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Abstract  23 

  24 

Background: RNA-sequencing of plant material allows for hypothesis-free detection 25 

of multiple viruses simultaneously. This methodology relies on bioinformatics 26 

workflows for virus identification. Most workflows are designed for human clinical data, 27 

and few go beyond sequence mapping for virus identification. 28 

Methods: We present a new workflow (Kodoja) for the detection of plant virus 29 

sequences in RNA-sequence data.  Kodoja uses k-mer profiling at the nucleotide level 30 

and sequence mapping at the protein level by integrating two existing tools Kraken 31 

and Kaiju.  32 

Results and Discussion: Kodoja was tested on 3 existing RNA-seq datasets from 33 

grapevine, and 2 new RNA-seq datasets from raspberry. For grapevine, Kodoja was 34 

shown to be more sensitive than a method based on contig building and Blast 35 

alignments (27 viruses detected compared to 19).  The application of Kodoja to 36 

raspberry, showed that field-grown raspberries were infected by multiple viruses, and 37 

that RNA-seq can identify lower amounts of virus material than RT-PCR. This work 38 

enabled the design of new PCR-primers for detection of Raspberry yellow net virus 39 

and Beet ringspot virus. Kodoja is a sensitive method for plant virus discovery in field 40 

samples and enables the design of more accurate primers for detection. Kodoja is 41 

available to install through Bioconda and as a tool within Galaxy.  42 

 43 

 44 

 45 

 46 

  47 
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1.0 Introduction 48 

Virus infection is of specific importance in crops cultivated for food and fuel. Viruses 49 

cause significant yield and quality losses, and consequently they have important 50 

negative economic impact (1). In the UK, Potato virus Y causes annual potato crop 51 

losses of £30-40 million (2), and in Asia viruses infecting rice (such as Rice grassy 52 

stunt virus) can cause annual crop losses of $120 million (3). These examples highlight 53 

the need for fast and accurate virus detection methods. Viral infection symptoms can 54 

include yellowing and stunting, but in many cases symptoms can be absent or masked 55 

by other factors. In some cases plant viruses interact synergistically, to cause new or 56 

more severe disease symptoms (4). One example is crumbly fruit complex disease of 57 

raspberry, which can be caused by the presence of two viruses; Raspberry bushy 58 

dwarf virus and Raspberry latent virus (5).  As crops are cultivated in new geographical 59 

locations and agricultural practices are intensified, there is an increasing risk of new 60 

viruses becoming established, and existing ones widening their host range. Hence, 61 

plant virus diagnostics is a field of increasing significance in terms of future food 62 

security. 63 

 64 

Standard molecular techniques for detection of viruses include methods based on 65 

reverse transcriptase polymerase chain reaction (RT-PCR). But such techniques only 66 

allow the detection of known viruses, i.e. each test is specific to one virus or a very 67 

small number of related viruses (6). Furthermore, viral genomes evolve which can 68 

make tests ineffective over time, making disease diagnosis slow and restrictive. Such 69 

limitations have recently been overcome through the use of next generation 70 

sequencing (NGS) methods for hypothesis-free simultaneous detection of multiple 71 

viruses (7). The majority of plant viruses have RNA as their genetic material and those 72 

that have DNA genomes produce RNA transcripts. In addition, eukaryote small 73 

interfering RNAs (siRNAs) direct antiviral immunity through RNA interference and 74 

during this process virus-derived siRNAs are enriched in the host (8). Hence, both 75 

RNA and small RNA (sRNA) sequencing are effective methods for virus detection in 76 

plants. However, this relies upon two important elements: (a) robust RNA extraction 77 

and enrichment protocols, and (b) fast and robust bioinformatics tools for virus 78 

identification. 79 

 80 

A range of RNA-extraction and enrichment protocols, and bioinformatics workflows, 81 

has previously been developed for human clinical samples (for review see (9). 82 

Recently such work has resulted in a viral disease diagnosis and actionable clinical 83 

management within 48 hours (10). The workflow used in this clinical work comprised 84 

the two main elements required for a virus diagnostic tool: (a) identification and 85 

removal of host nucleotide sequences, and (b) identification of virus sequences. 86 

However, virus detection in clinical samples presents an easier problem than in plants, 87 

as the human genome is well annotated (allowing easy removal of host sequences), 88 

and human virus data are more prevalent in sequence databases (allowing for easy 89 

identification of the virus sequences that are present). In comparison, many crop plant 90 
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genomes are incomplete or poorly annotated, and plant virus sequences are under-91 

represented in databases. 92 

 93 

We recently reviewed the bioinformatics tools and workflows currently available for 94 

virus detection from NGS data (9). From this we concluded that the majority were 95 

optimised for human NGS data, few went beyond sequence identity for virus 96 

identification, and many required significant computational knowledge for installation 97 

and/or use. Two tools, Taxonmer (11) and VirusDetect (12) are available as web 98 

servers and provide the potential for the analysis of RNA-sequence data from plants 99 

(2). However, the review highlighted the fact that whilst three published tools had been 100 

tested on plant data, projects focused on detecting viruses in plants have not used 101 

them. Instead, projects have used standalone mapping and assembly algorithms 102 

outside of a workflow, as this approach has generally offered greater flexibility during 103 

the analysis. 104 

 105 

Any virus identification workflow needs to be capable of: (a) conducting quality control 106 

measures on raw data files, including trimming of poor quality reads and adaptor 107 

sequences, (b) identifying host sequences and (c) identifying viral sequences. The 108 

identification of known viruses can be done by mapping to a database of existing virus 109 

sequences, but the identification of new strains or novel viruses requires expert 110 

knowledge and additional analyses beyond a workflow. 111 

 112 

Many of the published virus detection workflows use contig assembly and mapping 113 

algorithms to identify viral sequences (9). But, both assembly and mapping can be 114 

very computationally intensive, meaning that workflows can have long run times for 115 

large datasets. Assembly and mapping methods also result in unassembled reads 116 

being left unidentified. One alternative way to identify virus reads in RNA-seq datasets 117 

is to use k-mer profiling, which has been successfully implemented in Taxonomer (11). 118 

RNA and DNA sequences can be treated as character strings and divided into multiple 119 

substrings of length k. In this way a sequence can be represented by k-mer profiles, 120 

and these profiles can be compared for taxonomic assignment. K-mer profiles have 121 

been used in a range of similarity searches in bioinformatics. In metagenomics it 122 

allows alignment-free similarity analyses between sequences (13), and in taxonomic 123 

profiling, binning methods use k-mer profiles to cluster sequences and allow draft 124 

genome recovery (14). Such methods have also successfully been applied to the 125 

identification of viral haplotypes within a population without using a reference genome 126 

(15). 127 

 128 

The Kodoja workflow, presented here, combines a set of unique features that make it 129 

applicable to a wide range of researchers working with NGS datasets. Our aim was to 130 

develop a workflow that went beyond assembly and mapping methods, that was 131 

specifically optimised for plant datasets, and was accessible to the non-132 

bioinformatician. Kodoja is a workflow that allows virus sequences to be identified from 133 

mixed (comprising both plant and potentially viral, bacterial and fungal nucleotides) 134 
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RNA-seq data.  Kodoja is unique in that it is (a) specific for plant NGS data, (b) uses 135 

k-mer profiling at the nucleotide level and sequence alignment at the protein level for 136 

virus classification by integrating the existing tools Kraken (16) and Kaiju (17), (c) is 137 

available for local installation through Bioconda (18), and (d) is available as a tool 138 

within the Galaxy web-based analytical environment (19). 139 

 140 

 141 

2.0 Methods 142 

 143 

2.1. The Kodoja workflow 144 

The Kodoja workflow combines two existing tools, Kraken (16) for taxonomic 145 

classification using k-mers at the nucleotide level and Kaiju (17) for sequence 146 

matching at the protein level. Kodoja has three main components, summarized in 147 

Figure 1: (a) kodoja_build for database generation for Kraken and Kaiju (b) 148 

kodoja_search for the taxonomic classification of RNA-seq reads, and (c) 149 

kodoja_retrieve for extraction of viral sequences by species for downstream analysis.   150 

 151 

2.1.1. Kodoja_build: Database generation 152 

For virus classification, the main Kodoja components (Kraken (16) and Kaiju (17)) 153 

each require a database generated from the genome or proteome of known plant 154 

viruses, and (if available) the genome or proteome of the plant host.  Data download 155 

and database generation are achieved using the kodoja_build module. This module 156 

downloads genomes and protein sequence files from RefSeq (20), and then 157 

implements code from Kraken and Kaiju to generate tool-specific databases. The user 158 

can specify if all viruses or only plant viruses are included in the databases. If a host 159 

genome is available (either provided by the user or in RefSeq (20)), this can also be 160 

added to the database for host sequence classification.  161 

 162 

To make Kodoja easy to use, ready-made plant-specific viral databases for Kraken 163 

and Kaiju are provided for download at https://doi.org/10.5281/zenodo.1406071. 164 

These were generated by downloading all complete virus and viroid genomes and 165 

protein sequence files in NCBI RefSeq (Release 89)(20) and selecting plant viruses 166 

using information from the Virus-Host DB (21). For Kraken, k-mer size is specified 167 

when building the database, and a k-mer size of 31 was used for the RNA-seq 168 

datasets.  169 

 170 

2.1.2. Kodoja_search: Taxonomic classification of virus reads 171 

Kodoja_search is the main Kodoja component. RNA-seq reads are first quality 172 

checked using Trimmomatic (22) which trims and discards low-quality reads. FastQC 173 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is used for summarizing 174 

the read quality after trimming, and the FASTQC report forms part of Kodoja’s results. 175 

Kraken (16) is then used for the nucleotide-level classification. Kraken is a sequence 176 

classification algorithm for assigning taxonomic labels to short sequences (16). It does 177 

this through dividing each sequence into k-mers and querying each against a k-mer 178 
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database. K-mers which are shared between organisms are mapped to the lowest 179 

common ancestor, and this information is then used to build a subtree of the general 180 

taxonomy tree for the classification of the sequences. In the tree, each node has a 181 

weight equal to the number of k-mers in the sequence associated with the node’s 182 

taxon. Each root-to-leaf path in the tree is scored by adding all the weights in the path. 183 

The  leaf of the path with the largest score is the classification used for the sequence 184 

(16).  The use of the k-mer database makes the classification algorithm very fast 185 

compared to alignment based methods (11). 186 

 187 

In the next step full length sequence reads are translated and classified at the protein-188 

level using Kaiju (17). Kaiju translates the sequences into six frames and splits the 189 

resulting translations into fragments using translation termination codons (UAG, UAA, 190 

UGA). Kaiju balances precision and sensitivity by using a minimum fragment length 191 

parameter. We used a minimum fragment length of 15 and the number of mismatches 192 

permitted was one. Fragments are queried against a protein database using a 193 

modified version of the backwards search algorithm in the Burrows–Wheeler transform 194 

(23). A key component of sequence classification for both Kraken and Kaiju is the tool-195 

specific database. We have provided pre-computed plant virus databases that can be 196 

used directly with the Kodoja workflow, but custom databases can also be made using 197 

kodoja_build (see section 2.1.1). 198 

 199 

Implementation of the kodoja_search module results in reads being assigned to 200 

taxonomic classes by both Kraken and Kaiju. Reads assigned to the same virus class 201 

by both tools (set intersection) are designated as stringent assignments; and reads 202 

assigned to a virus class by either Kraken or Kaiju (set union) are assigned as non-203 

stringent assignments. The assignments are given in a results summary, which 204 

includes the reads counts for each type of assignment. Full results from Kraken and 205 

Kaiju are also provided so that users can analyse these data further, outside of the 206 

Kodoja workflow. 207 

 208 

2.1.3 Kodoja_retrieve: Extraction of viral reads  209 

This module can be used to extract species-specific sequences for downstream 210 

analysis outside of the Kodoja workflow. The user can specify retrieval of reads 211 

classified to a species, and/or genus, using either stringent or non-stringent 212 

assignments. The ability to retrieve and download all reads assigned to a specific virus 213 

gives the user the potential to assemble complete viral genomes for further analysis.  214 

 215 

2.1.4 Kodoja workflow availability 216 

Kodoja is available for direct installation and use at the command line in Linux through 217 

Bioconda (18) (https://anaconda.org/bioconda/kodoja). Alternatively, the code can be 218 

downloaded from github (https://github.com/abaizan/kodoja). Kodoja is also provided 219 

as a package in Galaxy, an open source web-based analytical environment for data 220 

analysis (19). This is available on GitHub (https://github.com/abaizan/kodoja_galaxy) 221 

and the Galaxy Tool Shed (https://toolshed.g2.bx.psu.edu/view/abaizan/kodoja). 222 



 7 

Developing Kodoja as a package within Galaxy makes it available to researchers with 223 

a local installation of Galaxy, and allows analysis to be completed with no command 224 

line input.  By using an open source workflow platform in this way, the tool can also 225 

potentially be used on a cloud-based Galaxy server. 226 

 227 

2.2 Benchmarking Kodoja using existing datasets 228 

Kodoja was tested on three publicly available RNA-seq grapevine datasets (24) 229 

analysed for the presence of viral sequences (25). In the original work sequencing 230 

data for 11 grapevine samples was obtained, including multiple samples from skin, 231 

grain, and seed (24). In the analysis work viral sequences were identified using contig 232 

building and subsequence Blast alignment of contigs to a reference viral database 233 

(25). For the Kodoja benchmarking, we selected one library from grain (G1R1) 234 

(Sequence Read Archive (SRA) identifier SRR866540), skin (S3R1) (SRA: 235 

SRR866571) and seed (S3R3) (SRA:SRR866576); representative of those datasets 236 

with the largest and most diverse viromes. These datasets are denoted GV1, GV2 and 237 

GV3 respectively in the current analysis. 238 

 239 

2.2.1. Assembly and alignment for confirmation  240 

To confirm the viruses predicted by Kodoja, kodoja_retrieve was used to extract reads 241 

assigned to each virus. Reads for each virus were then assembled using Trinity (26) 242 

with minimum contig length of 200 nucleotides. The longest contig for each virus was 243 

then aligned against the NCBI non-redundant nucleotide database using Blastn, and 244 

the match with lowest e-value selected for taxonomic comparison. Where too few 245 

reads were available for contig assembly, all reads assigned to a virus species by 246 

Kodoja were aligned. 247 

 248 

2.3. Applying Kodoja to virus detection in Raspberry (Rubus idaeus) 249 

Kodoja was then applied to RNA-seq libraries generated from two raspberry plants of 250 

variety Glen Dee (denoted D5 and D6) collected from a commercial raspberry 251 

plantation in Angus, Scotland, UK. Both plants showed viral infection symptoms: D5 252 

showed vein yellowing and D6 showed leaf blade yellowing (Figure 2). 253 

 254 

2.3.1 RNA-sequencing 255 

Symptomatic leaves were collected from each plant (D5 and D6) and frozen at -80ºC 256 

for long-term storage (15 months). Two samples of leaf were placed in a clean, 257 

autoclaved 2 ml Eppendorf tube together with a sterile 3 mm glass bead, frozen with 258 

liquid nitrogen and then powdered using a bead beater (Qiagen TissueLyser). Then 259 

100 mg of powdered leaf was resuspended in a mixture of 450 µl Qiagen RNeasy 260 

Plant Mini Kit buffer RLT, 45 µl Ambion Plant RNA isolation aid and 4.5 µl 2-261 

mercaptoethanol. Thereafter the RNA extraction followed the manufacturer’s 262 

instructions to the RNeasy kit, and the RNA was eluted in RNAse-free water. The RNA 263 

was supplied to the Glasgow Polyomics facility (UK) for quality control, ribosomal RNA 264 

depletion, library preparation (paired-end 200 bp) and high-throughput sequencing 265 

using an Illumina NextSeq instrument (RD_PE2x75_33M). The raw data files for 266 
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sample D5 and D6 comprised 64 M and 62 M reads respectively (available from the 267 

European Nucleotide Archive (27) under accessions ERR2784286 and ERR2784287 268 

respectively). 269 

 270 

2.3.2 Kodoja analysis of raspberry RNA-seq datasets 271 

The Kodoja workflow was run on the two raspberry RNA-seq datasets, using the  272 

draft genome of black raspberry (Rubus occidentalis)(28) as the host in the Kraken 273 

database build.   274 

 275 

 276 

2.3.3 Assembly and alignment for confirmation 277 

To confirm the predicted viruses, kodoja_retrieve was used to extract reads assigned 278 

to each virus species; and contigs were assembled and aligned to a reference 279 

database as described in section 2.2.1. 280 

 281 

2.3.4 PCR confirmation of virus sequences 282 

To confirm that the viruses identified by Kodoja were present, new samples of total 283 

RNA were extracted from the frozen leaves of sample D5 and D6 using the Thompson 284 

buffer method as described previously (29) and eluted in RNAse-free water. For 285 

detection of Raspberry leaf mottle virus (RLMV) the plant RNA was converted to cDNA 286 

using SuperScript III (Invitrogen) reverse transcriptase and random hexamer primer 287 

following the manufacturer’s instructions. For other RNA viruses (Raspberry leaf 288 

blotch virus (RLBV) and Beet ringspot virus (BRSV)) the extracted plant RNA was 289 

added directly to a 25 µl illustra Ready-to-Go RT-PCR bead (GE Healthcare) reaction 290 

together with virus-specific PCR primers (Table 1). To detect the DNA plant virus 291 

Rubus yellow net virus (RYNV), six 1 cm diameter frozen D5 and D6 leaf discs were 292 

extracted using the DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s 293 

instructions. RYNV was detected in the eluted DNA by amplification in a 25 µl illustra 294 

Ready-to-Go PCR bead (GE Healthcare) reaction with virus-specific primers (Table 295 

1). Positive controls for virus-detection were RNAs extracted from raspberry plants 296 

previously demonstrated to carry specific viruses. 297 

 298 

3.0 Results 299 

 300 

3.1 Benchmarking of Kodoja workflow on RNA-seq from grapevine  301 

The Kodoja workflow was applied to three publicly available RNA-seq libraries 302 

generated from grapevine (24) and analysed for virus sequences (25). The viral 303 

sequences detected [with stringent level assignments for viruses and non-stringent for 304 

viroids (as viroids do not have protein assignments in RefSeq)] in each sample are 305 

summarized in Table 2. Kodoja identified 6, 12 and 9 virus sequences in samples GV1, 306 

GV2 and GV3 respectively. For each sample, Kodoja identified all the viral sequences 307 

reported in the previous study (25), and in addition, identified 8 viral sequences not 308 

reported in the previous study; Grapevine leafroll-associated virus 1 (GLRaV1), Apple 309 

mosaic virus (ApMV), Grapevine yellow speckle viroid 2 (GYSVd2), Grapevine rupetris 310 
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vein feathering virus (GRVFV), Parietaria mottle virus (PMoV), Grapevine asteroid 311 

mosaic-associated virus (GAMaV) and Grapevine rootstock stem lesion associated 312 

virus (GRSLaV) (Table 2). One explanation for the identification of additional virus 313 

sequences, could be their submission to GenBank after the date of the previous study 314 

(2015). However, 6 of the additional sequences have GenBank submission dates prior 315 

to 2011 and only GRVFV and GAMaV have submission dates after 2014 (GAMaV: 316 

2016 and GRVFV: 2017). GAMaV was identified by Kodoja in GV3, and GRVFV was 317 

identified in GV2 and GV3. Only two viruses reported in the previous study were not 318 

identified by Kodoja: Grapevine Pinot Gris virus (GPGV) in GV1, and the Oat blue 319 

dwarf virus (OBDV) in GV3. 320 

 321 

Overall, 85.2% (23/27) of virus species identified by Kodoja were confirmed by the 322 

contig assembly and Blast alignment process (Table 2). This included viruses that had 323 

not been identified in the previous study (including GRVFV in GV2 and GV3, and 324 

GAMaV in GV3). Contig mapping to reference genomes for these two viruses, showed 325 

that multiple and extensive regions of the virus genomes were present in the dataset 326 

(Figure 3). However, two viruses identified by Kodoja were classified as different 327 

species by contig assembly and Blast alignment. GYSVd2 was a viroid identified in all 328 

three samples by Kodoja (Table 2), but was classified as Grapevine yellow speckle 329 

viroid 1 (GYSVd1) by the confirmation process. GRSLaV sequences were identified 330 

in GV2 by both Kodoja and Jo et al., 2015 but the sequences were classified as 331 

Grapevine leafroll-associated virus 2 (GLRaV2) by the confirmation process.  332 

 333 

3.2 Application of Kodoja for the detection of viruses in Raspberry  334 

Kodoja was then applied to the identification of virus sequences in two field-grown 335 

raspberry plants with virus-like symptoms (Figure 2). Classifying reads with stringent 336 

assignments only, Kodoja identified six viruses in D5 and five viruses in D6 (Table 3). 337 

This included Raspberry leaf blotch virus (RLBV), Rubus yellow net virus (RYNV) and 338 

Cherry leaf roll virus (CLRV) detected in both samples; and Beet ringspot virus (BRSV) 339 

detected in D5 only and Raspberry leaf mottle virus (RLMV) detected in D6 only. The 340 

contig assembly and Blast confirmation process showed that all the assembled contigs 341 

corresponded to the viruses identified by Kodoja (Table 3). Contig mapping to 342 

reference genomes for selected viruses, showed that multiple and extensive regions 343 

of RYNV, RLMV and RLBV genomes were present in the datasets, but only a very 344 

short region of the BRSV genome was detected (Figure 4). 345 

 346 

In a further confirmation step, RT-PCR was done with a previously used virus-specific 347 

primer pair for each of RLMV, RLBV and RYNV (Table 1; primers designed using 348 

previously published sequences). These primers detected RLMV in D6 only as 349 

predicted by Kodoja (Table 3). However, these primers did not detect RLBV or RYNV 350 

in either D5 or D6 as predicted by Kodoja (Table 3). Hence, samples D5 and D6 were 351 

tested with three additional RLBV primer pairs [1491/1492, 1495/1496, 2113/2114 352 

(Table 1)] that target three different RLBV RNAs (RLBV has eight viral RNAs in total) 353 

based on the sequences assembled from D6. A very faint amplification band was 354 
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obtained with primer pair 1491/1492, suggesting a low level of RLBV RNA was present 355 

in this sample. However, none of the other RLBV-specific primer pairs produced a 356 

positive result for RLBV in D6. None of the 4 RLBV primer pairs gave amplification 357 

bands for D5, despite Kodoja predicting the virus was present and despite these 358 

primers producing a strong amplification of RLBV from a positive control plant. It 359 

should be mentioned that contamination of material submitted for deep sequencing 360 

can occur, particularly when preparation work is done in laboratories lacking 361 

designated clean rooms. This could be an alternative explanation for the failure to 362 

confirm the presence of RLBV by RT-PCR from the D5 and D6 samples. 363 

 364 

An additional primer pair was then designed for RYNV [3470/3471(Table 1)] based on 365 

the sequence assembled from D6 and was tested on samples D5 and D6. This RT-366 

PCR gave an amplification band for both D5 and D6 but produced non-specific 367 

amplification with a RYNV positive control plant (Figure 5A). In an additional test, a 368 

new BRSV RNA2-specific primer pair [3472/3473 (Table 1)] was designed based on 369 

the sequences assembled from D5. This primer pair detected BRSV in both D5 and 370 

D6, even though Kodoja only predicted the presence of BRSV in D5 (Figure 5B).  371 

 372 

Discussion 373 

We have developed and applied a new computational workflow (Kodoja) for the 374 

identification of plant virus sequences in RNA-seq data. The testing of Kodoja on 3 375 

existing RNA-seq datasets from grapevine showed it had increased sensitivity 376 

compared to an analysis comprising the traditional tools of contig building and Blast 377 

alignment. The previous analysis identified a total of 19 (non-unique) viruses across 378 

the 3 samples (25), but Kodoja identified 27. This increased sensitivity comes from the 379 

use of k-mer profiling, rather than contig assembly. The ability of Kodoja, to identify 380 

virus sequences present at lower levels than are detectable using contig building 381 

methods, means that viruses could be detected in plants before symptoms appear. 382 

This sensitivity was also exemplified when Kodoja was applied to raspberry. RYNV 383 

was reported with just 44 reads meeting the stringent classification criteria, and the 384 

presence of this virus sequence was confirmed by the RT-PCR.  385 

 386 

The work to benchmark Kodoja using existing datasets gave insights into the difficulty 387 

of viral sequence identification in mixed (comprising both plant and potentially viral, 388 

bacterial and fungal nucleotides) RNA-seq datasets. One key complexity, when a 389 

workflow does not include contig building, is the miss-classification of viruses, which 390 

arises due to the small evolutionary distances existing between some viral taxa.  This 391 

was the case when Kodoja identified GYSVd1 as GYSVd2 and GLRaV2 as GRSLaV.  392 

GYSVd1 and GYSVda are viroids, that have a single stranded circular RNA genome 393 

that does not code for protein. Hence, the Kodoja assignment for this viroid was made 394 

only at the nucleotide level, and this could explain its incorrect classification. In 395 

addition, GLRaV2 was incorrectly classified as GRSLaV. GLRaV2 is known to be the 396 

closest related virus to GRSLaV within the Closteroviridae family (30), with between 397 

71-79% sequence identify across 9 ORFs and this could explain why the k-mer 398 
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analysis made an incorrect classification. The raspberry analysis showed that Kodoja 399 

reports viruses even if they are present at reads at low levels.  400 

 401 

The detection of known viruses using Kodoja is dependent upon the virus dataset used 402 

to generate the k-mer databases for Kraken (16) and Kaiju (17). The size of the 403 

databases will greatly influence both the sensitivity and the speed of the workflow. We 404 

have used a dataset derived from RefSeq (v89)(20) which comprises 7946 non-405 

redundant viral genome sequences. This means that one virus is represented by a 406 

single reference sequence and variants are excluded. Hence, the workflow is in some 407 

ways restrictive, and could potentially leave some sequences unclassified or miss-408 

classified if they are derived from diverse sequence variants. An alternative to RefSeq 409 

would be Genbank (31), which  comprises 2.7 million redundant viral sequences 410 

(v228) and includes virus variants. However, creating k-mer databases for such a large 411 

dataset would be prohibitively expensive in terms of time taken for the database build 412 

and running the kodoja_search module. A trade-off between run time and sensitivity 413 

could potentially be achieved by using a new database Reference Viral database 414 

(RVDB)(32). This database includes a clustered set of virus sequences, extracted 415 

from Genbank (31) which comprises 561,676 representatives. This clustered 416 

database was designed to retain viral diversity and reduce redundancy (32). It would 417 

be possible to use this dataset to generate k-mer databases for Kodoja that would 418 

increase sensitivity further, without completely compromising speed. 419 

 420 

The application of the Kodoja workflow to RNA-seq data from raspberry demonstrated 421 

that field-grown raspberry plants can frequently be infected with multiple viruses, and 422 

that relying on visual symptoms to identify viruses is often not possible. In addition, 423 

this work clearly demonstrated the limitations of primer-based methods for virus 424 

detection (RT-PCR and PCR). The innate variability in the nucleotide sequence of 425 

plant viruses means that it is very difficult/impossible to design diagnostic primers that 426 

can detect many/all isolates of the same virus. For RYNV, the primer pair 1752/1753 427 

gave strong amplification of the isolate carried within our positive control plant but 428 

could not amplify the virus in D5 and D6.  429 

 430 

The prediction of BRSV, a nepovirus, in D5 and the creation of a new PCR-primer pair 431 

based on the D5 sequences, represents a step forward in virus testing for raspberry. 432 

Nepoviruses are soil-borne, nematode-transmitted, viruses that are recognized as 433 

important pathogens of many crops, including raspberries (33). Historically, when 434 

serological reactions and host ranges were used to characterise viruses, BRSV was 435 

thought to be an isolate of Tomato black ring virus (TBRV) (34). However, it is now 436 

clear that BRSV is a different virus to TBRV (35), and the BRSV test we have designed 437 

here will now become part of the battery of molecular tests we use for virus testing of 438 

raspberry. 439 

 440 

The sequencing and analysis of small RNAs (sRNA-seq) has also proved successful 441 

in detecting siRNAs duplexes induced by plant viruses (36), and a specific workflow 442 
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has been developed for this purpose (12). Whilst Kodoja is optimized for RNA-seq 443 

datasets, we did apply Kodoja to a previously published sRNA-seq dataset  from 444 

Grapevine (37) (unpublished data), however the success of Kodoja was less clear 445 

than for the RNA-seq datasets. Using Kodoja, we detected all viruses reported in the 446 

original study, but in addition a further 16 viruses were detected. However, these 447 

additional viruses could not be validated as the read counts were low and made contig 448 

building impossible. Further optimization and benchmarking would be required for 449 

Kodoja to be used effectively on sRNA-seq datasets.   450 

 451 

The testing and application of Kodoja, has exemplified its ability to be used 452 

successfully for virus identification in RNA-seq datasets. Kodoja is the first workflow 453 

to apply a k-mers analysis method for virus detection specifically in plants, and in 454 

addition it is the first plant virus detection workflow to be made available through 455 

BioConda and as a Galaxy application. This accessibility will make it available to a 456 

wide range of researchers, working on diverse plant species. Our application of the 457 

workflow to raspberry has highlighted its potential to develop new primers to enhance 458 

serological testing and such advances will also be possible with other crops. 459 
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Table and Figure Legends 585 

 586 

Table 1.  587 

Information on the RT-PCR primer pairs for the confirmation of four raspberry viruses; 588 

Raspberry leaf mottle virus (RLMV), Raspberry leaf blotch virus (RLBV), Rubus yellow 589 

net virus (RYNV) and Beet ringspot virus (BRSV) predicted to be present in raspberry 590 

samples D5 and D6 by Kodoja. 591 

 592 

Table 2.  593 

Kodoja results for the three RNA-sequence datasets from grapevine. The species 594 

taxonomic identify from the NCBI Taxonomy database (38) is shown in column 4 (Sp 595 

TaxID), the number total number of reads that were classified to each virus species is 596 

shown in column 5 (Sp seq), the number of reads classified by both Kaiju and Kraken 597 

(stringent for viruses) (Sp seq (S)) is shown in column 6. The results of the contig 598 

building and BlastN confirmation process are indicated in column 9. Y indicates that 599 

the BlastN alignment assigned the sequences to the same species as Kodoja. N 600 

indicates that BlastN assigned the sequences to a different species to Kodoja. The 601 

detection of the viruses in the original work is indicated in Column 10. 602 

 603 

Table 3. Kodoja results for the 2 RNA-seq datasets from raspberry. The column 604 

headers are as described for Table 2. The results of the RT-PCR confirmation 605 

experiments are indicated in the last 7 columns, with Y indicating the virus was 606 

detected with the specified primer pair and N indicating the virus was not detected.  607 

 608 

Figure 1.  609 

Flow diagram summarizing the 3 modules of the Kodoja workflow: kodoja_build, 610 

kodoja_search and kodoja_retrieve. 611 

 612 

Figure 2.  613 

Images of leaves taken from two Glen Dee raspberry plants grown on a commercial 614 

farm in Angus, Scotland, UK. (A) Plant D5 showing major vein yellowing and (B) 615 

Plant D6 showing leaf blade yellowing. 616 

 617 

 618 

 619 

Figure 3. 620 

Diagrammatic alignments of selected virus contigs to their reference genomes. (A) 621 

Alignment for Grapevine rupestris vein feathering virus (GRVFV) from dataset GV2, 622 

(B) Alignment for Grapevine asteroid mosaic-associated virus (GAMaV) from GV3, (C) 623 

Alignment for GRVFV from dataset GV3. 624 

 625 

Figure 4. 626 

Diagrammatic alignments of the selected virus contigs to their reference genomes. (A) 627 

Beet ringspot virus (BRSV) from D5, (B) Rubus yellow net virus (RYNV) from D5, (C) 628 
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Raspberry leaf mottle virus (RLMV) from D6, (D) RYNV from D6 and (E) Raspberry 629 

leaf blotch virus from D6. 630 

 631 

Figure 5. Virus detection by RT-PCR in raspberry. (A)  Raspberry yellow net virus 632 

(RYNV) amplified with primers 3470/3471. (B) BRSV amplified with primers 633 

3472/3473. Within each panel, lane 1 is kilobase DNA markers (500bp and 250bp 634 

markers are indicated), lane 2 is water only amplification, lane 3 is sample D5 RNA, 635 

lane 4 is sample D6 RNA, lane 5 is RNA extracted from a known RYNV-infected (A) 636 

or BRSV-infected (B) plant. 637 
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Virus Primer pair number Sequence 

RLMV  

 

991/992 CGAAACTTYTACGGGGAAC/ 

CCTTTGAAYTCTTTAACATCGT 

 

 

 

RLBV 

1095/1287 CACCATCAGGAACTTGTAATGTTT/ 

ATCCAGTAGTGAACTCC 

1491/1492 GGTGAATGAGTTCTATACTAAGAC/ 

TCGACACTCATCAGAATAATTGCC 

1495/1496 GAATTGCAAGGCAAATCAGC/ 

GCATTCTGACCATTCCTCAAA 

2113/2114 CAAAGAGTTGCGTCATGTCA/ 

CCATTCCAGTATTCAACATCTGA 

 

RYNV  

1752/1753 TCCAAAACCTCCCAGACCTAAAAC/ 

ATAATCGCAAAAGGCAAGCCAC 

3470/3471 ATAATCACAAAAAGCTAACCAC/ 

TCCAGAACCTCCCAGACCTCAAAC 

BRSV 3472/3473 GCCACTGTACAGCCCATCTT/ 

AGAGTAAGATCAGAGGCACGT 

Table  1
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  Virus species Acronym Sp TaxID Sp seqs Sp seq (S) Genus Genus seqs BlastN Jo et al (2015) 

GV1 

Grapevine rupestris stem pitting-associated virus GRSPaV 196400 63151 7057 Foveavirus 103 Y Y 

Grapevine leafroll-associated virus 1 GLRaV1 47985 3 1 Ampelovirus 0 Y N 

Apple mosaic virus ApMV 12319 1 1 Ilarvirus 0 Y N 

Hop stunt viroid HSVd 12893 1636 0 Hostuviroid 0 Y Y 

Grapevine yellow speckle viroid 1 GYSVd1 12904 1371 0 Apscaviroid 14 Y Y 

Grapevine yellow speckle viroid 2 GYSVd2 46342 251 0 Apscaviroid 14 N N 

GV2 

Grapevine rupestris stem pitting-associated virus GRSPaV 196400 305827 54432 Foveavirus 463 Y Y 

Grapevine Pinot gris virus GPGV 1051792 2116 2026 Trichovirus 22 Y Y 

Potato virus Y PVY 12216 2449 1007 Potyvirus 232 Y Y 

Grapevine rupestris vein feathering virus GRVFV  204933 566 183 Marafivirus 0 Y N 

Grapevine leafroll-associated virus 2 GLRaV2 64003 447 154 Closterovirus 34 Y Y 

Cucumber mosaic virus CMV 12305 50 40 Cucumovirus 0 Y Y 

Grapevine rootstock stem lesion associated virus GRSLaV 167634 109 16 Closterovirus 34 N Y 

Alfalfa mosaic virus AMV 12321 19 15 Alfamovirus 0 Y Y 

Parietaria mottle virus PMoV 64958 1 1 Ilarvirus 0 Y N 

Hop stunt viroid HSVd 12893 1604 0 Hostuviroid 0 Y Y 

Grapevine yellow speckle viroid 1 GYSVd1 12904 440 0 Apscaviroid 5 Y Y 

Grapevine yellow speckle viroid 2 GYSVd2 46342 129 0 Apscaviroid 5 N N 

GV3 

Grapevine rupestris stem pitting-associated virus GRSPaV 196400 20645 3781 Foveavirus 22 Y Y 

Grapevine Pinot gris virus GPGV 1051792 234 223 Trichovirus 1 Y Y 

Grapevine asteroid mosaic-associated virus GAMaV 103724 236 163 Marafivirus 3 Y N 

Grapevine rupestris vein feathering virus GRVFV  204933 84 27 Marafivirus 3 Y N 

Grapevine leafroll-associated virus 2 GLRaV2 64003 29 10 Closterovirus 0 Y Y 

Grapevine rootstock stem lesion associated virus GRSLaV 167634 16 2 Closterovirus 0 Y N 

Hop stunt viroid HSVd 12893 945 0 Hostuviroid 0 Y Y 

Grapevine yellow speckle viroid 1 GYSVd1 12904 129 0 Apscaviroid 2 Y Y 

Grapevine yellow speckle viroid 2 GYSVd2 46342 25 0 Apscaviroid 2 N N 

Table 2 
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Virus species Acronym Sp TaxID Sp seqs 
Sp seqs 

(S) 
Genus 

Genus 
seqs 

 
 
 

BlastN 

RT-PCR Primers R
LM

V
 9

1
1

/9
1

2
 

R
LB

V
 1

0
9

5
/1

0
9

4
 

R
LB

V
 1

4
9

5
/1

4
9

6
 

R
LB

V
 2

1
1

3
/2

1
1

4
 

R
YN

V
 1

7
5

2
/1

7
5

3
 

R
YN

V
 3

4
7

0
/3

4
7

0
 

B
R

SV
 3

4
7

2
/3

4
7

3
 

D5 

Beet ringspot virus BRSV 191547 80 36 Nepovirus 10 Y             Y 

Rubus yellow net virus RYNV 198310 287 24 Badnavirus 0 Y     N Y   

Raspberry leaf blotch virus RLBV 1980431 16 16 Emaravirus 0 Y  N N N     

Cherry leaf roll virus CLRV 12615 11 6 Nepovirus 10 Y         

Tomato black ring virus TBRV 12275 7 2 Nepovirus 10 Y         

Pelargonium leaf curl virus PLCV 35280 1 1 Tombusvirus 0 Y               

D6 

Raspberry leaf mottle virus RLMV 326941 15011 912 Closterovirus 51 Y Y        

Raspberry leaf blotch virus RLBV 1980431 225 186 Emaravirus 0 Y  N Y N     

Rubus yellow net virus RYNV 198310 629 44 Badnavirus 2 Y     N Y   

Cherry leaf roll virus CLRV 12615 20 10 Nepovirus 0 Y         

Tobacco mosaic virus TMV 12242 2 1 Tobamovirus 1 Y               

Table 3 
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Figure  1. 
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Figure  2. 
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Figure  3. 
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Figure  4. 
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Figure  5. 
 

 


