (double x, double v){ return − c∗x + mu∗(1 −
x∗x)∗v;}

k1 = f (x, v) ;
l1 = v;
k2 = f (x+l1 /2, v+k1/2);
l2 = v+k1/2;
k3 = f (x+l2 /2, v+k2/2);
l3 = v+k2/2;
k4 = f (x+l3, v+k3);
l4 = v+k3;
v += (k1 + 2∗k2 + 2∗k3 + k4)/6 + in [ i ];
x += ( l1 + 2∗l2 + 2∗l3 + l4 ) /6;

The next code sample shows how a delayed mutual feed-
back of two oscillators is implemented. The velocities of
the two oscillators (v1 and v2) are stored in the circular
buffers bufv1 and bufv2. The differences of the delayed
velocities are multiplied by the feedback factor fbv21 and
fbv12 respectively and added to the new velocities.

v1 += ( (k11 + 2∗k21 + 2∗k31 + k41)/6 +
fbv21∗(buf2v[pout2] − buf1v[pout1]) + in [ i ] ) ;

x1 += (l11 + 2∗l21 + 2∗l31 + l41) /6;

v2 += ( (k12 + 2∗k22 + 2∗k32 + k42)/6 +
fbv12∗(buf1v[pout1] − buf2v[pout2]) + in [ i ] ) ;

x2 += (l12 + 2∗l22 + 2∗l32 + l42) /6;

In the Max-patch icmc16 vdp.maxpat the beats are
measured and plotted in a lcd object (Figure 5) as a func-
tion of the delay (in samples).

Figure 5. The beat frequency as a function of the delay

The following figures show the beat frequency as a func-
tion of the delay and the feedback in a 3D plot. More pre-
cisely, Figure 6 shows the results of the simulation of the
Max-patch for the delay values 1,2, . . . 280 samples and
the feedback fbv21 = fbv12 = 0, 0.1, . . . , 0.7, and Fig-
ure 7 shows the analogous results for the delay values 1,2,
. . . 160 samples and the feedback fbv21 = 0.4, fbv12 = 0,
0.2, . . . , 3.0.

Figure 6. The beat frequency as a function of the delay and the feedback
factor fbv21 = fbv12
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numerically again for γ = 0 (no amplitude mismatch) and
for identical delays τ := τ1 = τA = τB ranging from
τ = 0 (no delay) to τ = 2. In Figure 2 we show the
Arnold tongue of the system for various values of τ in the
described interval. Here we set β := β12 = β21; note
however that in section 4 we will also consider the case
β12 �= β21.

Figure 2. Synchronization area for two coupled van der Pol oscillators
for various delay values

An analytical investigation of the synchronization area
for growing values of τ is beyond the scope of this paper,
but can be accomplished based on the analysis of the non-
delayed case (see [3]) with additionally using methods for
dealing with time-delay systems (see [6]). For a study of
a single van der Pol oscillator with delayed self-feedback
see [7].

3.2 Dependence of the beat frequency on the delay

As explained in section 2.2, outside the synchronization
region, the dynamics of the system of coupled oscillators
can be described by the beating frequency, namely the fre-
quency of the relative phase of the two oscillators. In the
case of an externally forced single oscillator, the beating
frequency is given by the formula (6).

For large values of the coupling, besides the synchroniza-
tion and beating regimes, one also observes the phenome-
nen of oscillation death. More precisely, oscillation death
occures when the zero solution of the equations (10) be-
comes stable, which in the absence of delay it only is for
large values of the coupling β. For some results on the
dependence of the amplitude death region on the delay pa-
rameter τ in the case without detuning, we refer to [8]. We
do not discuss this topic in detail, since it is of minor inter-
est for our applications.

Of great relevance for our application however is the un-
derstanding of the beating regime, in particular the depen-
dence of the beating frequency on the delay parameter τ .
While an analytic discussion of the influence of the param-
eters τ (delay), ∆ (detuning), β (coupling strength) and µ
(nonlinearity) is beyond the scope of this paper, we present
some results of numerical simulations. In this section we
focus on investigating the combined influence of ∆ and τ
on the beat frequency Ω, i.e. the behavior of the beat fre-
quency in the delay-detuning space, while in the following
section, which is devoted to an implementation of the sys-
tem of coupled van der Pol oscillators in Max, we focus on
the behavior of Ω in the delay-coupling-space.

The following figures (Figures 3 and 4) show the beat
frequency in the τ -∆-space for µ = 1 and β = 0.5; darker
colors signify a higher beat frequency, i.e. the white region
of the space belongs to the synchronization region.

Figure 3. The beat frequency as a function of τ and ∆ for µ = 1 and
β = 0.5

One can observe that for a given value of the delay τ ,
the beat frequency grows with the detuning, which is in-
tuitively plausible, while for a given value of the detuning
∆, the beat frequency varies periodically with the delay τ ,
which is in good accordance with the results of the simu-
lations in Max presented in section 4.
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Figure 4. The beat frequency as a function of τ and ∆ for µ = 1 and
β = 0.5

4. IMPLEMENTATION IN MAX

In order to experiment in real time we implemented the
van der Pol oscillator in Max. While for the production
of the figures in sections 2.3 and 3.1 we used the ode45-
and dde23-method of Matlab, we will now show explic-
itly how to obtain discrete systems of the type (2), that is
difference equations, from the differential equations: first
by Euler’s Method used in the studies 21 and then the
classical Runge-Kutta method implemented in the Max-
patch icmc16 vdp.maxpat which we used to produce
the following figures. The examples are programmed as
mxj∼ externals. The following Java code samples are taken
from the perform routine of these externals. The externals
and Max patches can be downloaded from [9].

The implementation of Euler’s Method is straightforward,
the code is short and fast and with the sample period as
time step quite precise [1]. First the acceleration is calcu-
lated according to the differential equation above (1). Then
the velocity is incremented by the acceleration times dt and
displacement x by velocity times dt (dt = 1).

a = (− c∗x + mu∗(1 − x∗x)∗v);
// with c = (frequency∗2∗Pi/ sr )ˆ2

v += a;
x += (v + in [ i ]) ;

The classical Runge-Kutta method (often referred to as
RK4) is a fourth-order method. The values x and v of the
next sample are approximated in four steps. The following
code sample from the mxj∼ external icmc vdp shows the
calculation of the new values x and v using the function f
which calculates the acceleration.

double f (double x, double v){ return − c∗x + mu∗(1 −
x∗x)∗v;}

k1 = f (x, v) ;
l1 = v;
k2 = f (x+l1 /2, v+k1/2);
l2 = v+k1/2;
k3 = f (x+l2 /2, v+k2/2);
l3 = v+k2/2;
k4 = f (x+l3, v+k3);
l4 = v+k3;
v += (k1 + 2∗k2 + 2∗k3 + k4)/6 + in [ i ];
x += ( l1 + 2∗l2 + 2∗l3 + l4 ) /6;

The next code sample shows how a delayed mutual feed-
back of two oscillators is implemented. The velocities of
the two oscillators (v1 and v2) are stored in the circular
buffers bufv1 and bufv2. The differences of the delayed
velocities are multiplied by the feedback factor fbv21 and
fbv12 respectively and added to the new velocities.

v1 += ( (k11 + 2∗k21 + 2∗k31 + k41)/6 +
fbv21∗(buf2v[pout2] − buf1v[pout1]) + in [ i ] ) ;

x1 += (l11 + 2∗l21 + 2∗l31 + l41) /6;

v2 += ( (k12 + 2∗k22 + 2∗k32 + k42)/6 +
fbv12∗(buf1v[pout1] − buf2v[pout2]) + in [ i ] ) ;

x2 += (l12 + 2∗l22 + 2∗l32 + l42) /6;

In the Max-patch icmc16 vdp.maxpat the beats are
measured and plotted in a lcd object (Figure 5) as a func-
tion of the delay (in samples).

Figure 5. The beat frequency as a function of the delay

The following figures show the beat frequency as a func-
tion of the delay and the feedback in a 3D plot. More pre-
cisely, Figure 6 shows the results of the simulation of the
Max-patch for the delay values 1,2, . . . 280 samples and
the feedback fbv21 = fbv12 = 0, 0.1, . . . , 0.7, and Fig-
ure 7 shows the analogous results for the delay values 1,2,
. . . 160 samples and the feedback fbv21 = 0.4, fbv12 = 0,
0.2, . . . , 3.0.

Figure 6. The beat frequency as a function of the delay and the feedback
factor fbv21 = fbv12
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Figure 7. The beat frequency as a function of the delay and the feedback
factor fbv21 (fbv12 constant)

Figure 8 shows the dependence of the beats on higher
delay values.

Figure 8. The beat frequency as a function of the delay for higher delay
values

Especially in Figure 7, one can observe that an increase
of the coupling generally leads to a decrease of the beat-
ing frequency, until it becomes zero, i.e. a transition to the
synchronization region, with the exception of a periodic se-
quence of delay values with a higher beat frequency, which
is however decreasing with increasing coupling as well.
This transition towards synchronization can also be seen
from the following sequence of plots (Figure 9):

Figure 9. Transition from the beating to the synchronization regime

5. MUSICAL APPLICATIONS

In Neukoms 8-channel studies 21.1-21.9 eight van der Pol
oscillators are arranged in a circle and produce the sound
for the eight speakers, cf. equations (9) in the case of peri-
odic boundary conditions. Each of these oscillators is cou-
pled with its neighbors with variable delay times and gains
in both directions. The main Max-patch contains eight
joined sub-patches (Figure 10) which themselves contain
the mxj∼ external m_vdp_del and the delay lines (Fig-
ure 11).

Figure 10. Three of the eight coupled sub-patches vdp.maxpat of the
main Max-patch

Figure 11. A simplified version of the vdp.maxpat showing the individual
delays and gains to the left and to the right outlet and the direct output to
the middle outlet

Two additional chains of eight van der Pol oscillators pro-
duce control functions which are used for amplitude and
frequency modulation. If the frequencies of the oscillators
are lower than about 20 Hz the modulations produce pulsa-
tions and vibratos. Depending on the coupling strength and
the delay some or all pulsations and vibratos synchronize
their frequencies. The relative phase which is not audi-
ble in audio range plays an important role in the sub-audio
range: the pulsations of the single sound sources can have
the same frequency while being asynchronous in a rhyth-
mic sense. With growing coupling strength they can pro-
duce regular rhythmic patterns which are exactly in or out
of phase.

The coupled van der Pol oscillators can be used as a sys-
tem for purely algorithmic composition. Without changing
any parameters the produced sound changes over a long
time without exact repetitions. They also can be used as
a stable system for improvisation with a wide range of
sounds, rhythms and temporal behavior.

Some sound samples of a binaural version of Neukom’s
studies can be downloaded from [9].

Proceedings of the International Computer Music Conference 2016

6. REFERENCES

[1] M. Neukom, “Applications of synchronization in
sound synthesis,” in Proceedings of the 8th Sound and
Music Computing Conference SMC, 6. - 9. July 2011,
Padova, Italy, 2011.

[2] ——, Signals, Systems and Sound Synthesis. Peter
Lang, 2013.

[3] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchro-
nization. Cambridge University Press, 2001.

[4] G. V. Osipov, J. Kurths, and C. Zhou, Synchronization
in Oscillatory Networks. Springer-Verlag, 2007.

[5] T. V. Martins and R. Toral, “Synchronisation induced
by repulsive interactions in a system of van der pol os-
cillators,” Progr. Theor. Phys., vol. 126, no. 3, pp. 353–
368, 2011.

[6] M. Lakshmanan and D. Senthilkumar, Dynamics of
Nonlinear Time-Delay Systems. Springer-Verlag,
2010.

[7] F. Atay, “Van der pol’s oscillator under delayed feed-
back,” J. Sound and Vibration, vol. 218, no. 2, pp. 333–
339, 1998.

[8] K. Hu and K. Chung, “On the stability analysis of a pair
of van der pol oscillators with delayed self-connection,
position and velocity couplings,” AIP Advances, vol. 3.

[9] https://www.zhdk.ch/index.php?id=icst downloads,
accessed: 2016-02-25.

Proceedings of the International Computer Music Conference 2016 218217

sameria
Text Box
  216



Figure 7. The beat frequency as a function of the delay and the feedback
factor fbv21 (fbv12 constant)
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values
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Two additional chains of eight van der Pol oscillators pro-
duce control functions which are used for amplitude and
frequency modulation. If the frequencies of the oscillators
are lower than about 20 Hz the modulations produce pulsa-
tions and vibratos. Depending on the coupling strength and
the delay some or all pulsations and vibratos synchronize
their frequencies. The relative phase which is not audi-
ble in audio range plays an important role in the sub-audio
range: the pulsations of the single sound sources can have
the same frequency while being asynchronous in a rhyth-
mic sense. With growing coupling strength they can pro-
duce regular rhythmic patterns which are exactly in or out
of phase.

The coupled van der Pol oscillators can be used as a sys-
tem for purely algorithmic composition. Without changing
any parameters the produced sound changes over a long
time without exact repetitions. They also can be used as
a stable system for improvisation with a wide range of
sounds, rhythms and temporal behavior.

Some sound samples of a binaural version of Neukom’s
studies can be downloaded from [9].
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