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Abstract 26 

Coral bleaching events have caused extensive mortality on reefs around the world. 27 

Juvenile corals are generally less affected by bleaching than their conspecific adults, 28 

and therefore have the potential to buffer population declines and seed recovery. Here, 29 

we use juvenile and adult abundance data at 20 sites encircling Lizard Island, Great 30 

Barrier Reef, before and after the 2016 bleaching event to quantify: 1) correlates of 31 

changes in juvenile abundance following a bleaching event; 2) differences in 32 

susceptibility to extreme thermal stress between juveniles and adults. Declines in  33 

juvenile abundance were lower at sites closer to the 20m depth contour and higher for 34 

Acropora and Pocillopora juveniles than for other taxa. Juveniles of Acropora and 35 

Goniastrea were less susceptible to bleaching than adults, but the opposite was true for 36 

Pocillopora spp. and taxa in the family Merulinidae. Our results indicate that the 37 

potential of the juvenile life-stage to act as a buffer during bleaching events is taxon-38 

dependent.  39 

 40 

Introduction 41 

Coral reefs have been facing numerous anthropogenic stressors for decades, leading to a 42 

severe decline in the abundance of corals and associated organisms on reefs (Jackson et 43 

al. 2001). Among those stressors, increasing atmospheric carbon dioxide concentrations 44 

have had a strong negative effect on coral health by causing rapid and prolonged 45 

increases in sea surface temperatures that, in combination with high solar radiation, 46 

disrupt the relationship between the coral host and photosynthetic endosymbiotic algae 47 

(Lesser et al. 1990). Thermal bleaching often results in partial colony mortality or death 48 

(Harriott 1985), but the severity of bleaching depends on many factors. Importantly, 49 

juvenile corals tend to bleach less and survive better than adults (Mumby 1999; Shenkar 50 
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et al. 2005; Loya et al. 2001), and therefore have the potential to facilitate post-51 

bleaching recovery.  52 

A few explanations for the difference in bleaching susceptibility between 53 

juveniles and adults have been proposed. First, mass transfer to eliminate toxic by-54 

products occurs more rapidly in small organisms than in large ones (Nakamura and van 55 

Woesik 2001) and in flat rather than branching organisms (Patterson 1992). Juvenile 56 

corals are both small and relatively flat, and mass transfer dynamics might at least partly 57 

explain their lower susceptibility to bleaching. Additionally, differences between 58 

juvenile and adult susceptibilities to bleaching might be partially driven by higher 59 

concentrations of fluorescent proteins in juveniles (Papina et al. 2002), which enhance 60 

resistance to coral bleaching by dissipating excess light energy (Salih et al. 2000). 61 

Moreover, being non-reproductive might allow juveniles to invest more energy into 62 

maintenance to survive thermal stress when compared to adults. 63 

Responses to thermal stress can differ widely between corals and environments. 64 

Some coral taxa are more susceptible to bleaching than others (Marshall and Baird 65 

2000; Loya et al. 2001). Structural complexity can also be important because it 66 

increases variation in irradiance (Brakel 1979). High irradiance worsens the effects of 67 

high water temperatures on coral health (Lesser et al. 1990), and therefore colonies in 68 

shaded microhabitats typically bleach less (Hoogenboom et al. 2017; Muir et al. 2017). 69 

High water flow facilitates the removal of toxins produced at high water temperatures 70 

and high irradiance, reducing bleaching-induced mortality (Nakamura and van Woesik 71 

2001) and facilitating post-bleaching recovery (Nakamura et al. 2003). This 72 

experimental work is supported by field work indicating that sites close to deeper water 73 

were more resistant to bleaching on the Great Barrier Reef (GBR) in 2002, presumably 74 
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due to proximity to cooler water and a greater capacity for water mixing (Done et al. 75 

2003). 76 

 Warm water temperatures in the austral summer of 2016 led to the most severe 77 

bleaching event on record on the GBR and caused widespread mortality, particularly in 78 

the northern section of the GBR (Hughes et al. 2017). We use environmental data and 79 

juvenile and adult abundance before and after the 2016 bleaching event to answer the 80 

following questions: 1) What are the best environmental predictors of changes in 81 

juvenile abundance after a bleaching event? 2) Per taxon, are adult or juvenile colonies 82 

more resistant to extreme thermal disturbance?  83 

 84 

Methods 85 

Study location and data collection 86 

Data were collected at 20 sites around Lizard Island in the northern GBR (14.6688° S, 87 

145.4594° E) in November in each of 2015 and 2016 (Fig. 1). At each site, five quadrats 88 

of 1m2 or 0.81m2 (in 2015 and 2016, respectively) were haphazardly placed and all 89 

juvenile corals within them were counted and identified to genus following Veron 90 

(2000) but updating genus and family following the World Register of Marine Species. 91 

Colonies with a maximum diameter <5cm were considered to be juveniles (sensu Bak 92 

and Engel 1979). Fragments were not considered juveniles. Five or six 10m line 93 

intercept transects were laid at each site to record abundances of adult corals (5cm 94 

diameter). Abundance was the number of individual colonies that were intercepted by 95 

the transect tape.  96 

 97 

 98 

 99 
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Predictor variables 100 

We tested the extent to which bleaching susceptibility measured by changes in 101 

abundance was predicted by five factors: thermal stress, rugosity, aspect, distance to the 102 

20m depth contour, and taxon (Table A1). We used site-level maximum water 103 

temperature recorded by temperature loggers at the sites from November 2015 to 104 

November 2016 as a proxy for thermal stress (Done et al. 2003). Rugosity was used as a 105 

proxy for structural complexity and was estimated from 3D reconstructions of 130m2 106 

areas within each site in 2015 (Pizarro et al. 2017). Rugosity was defined as the ratio of 107 

the site’s 3-D surface area to the 2-D area of the plane of best fit (Friedman et al. 2012). 108 

Sites differ in water currents and wind exposure depending on their location around the 109 

island, therefore aspect (NW, NE, SW, SE) was included as a variable to capture these 110 

differences. Sites close to the 20m depth contour (m, log scale) are expected to have a 111 

greater proximity to deep and presumably cooler water and a greater capacity for water 112 

mixing than sites farther away (Done et al. 2003). Finally, taxonomic category was also 113 

included as a variable (Marshall and Baird 2000). 114 

 115 

Analysis 116 

To test whether juvenile abundance per m2 decreased in 2016 relative to 2015, we fitted 117 

a linear mixed effects model with year as a fixed effect and site as a random effect 118 

(‘lme4’ R package; Bates et al. 2015). To examine the best predictors of change in 119 

juvenile abundance (number of juveniles), we calculated the yearly mean abundance (m-120 

2) for each taxonomic category at each site. Genera with fewer than 20 juveniles were 121 

grouped with other genera with fewer than 20 individuals belonging to the same family. 122 

Family groups with fewer than 20 juveniles were eliminated to ensure estimates for 123 

juvenile change were not strongly influenced by rare taxa. We fitted a series of linear 124 
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models predicting proportional change in juvenile abundance between years for 125 

taxonomic category i at site j (log10(abundance 2016ij / abundance 2015ij)) as a function 126 

of each combination of predictor variables. Our sample size allowed for a maximum of 127 

two predictor variables to be included in each model. We included models with site as a 128 

random effect and without random effects and we calculated the R2 value for each 129 

model (‘r2glmm’; Jaeger et al. 2016). 130 

 To examine the similarity of changes in abundance post bleaching between 131 

juveniles and adults, we plotted mean proportional change in adults vs. mean 132 

proportional change in juveniles for each taxon, using changes in proportional 133 

abundance as a proxy for mortality. All analyses were performed in R version 3.2 (R 134 

Core Team 2016). 135 

 136 

Results and discussion 137 

Total mean juvenile abundance from did not vary significantly between 2015 and 2016 138 

at the island scale (Table A2) and changes among sites were highly variable (Fig. A1). 139 

Proportional change in juvenile abundance was best explained by distance to the 20m 140 

depth contour and taxonomic category (Table A3; site as a random effect was not 141 

significant: p-value=1).  142 

Proportional change in juvenile abundance decreased in 2016 relative to 2015 143 

with increasing distance to the 20m depth contour (Fig. 2-a; Table A4). Sites closer to 144 

the 20m depth contour are closer to deeper and potentially cooler water, as well as 145 

having a higher capacity for these waters to mix due to the greater angle of the reef 146 

slope (Done et al. 2003). On Lizard Island, sites closer to the 20m contour are on the 147 

eastern side of the island and therefore are also more exposed to the south-easterly trade 148 

winds that will stimulate water mixing and movement (Fig. A2). Moreover, high water 149 
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flow facilitates the mass transfer of toxic by-products of bleaching (Nakamura and van 150 

Woesik 2001), ameliorating the effects of bleaching. In contrast, Hoogenboom et al. 151 

(2017) attributed their finding that bleaching severity was higher in adults at sites that 152 

were closer to open water on Lizard Island to the fact that these sites experience less 153 

temperature variability, a factor known to promote thermal tolerance in adults (Oliver 154 

and Palumbi 2011). These contrasting results between adult and juveniles suggest that 155 

factors associated with bleaching susceptibility differ among life-history stages.  156 

Some previous studies have suggested that juveniles are ‘immune’ to the effects 157 

of bleaching (e.g. Mumby 1999; Depczynski et al. 2013). In contrast, our results reveal 158 

an order of magnitude decline in the abundance of Pocillopora and Acropora (Fig. 2-b) 159 

and lesser, but still significant, declines in Dipsastraea, Favites and other Merulinidae 160 

(Fig. 2-b). Mumby (1999) conducted his research in Belize, were there are no 161 

Pocillopora, and Acropora colonies are rare: juveniles of these genera were the most 162 

susceptible to bleaching at Lizard Island. Therefore, the contrasting results are most 163 

likely driven by differences in species composition. Depczynski et al. (2013) used a 164 

different size cut-off for juveniles (less than 10 cm vs. our 5 cm). In addition, their 165 

estimates of mortality were based on the proportion of individual in different categories 166 

a few months post-bleaching (i.e. dead vs. alive). In fact, it is often difficult to detect 167 

dead coral colonies, particularly when they are small; therefore it is possible they 168 

underestimated mortality in the juvenile size class.  169 

Overall, the percentage of variation in the proportional change of juvenile 170 

abundance explained by any combination of two or fewer variables was low (Table A2). 171 

More than one cohort of corals corresponds to the juvenile size class in this study. 172 

Juvenile abundance is ultimately increased by recruitment and decreased by juveniles 173 

dying or growing larger than 5cm. While bleaching can affect juvenile survival, many 174 
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other factors, such as the strength of yearly recruitment and the bleaching-independent 175 

mortality, will also contribute to changes in juvenile abundance. 176 

 Differences in susceptibility to the 2016 bleaching event between juveniles and 177 

adults differed among taxa (Fig. 3). Total mean abundance of Cyphastrea, Porites, 178 

Montipora, Favites, and Dipsastraea spp. remained stable in both life-stages. Overall, 179 

adults of Acropora and Goniastrea spp. were more affected than juveniles (mean 180 

abundance of Goniastrea juveniles actually increased; Fig. A3), a finding consistent 181 

with previous studies (Mumby 1999; Loya et al. 2001; Bena and van Woesik 2005; 182 

Depczynski et al. 2013). However, juveniles of Pocillopora spp. and the family 183 

Merulinidae had a stronger decline in abundance post-bleaching than adults, indicating 184 

that the decrease in susceptibility as a function of size is taxon-dependent. 185 

 Demographic processes of juvenile corals have important effects on population 186 

dynamics and are key to population persistence after disturbance (Connell et al. 1997). 187 

Our results show that differences in bleaching susceptibility between juveniles and 188 

adults among taxa need to be considered when predicting changes to reef communities 189 

following episodes of thermal stress. 190 

 191 

Acknowledgements 192 

We thank the Lizard Island Research Station staff for their support. We thank two 193 

anonymous reviewers for their constructive feedback. Funding was provided by the 194 

Australian Research Council Centre of Excellence for Coral Reef Studies 195 

(CE140100020) and the Templeton Foundation (grant #60501, ‘Putting the Extended 196 

Evolutionary Synthesis to the Test’). MD is grateful to the Scottish Funding Council 197 

(MASTS, grant reference HR09011), and the European Research Council (grant 198 



 9 

BioTIME). The study was partially supported by Australian Research Council grants 199 

DP1093448 and FT110100609. 200 

  201 



 10 

References 202 
Bak RPM, Engel MS (1979) Distribution, abundance and survival of juvenile 203 

hermatypic corals (Scleractinia) and the importance of life history strategies in 204 
the parent coral community. Mar Biol 54:341-352 205 

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models 206 
using lme4. J Stat Softw 67:1-48 207 

Bena C, van Woesik R (2004) The impact of two bleaching events on the survival of 208 
small coral colonies (Okinawa, Japan). Bull Mar Sci 75:115-125 209 

Brakel WH (1979) Small-scale spatial variation in light available to coral reef benthos: 210 
quantum irradiance measurements from a Jamaican reef. Bull Mar Sci 29:406-211 
413 212 

Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, 213 
recruitment, and disturbance at several scales in space and time. Ecol Monogr 214 
67:461-488 215 

Depczynski M, Gilmour JP, Ridgway T, Barnes H, Hyeward AJ, Holmes TH, Moore 216 
JAY, Radford BT, Thomson DP, Tinkler P, Wilson SK (2013) Bleaching, coral 217 
mortality and subsequent survivorship on a West Australian fringing reef. Coral 218 
Reefs 32:233-238 219 

Done T, Turak E, Wakeford M, De’ath G, Kininmonth S, Wooldridge S, Berkelmans R, 220 
van Oppen M, Mahoney M (2003) Testing bleaching resistance hypotheses for 221 
the 2002 Great Barrier Reef bleaching event. Australian Institute of Marine 222 
Science, 106 pp 223 

Friedman A, Pizarro O, Williams SB, Johnson-Roberson M (2012) Multi-scale 224 
measures of rugosity, slope and aspect from benthic stereo image 225 
reconstructions. PloS one 7:e50440. 226 

Harriott VJ (1985) Mortality rates of scleractinian corals before and during a mass 227 
bleaching event. Mar Ecol Prog Ser 21:81-88 228 

Hoogenboom MO, Frank GE, Chase TJ, Jurriaans S, Álvarez-Noriega M, Peterson K, 229 
Critchell K, Berry KLE, Nicolet KJ, Rambsy B, Paley AS (2017) Environmental 230 
drivers of variation in bleaching severity of Acropora species during an extreme 231 
thermal anomaly. Front Mar Sci 4:376 232 

Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird 233 
AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler 234 
IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, 235 
Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, 236 
Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-Y, Lough JM, 237 
Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, 238 
Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda 239 
G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent 240 
mass bleaching of corals. Nature 543:373-377 241 

Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, 242 
Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange 243 
CB, Lenihan HS, Pandolfi JM, Petterson CH, Steneck RS, Tegner MJ, Warner 244 
RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. 245 
Science 293:629-638 246 

Jaeger BC, Edwards LJ, Das K, Sen PK (2016) An R2 statistic for fixed effects in the 247 
generalized linear mixed model. J Appl Stat 44:1086-1105 248 

Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef 249 
anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the 250 
activities of protective enzymes against active oxygen. Coral Reefs 8:225-232 251 



 11 

Loya Y, Sakai K, Yamazoto K, Nakano Y, Sambali H, van Woesik R (2001) Coral 252 
bleaching: the winners and the losers. Ecol Lett 4:122-131 253 

Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: 254 
differential susceptibilities among taxa. Coral Reefs 19:155-163 255 

Muir PR, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth 256 
predict bleaching severity in reef-building corals: shall the deep inherit the 257 
reef? Proc R Soc B Biol Sci 284: 20171551 258 

Mumby PJ (1999) Bleaching and hurricane disturbances to populations of coral recruits 259 
in Belize. Mar Ecol Prog Ser 190:27-35 260 

Nakamura T, van Woesik R (2001) Water-flow rates and passive diffusion partially 261 
explain differential survival of corals during the 1998 bleaching event. Mar Ecol 262 
Prog Ser 212:301-304 263 

Nakamura T, Yamasaki H, van Woesik R (2003) Water flow facilitates recovery from 264 
bleaching in the coral Stylophora pistillata. Mar Ecol Prog Ser 256:287-291 265 

Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral 266 
thermal tolerance? Coral Reefs 30:429-440 267 

Papina M, Sakihama Y, Bena C, van Woesik R, Yamasaki H (2002) Separation of 268 
highly fluorescent proteins by SDS-PAGE in Acroporidae corals. Comp 269 
Biochem Phys 131:767-774 270 

Patterson MR (1992) A mass transfer explanation of metabolic scaling relations in some 271 
aquatic invertebrates and algae. Science 255:1421-1423 272 

Pizarro O, Friedman A, Bryson M, Williams SB, Madin JS (2017) A simple, fast, and 273 
repeatable survey method for underwater visual 3D benthic mapping and 274 
monitoring. Ecol Evol 7:1770-1782 275 

R Core Team (2016) R: A language and environment for statistical computing. R 276 
Foundation for Statistical Computing, Vienna, Austria 277 

Salih A, Larkum A, Cox G, Külh M, Hoegh-Guldberg O (2000) Fluorescent pigments 278 
in corals are photoprotective. Nature 408:850-853 279 

Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral 280 
Oculina patagonica. Mar Ecol Prog Ser 294:181-188 281 

Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, 282 
Townsville 283 

 284 
 285 

 286 

 287 

 288 

 289 

 290 

 291 

Figure Legends 292 

 293 



 12 

Figure 1. Map of Lizard Island showing the sites that were surveyed. Dotted lines show 294 

the 20m depth contour. 295 

 296 

Figure 2. Panel a- proportional change in juvenile abundance 297 

(log10[abundance2016/abundance2015]) as a function of distance to the 20m depth contour 298 

(m). The black line shows the predicted proportional change in juvenile abundance, and 299 

the grey ribbon shows 95% confidence intervals. Panel b- proportional change in 300 

juvenile abundance (log10[abundance2016/abundance2015]) for each taxonomic category. 301 

Error bars show standard errors. Grey dots represent observed data, with the dot size 302 

showing the number of observations.   303 

 304 

 305 

Figure 3. Proportional change in adult abundance versus proportional change in juvenile 306 

abundance (log-log scale) between 2015 and 2016 for each taxonomic category. Line-307 

ranges indicate standard errors. The dotted vertical and horizontal lines indicate no 308 

proportional change in adult and juvenile abundance, respectively, between years. The 309 

dashed line indicates values for which the proportional change in adult abundance is 310 

equal to the proportional change in juvenile abundance. 311 
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