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Core Ideas

 Coherent seasonal patterns in stream phosphorus point to regional drivers

 Discharge is not the primary driver of total phosphorus dynamics in Prairie streams

 Stream phosphorus concentrations peak with snowmelt and in mid-summer

 Coherence with conductivity and temperature suggest drivers vary by season
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1 Abstract

2 Controls on nutrient transport in cold, low relief agricultural regions vary dramatically among 

3 seasons. The spring snowmelt is often the dominant runoff and nutrient loading event of the year. 

4 However, climate change may increase the proportion of runoff occurring with rainfall and there 

5 is an urgent need to understand seasonal controls on nutrient transport in order to understand 

6 how patterns may change in the future. In this study, we assess patterns and drivers of total 

7 phosphorus (TP) dynamics in eight streams draining agriculturally-dominated watersheds, 

8 located in southern Manitoba, Canada. Data from three years of monitoring revealed highly 

9 coherent patterns of TP concentrations in streams, with pronounced peaks in the spring and mid-

10 summer across the region. This coherent pattern was in spite of considerable interannual 

11 variability in the magnitude and timing of discharge; in particular, a major storm event occurred 

12 in summer 2014, which resulted in more discharge than the preceding spring melt. 

13 Concentration-discharge model fits were generally poor or not significant, suggesting that runoff 

14 generation is not the primary driver of TP dynamics in the majority of streams. Seasonal patterns 

15 of conductivity and stream temperature suggest mechanisms controlling TP vary by season; a 

16 spring TP concentration maximum may be related to surface runoff over frozen soils while the 

17 summer TP maximum may be related to temperature-driven biogeochemical processes, which 

18 are not well-represented in current conceptual or predictive models. These findings suggest that 

19 controls on stream TP concentrations are dynamic through the year, and responses to increases in 

20 dormant and non-dormant season temperatures may depend on seasonally-variable processes.

21 1.0 Introduction

22 Phosphorus (P) is a limiting nutrient in agricultural systems as well as freshwater ecosystems 

23 (McCullough et al., 2012; Schindler, 2012). Excess P increases algae blooms and stimulates 
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24 plant growth, which increases respiration and decomposition which consumes oxygen and 

25 creates anoxic environments (eutrophication) (Schindler et al., 2012).  Transport of P from 

26 watersheds to surface waters is promoted by human activities including agricultural practices 

27 such as fertilizer use, irrigation, wetland drainage, land conversion, and soil erosion (Carpenter et 

28 al., 1998; Bennett et al., 2012). Spatial patterns of soil P can vary considerably across 

29 landscapes, and depend on factors such as management practices and landform (Wilson et al., 

30 2016).  Wetlands generally act as long-term P sinks on the landscape, however P retention varies 

31 depending on soil texture and short-term hydrological fluctuations (Haque et al., 2018). Natural 

32 wetlands demonstrate P sink behavior compared with drained wetlands (Haque et al., 2018) and 

33 the loss of small wetlands due to land conversion for agriculture or other land uses promotes P 

34 loading to downstream waters. (Cheng and Basu, 2017). Intensive agriculture also influences 

35 watershed hydrology and runoff patterns, generally homogenizing runoff regimes and linking 

36 nutrient export and hydrological dynamics  (Basu et al., 2011), although these patterns are not 

37 always generalizable to snowmelt-dominated regions (Ali et al., 2017). A robust understanding 

38 of the interplay between hydrological and biogeochemical controls on P mobility and transport is 

39 necessary for managing landscapes to protect water quality (Sharpley et al., 1999).

40 There remain major gaps in our understanding of nutrient transport in cold, low relief 

41 agricultural regions such as the Northern Great Plains.  The hydrology of this region is 

42 dominated by cold regions processes (Pomeroy et al., 2007); and the spring snowmelt is usually 

43 the biggest hydrological event of the year,  accounting for a large proportion of both annual 

44 water and nutrient export (Corriveau et al., 2011; Costa et al., 2017).  Historically, rates of 

45 evapotranspiration in the summer coupled with low precipitation volumes have resulted in 

46 relatively small contributions of growing season events to runoff in prairie streams (Shook and 
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47 Pomeroy, 2012). However, in the past five decades, there has been a documented increase in the 

48 proportion of precipitation falling as rain and the number of multi-day summer rainstorms, 

49 concurrent with a decrease in snowmelt runoff (Shook and Pomeroy, 2012; Dumanski et al., 

50 2015). Large rainfall events can result in changes to runoff pathways and dramatic nutrient 

51 export, as seen in the 2014 extreme rainfall event in the Assiniboine watershed (Wilson et al., in 

52 review).  As winters warm and snowpacks decrease, the importance of summer hydrological 

53 processes in these seasonally snow-covered regions will increase. Coupled with the ongoing 

54 landuse change in this region, changes in the temperature and precipitation regimes can result in 

55 dramatic changes to runoff patterns (Dumanski et al., 2015; Mahmood et al., 2017), which will in 

56 turn influence P export (Wilson et al., in review).  Thus, understanding how controls on nutrient 

57 transport vary seasonally is critical for predicting future changes to P dynamics in this region.

58 A typical method for investigating hydrological controls on chemical behavior in watersheds is 

59 via inspection of concentration-discharge (c-Q) relationships (Basu et al., 2010, 2011; Ali et al., 

60 2017). However, recent studies in this region have demonstrated that these models often have a 

61 poor fit in many  prairie watersheds, particularly those with steep slopes, ineffective natural 

62 drainage and/or anthropogenic drainage modification (Ali et al., 2017).  This may be due to the 

63 high level of spatial and temporal heterogeneity in landscape sources of P and runoff (Corriveau 

64 et al., 2013; Wilson et al., 2016).  In many regions, intensive agriculture is associated with 

65 invariant P concentrations across runoff conditions, due to large legacy stores of the nutrient 

66 from years of fertilization (Basu et al., 2010; Sharpley et al., 2013).  However, in contrast with 

67 other regions, work from the Northern Great Plains suggests that seasonal patterns of P 

68 concentrations can exhibit much more variability compared with patterns of runoff, both among 

69 catchments and from year-to-year (Rattan et al., 2017).  Recent work from Ali et al., (2017) 
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70 suggests that on the Canadian Prairies, fill and spill runoff generation during wet years and 

71 seasonal changes to soil infiltration during dry years leads to variable sources of P being 

72 mobilized across the landscape and thus non-chemostatic behavior.  Furthermore, the spatial 

73 organization of agricultural development may influence both the magnitude (Yates et al., 2014) 

74 and timing (Rattan et al., 2017) of stream P concentrations. This combination of threshold-driven 

75 hydrological behavior, heterogeneous spatial patterns of P sources on the landscape and extreme 

76 seasonality result in complex and dynamic controls on stream P concentrations.

77 The objective of our study was to examine temporal and spatial patterns P concentrations in 

78 streams in watersheds on the Northern Great Plains. Specifically, we used sub-weekly stream 

79 chemistry samples and continuous discharge data from eight streams for three years to test the 

80 hypothesis that controls on stream TP concentrations are regionally coherent and vary among 

81 seasons.

82 2.0 Methods

83 2.1 Study Area

84 This study examined eight catchments located in the Assiniboine and Red River watersheds in 

85 southwestern Manitoba (Figure 1). The climate in southwestern Manitoba is continental and 

86 annually has a wide range in temperature, with an average daily temperature of 19.2 °C in July 

87 and -16.5°C in January. Average daily temperatures are above zero between the months of April 

88 and October, and these months are consistent with the open-water season observed during the 

89 years of this study. The precipitation for the open-water season averages 366 mm total, while the 

90 winter averages 96 mm total (climate data based on record from 1980-2010 for Brandon, MB 

91 and retrieved from http://climate.weather.gc.ca/).  These sites are located within the Aspen 
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92 Parkland and Lake Manitoba Plain ecoregions; in the past, the landscape was covered with 

93 grasslands, deciduous forests and wetlands (Smith et al., 1998), but in the present day, the 

94 majority of land is used for agriculture, and there is no significant urban development within 

95 these catchments (Table 1). Soils in the study region were formed on gently undulating or kettled 

96 calcareous glacial till. Two of the study catchments, LHOROD and RLNGR, encompass parts of 

97 Riding Mountain National Park, and thus have significant forest cover and some intact natural 

98 wetlands (Table 1).

99 2.2 Stream Chemistry and Discharge Samples

100 Water samples were taken as frequently as every few days to every few weeks from March to 

101 November 2013-2015. The frequency of sampling varied by site, year and open-water season; 

102 see Table 1 for the exact number of water samples from each site, as well as the acronym for 

103 each site name. A well-mixed part of the stream was sampled using twice-rinsed polycarbonate 

104 bottles. Samples were transported in a cooler frozen until analysis. A sulfuric acid/persulfate 

105 digestion of samples was performed prior to colourimetric analysis to determine TP 

106 concentration with the ascorbic acid method. It is worth noting that total dissolved phosphorus 

107 was highly correlated with TP, and the dissolved fraction made up a high percentage of the TP 

108 concentration in all samples, consistent with other work done in the region (McCullough et al., 

109 2012; Liu et al., 2013; Untereiner et al., 2015), and therefore all data analysis was done with TP 

110 concentrations only.  Water temperature at three sites (LHOROD, OR, RLNGR) was measured 

111 at the time of sample collection using a hand held thermometer placed in stream near the middle 

112 of the water column.  Higher resolution temperature data was also collected at 2 sites (WCE, 

113 WCW) with pressure transducers (Onset HOBO U20-001-04) placed on the stream bottom. For 

114 six of eight streams studied sampling locations were at Water Survey of Canada (WSC) 
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115 hydrometric monitoring sites so discharge data was obtained from the WSC hydrometric 

116 database (www.wsc.ec.gc.ca).  For two sites (Willow Creek East and Willow Creek West) 

117 discharge was calculated based on stage rating curves developed over three years using flow 

118 measurements collected with a hand held velocity meter and half hourly depth measurements by 

119 a pressure transducer (Onset HOBO U20-001-04).  Resulting rating curves had a high level of 

120 accuracy (r2 > 0.98 at each site). More detailed methods on the calculation of streamflow at these 

121 two sites are included in Wilson et al. (in review)

122 2.3 Characterization of watersheds 

123 Soil characteristics (% sand and % clay at the 0-15 cm depths) in each watershed were quantified 

124 using the 90m resolution Gridded Soil Landscapes of Canada data product from the Canadian 

125 Soil Information Service (Macdonald and Kloosterman, 1984) that has been generated in support 

126 of the GlobalSoilMap initiative.  Land cover (% forest, % wetland and % annual cropland) 

127 within each watershed was classified based on the 2006 edition of Land Use / Land Cover 

128 Landsat TM Maps from the Province of Manitoba Remote Sensing Centre. Effective drainage 

129 area was calculated from data from the Prairie Farm Rehabilitation Administration and is 

130 representative of average runoff conditions (based on a two year return period) for the Canadian 

131 prairie provinces beginning in the 1970s based on surface topography, density of the natural 

132 stream network, number and size of wetlands and consultation with local residents. Average 

133 slope, minimum and maximum elevation were calculated from a digital elevation model (90 m 

134 resolution) derived from Shuttle Radar Topography Mission (SRTM) data.

135 2.4 Statistical Analyses
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136 Two types of models, power law models (Equation 1) and hydrograph separation models 

137 (Equation 2, Equation 3), were fit to the TP-Q data for each study catchment, following Ali et al., 

138 (2017). The power law model equation was fit as:

139 c = aQb [Equation 1] 

140 where c is TP concentration, Q is discharge, a is the intercept parameter and b is the slope 

141 parameter; and the hydrograph separation model was fit as

142 When Q < ThresQ: c = Cg [Equation 2]

143 Otherwise: c = Cg + Cr [Equation 3]

144 where Q is discharge, ThresQ is the breakpoint, c is TP concentration, Cg is the TP concentration 

145 at baseflow and Cg + Cr is the solute concentration when both baseflow and runoff contribute to 

146 streamflow. The same model fitting process was applied to the conductivity-Q data.The residuals 

147 of the best model fit of the TP-Q, as determined by the goodness of fit (r2) were calculated as the 

148 difference between the observed and modelled values.  For sites where model fit was poor 

149 (r2<0.2), residuals were calculated from a horizontal line with a y value of the mean 

150 concentration. Hydrograph separation models were fit using the segmented package (Muggeo, 

151 2015) to identify ThresQ, and the lm function to fit Equation 2 and Equation 3. In order to 

152 determine if the c-Q relationships were driven by seasonal differences, the data were divided by 

153 season, using visual inspection of the hydrograph to identify the end of the spring melt period, 

154 and the model fitting exercise was repeated using just the spring data and just the summer data.

155 The day of year for each of the three study years was normalized to start on the first day of the 

156 spring melt for each catchment, indicated by when discharge started increasing in the spring, 
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157 termed Days Since Melt (DSM). The catchment-specific residuals of the TP-Q models were then 

158 modelled against DSM, using three types of models: a linear model, a segmented regression 

159 model with one breakpoint and a segmented regression model with two breakpoints. Segmented 

160 regression models were fit using the segmented package (Muggeo, 2015). Briefly, the 

161 breakpoints were estimated using a bootstrap restarting algorithm which identifies local optima 

162 where the linear relation changes (Wood, 2001). Goodness of fit (r2) was calculated for all three 

163 models at a significance level of α=0.05; r2 values exceeding 0.2, 0.4, 0.6, and 0.8 were 

164 interpreted as fair, reasonable, good, and very good model fits, respectively (Ali et al., 2017). 

165 For sites with significant breakpoint models, the data were divided into three time periods: 

166 Period 1 (from the onset of melt to first breakpoint); Period 2 (from the first breakpoint to the 

167 second breakpoint); and Period 3 (from the second breakpoint to the end of the record). 

168 Catchment-specific linear regression models between the residuals of the conductivity-discharge 

169 relationship and DSM, as well as stream temperature and DSM were fit for each of the three 

170 periods. All statistical analyses were performed in R (R Core Team, 2017). 

171 3.0 Results

172 3.1 Seasonal patterns of phosphorus and discharge

173 Discharge in the study streams followed a predictable seasonal pattern with a peak in the spring 

174 associated with the spring snowmelt and a period of low flow during the summer and fall, 

175 interrupted by peaks associated with rainstorms (Figure 2a).  There was considerable interannual 

176 variability in the magnitude and timing of storm peaks; in particular, a major storm event 

177 occurred in early summer 2014, which in several streams resulted in more discharge than the 

178 preceding spring melt (Wilson et al., in review). There was also a strong seasonal pattern in total 
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179 phosphorus (TP) concentrations across the eight study streams, with the highest concentrations 

180 observed at the onset of spring melt and one or more peaks observed during the summer and fall 

181 (Figure 2b). There was considerable variation among sites in the median and range of TP 

182 concentrations; the predominantly forested sites (RLNGR and LHOROD) had relatively low TP 

183 concentrations, while the sites dominated by annual cropland (BOYR, LASER, LASEC, OR, 

184 WCE, WCW) had relatively high TP concentrations.

185 3.2 Concentration-discharge relationships

186 The goodness of fit (r2) of models predicting TP from discharge ranged from not significant to 

187 0.47. Of the eight sites, the power law model produced the best fit at two sites (WCW and 

188 WCE), the hydrograph separation model produced the best fit at two site (BOYR and LASEC) 

189 and no model producing a fair model fit (r2> 0.2) could be fit to the other four sites (Table 2; 

190 Figure 3). The results were consistent when considering only the summer season, with the power 

191 law producing the best fit at WCW and WCE, the hydrograph separation model producing the 

192 best fit at BOYR and LASEC and the other four sites remaining with no fair model fit (Table 2).  

193 Using only the spring data resulted in somewhat different patterns of model fit. Two streams 

194 (LHOROD and RLNGR) had reasonable, negative relationships between TP and discharge using 

195 the power law model, while LASER, LASEC and WCW had reasonable, positive relationships 

196 using the power law model (Table 2). 

197 3.3 Temporal patterns and drivers of stream phosphorus

198 Significant segmented regression models were fit between the normalized Days Since Melt 

199 (DSM) and the residuals of the TP-discharge relationship at all sites except for BOYR and 

200 LASEC, the two sites with the hydrograph separation TP-discharge models (Figure 4). For the 
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201 remaining sites, there were two significant breakpoints, which were remarkably synchronous in 

202 time (breakpoint 1 ranging from day 35 to 43; breakpoint 2 ranging from day 60 to 122) (Table 

203 3).  These breakpoints also correspond with temporal patterns in conductivity and stream 

204 temperature (Table 4). During the first period (i.e. before the first breakpoint), the residuals of 

205 the conductivity-discharge relationship increased significantly from the onset of melt to the first 

206 breakpoint at three sites (OR, WCE and WCW). After the first breakpoint, the patterns in 

207 conductivity residuals were not coherent among sites.  Temperature increased significantly 

208 during the first period at three sites (LHOROD, WCE and WCW), and decreased significantly 

209 during the final period (i.e. after the second breakpoint) at all sites (Table 4).

210

211 4.0 Discussion

212 Streams across southern Manitoba exhibit a strikingly coherent seasonal pattern of P dynamics.  

213 Concentrations peak with the onset of snowmelt and decline through the spring, and generally 

214 rise to a second, usually smaller peak again in the summer (Figure 2b).  Examining the 

215 relationships between TP and discharge at individual sites revealed generally poor model fits 

216 (Figure 3), consistent with other work in the Canadian Prairies demonstrating that controls on P 

217 dynamics in this region that are independent of discharge (Ali et al., 2017).  Indeed, the residuals 

218 of the c-Q relationships were also temporally coherent across sites, with peaks in early spring 

219 and mid-summer (Figure 4). Seasonal patterns of conductivity residuals and stream temperature 

220 were also synchronous with TP patterns.  Conductivity residuals increased from the onset of melt 

221 through to the first breakpoint (Figure 5), while stream temperatures consistently were at their 

222 maxima concurrent with the second breakpoint (Figure 6).  Taken together, these results suggest 

223 that the mechanisms controlling patterns of stream TP concentration may vary by season.
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224 4.1 Concentration-discharge relationships

225 There were three distinct groups of catchments based on the model fits to the TP-discharge 

226 relationships: at 2 catchments, hydrograph separation models produced the best fits, at 3 

227 catchments, power law models produced the best fit and at the remaining 4 catchments, no 

228 models produced a reasonable model fit (Figure 3). Ali et al., (2017) found that c-Q model fits 

229 were poorest in watersheds with complex drainage patterns, such as higher slopes, high 

230 proportion of noncontributing areas or poorly drained soils.  The four catchments with no model 

231 fit, LHOROD, OR, RLNGR, and LASER are lower gradient with higher proportions of existing 

232 (LHOROD, OR, RLNGR) ineffective drainage and more poorly defined contributing area. 

233 LHOROD, OR, and RLNGR are located on the northwestern side of the study area and have 

234 large areas with depressional or “pothole” wetlands. As a result, these three catchments have the 

235 highest proportion of poorly-drained wetlands of the sites used in the study. LASER is located in 

236 the Red River Valley and has been extensively drained to support agriculture, but continues to 

237 experience flooding / ponding issues on agricultural land during wet seasons (McCullough et al., 

238 2012). Also, LHOROD and RLNGR encompass parts of Riding Mountain National Park, leading 

239 to considerable forest cover, lower rates of soil disturbance and fertilizer input, as well as the 

240 lowest median and peak TP concentrations of the study sites. These two sites have the smallest 

241 proportion of annual cropland, and therefore human modification of drainage is much less in 

242 these catchments (Table 1). When considering only the spring data, these two sites with 

243 considerable forest cover had negative c-Q relationships (Table 2), suggesting again that the 

244 sources of P within these watersheds are perhaps different. Negative c-Q relationships suggest 

245 source limited systems (Moatar et al., 2017), which is consistent with low P soils in forested 

246 areas.
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247 The hydrograph separation model, where concentrations increase with increasing discharge only 

248 above a threshold flow value, suggests that runoff generation is the primary driver of solute 

249 dynamics, since baseflow concentrations are relatively flat (O’Connor et al. 1976). This suggests 

250 that watersheds that exhibit this relationship are likely transport-limited, as the P is only 

251 mobilized in high concentrations from landscape source areas when discharge is above a given 

252 threshold (Ali et al., 2017). The two catchments where hydrograph separation models produced 

253 the best fit (BOYR and LASEC) are of higher slope and span the Pembina Escarpment, which 

254 overlies permeable parent material.  These watersheds tend to exhibit higher water yield and 

255 groundwater influence that results in the presence of baseflow. The threshold at which 

256 concentration increases are observed at these sites may indicate a shift from groundwater driven 

257 base flow to soil water and overland flow during runoff events. As described in Ali et al., (2017) 

258 those watersheds with naturally effective drainage exhibited c-Q relationships with the highest 

259 predictive ability.  WCE and WCW are both naturally effectively drained and were fit with the 

260 power-law (linear) c-Q model because no significant c-Q threshold was observed.  These two 

261 catchments differ from BOYR and LASEC in that a clear indication of a threshold shift in water 

262 chemistry was not observed and may indicate that surface water inputs alone are the primary 

263 driver of c-Q in well drained watersheds without significant groundwater influence.

264 4.2 Temporal patterns and drivers of stream phosphorus

265 The seasonal pattern of TP dynamics is consistent across catchments of varying sizes and 

266 landscape characteristics (Figure 2b).  This is particularly evident when examining the time 

267 series of residuals of the TP-Q relationship (Figure 4).  Examining the residuals of the 

268 concentration-discharge relationship allows us to identify patterns in the concentration data 

269 independent of the effect of discharge (Renwick et al., 2018). Positive residuals indicate that the 
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270 TP concentrations are higher than would be predicted from the TP-Q relationship, and negative 

271 residuals indicate the concentrations are lower than would be predicted. Therefore, the coherent 

272 peaks in TP-Q residuals observed in the summer are indicative of a seasonal pattern of TP 

273 concentrations independent of peaks driven by summer storms. The two streams where this 

274 coherent pattern is not observed (BOYR and LASEC) are the two streams where a hydrograph 

275 separation model best fit the TP-Q data. In these catchments, the higher TP concentrations are 

276 highly correlated to increases in discharge, meaning that, as detailed above, runoff generation 

277 resulting in mobilization of phosphorus from the landscape is the dominant control on stream TP 

278 concentrations. However, for the other streams in this study, discharge is not the dominant 

279 control on TP. The coherence of the peak dates suggests that regional scale drivers that affect 

280 availability and mobility of TP may be responsible for these patterns.  

281 The pattern of decreasing TP concentrations through the snowmelt period is consistent with 

282 modelling work done by Costa et al. (2017) on nitrate (NO3) dynamics through snowmelt.  In 

283 that paper, the authors suggest that high NO3 concentrations in snow and surface flow, resulting 

284 from nutrient rich plant residues left on the field in the fall, result in very high concentrations in 

285 the initial snowmelt, but as the melt progresses and soils thaw, runoff becomes dominated by 

286 throughflow, and NO3 concentrations decrease.  The same argument could be true for TP, which 

287 is also known to desorb from surface soils or leach from vegetation, and residue left on fields 

288 over the winter, and can be released from during freeze-thaw cycles in the late fall (Tiessen et al., 

289 2010; Liu et al., 2013; Elliott, 2013; Whitfield et al., 2019). In this study, as in others in this 

290 region, the majority of TP is in the dissolved form. Erosion of particulate P is typically not a 

291 major source of P export in this landscape where the topography is flat and much of the runoff 

292 occurs during the spring when soils are frozen (Salvano et al., 2009; Liu et al., 2014). This 
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293 flowpath-switching mechanism to explain the spring TP patterns is also supported by the 

294 conductivity data.  Melting snow and surface runoff will have lower conductivity than water 

295 passing through ion-rich deeper soil layers, and so an inverse relationship with TP would be 

296 consistent with a change in flowpaths. 

297 The coherent summer peaks in stream TP concentrations are not easily explained by hydrological 

298 patterns or point source inputs, as has been suggested in other studies (Corriveau et al., 2013; 

299 Rattan et al., 2017). However, conductivity trends differ from TP trends in the later spring and 

300 summer, indicating that a flowpath-based mechanism is unlikely to explain the coherent summer 

301 peaks (Figure 5). The coherence of the peak concentrations across catchments and seasons is not 

302 compatible with rainfall-driven export of TP from the landscape to the stream, given the lack of 

303 coherence in the timing of storms.  It is notable that the TP dynamics from 2014 are coherent 

304 with the other study years, given that 2014 featured an extreme rainfall-runoff event in summer, 

305 resulting in high TP export (Wilson et al., in review).  This suggests that the patterns observed in 

306 this dataset are robust even under years with variable hydrological regimes.  Other studies have 

307 suggested that seasonal release from sewage lagoons results in summer peaks in stream TP 

308 (Carlson et al., 2013; Rattan et al., 2017), however in the present study, the summer patterns of 

309 TP are observed across a range of watersheds, most of which are sparsely populated and have 

310 little or no sewage input.  This summer pattern, however, is coherent with the seasonal peak in 

311 stream temperature (Figure 6), with the peak in the overprediction of TP relative to Q occuring at 

312 the same point in the season as the peak stream temperature.  This suggests that biogeochemical 

313 processes, controlled by temperature may be responsible for this regional coherence.

314 Stream temperature will control many aquatic and soil processes that result in the removal, 

315 transformation and release of P within a stream (Withers and Jarvie, 2008).  These processes 
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316 include physical and chemical mechanisms such as dissolution and desorption reactions which 

317 release bound P from soil and stream sediments (Fox, 1989), and biological mechanisms 

318 including the assimilation and release of P in periphyton and phytoplankton (Dodds, 2003), 

319 decomposition of both allochthonous and autochthonous organic matter (Pusch et al., 1998) and 

320 uptake and decay of macrophytes (Carpenter and Lodge, 1986).  During summer in the study 

321 streams, adjacent riparian areas and wetlands, and in catchment soils the water movement tends 

322 to be slow between runoff events while biological productivity tends to be high.  These 

323 conditions may leading to stagnant conditions which promote anoxia, particularly in lower 

324 gradient environments and could result in release of P, particularly given the geological setting 

325 of the streams (Orihel et al., 2017). Recent work has demonstrated that with rising temperatures, 

326 the metabolic balance of streams shifts to higher rates of respiration compared with production, 

327 promoting low oxygen conditions and potentially creating favourable conditions for P release 

328 from sediments (Song et al., 2018). Any of these mechanisms could be a plausible explanation 

329 for why TP concentrations (independent of discharge) decline during the late summer and early 

330 fall. Given the strong association between the observed patterns in TP and stream temperature, 

331 future work in this region should examine the possible in-stream and in-soil mechanisms behind 

332 this pattern. 

333 4.3 Implications and future research directions

334 Like many regions across North America, the Northern Great Plains is experiencing declining 

335 snowpacks, earlier snowmelts, longer growing seasons and changes in precipitation patterns 

336 during the growing season (Shook and Pomeroy 2012).  The frequency, intensity and length of 

337 growing season rainfall have all increased in the last several decades (Shook and Pomeroy, 2012; 

338 Szeto et al., 2015; Dumanski et al., 2015). Hydrological processes and pathways of runoff 
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339 associated with summer rainfall in this region are fundamentally different from those which 

340 predominate during spring snowmelt. For instance, surface depressional storage may regulate 

341 runoff during spring melt, but if a large summer rainfall event occurs on saturated soils, the 

342 surface storage may be at capacity and thus not predictive of runoff volume or pathways (Wilson 

343 et al., in review). This study documents consistent seasonal patterns of high stream TP 

344 concentrations during the growing season. Combined with the changes to precipitation and 

345 runoff patterns, these results suggest an increasing need for management strategies which 

346 account for growing season dynamics in order to mitigate excess TP export across the Northern 

347 Great Plains.

348 5.0 Conclusions

349 Understanding the controls on P mobility and transport in agricultural landscapes is critical for 

350 informing management decisions to protect water quality.  There has been widespread interest in 

351 understanding snowmelt dynamics, as this is the dominant hydrological event of the year in 

352 northern regions, and often transports the majority of nutrients (Costa et al., 2017).  Recent 

353 studies have acknowledged that controls on P loading from landscapes vary seasonally 

354 (Corriveau et al., 2011; Rattan et al., 2017).  The results of this study suggest that controls on 

355 stream P concentrations are not consistent among seasons, and that there are regionally 

356 consistent patterns in stream P independent of hydrological controls.  While spring P dynamics 

357 are well-correlated with discharge and flowpath metrics, growing season P concentrations exhibit 

358 coherent seasonal peaks across years and catchments, independent of flow dynamics.  Cold, 

359 agricultural regions, including the Northern Great Plains, are getting warmer, with smaller 

360 snowpacks and longer summer droughts where streams are hydrologically disconnected from the 

361 watershed (Schindler and Donahue, 2006). Investigating growing season stream P dynamics in 
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362 this landscape is critical for understanding the full picture of P cycling in these regions and for 

363 making informed decisions about water quality management.

364
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516 the spring melt period.

517 Fig 3. Relationships between total phosphorus concentration and discharge at eight streams in 

518 southern Manitoba. Data were collected in three years (2013, 2014, 2015). Solid black lines 

519 indicate significant model fits. Solid grey lines indicate mean concentrations where no 

520 reasonable model fit was possible.
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Table 1. Site characteristics. Numbers in each year refer to the total 
number of total phosphorus samples collected.

Site Name Site 
Acronym 2013 2014 2015

Effective 
Drainage 
Area (%)

Wetland 
(%)

Annual 
Cropland 
(%)

Forest 
(%)

Sand 
(%)

Clay 
(%)

Minimum 
elevation 
(masl)

Maximum 
elevation 
(masl)

Average 
slope (%)

Roseisle Creek BOYR 34 34 24 90.59 0.80 70.53 12.8 2.82 0.27 302 514 2.18
Little Saskatchewan 
near Horod LHOROD 39 43 14 65.84 13.44 5.14 55.6 8.47 0.00 558 725 1.96

La Salle River near 
Elie LASER 54 85 20 100.00 0.08 83.10 2.73 0.02 80.4 237 265 0.69

Elm Creek Channel LASEC 27 27 19 49.78 0.18 40.03 25.1 36.45 34.6 244 306 0.99
Oak River OR 16 70 62 23.65 10.42 57.71 5.29 0.38 0.00 459 679 1.15
Rolling River new 
Erickson RLNGR 31 43 15 88.78 11.03 8.51 56.6 3.99 5.56 550 755 2.78

Willow Creek East 
Branch WCE 89 112 59 98.43 1.69 74.97 1.93 0.00 1.58 376 474 1.27

Willow Creek West 
Branch WCW 92 126 71 65.41 3.52 72.82 3.98 0.00 3.88 377 474 1.08
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Table 2: Fits of models predicting total phosphorus concentration from discharge. The power law model is described in Equation 1 

and the hydrograph separation model is described in Equations 2 and 3. ThresQ is the breakpoint ln-transformed discharge. NA 

indicates that no breakpoint could be located using the model fitting algorithm, and therefore no model could be fit.

Power law model Hydrograph separation model
All seasons

Site p value r2 p value r2 ThresQ
BOYR <0.01 0.08 <0.01 0.34 -0.36
LASER 0.04 0.03 0.01 0.05 -2.20
LASEC <0.01 0.34 <0.01 0.46 -1.05

LHOROD 0.32 0.27
OR 0.12 0.06

RLNGR 0.83 0.35
WCE <0.01 0.33 <0.01 0.14 0.38
WCW <0.01 0.47 <0.01 0.30 -0.61
Spring

Site p value r2 p value r2 ThresQ
BOYR 0.32 0.07
LASER <0.01 0.32 NA
LASEC <0.01 0.55 0.02

LHOROD <0.01 0.30 0.72
OR 0.35 0.15

RLNGR 0.02 0.25 0.05
WCE 0.44 0.31
WCW <0.01 0.36 NA

Summer
Site p value r2 p value r2 ThresQ

BOYR 0.17 <0.01 0.23 -0.36
LASER 0.01 0.05 <0.01 0.09 -2.18
LASEC <0.01 0.23 <0.01 0.35 -4.73

LHOROD 0.96 0.91
OR 0.08 0.16

RLNGR 0.29 0.10
WCE <0.01 0.23 0.22
WCW <0.01 0.48 <0.01 0.32 -0.79
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Table 3: Fits of models predicting the residuals of the total phosphorus-concentration model from Days Since Melt.

Linear regression model Segmented model (one breakpoint (BP)) Segmented model (two breakpoints (BP))

Site p value r2 p value r2 BP 1 (Days Since Melt) p value r2 BP 1( Days Since Melt) BP 2 (Days Since Melt)

BOYR 0.55 0.11 0.07

LASER 0.01 0.04 <0.01 0.13 105.86 <0.01 0.46 40.75 58.09

LASEC 0.60 0.59 0.11

LHOROD 0.35 <0.01 0.23 27.10 <0.01 0.32 43.17 86.05

OR 0.30 0.05 <0.01 0.56 37.09 122.33

RLNGR 0.03 0.05 0.02 0.17 36.36 <0.01 0.38 43.09 70.50

WCE <0.01 0.05 <0.01 0.26 26.03 <0.01 0.48 35.32 78.13

WCW 0.02 0.02 <0.01 0.33 27.63 <0.01 0.49 36.12 90.96
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Table 4: Linear regression relationships between days since melt and residuals of the 
conductivity-discharge relationship and water temperature, respectively. 

Conductivity Water temperature
Site p value r2 slope p value r2 slope
LASER 0.35
LHOROD 0.72 0.00 0.38 8.15

Period 1 OR 0.04 0.12 0.01 0.27
Onset of melt to first breakpoint RLNGR 0.06 0.11

WCE 0.00 0.24 0.01 0.00 0.93 12.39
WCW 0.00 0.32 0.02 0.03 0.73 9.88
LASER 0.01 0.20 0.02
LHOROD 0.10 0.00 0.43 46.37

Period 2 OR 0.00 0.22 0.02 0.32
1st breakpoint to 2nd breakpoint RLNGR 0.55 0.91

WCE 0.67 0.07
WCW 0.24 0.01 0.70 64.76
LASER 0.09
LHOROD 0.95 0.00 0.34 -32.59

Period 3 OR 0.00 0.19 -0.02 0.01 0.83 -27.40
2nd breakpoint to end of record RLNGR 0.40 0.00 0.41 -45.72

WCE 0.00 0.07 0.02 0.00 0.80 -68.79
WCW 0.01 0.06 -0.03 0.01 0.68 -46.50
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Fig. 1. Eight sub-catchment study sites in southwestern Manitoba. Data obtained from Agriculture and Agri-
food Canada. 
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Fig 2. Seasonal patterns of a) discharge and b) total phosphorus concentration in eight streams for three 
years.  The x axis is standardized such that day zero is the day of peak discharge during the spring melt 

period. 
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Fig 3. Relationships between total phosphorus concentration and discharge at eight streams in southern 
Manitoba. Data were collected in three years (2013, 2014, 2015). Solid black lines indicate significant model 

fits. Solid grey lines indicate mean concentrations where no reasonable model fit was possible. 
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Fig 4. Time series of the residuals of the total phosphorus-discharge relationship.  Solid lines indicate 
significant piece-wise regression models.  Vertical lines indicate the breakpoints identified in the model. 
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Fig. 5 Time series of the residuals of the conductivity-discharge relationship. The vertical lines are 
breakpoints identified from the TP time series analysis. 
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Fig. 6 Time series of water temperature. The vertical lines are breakpoints identified from the TP time series 
analysis. 
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