Hérivaux et al. (2018) Regional Environmental Change (2018). https://doi.org/10.1007/s10113-018-1313-y

1	Benefits of adapting to sea level rise: the importance of ecosystem services in the French Mediterranean
2	sandy coastline
3	Cécile Hérivaux, BRGM, Univ Montpellier, 1039 rue de Pinville, 34000 Montpellier, France, <u>c.herivaux@brgm.fr</u>
4	Hélène Rey-Valette, LAMETA, Univ Montpellier, helene.rey-valette@univ-montp1.fr
5	Bénédicte Rulleau, IRSTEA, benedicte.rulleau@irstea.fr
6	Anne-Laurence Agenais, BRGM, Univ Montpellier, ESPELIA, anne-laurence.agenais@espelia.fr
7	Marianne Grisel, ARTELIA Water & Environment, Marianne.GRISEL@arteliagroup.com
8	Laure Kuhfuss, LAMETA, Univ Montpellier, SGSD, Univ of St Andrews, <u>lk38@st-andrews.ac.uk</u>
9	Laure Maton, BRGM, Univ Montpellier, <u>l.maton@montpellier3m.fr</u>
10	Charlotte Vinchon, BRGM, <u>c.vinchon@brgm.fr</u>
11	
12	Abstract
13	This article proposes an innovative approach to assess the benefits of adapting to sea level rise (SLR) in a coastal
14	area on a regional scale. The valuation framework integrates coastal ecosystem services, together with urban and
15	agricultural assets. We simulate the impacts of a progressive 1 m rise in sea level in the 21st century and an extreme
16	flooding event in 2100 for four contrasted adaptation scenarios (Denial, "Laissez-faire", Protection and Retreat).
17	The assessment involves coupling the results of hazard-modelling approaches with different economic valuation
18	methods, including direct damage functions and methods used in environmental economics. The framework is
19	applied to the French Mediterranean sandy coastline. SLR will result in major land-use changes at the 2100 time
20	horizon: relocation or densification of urban areas, loss of agricultural land, increase in lagoon areas and
21	modification of wetlands (losses, migration or extension of ecosystems). Total benefits of public adaptation options
22	planned in advance could reach €31.2 billion for the period 2010-2100, i.e. €69,000 per inhabitant (in the study
23	area) in 2010 or €135 million/km of coastline. Our results highlight the importance of (i) raising awareness to
24	ensure that public services and coastal managers can anticipate the consequences of SLR and (ii) incorporating
25	coastal ecosystems into the assessment of the adaptation options. Our findings could provide a basis for
26	participatory foresight approaches to build coastline adaptation pathways.

27 28

Keywords: sea level rise; ecosystem services; adaptation options; climate change; economic valuation

1 1. INTRODUCTION

Coastal systems and low-lying areas will be increasingly at risk from flooding in the 21st century as a result of a
progressive sea level rise (SLR) and extreme flooding (Wong et al. 2014). Assessing the vulnerability of coastal
zones to SLR has become an increasingly important field of research since the 1980s. Yohe (1990) and Titus
(1990) were among the first to analyse the consequences of this phenomenon. They investigated the economic
vulnerability of coastal areas to a 0.5 to 2 m SLR at the scale of the United States.

7 Since then, several types of approaches have been developed at a local and global level. At a local scale, researchers 8 use process-based models and elevation-based GIS analyses to determine the economic impacts of SLR. They 9 focus primarily on the impacts of SLR with regard to the population, infrastructure and buildings in an urban 10 context (Hallegatte et al. 2011; Lichter and Felsenstein 2012; Kebede and Nicholls 2012; Fletcher et al. 2016). 11 Global scale assessments have been conducted using integrated assessment models, such as the DIVA model 12 (Hinkel et al. 2013) or the FUND model (Anthoff et al. 2010). So far, the regional (sub-national) scale has been 13 overlooked. However, on a regional scale, decision-support tools are required to anticipate SLR and ensure that 14 those responsible for land-use and natural resource management can plan adaptation policies.

15 SLR could impact the coastal area in several ways (Wong et al. 2014). In urban and agricultural areas, SLR may 16 force people to migrate. It may cause loss or damage to crops, land, housing and buildings. In addition, SLR may 17 have an impact on ecosystems, such as beach loss, lagoon extension, wetland migration and groundwater 18 salinisation. The economic impact of SLR generally focuses on urban and agricultural areas. Little research has 19 been done to assess the economic impacts of SLR on ecosystems. In general, existing studies focus on 20 characterising the physical impacts of SLR with regard to a particular coastal ecosystem (see for instance: 21 Monioudi et al. 2014 for beaches; Craft et al. 2009 for wetlands; Li et al. 2015 for mangroves), without considering 22 the associated economic impacts. Failure to take account of the economic impact means that the latter cannot be 23 put into perspective with other expected impacts. However, coastal ecosystems are essential components of coastal 24 areas. By providing a variety of ecosystem services, they make a significant contribution to the welfare of residents, 25 tourists and day trippers (MEA 2005). The loss or transformation of coastal ecosystems resulting from SLR could 26 affect ecosystem services and, therefore, have an impact on human well-being. As underlined by Lin et al. (2014) 27 "any assessment that incorporates only goods with market proxies (such as property, human health, or economic 28 production) risks seriously underestimating both the costs and the benefits of the adaptation options". Thus, 29 analysing the impacts of SLR on coastal ecosystems and the services they provide could be beneficial for coastal 30 managers when it comes to raising awareness about the need to anticipate SLR and choose the best strategy for

1 adaptation. Overall, the IPCC (Wong et al. 2014) claims that the economics of coastal adaptation are under-2 researched and that more comprehensive assessments are needed for the valuation of coastal ecosystem services. 3 In this perspective, the article aims to provide a comprehensive assessment of the benefits of adapting to SLR at a 4 regional scale. It proposes an innovative approach that integrates coastal ecosystem services, as well as urban and 5 agricultural assets, within the valuation framework. We simulate the impacts of a gradual 1 m rise in sea level over 6 the 21st century and an extreme flooding event in 2100 for four contrasted adaptation scenarios (Denial, "Laissez-7 faire", Protection and Retreat). We study the gradual impacts of loss of land and land-use changes, and other 8 impacts due to SLR such as saltwater intrusion. The assessment involves coupling the results of hazard-modelling 9 approaches with various economic valuation methods, including direct damage functions and valuation methods 10 used in environmental economics. Our objective is to estimate the potential benefits of adapting to SLR to help 11 decision makers discussing the possible consequences of the different adaptation options.

12

SLR AND ADAPTATION OPTIONS FOR THE FRENCH MEDITERRANEAN SANDY COASTLINE

15 2.1 The French Mediterranean sandy coastline

16 The scope of our research covers the Languedoc-Roussillon coastline, which extends over 231 km and mainly 17 consists of a low-lying sandy coast (Figure 1). Population growth in the Languedoc-Roussillon administrative 18 region is among the highest in France, with an annual increase of 33,000 inhabitants since 1999. Over and above 19 the major cities (such as Montpellier, Nimes and Perpignan), population density is particularly high along the 20 coast. Urban development along the coastline began in the 1960s, with the creation of tourist sea resorts. Coastal 21 risks were largely overlooked. The region is one of the most popular tourist destinations in France. In 2014, 8.5 22 million tourists visited the region (CCI Languedoc-Roussillon), generating €7 billion from tourism, i.e. 13% of 23 regional GDP (INSEE).

Currently, sandy beaches make up 70% of the coastline and alternate with built-up areas. Regional Mediterranean wetlands represent 17% of all French wetlands of international importance (CGDD 2010). Almost all of them are community interest habitats under the European Habitats Directive and belong to the Natura 2000 network. Six aquifers located in the coastal area are of regional importance, representing 100 million cubic metres of groundwater, which provides 32% of the regional drinking-water supply (AERMC). Agricultural land accounts

- 1 for 42% of the study area (SIG-LR¹) and is dominated by vineyards, followed by cereals, fruit and vegetables,
- 2 grassland and rice.

Fig. 1 Study area

5 The coast is already subject to marine flooding, especially during the winter season. For instance, the winter storm 6 of 1982 generated a 1.7 m storm surge in the municipality of Palavas-les-Flots, where the mean ground elevation 7 is 0.3 m. The storm caused 15 casualties and damaged buildings and marinas. At the regional scale, the direct costs 8 of damage to non-insured assets alone amounted to €18 million. Sandy beaches are also subject to erosion. Since 9 the 1960s, robust coastal protection works (mostly groynes and breakwaters) have gradually been built along the 10 sandy shoreline, particularly in urban and tourist areas. In 2010, 285 coastal protection works were recorded in the 11 study area (Vanroye and Auffret 2010). Over the last 20 years, strategies for coastal protection have evolved from 12 these "hard" engineering techniques to much "softer" approaches (beach nourishment). According to Vanroye and 13 Auffret (2010), the 1948-2010 cumulative cost for fighting erosion amounts to €117 million.

¹ http://www.siglr.org/

1 2.2 Impacts of SLR on coastal flooding areas

2 Climate change and a gradual SLR are expected to increase these expenses due to marine flooding in the coming 3 decades. Adapting the IPCC (Wong et al. 2014) hypotheses to the case of the Languedoc-Roussillon gives a worst-4 case scenario, with a 1 m rise in sea level by 2100 and greater storm impact due to higher water levels. Figure 2 5 presents the expected change in water levels for three return periods in relation to coastal flooding (Lecacheux et 6 al. 2010): (i) permanent flooding (PF) (area flooded 100% of the time), which corresponds to the mean 7 meteorological conditions and the lowest astronomical tides; (ii) recurrent flooding (RF) (area flooded at least 8 twice a year), which corresponds to the mean annual meteorological conditions and the highest astronomical tides; 9 and (iii) extreme flooding (EF), which corresponds to a 100-year return period for a winter storm surge (the winter

10 1982 storm is used as the reference).

11

Fig. 2 Evolution of (a) water levels and (b) coastal flooding area resulting from PF, RF and EF over time.
 Legend (a): observed (•) and simulated (O) permanent water level; observed (•) and simulated (□) recurrent
 water level; average simulated extreme water level (Δ); --- extrapolation of permanent and recurrent water levels
 over time (polynomial trend curve).

16 Crossing simulated water levels with the regional Digital Elevation Model (Lecacheux et al., 2010) shows that the 17 coastal areas affected by SLR will increase slowly until 2080. From then on, the rate of increase is expected to 18 accelerate because of the topography of the study area. The coastal areas affected by PF or RF are likely to increase 19 by a factor of 3.5 between 2080 and 2100 (Figure 2). In 2100, 58 coastal municipalities (Figure 1) may be exposed 20 to coastal flooding, with 18,500 ha flooded by PF or RF (9% of total area), of which 4,200 ha of land will be

- permanently flooded. Results also show that in 2100, EF is likely to affect a larger area (20,200 ha, an area 55%
 greater). This is quite distinct from the area affected by EF in 2010. Overall, almost 39,000 ha may be exposed to
 coastal flooding in 2100 compared to 15,000 ha in a situation without SLR.
- 4

5 2.3 Potential adaptation options

As a response to these threats, several adaptation options may be envisaged. The IPCC classification of coastal adaptation strategies consisting of retreat, accommodation and protection (Nicholls et al. 2007) is now widely used and applied in both developed and developing countries (Wong et al., 2014). We adapted this classification to integrate the concepts of anticipatory *versus* reactive, and planned (collective state-regulated) versus individual decision-making (Tompkins, 2008). Options based on individual decision-making come from Yohe et al. (1996) and Michael (2007). On this basis, we frame four contrasted management options:

Option 1: "Denial" assumes that there is neither anticipation nor adaptation. It is typically characterised by
individual reactive decision-making, which corresponds to an option that could also be named "inaction",
"worst case" or "no foresight" (Yohe et al. 1996; Michael 2007). In this case, citizens are unaware of the SLR
threat because only partial knowledge or information is available. Thus, there is no warning and consequently
no structural depreciation of properties.

Option 2: "*Laissez-faire*" assumes that there is no collective state-regulated strategy of adaptation. It relies on
 individual anticipatory decision-making. The threat of SLR is relatively well-known, which means citizens
 can anticipate. Greater awareness of the threat of SLR is expected to trigger a gradual depreciation in the
 economic value of housing, businesses and other structures exposed to flooding (Yohe et al., 1996).

Option 3: "Protection" assumes planned anticipatory decision-making. It consists of protecting the entire
 coastline from PF and RF, by implementing a combination of hard engineering techniques (dikes, seawalls)
 and softer approaches (beach nourishment, dune restoration).

Option 4: "Retreat" assumes a strategic, anticipatory and planned relocation of structures and activities beyond
 the area exposed to flooding.

In the last decades, the Protection option was implemented to preserve the Languedoc-Roussillon coastline. Since the adoption in 2012 of the French national strategy of integrated coastline management, the Retreat option is now promoted by the French Environment Ministry (MEDDTL 2002). The progressivity of SLR, the slow increase in areas expected to be flooded by 2080, and the steady decline in public resources (both financial and human) suggest that public authorities will do little in terms of adaptation to the threat of SLR in the near future (Denial and *"Laissez-faire"* options). These options are likely to have a severe impact on future generations over the period
2080-2100. It takes time to implement adaptation strategies for SLR. Raising the awareness of citizens and elected
representatives about the benefits of such different options may be helpful to initiate the design of adaptation
pathways at the regional level.

5

6 3. METHOD

7 **3.1** Overview of the valuation framework

8 We propose a valuation framework to assess the benefits of these four contrasted management options. The9 framework is organised into five main steps (Figure 3):

10 Step 1 consists of building narrative scenarios for the coastal area at the 2100 horizon. We consider that the 11 changes affecting the coastal area will predominantly be driven by (i) the evolution in water levels, (ii) the 12 option chosen to adapt to SLR and (iii) population growth (assumed to remain constant in the study area, with 13 a linear increase based on INSEE 1988-2006 statistics). Narrative scenarios were built during a 2-day project 14 meeting² between scientific researchers from a broad range of disciplines (sedimentology, geography, 15 sociology, economics and agronomy). As a result, four adaptation scenarios (one for each of the adaptation 16 options discussed in 2.3), describe the plausible evolutions likely to affect the coastal area. The scenarios make assumptions about the associated land-use changes (Online Resource 2). 17

Step 2 provides quantitative estimates of land-use changes for each scenario in the 58 municipalities exposed
 to coastal flooding. The following categories of land use are considered: urban, agricultural, forest and semi natural, lagoons, wetlands, beaches and dunes. The 2006 regional land cover GIS database SIG-LR³,
 completed by Natura 2000 database, provides the basis for the analysis. Curves depicting the evolution of the
 coastal flooding area due to PF and RF (Figure 2) are used to quantify the areas gained or lost by each land use category over time.

Step 3 consists of understanding the impacts of PF and RF during the 2010-2100 period for each land-use
 category and adaptation scenario. The impacts are described in terms of (i) damage to assets located in urban
 and agricultural areas and (ii) changes in the services provided by coastal ecosystems. First, they are
 characterised in physical terms before being assessed in economic terms. We assume that the number of assets

² Activity conducted as part of the multidisciplinary MISEEVA research project, funded by the French National Research Agency

³ http://www.siglr.org/

- 1 and the importance of ecosystem services are proportional to the corresponding land-use category. In other
- 2 words, the impacts can be linked to the area gained or lost due to PF and RF over time.
- Step 4 involves the characterisation of the physical impacts and an economic valuation of an EF event that
- 4 occurs in 2100. The impact assessment of an EF event in 2100 is based on the EF area with the 2100 projected
- 5 land use for each scenario and provides a comparison with a situation with no SLR.
- 6 Step 5 assesses the benefits of adapting to SLR. It compares the impacts of progressive SLR and an EF event
- 7 (in 2100) in the Denial scenario with the three other adaptation scenarios.

Fig. 3 Diagram describing the valuation framework

Steps 2 to 4 are implemented using six separate evaluation modules (M1 to M6), one for each land-use category and one for coastal aquifers. Each module applies several methodological approaches (Table 1), depending on the type of asset and service. The following sections (3.2 to 3.7) focus on each evaluation module. Further details on materials and methods can be found in Sogreah (2011) for urban areas, Agenais (2010) for agriculture, Rulleau and Rey-Valette (2013) and Rulleau et al. (2015) for beaches and dunes, and Kuhfuss et al. (2016) for lagoons and wetlands. Details on the valuation functions are provided in Online Resource 1.

16

17 3.2 Urban (M1)

18 In urban areas, M1 considers that PF and RF will force people to migrate and will cause loss or damage to land,

19 housing and businesses if no protective measures are implemented. The analysis excludes the impacts on

infrastructure (roads, bridges, railways). It is assumed that progressively flooded urban areas (in the Denial,
"*Laissez-faire*" and Retreat options) are relocated beyond the EF zone, onto predominantly agricultural land in the
same municipality, as far as possible. The economic cost of urban land loss is assessed at its opportunity cost, i.e.
the value of interior agricultural land (3.3) and not the value of urban coastland (Yohe et al. 1995; Darwin and Tol
2001).

6 In the case of Denial or "Laissez-faire", PF and RF cause property losses (housing and business premises) because 7 of the failure to protect or displace property prior to flooding. Thus, inhabitants are forced to migrate and relocate. 8 These derelict urban areas become urban wastelands. The difference between the two scenarios lies in the time at 9 which people migrate. The Denial scenario implies that SLR is not anticipated at all: housing and business premises 10 are gradually abandoned because of permanent or recurrent flooding. Impacts are assessed by the replacement cost 11 method on the basis of individual and collective housing values⁴, respectively, and mean building values per size 12 category. However, the "Laissez-faire" scenario considers a market-based adaptation and, as citizens anticipate 13 SLR, housing and business premises are abandoned 10 years before being flooded. In this case, the number of 14 people that migrate is slightly lower than in the Denial scenario (10 years population growth will occur outside the 15 area at risk of flooding) and properties depreciate in value as a result of anticipation. We consider that knowing 16 that the property will be flooded at a 10-years horizon implies an accelerated rate of financial depreciation of the 17 capital asset located in a future flooded area. Expert judgment estimates that only 30% of the financial value of 18 housing and businesses would remain. Negative amenities resulting from urban wasteland are not accounted for. 19 In the Retreat scenario, abandoned urban areas are assumed to be dismantled and people also migrate ten years

before being flooded. In the Protection scenario, it is presumed that urban areas are fully protected and, therefore,
the population density increases. In both cases, permanent and recurrent coastal flooding causes no damage to
housing and business premises.

M1 assesses the impacts of an EF event in 2100 in terms of the number of people that may be affected and the damage to ground-floor housing and businesses. Impacts on infrastructure are not accounted for. Impacts are assessed using the damage functions developed in the French context. For ground-floor housing, impacts are estimated as a percentage of the property value. The percentage is a function of the water level in the building (Torterotot 1993). Damage functions of IIBRBS (1998) are used to assess the impacts on buildings used for professional purposes. A distinction is made between damage to equipment and stock, structural degradation and operational losses.

⁴ immobilier.com and terrain-construction.com consulted in March 2011

1 3.3 Agriculture (M2)

PF and RF are assumed to cause losses in agricultural land in the Denial, "*Laissez-faire*" and Retreat scenarios
because farmland is submerged and transformed into wetlands, lagoons or marine ecosystems. Additional losses
of agricultural land are expected due to (i) the relocation of urban areas that are flooded (3.2) and (ii) the migration
of beaches and dunes, which encroach on agricultural land (3.4).

Economic impacts can be expressed as the sum of annual cropland rents between the year of flooding and 2100
(Fankhauser 1994). The mean agricultural land values per municipality are based on the figures for 2010 (2010
AGRESTE and SAFER databases: from €3,570 to €24,850/ha with an average of €9,700/ha) and a 10% return
rate.

10 An EF event in 2100 may have several impacts on crops. Classic damage functions (Devaux-Ros 2000; 11 SYMADREM 2010; Deleuze et al. 1991), which are generally used to assess the impact of floods on agricultural 12 land, are adapted to integrate the additional impacts of salt on crops and soil (Agenais, 2010), on the basis of 13 interviews with agricultural experts in the Languedoc-Roussillon region and in the Western France, which was 14 affected by the storm, Xynthia, in February 2010. Damage functions distinguish (i) yield losses, (ii) rehabilitation 15 tasks and (iii) damage to equipment. First, the value of yield losses is estimated as a percentage of revenue and 16 operating costs per crop type (Chamber of Agriculture databases). Revenue is a function of yield (2008 AGRESTE 17 database) and market price (2010 agricultural compensation grid, in the case of the natural disasters dataset). The 18 percentage of losses is a function of crop type, soil type and the intensity of EF. Second, the costs of rehabilitation 19 tasks are estimated as a function of the number of working hours. This depends on the crop type and the quantity 20 of gypsum necessary to rehabilitate the agricultural land, which in turn depends on crop and soil types. Finally, 21 the damage to equipment is estimated as a percentage of equipment values. This percentage is a function of the 22 crop type, soil type and intensity of EF.

23

24 **3.4** Beaches and dunes (M3)

Beaches and dunes are predominantly threatened by PF⁵. This is particularly the case in the urban context, where the coastal squeeze phenomenon may occur (Luisetti et al. 2008). As the sea level rises, the permanent infrastructure and buildings prevent the beaches and dunes from retreating. Where possible, beaches and dunes will migrate inland, encroaching on agricultural and natural areas. Major beach and dune losses are expected in

⁵ While RF and EF may also impact beaches and dunes by increasing erosion rates, data and knowledge were insufficient to build plausible assumptions for the evolution in erosion over the next few decades.

1 the Denial and "Laissez-faire" because urban assets remain (forming urban wasteland) after people have been 2 forced to migrate inland. In the Denial scenario beach losses are only considered to be due to marine flooding 3 because it is assumed that the towns and cities continue to implement traditional protection measures against 4 erosion. In the "Laissez-faire" scenario, the state does not intervene further to limit beach losses. Therefore, 5 additional beach losses due to erosion are expected (Rulleau et al. 2015). In the Denial and "Laissez-Faire" 6 scenarios, the estimated area of beaches and dunes likely to disappear over time is calculated by crossing the PF 7 water level with the regional high resolution Digital Elevation Model (LIDAR), the type of land use inland of the 8 beach (urban, agricultural, natural) and the historic erosion/accretion rate (Brunel 2010). No loss of beaches or 9 dunes is anticipated in the Protection scenario (we assume large-scale beach nourishment) or in the Retreat scenario 10 (their evolution is assumed to be unconstrained).

11 The loss of beaches and dunes will inevitably affect the ecosystem services that they provide to society. This paper 12 focuses on two services: storm protection and recreation. Associated values are based on the results of a contingent 13 valuation survey conducted in 2009 in a pilot area of 12 km, located south of Montpellier. The area chosen is 14 representative of urban and natural beaches along the Languedoc-Roussillon coastline. The storm protection 15 service is estimated by Rulleau et al. (2015) at \notin 229/household/year, which is equivalent to \notin 4,588/household over 16 a 20-year period. The recreation service is estimated at \notin 36/household/year by Rulleau and Rey-Valette (2013), 17 the equivalent of €728/household over a 20-year period. These values are then aggregated for the entire coastal 18 area in the region with the total number of permanent and second homeowners (312,300 households) and the total 19 number of permanent and seasonal residents, tourists and day trippers (3,360,000 households), divided by the total 20 area of beaches and dunes likely to disappear. The calculation provides a value per hectare.

21

22 3.5 Lagoons (M4)

A rise in water levels may lead to lagoon expansion and a change in salinity (UNEP-MAP and RAC/SPA 2010), except for the Protection^{6,7} scenario. Above all, these changes are likely to have an impact on water purification services⁸. Lagoons play a key role in diluting nitrogen (N) and phosphorus (P), originating from the watersheds located upstream. Shellfish growers, fishermen, swimmers and other recreational users may be affected by N and P if their concentrations are too high (above a threshold concentration) and lead to eutrophication phenomena. In a report to the European Commission, Ifremer (2001) defines five levels of eutrophication, the first and lowest

⁶ Under the Protection scenario, lagoon and wetland ecosystems are assumed to remain stable (Online Resource 2).

⁷ Impacts of an EF event are not included in the analysis, they are considered to be negligible in comparison with PF and RF impacts because coastal wetland and lagoon ecosystems are resilient to EF.

1 being 'no human impact on the level of eutrophication' to the fifth and highest being 'highly degraded by 2 eutrophication'. We use the total Nitrate and Phosphorus concentration limits between the second and third level, 3 where anoxic crises become recurrent instead of exceptional, as the threshold from which the impact of 4 eutrophication is significant on users. Lagoon expansion will increase the volume of water, which may increase 5 its capacity to dilute N and P. An increase in the volume of water is assessed as a function of the PF water level, 6 lagoon depth and the historic siltation rate (Castaing 2008). N and P concentrations are assessed for each lagoon, 7 with estimates of N and P fluxes that originate from the upstream watershed (local databases). Concentrations 8 exceed threshold values (75 µmol N/L and 1.5 µmol P/L) for five lagoons. For these lagoons, the additional N and 9 P fluxes that could be diluted by the increase in the lagoon volume are quantified and expressed in population 10 equivalent (p.e.).

Associated economic values are estimated using the replacement cost method, based on the assumption that a
treatment station would have to be built if this service did not exist. Investment costs range from €220 to €610/p.e.N
and from €310 to €980/p.e.P as a function of the size of the station and a lifetime of 25 years, i.e. a mean annual
cost of €9.4/p.e.N and €13.5/p.e.P (CGDD 2010).

15

16 **3.6 Wetlands (M5)**

PF and RF^{6, 7} are expected to have different impacts on wetlands. PF wetlands are assumed to become marine or lagoon ecosystems. RF is likely to cause habitat transformation and/or migration, depending on how far the habitats are from the lagoon saltwater table (Kuhfuss et al. 2016). Similarly to beaches and dunes, in the case of the Denial and "*Laissez-faire*" scenarios, wetlands can only migrate onto flooded undeveloped areas (natural and agricultural land). In the Retreat scenario, wetlands can also shift onto adjacent former urban areas.

Wetlands are important for their biodiversity. Over 40 Natura 2000 habitats are represented in the study area. By crossing PF and RF maps with regional land use (SIG-LR 2006) and habitat types (Natura 2000 cartographic data), we identified 10 significant wetland habitats, which may be impacted (see Kuhfuss et al., 2016 for more details on these wetland habitats). This represents 78% of the regional wetland areas. This habitat classification provides the basis for the analysis conducted in M5. The services provided by each significant habitat are identified, according to the Millennium Ecosystem Assessment typology (MEA, 2005) and the Natura 2000 inventory. The habitat classification is then used to examine the losses and transformations of ecological habitats for each adaptation scenario, depending on the distance from the saltwater table (which, in turn, depends on elevation)⁸. Finally, the
impact valuation is based on an analysis of the changes in the services provided by the wetlands as a result of
habitat transformation. This paper considers two provisioning services (grazing and materials) and two regulating
services (flood protection and water purification).

The values for provisioning services are estimated using market prices: the grazing service is valued as the mean
gross margin for local pasture (€14/ha/year); materials provided (reeds) are valued at their local mean gross margin
(€116/ha/year). Regulating services are valued in terms of benefit transfer using values from a meta-analysis of 89
wetland valuation studies (CGDD 2010): €438/ha/year for the flood protection service and €272/ha/year for the
water purification service.

10

11 3.7 Coastal aquifers (M6)

SLR threatens coastal aquifers with saltwater intrusion. Two hydrogeologists in the region were consulted on the construction of a plausible scenario for saltwater intrusion in coastal aquifers at the 2100 time horizon. Two types of processes are considered:

- (i) The brackish zone between fresh and saline groundwater ("saltwater wedge") may shift further inland
 as a result of PF and RF. Abstraction wells, previously located beyond the saline groundwater wedge
 zone, will then be situated in areas where upconing of the saline groundwater surface can easily occur
 (Oude Essink 2001). The shift of the saltwater wedge is characterised as a function of the SLR using
 the Ghyben and Drabbe (1889) and Herzberg (1901) relationships for the five unconfined coastal
 aquifers (four alluvial and one calcareous) located in the study area. Retreat and Protection options
 are not expected to impact the shift of the saltwater wedge;
- (ii) Poorly protected abstraction wells will be exposed to the three types of coastal flooding (PF, RF and
 EF) and will allow saline water to percolate towards the aquifers. The groundwater wells that supply
 drinking water located in the PF and RF flooding areas are assumed to be relocated inland in the
 Retreat option and protected from PF and RF in the Protection scenario. However, the wells remain
 exposed to EF, regardless of the adaptation option.

27 In a context of water scarcity, like that of the Languedoc-Roussillon region, and with an expected increase in water

28 demand in the near future (linked to the increase in population), saltwater intrusion would reduce the freshwater

⁸ The characterisation of physical impacts is based on interviews and working sessions with the stakeholders and scientific researchers actively involved in managing the lagoons and associated wetlands in the study area.

resources. This could affect provisioning services, such as the public water supply, water for irrigation and industrial uses. We focus our analysis on the public water supply, given that it is the principal use of groundwater in the coastal area. The replacement cost method is used to estimate the values associated with both types of processes for all three flooding categories. Calculations are based on the assumption that small desalination plants are installed to offset the decrease in fresh groundwater availability, with mean annual costs (including investment, operating costs and the environmental costs of CO2 emissions) ranging from €1.2 to €1.4/m3 (based on the analysis of the Worldwide Desalting Plants Inventory database provided by Zhou and Tol 2005).

8

9 3. RESULTS

10 First, a progressive SLR may lead to major land-use changes at the 2100 time horizon (except for the Protection 11 scenario): the relocation or densification of urban areas, loss of agricultural land (-8,850 ha, equivalent to -10%), 12 the increase in lagoon areas (+1,730 ha, a 5% rise) and the modification of wetlands (losses, migration or extension 13 of ecosystems). Transition matrices (Table 2) present the type and magnitude of the changes for each scenario. 14 They detail the evolution of each land-use type between 2010 and 2100. For instance, Table (a) illustrates that in 15 the Denial scenario, 90% of the agricultural land remains agricultural; 3% is urbanised, 1% is replaced by beaches 16 and dunes, 5% becomes wetlands and 1% is transformed into marine ecosystems. In 2100, agricultural areas 17 occupy 91,050 ha or 10% less than in 2010. Overall, Denial and "Laissez-faire" scenarios lead to similar land-use 18 changes, with the creation of 3,050 ha of urban wasteland and 3,500 ha of wetlands (a rise of 19%) and the loss of 19 360 to 570 ha (-11% to -17%) of beaches and dunes due to coastal squeeze. In the case of the Retreat scenario, 20 abandoned urban areas are assumed to be dismantled, beaches and dunes evolve freely and wetlands expand 21 (+5,640 ha, a rise of 30%).

Table 1. Methods for the quantification and monetary valuation of impacts due to progressive PF and RF, and to an EF in 2100

	Valuation module	Assets/ services	Impacts	Monetary valuation method		
Progressive	M1: Urban	Population	People forced to migrate/ to relocate	Not assessed		
PF and RF		Housing	Property losses	Replacement costs		
		Businesses	Building losses	Replacement costs		
	M2: Agriculture	Land	Land loss	Opportunity costs		
	M3: Beaches and dunes	Storm protection	Decrease in the service due to beach and dune losses	Contingent valuation, value transfer and aggregation		
		Recreation	Decrease in the service due to beach and dune losses	Contingent valuation, value transfer and aggregation		
	M4: Lagoons	Water purification	Improvement in nitrogen (N) and phosphorus (P) dilution capacity	Replacement costs		
	M5: Wetlands	Pastures	Increase/ decrease in the services due to wetland gains/ losses	Market price		
		Reeds		Market price		
		Flood protection		Value transfer		
		Water purification		Value transfer		
	M6: Coastal aquifers	Drinking water provision	Decrease in the service due to groundwater salinisation	Replacement costs		
EF in 2100	M1: Urban	Population	Full-time inhabitants affected (people living in ground-floor accommodation)	Not assessed		
			Secondary inhabitants affected	Not assessed		
		Housing	Degradation of ground-floor	Damage functions		
		Firms	Damage to equipment and stocks	Damage functions		
			Structural degradation			
			Operating losses			
	M2: Agriculture	Crops and	Yield losses	Damage functions		
		equipment	Rehabilitation tasks			
			Damage to equipment			
	M6: Coastal aquifers	Drinking water provision	Decrease in the service due to groundwater salinisation	Replacement costs		

 Table 2. Transition matrices of land-use change (in ha) from 2010 to 2100 for each scenario for the 58 municipalities under study. Numbers in brackets show percentage, which refers to the total area for each land-use category in 2010 (row). Text in bold shows major differences between adaptation options.

3 (a) Denial

1

2

	2100								
	Urban	Agriculturo	Beaches and	Forests and	Lagaans	W(atlands	Urban	600	Total 2010
2010	Urban	Agriculture	dunes	semi-natural	Lagoons	wetianus	wasteland	Sed	
Urban	20,536 (87)	-	-	-	-	-	3,050 (13)	-	23,586
Agriculture	3,050 (3)	81,050 (90)	447 (1)	-	-	4,602 (5)	-	751 (1)	89,900
Beaches and dunes	-	-	2,052 (62)	-	-	-	-	1,256 (38)	3,307
Forests and semi-natural	-	-	447 (1)	34,995 (93)	663 (2)	-	-	1,640 (4)	37,745
Lagoons	-	-	-	-	31,500 (100)	-	-	-	31,500
Wetlands	-	-	-	-	1,067 (6)	18,036 (94)	-	-	19,103
Total 2100	23,586	81,050	2,946	34,995	33,230	22,638	3,050	3,647	205,141
Total transition (ha)	-	-8,850	-362	-2,750	+1,730	+3,535	+3,050	+3,647	
Total transition (%)	-	-10	-11	-7	+5	+19	+++	+++	

4

(b) "Laissez-faire"

	2100								
	Urban	[Forests and	ests and		Urban	500	Total 2010
2010	Orban	Agriculture	dunes	semi-natural	Lagoons	wettanus	wasteland	Sea	
Urban	20,536 (87)	-	-	-	-	-	3,050 (13)	-	23,586
Agriculture	3,050 (3)	81,050 (90)	447 (1)	-	-	4,602 (5)	-	751 (1)	89,900
Beaches and dunes	-	-	1,842 (56)	-	-	-	-	1,466 (44)	3,307
Forests and semi-natural	-	-	447 (1)	34,995 (93)	663 (2)	-	-	1,640 (4)	37,745
Lagoons	-	-	-	-	31,500 (100)	-	-	-	31,500
Wetlands	-	-	-	-	1,067 (6)	18,036 (94)	-	-	19,103
Total 2100	23,586	81,050	2,736	34,995	33,230	22,638	3,050	3,857	205,141
Total transition (ha)	-	-8,850	-572	-2,750	+1,730	+3,535	+3,050	+3,857	
Total transition (%)	-	-10	-17	-7	+5	+19	+++	+++	

- 1			
- 1			
_			

	2100										
2010	Urban	Agriculture	Beaches and dunes	Forests and semi-natural	Lagoons	Wetlands	Urban wasteland	Sea	Total 2010		
Urban	20,536 (87)	-	362 (2)	-	-	2,107 (9)	-	582 (2)	23,586		
Agriculture	3,050 (3)	81,050 (90)	447 (1)	-	-	4,602 (5)	-	751 (1)	89,900		
Beaches and dunes	-	-	2,052 (62)	-	-	-	-	1,256 (38)	3,307		
Forests and semi-natural	-	-	447 (1)	34,995 (93)	663 (2)	-	-	1,640 (4)	37,745		
Lagoons	-	-	-	-	31,500 (100)	-	-	-	31,500		
Wetlands	-	-	-	-	1,067 (6)	18,036 (94)	-	-	19,103		
Total 2100	23,586	81,050	3,308	34,995	33,230	24,745	-	4,228	205,141		
Total transition (ha)	-	-8,850	0	-2,750	+1,730	+5,642	-	+4,228			
Total transition (%)	-	-10	0	-7	+5	+30	-	+++			

1 Second, these land-use changes will lead to major physical and economic impacts (Table 3). Economic impacts 2 are expected to reach €19.5 billion in the case of Denial, with more than 80,000 people forced to migrate and 3 relocate. The "cost of inaction" due to PF and RF represents on average €43,000 per inhabitant in 2010, or €140 4 million/km of coastline. Major impacts are expected from housing losses (80% of the total) and losses of beaches 5 and dunes (15% of the total). This cost could be reduced by 50%, if SLR was anticipated by economic agents 6 ("Laissez-faire"), and by 99%, if public adaptation options were planned in advance (Protection and Retreat), 7 without considering adaptation costs. Negative SLR impacts on ecosystems are estimated at €3 billion in the Denial 8 scenario (15% of the total) and could reach €4.7 billion in the "Laissez-faire" scenario (48% of the total). Total 9 SLR impacts on ecosystems are positive in the Retreat scenario, as beaches, dunes and wetlands are expected to 10 evolve in an unconstrained way and their total area would increase as a result of the coastal topography. 11 In addition, damage caused by an EF event that occurs in 2100 at the regional scale is expected to be 48% higher 12 with SLR (\notin 39.6 billion in the Denial scenario) than without (\notin 26.7 billion) (Table 3). The exposed population is 13 expected to be 63% higher (70,000 people in the Denial scenario with SLR compared to 43,000 without SLR). 14 The "cost of inaction" in case of EF is, thus, estimated at $\in 12.9$ billion ($\notin 29,000$ /inhabitant or $\notin 56$ million/km). 15 This cost could be reduced by 91% if the Retreat option was implemented. In the Protection scenario, if protection

16 efforts fail, economic impacts could be four times higher than without SLR (€104.6 billion).

Table 3. SLR impacts due	to progressive PF and RF1	between 2010 and 2100, and in cas	e of EF in 2100, for each scenario
1	1 0	,	/

_			Physical impacts							Econo	omic impacts	^a (10 ⁶ €)	
	Valuation module	Assets/services	Unit	Without SLR	Denial	"Laissez- faire"	Protection ^b	Retreat	Without SLR	Denial	"Laissez- faire"	Protection ^b	Retreat
	M1: Urban	Population	people	-	83,000	77,000	-	77,000	-	n.a.	n.a.	-	n.a.
0		Housing	number	-	37,000	37,000	-	-	-	-15,720	-4,716	-	-
210		Businesses	number	-	4,600	4,600	-	-	-	-577	-173	-	-
and	M2: Agriculture	Land	ha	-	-8,850	-8,850	-	-8,850	-	-245	-245	-	-245
10 8	M2: Reaches and dunos	Storm protection	ha	-	-362	-572	-	-	-	-1,158	-1,830	-	-
20	NIS. Beaches and duries	Recreation	ha	-	-362	-572	-	-	-	-1,810	-2,860	-	-
tween	M4: Lagoons	Water purification	p.e.N p.e.P	-	85,740 22,370	85,740 22,370	n.a. n.a.	85,740 22,370	-	+48	+48	n.a.	+48
: be	M5: Wetlands	Pastures	ha	-	4,486	4,486	n.a.	7,042	-	+3	+3	n.a.	+4
d RF		Reeds	ha	-	2,718	2,718	n.a.	3,923	-	+14	+14	n.a.	+20
an		Flood protection	ha	-	4,845	4,845	n.a.	7,512	-	+92	+92	n.a.	+143
e PF		Water purification	ha	-	4,134	4,134	n.a.	6,692	-	+49	+49	n.a.	+79
ssiv	M6: Coastal aquifers	Drinking water provision	m³	-	7,400,000	7,400,000	5,800,000	5,800,000	-	-204	-204	-160	-160
ogre	TOTAL PF and RF								-	-19,508	-9,822	-160	-111
Pr	Including impacts on ecos	ystem services							-	-2,966	-4,688	-160	+134
									-	15%	48%	100%	
	M1: Urban	Permanent population	people	32,000	52,000	52,000	104,000	22,000	n.a.	n.a.	n.a.	n.a.	n.a.
		Seasonal population	people	11,000	18,000	18,000	36,000	7,100	n.a.	n.a.	n.a.	n.a.	n.a.
		Housing	number	14,400	23,000	23,000	46,300	9,800	-26,219	-38,822	-38,822	-129,106	-27,000
8		Businesses	number	3,100	4,500	4,500	9,100	4,500	-490	-673	-673	-1,647	-673
n 21	M2: Agriculture	Crops and equipment	ha	9,900	13,100	13,100	24,600	13,100	-17	-36	-36	-59	-36
EFi	M6: Coastal aquifers	Drinking water provision	m³	-	1,500,000	1,500,000	3,100,000	1,500,000	-	-56	-56	-114	-56
	TOTAL EF in 2100									-39,587	-39,587	-130,926	-27,765
	Impacts of SLR in case of I	EF in 2100								-12,861	-12,861	-104,200	-1,039
	Increase in comparison w	ith the situation without SL	R							+48%	+48%	+390%	+4%

3 Note: n.a.: not assessed; p.e.N: person equivalent nitrogen; p.e.P.: person equivalent phosphorous

4 ^a Economic impacts are **not discounted** and measured in constant 2010 euros; ^b For EF: in case protection works fail

1 4. DISCUSSION

2 5.1 The benefits of anticipating and adapting

3 These results can be used to assess the benefits of anticipating and adapting to SLR for the 2010-2100 period. By 4 comparing the Retreat and Denial scenarios, the total benefits of public adaptation planned in advance could 5 amount to €31.2 billion (€19.4 and €11.8 billion due to PF/RF and EF, respectively), i.e. €69,000 per inhabitant of 6 the study area in 2010 or €135 million/km of coastline. These figures highlight the importance of raising awareness 7 levels of public services and coastal managers to SLR, in order to limit the damage caused by SLR. The effects of 8 SLR will emerge slowly from 2040 onwards and then accelerate after 2080, given the topography of the study 9 area: the current generation of managers and decision-makers may deny the existence of the risk. Nevertheless, 10 some decisions have to be taken early and the need to conduct research on new technologies and economic 11 instruments is immediate.

Anticipating and adapting to SLR may also carry high social and economic costs, depending on the option, which should be compared to the benefits. Examples of adaptation measures in Languedoc-Roussillon provide some cost estimates for the Protection and Retreat scenarios. However, further research is necessary in order to assess the costs of adaptation at a regional level:

16 The first beach nourishment in the region was implemented in 2008 in the Aigues-Mortes Gulf, on 10 km of 17 beaches. The initial cost was $\in 8.7$ million and the cost of maintenance is $\in 1$ million every 10 years. We 18 estimate that similar large-scale beach nourishment would cost around €253 million, if it was implemented 19 along the full 161 km of beaches in the region. A regional study conducted by CETE Méditerranée (2010) 20 provides estimates of the costs for protecting the regional coastline from increasing erosion with a combination 21 of measures outlined in the retreat scenario, as well as soft and hard protection measures. Total costs are 22 estimated at €351 million at the 2040 time horizon. If extrapolated to the 2100 time horizon, they could reach 23 at least €1 billion.

To our knowledge, there are no examples of strategic, anticipatory and planned large-scale relocation for
developed structures and activities, which could serve as a basis for assessing the cost of implementing the
Retreat scenario. In the Languedoc-Roussillon region, in 2010, a road was relocated (strategic retreat) along
12 km of coastline between Sète and Marseillan, at a total cost of €55 million. This adaptation measure would
cost €545 million if all the roads along the entire length (70 km) of Languedoc-Roussillon's natural beaches
were relocated. However, this example is not representative of urban areas, where built assets (houses,
apartments, business premises) would have to be relocated. André et al (2016) have designed an economic

1 assessment based on a fictional site that constitutes an archetypal seaside community on the French 2 Mediterranean coast. It represents a dense urban area with individual houses and apartments, as well as touristrelated businesses, located on a low-lying, sandy coastline and exposed to the risk of erosion and coastal 3 4 flooding. They estimate that the full relocation of 650 inhabitants would cost between \notin 62 and \notin 150 million 5 (€100,000 to 231,000 per relocated inhabitant). Based on these figures, we estimate that the relocation of all 6 urban areas in zones exposed to PF and RF (77,000 inhabitants) would cost between €7.7 and €17.8 billion. 7 Other criteria should also be incorporated into the decision-making, such as sustainability, equity (Clément et al. 8 2015) and affordability (Fletcher et al. 2016). For instance, the sustainability of massive beach nourishment, 9 assumed to be carried out in the Protection scenario, could be called into question: maintenance measures should 10 be conducted at 10 year intervals in order to reshape the beaches; locating and sustainably managing a reserve of 11 sand is problematic. In our analysis, the Retreat scenario appears to be the best scenario for ecosystems. However, 12 it also raises several issues, including solidarity between local councils: the risk of coastal flooding may potentially 13 affect large areas in some municipalities, who lack sufficient land to relocate their population, housing and 14 economic activities. At the regional scale, four municipalities with a total of 62,000 inhabitants would face this 15 problem.

16

17 5.2 The weight of coastal ecosystem services

18 Our results underline the importance of incorporating coastal ecosystems into the assessment of adaptation 19 scenarios. First, neglecting coastal ecosystems in the design of adaptation options may lead to the decrease and/or 20 degradation of some ecosystem services as a result of marine flooding and coastal squeeze (loss of 44% of beach 21 areas in the "Laissez-faire" scenario). In coastal areas, such as the Languedoc-Roussillon region, the potential 22 negative economic impacts associated to these changes in ecosystem services are considerable: they represent 48% 23 of the total economic impacts in the "Laissez-faire" scenario. Local residents, day trippers and tourist activities 24 may also be affected by these changes. The valuation of impacts on wetlands also shows that, although the 25 extension of wetland areas is expected to generate positive economic benefits in each adaptation scenario, they are 26 maximal in the Retreat scenario. Thus, classic cost-benefit analyses used to rank alternative adaptation options 27 may underestimate the benefits associated to adaptation in some situations because, in general, they do not account 28 for ecosystem services. Second, some coastal ecosystems could play a key role in reducing the vulnerability of 29 coastal communities in the event of marine flooding and storms. In our study area, we show that maintaining 30 beaches and dunes, by avoiding coastal squeeze, is a valuable preventive measure that is likely to reduce the need for expensive engineering works in some locations (Spalding et al. 2014). However, it is not common practice for
public services, coastal managers and engineering companies to incorporate ecosystem services in the economic
valuation framework. A stepwise knowledge-sharing process should be set up before the integration of ecosystem
services in the policy decision-making framework can be envisaged. Further research should also be conducted to
improve our understanding of the impact of SLR on coastal ecosystems (groundwater, beaches and dunes, lagoons
and wetlands) and to develop ecosystem-based adaptation strategies.

7

8 5.3 An introduction to foresight approaches

9 The four adaptation scenarios considered in this article are theoretical. We consider that the implementation of 10 adaptation options is uniform along the regional coastline. However, in practice, adaptation is place- and context-11 specific (Field et al. 2014): adaptation options are likely to consist of a spatial and temporal policy mix. Our 12 narrative scenarios and the principal quantitative results of the economic impact analysis were used to introduce a 13 1-day foresight workshop held in June 2012, entitled "What coastline for the 2010-2050 Languedoc-Roussillon?" 14 (Montpellier, France). The workshop was organised by the regional authorities and brought together 105 regional 15 experts and stakeholders. Participants were organised into three groups and were asked to adapt and combine 16 various options in order to build plausible adaptation pathways at the regional scale. The resulting scenarios 17 involved two types of combination of "Laissez-faire" and Retreat scenarios: (i) the "organised Laissez-faire" or 18 "voluntary Retreat" implements both options simultaneously; and (ii) the "two-step Retreat", which implements 19 the "Laissez-faire" scenario first and then the Retreat scenario, as a way to make the Retreat scenario more 20 acceptable. The same approach could be implemented locally (in groups of municipalities). This would probably 21 lead to different combinations of approaches, which would depend on the local environmental, as well as the 22 economic and social contexts, not to mention the outcomes of negotiations and compromise solutions.

23

24 5. CONCLUSION

Major land-use changes are expected due to SLR at the 2100 time horizon: relocation or densification of urban areas, loss of agricultural land, increase in lagoon areas and modification of wetlands (losses, migration or extension). The total benefit of public adaptation options that are planned in advance could reach \in 31.2 billion, i.e. \in 69,000 per inhabitant of the study area in 2010 or \in 135 million/km of coastline. This valuation is obviously not exhaustive (many ecosystem services and damage to infrastructure are not valued). Therefore, our results should be considered as lower bound estimates. Our findings highlight the importance of (i) raising awareness to

1 ensure that public services and coastal managers can anticipate the consequences of SLR and (ii) incorporating 2 coastal ecosystems into the assessment of the adaptation options. They may be used as an aid for participatory 3 foresight approaches. They could help public services and coastal managers anticipate and plan proactively for 4 SLR: by identifying the ecosystems, coastal populations, infrastructure, agriculture and water resources that should 5 be relocated due to the impacts of SLR; by identifying potential future conflicts among municipalities (for instance 6 caused by the decrease in the availability and/or supply of land and water resources); and by raising awareness of 7 the impacts of SLR on coastal natural habitats and municipalities. Further research is required to develop legal, governance and economic tools that could be used to implement adaptation. An analysis of the feasibility and 8 9 acceptability of the different options for the local population and decision-makers is also essential.

10

Acknowledgments: This research was undertaken in the framework of the research project "Marine Inundation Hazard Exposure Modelling and Social, Economic and Environmental Vulnerability Assessment in regard to Global Changes" (MISEEVA), which was financed by the French National Research Agency. We gratefully acknowledge Jean-Daniel Rinaudo for his useful comments and suggestions. The preparatory work for this chapter was made possible thanks to financial support from BRGM.

- 16
- 17

18 References

- Agenais A (2010) Evaluation économique des dommages liés à la submersion marine sur l'agriculture:
 Construction d'un modèle et application au Languedoc-Roussillon. Dissertation Montpellier SupAgro
 Brgm, Montpellier, France.
- 22 André C, Boulet D, Rey-Valette H, Rulleau B (2016) Protection by hard defence structures or relocation of assets 23 exposed to coastal risks: Contributions and drawbacks of cost-benefit analysis for long-term adaptation 24 choices to climate change. Ocean & Coastal Management 134:173-182 doi: 25 https://doi.org/10.1016/j.ocecoaman.2016.10.003
- Anthoff D, Nicholls R, Tol R (2010) The economic impact of substantial sea-level rise. Mitigation and Adaptation
 Strategies for Global Change 15:321-335. doi : 10.1007/s11027-010-9220-7
- 28 Brunel C (2010) Evolution séculaire de l'avant côte de la Méditerranée française. Impact de l'élévation du niveau
 29 de la mer et des tempêtes. Thesis, Université Marseille 1, France.

1 Castaings J (2008) Etat de l'art des connaissances du phénomène de comblement des milieux lagunaires. Rapport 2 de phase 1. Dissertation, Cépralmar, France. http://www.cepralmar.org/documents/etat-de-l-art-des-3 connaissances-du-phenomene-de-comblement-des-milieux-lagunaires/Etude_comblement_lagunes.pdf

4 Cépralmar (2006) Défi eutrophisation des lagunes littorales du Languedoc-Roussillon. Etude réalisée dans le cadre

de

l'Eau

Rhône-Méditerranée

et

Corse.

- l'Agence
- 6 http://www.cepralmar.org/documents/defi-eutrophisation-des-lagunes-littorales-du-languedoc-

de

7 roussillon/Rapport_defi_lagunes.pdf

8ème

programme

du

5

- 8 CETE Méditerranée (2010) Evaluation des coûts de protection des territoires littoraux en Languedoc-Roussillon. 9 Rapport d'étude pour la DREAL Languedoc-Roussillon.
- 10 Clément V, Rey-Valette H, Rulleau B (2015) Perceptions on equity and responsibility in coastal zone policies. 11 Ecol Econ 119:284-291. doi:10.1016/j.ecolecon.2015.09.005
- 12 CGDD (2010) Evaluation économique des services rendus par les zones humides. Etudes & Documents n°23.

13 http://www.developpement-durable.gouv.fr/IMG/pdf/ED23c-2.pdf

- 14 Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of 15 accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 16 7:73-78. doi: 10.1890/070219
- 17 Darwin RF, Tol RSJ (2001) Estimates of the Economic Effects of Sea Level Rise. Environmental and Resource 18 Economics 19:113-129. doi : 10.1023/A:1011136417375
- 19 Deleuze C, Fotre C, Nuti I, Pierot F, Torterotot J (1991) Evaluation de fonctions de coûts économiques des 20 dommages aux cultures dus aux inondations. Dissertation, Ecole Nationale du Génie Rural, des Eaux et 21 des Forêts (ENGREF), Paris, France
- 22 Devaux-Ros C (2000) Evaluation des enjeux et des dommages potentiels liés aux inondations en Loire moyenne, 23 Méthode et principaux résultats. Agence de l'Eau Loire-Bretagne, Orléans, France.
- 24 Fankhauser S (1994) Protection vs. retreat: estimating the costs of sea level rise, CSERGE Working Paper GEC 25 94-02.
- 26 http://research.fit.edu/sealevelriselibrary/documents/doc_mgr/470/Global_Protection_vs_Retreat_SLR_ 27 Cost Estimation - Frankhauser 1994.pdf
- 28 Field CB, Barros VR, Mach KJ, Mastrandrea MD, van Aalst M, Adger WN, Arent DJ, Barnett J, Betts R, Bilir 29 TE, Birkmann J, Carmin J, Chadee DD, Challinor AJ, Chatterjee M, Cramer W, Davidson DJ, Estrada 30 YO, Gattuso JP, Hijioka Y, Hoegh-Guldberg O, Huang HQ, Insarov GE, Jones RN, Kovats RS, Romero-

1	Lankao P, Larsen JN, Losada IJ, Marengo JA, McLean RF, Mearns LO, Mechler R, Morton JF, Niang I,
2	Oki T, Olwoch JM, Opondo M, Poloczanska ES, Pörtner HO, Redsteer MH, Reisinger A, Revi A,
3	Schmidt DN, Shaw MR, Solecki W, Stone DA, Stone JMR, Strzepek KM, Suarez AG, Tschakert P,
4	Valentini R, Vicuña S, Villamizar A, Vincent KE, Warren R, White LL, Wilbanks TJ, Wong PP, Yohe
5	GW (2014) Technical summary. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part
6	A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
7	Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D.
8	Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N.
9	Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press,
10	Cambridge, United Kingdom and New York, NY, USA, pp. 35-94.
11	Fletcher CS, Rambaldi AN, Lipkin F, McAllister RRJ (2016) Economic, equitable, and affordable adaptations to
12	protect coastal settlements against storm surge inundation. Regional Environmental Change 16:1023-
13	1034. doi: 10.1007/s10113-015-0814-1
14	Ghyben BW, Drabbe J (1889) Nota in verband met de voorgenomen putboring nabij Amsterdam (Notes on the
15	probable results of the proposed well drilling near Amsterdam). Tijdschrift van het Koninklijk Institunt
16	voor Ingenieurs, The Hague:8-22
17	Hallegatte S, Ranger N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Wood RM (2011) Assessing climate
18	change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. Clim
19	Change 104:113-137. doi: 10.1007/s10584-010-9978-3
20	Herzberg A (1901) Die Wasserversorgung einiger Nordseebaden (The water supply on parts of the North Sea coast
21	in Germany). Zeitung für Gasbeleuchtung und Wasserversorgung 44:815-9-842-4
22	Hinkel J, van Vuuren DP, Nicholls RJ, Klein RJT (2013) The effects of adaptation and mitigation on coastal flood
23	impacts during the 21st century. An application of the DIVA and IMAGE models. Clim Change 117:783-
24	794. doi : 10.1007/s10584-012-0564-8
25	IIBRBS (1998) Evaluation des dommages liés aux crues en Région Ile de France. Agence de l'Eau Seine-
26	Normandie, Nanterre, France.
27	Ifremer (2001) L'eutrophisation des eaux marines et saumâtres en Europe, en particulier en France. Rapport
28	Ifremer pour la Commission Européenne – DG.ENV.B1. 64p.

- Kebede AS, Nicholls RJ (2012) Exposure and vulnerability to climate extremes: population and asset exposure to
 coastal flooding in Dar es Salaam, Tanzania. Regional Environmental Change 12:81-94. doi:
 10.1007/s10113-011-0239-4
- Kuhfuss L, Rey-Valette H, Sourisseau E, Heurtefeux H, Rufray X (2016) Evaluating the impacts of sea level rise
 on coastal wetlands in Languedoc-Roussillon, France. Environ Sci & Policy 59:26-34.
 doi:10.1016/j.envsci.2016.02.002
- Lecacheux S, Pedreros R, Devallée E, Poisson B, Garcin M (2010) Evaluation simplifiée de la submersion marine
 à l'échelle du Languedoc-Roussillon. Rapport du projet ANR MISEEVA. BRGM, Orléans, France.
- 9 Li S, Meng X, Ge Z, Zhang L (2015) Vulnerability assessment of the coastal mangrove ecosystems in Guangxi,
 10 China, to sea-level rise. Regional Environmental Change 15:265-275. doi: 10.1007/s10113-014-0639-3
- Lichter M, Felsenstein D (2012) Assessing the costs of sea-level rise and extreme flooding at the local level: A
 GIS-based approach. Ocean Coast Manage 59:47-62. doi: 10.1016/j.ocecoaman.2011.12.020
- Lin BB, Khoo YB, Inman M, Wang C, Tapsuwan S, Wang X (2014) Assessing inundation damage and timing of
 adaptation: sea level rise and the complexities of land use in coastal communities. Mitigation Adapt Strat
 Global Change 19:551-568. doi: 10.1007/s11027-013-9448-0
- Luisetti T, Turner K, Bateman IJ (2008) An ecosystem services approach to assess managed realignment coastal
 policy in England. CSERGE Working Paper ECM 08-04. Norwich: University of East Anglia.
 http://www.cserge.ac.uk/sites/default/files/ecm_2008_04.pdf
- MEA (2005) *Millenium Ecological Assessment*. Millennium Ecosystem and Human Well-being: A framework for
 Assessment. Washington, DC:Island Press.
- MEDDTL (2012) Stratégie nationale de gestion intégrée du trait de côte. Vers la relocalisation des activités et des
 biens. Paris, France. <u>http://www.developpement-durable.gouv.fr/IMG/pdf/12004</u> Strategie-gestion-trait-
- 23 <u>de-cote-2012_DEF_18-06-12_light.pdf</u>
- Michael JA (2007) Episodic flooding and the cost of sea-level rise. Ecol Econ 63:149-159. doi:
 10.1016/j.ecolecon.2006.10.009
- Monioudi IN, Karditsa A, Chatzipavlis A, Alexandrakis G, Andreadis OP, Velegrakis AF, Poulos SE, Ghionis G,
 Petrakis S, Sifnioti D, Hasiotis T, Lipakis M, Kampanis N, Karambas T, Marinos E (2014) Assessment
 of vulnerability of the eastern Cretan beaches (Greece) to sea level rise. Regional Environmental
 Change:1-12. doi: 10.1007/s10113-014-0730-9

1	Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden, S and Woodroffe C (2007)
2	Coastal systems and low-lying areas. In: Climate Change 2007: Impacts, Adaptation and Vulnerability.
3	Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on
4	Climate Change, [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)].
5	Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 315-356.
6	Oude Essink GHP (2001) Improving fresh groundwater supply-problems and solutions. Ocean Coast Manage
7	44:429-449. doi: 10.1016/S0964-5691(01)00057-6
8	Rulleau B, Rey-Valette H, Hérivaux C (2015) Valuing welfare impacts of climate change in coastal areas: a French
9	case study. J Environ Plann Manage 58:482-494. doi: 10.1080/09640568.2013.862492
10	Rulleau B, Rey-Valette H (2013) Valuing the benefits of beach protection measures in the face of climate change:
11	a French case-study. Journal of Environmental Economics and Policy 2:133-147. doi:
12	10.1080/21606544.2013.776213
13	Sogreah (2011) Rapport sur l'évaluation économique des dommages liés à l'élévation du niveau de la mer sur
14	l'habitat et les entreprises à l'échelle régionale. Projet MISEEVA. Grenoble, France.
15	Spalding MD, Ruffo S, Lacambra C, Meliane I, Hale LZ, Shepard CC, Beck MW (2014) The role of ecosystems
16	in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast Manage 90:50-57.
17	doi : 10.1016/j.ocecoaman.2013.09.007
18	SYMADREM (2010) Etude du renforcement de la digue du Rhône rive droite entre Beaucaire et Fourques: Etude
19	des enjeux agricoles. Chambre d'agriculture du Gard, Nîmes, France.
20	Titus JG (1990) Greenhouse effect, sea level rise and land use. Land Use Policy 7:138-153. doi: 10.1016/0264-
21	8377(90)90005-J
22	Tompkins, EL, Few, R, Brown, K (2008). Scenario-based stakeholder engagement: Incorporating stakeholders
23	preferences into coastal planning for climate change, Journal of Environment Management 88, 1580-
24	1592. doi: 10.1016/j.jenvman.2007.07.025.
25	Torterotot JF (1993) Le coût des dommages liés aux inondations: estimation et analyse des incertitudes, Thesis
26	ENPC Paris/ Marne-la-Vallée, France.
27	UNEP-MAP, RAC/SPA (2010) The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts
28	and future priorities. By Bazairi, H., Ben Haj, S., Boero, F., Cebrian, D., De Juan, S., Limam, A., Lleonart,
29	J., Torchia, G., and Rais, C., Ed. RAC/SPA, Tunis; 100p.

1	Vanroye C, Auffret C (2010) Coût de la protection côtière en Languedoc-Roussillon: Quelle rentabilité? in Actes
2	des journées "Impact du Changement Climatique sur les Risques Côtiers", 15-16th November 2010,
3	Orléans, France. http://www.brgm.fr/sites/default/files/risques_cotiers_2010_actes.pdf
4	Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014): Coastal systems
5	and low-lying areas. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global
6	and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
7	Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D.
8	Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N.
9	Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press,
10	Cambridge, United Kingdom and New York, NY, USA, pp. 361-409.
11	Yohe G, Neumann J, Marshall P, Ameden H (1996) The economic cost of greenhouse-induced sea-level rise for
12	developed property in the United States. Climatic Change 32:387-410. doi: 10.1007/BF00140353
13	Yohe G, Neumann J, Ameden H (1995) Assessing the Economic Cost of Greenhouse-Induced Sea Level Rise:
14	Methods and Application in Support of a National Survey. J Environ Econ Manage 29:S78-S97. doi:
15	10.1006/jeem.1995.1062
16	Yohe G (1990) The Cost of Not Holding Back the Sea - Toward a National Sample of Economic Vulnerability.
17	Coast Manage 18:403-431. doi: 10.1080/08920759009362123
18	Zhou Y, Tol RSJ (2005) Evaluating the costs of desalination and water transport. Water Resour Res 41: W03003.
19	doi: 10.1029/2004WR003749

- 1 Electronic supplementary material
- 2 **ESM_1.** Details on the valuation functions per module
- **3 ESM_2.** Schematic representation of the four adaptation scenarios for the coastal area