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Abstract

Adolescence may be a period of increased vulnerability to the onset of drug misuse 
and addiction due to changes in developing brain networks that support cognitive 
and reward processing. Cannabis is a widely misused illicit drug in adolescence 
which can lead to dependence and alterations in reward-related neural functioning. 
Concerns exist that cannabis-related alterations in these reward networks in 
adolescence may sensitize behaviour towards all forms of reward that increases the 
risk of further drug use. Taking a functional connectomics approach, we compared 
an acutely abstinent adolescent cannabis-dependent (CAN) group with adolescent 
controls (CON) on global measures of network topology associated with anticipation 
on a monetary incentive delay task. In the presence of overall superior accuracy, the 
CAN group exhibited superior global connectivity (clustering coefficient, efficiency, 
characteristic path length) during monetary gain anticipation compared to the CON 
group. Additional analyses showed that the CAN group exhibited significantly 
greater connectivity strength during monetary gain anticipation across a sub-network 
that included mesocorticolimbic nodes involving both inter and intra hemispheric 
connections. We discuss how these differences in reward-associated connectivity 
may allude to subtle functional alterations in network architecture in adolescent 
cannabis-dependence that could enhance the motivation for non-drug reward during 
acute abstinence.
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Introduction

Adolescence is a period of substantial neurobiological development. 

Adolescents exhibit a number of psychological traits, such as risk-taking and 

reward-seeking (Steinberg, 2008; van Hemel-Ruiter et al., 2012), the emergence of 

which may reflect the relatively early functional development of brain networks 

related to these behaviours (Casey et al., 2008; Galvan et al., 2006). As such, the 

period of adolescence may confer an increased vulnerability, in some, to the onset 

of drug misuse and addiction (Chambers et al., 2003; Nixon et al., 2010), due to 

developmental changes in brain networks (Schneider et al., 2012; Stice et al., 2013; 

Whelan et al., 2012). Cannabis is a widely misused illicit drug in adolescence (Eaton 

et al., 2006), which can lead to dependence (Chen et al., 2005) and alterations in 

reward-related neural functioning (Ellgren et al., 2008; Jager et al., 2013). 

Significantly, cannabis use in adolescence may enhance the motivation to use other 

illicit drugs of abuse (Lopez-Quintero et al., 2018; Taylor et al., 2017), possibly due 

to perturbed alterations in brain connectivity (Manza et al., 2018; Orr et al., 2013; 

Prashad et al., 2018). Therefore, probing functional connectivity related to 

motivation and reward-seeking may elucidate important functional alterations in 

network architecture that are provisions for the maintenance of addiction in 

adolescence.

The widespread spatial distribution of functional abnormalities reported in 

clinical populations during functional MRI studies may suggest that there are 

extensive disruptions to network functioning across the entire brain. The integrity of 

brain networks can be probed by extracting graph characteristics that relate to their 

topological functioning (Bullmore et al., 2009a), a method that has already been 

used to capture properties of resting state connectivity in psychiatric populations 
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(Bassett et al., 2008; Luo et al., 2015; Ye et al., 2015), including addiction (Jiang et 

al., 2013; Morris et al., 2018; Sjoerds et al., 2017; Tschernegg et al., 2013; Yuan et 

al., 2010). The properties of resting state networks cannot fully elucidate the 

characteristics of brain connectivity related to specific types of behaviour, however, 

and thus require a behavioural-based approach to characterising network 

functioning. Indeed, this behavioural-based connectivity approach has been utilized 

in various clinical psychiatric populations (Fornito et al., 2011; Manelis et al., 2016; 

Ray et al., 2017), providing a more precise evaluation of functional connectivity 

across networks that relate to specific behavioural processes. Importantly, 

processing related to different behaviours in addiction populations may also be 

evaluated across brain networks that could explicate alterations in functional 

connectivity that maintain addiction. 

There is some evidence that cannabis use may sensitize brain network 

functioning (Prashad et al., 2018), particularly in regions that respond under 

conditions of non-drug reward-seeking (Filbey et al., 2013b; Jager et al., 2013; 

Nestor et al., 2010). While this evidence appears to contravene more widespread 

findings of deficits in non-drug reward processing in addiction populations (Luijten et 

al., 2017), these studies have probed regional differences using analytic methods 

that cannot capture the features that represent the brain as a single functioning 

network.  Therefore, the current study compared a group of cannabis-dependent 

adolescents in acute abstinence against a group of adolescent controls on 

measures of network functioning associated with anticipation on a monetary 

incentive delay task. We hypothesized that 1) the cannabis group would elicit 

markers of increased global network functioning during the anticipation of non-drug 

rewards and 2) that these markers would be related to life-time cannabis use that 
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may suggest a sensitization of network functioning related to non-drug reward 

processing.                        

Material and Methods

Participants

Eighteen cannabis-dependent adolescents (CAN: mean age 16.50 ± 0.23; 17 

males, 1 female) and 18 comparison healthy adolescent controls (CON: mean age 

16.11 ± 0.41; 17 males, 1 female) completed the current study. Participants were 

screened for past or present histories of psychiatric or neurological illness. 

Information pertaining to any form of treatment (counselling, psychological and 

psychiatric), past or present, was carefully detailed, with any potential participant 

describing any major lifetime psychiatric event or brain injury (e.g. head trauma 

resulting in a loss of consciousness, seizure or stroke) considered ineligible for the 

study. Participants were also considered ineligible if they reported any familial 

psychiatric history (i.e. sibling, parent or grandparent). The CAN group were 

recruited from several drug treatment centres in Dublin, Ireland, and were being 

treated for current cannabis dependence at the time of testing. Diagnosis of 

cannabis dependence in the CAN group was confirmed by a fully qualified 

adolescent psychiatrist who administered the World Health Organization's 

Composite International Diagnostic Interview (CIDI), which is based on diagnostic 

criteria from the Diagnostic and Statistical Manual on Mental Disorders version 

IV(Kessler et al., 1998). The CIDI was also administered to exclude participants 

from either group who met criteria for any Axis I psychiatric disorder other than 

nicotine dependence. The CAN group were asked to refrain from cannabis use the 

night before the scan in order to avoid the potential confounding effects of acute 
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Delta-9-tetrahydrocannabinol (THC) intoxication. All participants provided a urine 

sample which tested for the presence of amphetamines, barbiturates, 

benzodiazepines, cocaine, methadone and opiates, THC, and tricyclic 

antidepressants (Triage® Drugs of Abuse Panel, Inverness Medical UK Limited). All 

members of the CAN group tested positive for THC only. The CON group were 

recruited through university mailing lists. Within the CON group, four had reported 

previous minimal use of cannabis, three of which had reported smoking cannabis in 

the preceding month. Further information about the CON group can be found in 

Behan (Behan et al., 2014), who used the same cohort to test for neural differences 

in cognitive control against a slightly smaller adolescent CAN group using a go/no-

go task. All participants provided written informed consent, and the study was 

conducted in accordance with the Declaration of Helsinki. The study was ethically 

approved by the School of Psychology at Trinity College Dublin, Ireland. 

Questionnaires

As per Behan (Behan et al., 2014), participants were administered the Wide 

Range Achievement Test 4 (WRAT4) to assess basic literacy and arithmetic 

(Wilkinson et al., 2006), the scores of which were subsequently standardised with 

respect to each participant’s age. The short (21 item) form of the Depression anxiety 

and stress scale (DASS) was administered to all participants to assess 

psychological wellbeing during the week prior to study participation (Lovibond et al., 

1995). Current and life-time substance use was measured through the completion of 

a 28-day time-line follow back calendar, and the completion of a general drug use 

questionnaire (Hibell et al., 2003). Drug use and abuse was specifically assessed in 

the both groups using modules taken from the WHO CIDI-SF (Kessler et al., 1998). 

Page 9 of 35 Addiction Biology



For Review Only

The CAN group reported using cannabis for the first time, on average, before 

thirteen years of age (mean 12.89 ± 0.24; range=11-15), with a mean consumption 

of 3830 (±1014.96; range=400-14600) life-time cannabis joints.  

    

Monetary Incentive Delay Task (MID)

We used a “monetary incentive delay task” (MID), which was based on that 

originally employed by Knutson (Knutson et al., 2001), and which was originally 

used to assess the neural correlates of reward processing in cannabis users (Nestor 

et al., 2010). While being scanned participants performed the MID task, during 

which they anticipated potential monetary gain, loss or no potential monetary 

outcome. During each trial, participants viewed one of three coloured squares (cue) 

that indicated the potential to gain fifty cent (green square), lose fifty cent (red 

square) or experience no financial outcome (blue square - here referred to as the 

neutral condition) following their response to an upcoming visual target (see 

Supplementary Fig 1). Each cue was presented for a variable duration (2-8 sec), 

after which participants made a button press response upon the presentation of a 

visual target (star located within a circle). Participants received feedback (1500 ms) 

following their response to the visual target, after which there was an end fixation 

period (2-8 sec) before the commencement of the next trial. Responses to the visual 

target falling within (“hits”) or outside (“misses”) a 400ms response deadline 

received feedback appropriate for that particular trial. We chose this 400 ms time 

frame in order to yield accuracy levels at ~50%, which would serve to maintain the 

participant’s interest in the task. Therefore, participants had four hundred 

milliseconds to respond to the visual target in order to be successful on a gain, loss 

or neutral trial. Each run contained nine gain, nine loss, and nine neutral trials.  
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Therefore, there were a total of 27 trials in each condition, with each trial lasting 

between six and eighteen seconds. The MID was composed of three runs, with each 

run lasting 320 seconds. The order of trials within each run was randomised. 

Dependent measures derived from the data included mean percentage accuracy 

and reaction time for the gain, loss and neutral conditions. The task was 

programmed and run using E-Prime (Psychology Software Tools, Pittsburgh, USA).   

Functional MRI (fMRI) Data Acquisition 

All scanning was conducted on a Philips Intera Achieva 3.0 Tesla MR system 

(Best, The Netherlands) equipped with a mirror that reflected the visual display, 

which was projected onto a panel placed behind the participants' head outside the 

magnet. The mirror was mounted on the head coil in each participant’s line of vision. 

Each scanning sequence began with a reference scan to resolve sensitivity 

variations. A parallel sensitivity encoding (SENSE) approach with a reduction factor 

of 2 was utilised for all T1-weighted image acquisitions (Pruessmann et al., 1999). 

180 high-resolution T1- weighted anatomic MPRAGE axial images (FOV 230 mm, 

thickness 0.9 mm, voxel size 0.9×0.9×0.9) were then acquired (total duration 325 

seconds), to allow subsequent activation localization and spatial normalization. 

Functional data were acquired using a T2* weighted echo-planar imaging sequence 

collecting 32 non-contiguous (10% gap) 3.5 mm axial slices covering the entire brain 

(TE=35 ms, TR=2000 ms, FOV 224 mm, 64×64 mm matrix size in Fourier space). 

Functional scans had a total duration of 320 seconds per run.
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fMRI Data analyses

Data pre-processing and statistical analysis were conducted using FEAT 

(fMRI Expert Analysis Tool) from the FMRIB Software Library (FSL 5.0.9, 

www.fmrib.ox.ac.uk/fsl). Statistical pre-processing was as follows: motion correction 

utilizing FMRIB’s Linear Image Registration Tool (MCFLIRT); non-brain matter 

removal using Brain Extraction Tool (BET); spatial smoothing with a 6-mm full-width 

half maximum Gaussian kernel; mean-based intensity normalization; nonlinear high-

pass temporal filtering (Gaussian-weighted least squares straight line fit, with sigma 

= 25.0 seconds).

For each participant, first level whole-brain mixed-effects analyses were 

performed by modelling the MID anticipation periods (i.e., gain, loss and neutral) as 

explanatory variables within the context of the general linear model on a voxel-by-

voxel basis (variable boxcar functions for the anticipation period regressors were 

convolved with the haemodynamic response function). The gain, loss and neutral 

outcome periods were modelled as regressors of no interest. The end fixation period 

of the task served as the implicit baseline.
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Registration was conducted through a two-step procedure, whereby EPI 

images were first registered to the high-resolution T1 structural image, then into 

standard (Montreal Neurological Institute, MNI avg152 template) space, with 12-

parameter affine transformations. Higher-level (within group one-sample t-tests and 

between-group independent t-tests) analyses were conducted using FLAME 

(FMRIB's Local Analysis of Mixed Effects) on the gain, loss and neutral anticipation 

conditions described above. Significant clusters across the whole brain were 

determined by thresholding at Z>2.3 with a corrected (FWE) cluster significance 

threshold of p<0.05. 

  

Time series and correlation matrices

Using FSL FEAT, we also separately modelled every individual gain, loss and 

neutral anticipation epoch within the context of the general linear model. For each 

MID run, this analysis yielded a total of 9 unique beta value images for each of the 

gain, loss and neutral anticipation conditions. Thus, each voxel-wise beta value 

image reflected the magnitude of the hemodynamic response evoked by each of the 

gain, loss and neutral anticipation epochs. Each beta value image for each MID run 

was then registered into standard (MNI avg152 template) space before being 

concatenated to generate a beta value “trial-wise” (e.g., gain anticipation) time 

series. Each beta value trial-wise time series for each MID run was then further 

concatenated across runs to generate a single beta value trial-wise time series for 

each of the MID anticipation conditions. This procedure yielded a 27 beta value trial-

wise time series for the gain, loss and neutral anticipation conditions for each 

participant. This beta value trial-wise time series method has been previously 

employed to examine connectivity during distinct stages of different cognitive tasks 
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(Fornito et al., 2011; Ray et al., 2017), including the MID task (Verdejo-Roman et al., 

2017). Owing to the small, variable (performance-dependent) number of events for 

the outcome periods (“hits” and “misses”) for each participant, we did not generate 

beta value trial-wise time series data sets for the network analyses.

Using the Harvard-Oxford atlas (96 cortical and 14 subcortical nodes/regions) 

as our connectome, we extracted the mean beta value time series from each of the 

110 anatomical regions of interest (ROI) for the trial-wise gain, loss and neutral 

anticipation time series, for each participant. Using these mean ROI time series 

outputs, we conducted Pearson correlation coefficient analyses to construct whole 

brain ROI‐to‐ROI pairwise matrices (Cij). Each Cij was made up of 5995 

(=N*(N − 1)/2, with N = 110 nodes) pairwise connections (edges). The Cij were used 

to estimate graph measures for the gain, loss and neutral anticipation conditions in 

each participant in the CAN and CON groups (see Supplementary Fig 2). The Cij 

were generated in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United 

States).

Graph theory measures

Global (characteristic path length, efficiency and clustering coefficient) graph 

measures were estimated from each Cij using the GraphVar 

(www.rfmri.org/GraphVar) toolbox for functional brain connectivity (Kruschwitz et al., 

2015) in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States). 

Comprehensive details of graph theory measures in brain networks can be found 

elsewhere (Bullmore et al., 2009a), but a brief description of our metrics will be 

provided here. Characteristic path length (Lp) is the minimum number of edges that 

must be traversed to go from one node (brain region) to another in a network. For a 
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pair of nodes that are nearest neighbours, the path length is 1.  Global efficiency 

(Eglob) describes how effective information flow is in the network and is inversely 

related to path length. Both these measures, ultimately, describe how well integrated 

the network is with respect to information exchange. The clustering coefficient (Cp), 

by contrast, quantifies the number of connections that exist between the nearest 

neighbours of a node, and describes how segregated the network is - the 

cliquishness of the network. Lp, Eglob and Cp measures are first estimated at each 

node of the connectome before an average (global value) is computed for the entire 

connectome. We additionally estimated the global metric of “small-world” propensity 

(Φ), which provides an unbiased assessment of “small-world” tendency in networks 

of varying densities (Muldoon et al., 2016). The “small-world” index combines a high 

Cp in addition to a short Lp (Watts et al., 1998) - there are clusters of nodes in the 

network that are also linked by short paths that enable efficient communication 

between clusters.    

The above graph measures for each participant were estimated by 

thresholding each Cij at a selection of proportional cost (K) thresholds - thresholds 

that retain a percentage of the strongest connections (edges) in the network. This 

procedure was performed as it is argued that biological networks are represented by 

sparse connections (Latora et al., 2003), and that thresholding is a necessary step 

for the derivation of graphs to extract the appropriate topological properties of 

networks (Achard et al., 2007). Because graph measures can be sensitive to 

threshold value (van Wijk et al., 2010), however, we have reported our measures 

across a range of K thresholds (0.1 ⩽ K ⩽ 0. 5, increments of 0.1). Here K 

represents the percentage (e.g., 0.1=10%) number of edges in each Cij that are 
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maintained. We used a range of thresholds that represent the lower and upper 

bound of a small-world regime (Achard et al., 2007; Bullmore et al., 2011), that 

preserve the strongest functional connections for efficient parallel information 

processing at a relatively low wiring cost (Latora et al., 2001). All graph measures 

were computed from Cij in their weighted form following this thresholding procedure.      

Functional connectivity

Group comparisons in ROI‐to‐ROI connectivity across Cij were additionally 

assessed using the Networks Based Statistics (NBS) Toolbox (Zalesky et al., 2010) 

for MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States). These 

group comparisons were conducted to identify potential sub-components across the 

connectome where CON and CAN groups differ in connectivity strength. For each of 

the anticipation conditions, an independent groups t-test was first performed to test 

for a between-group difference in the correlation coefficients at each of the 

110x(110-1)/2 = 5995 regional pairings. Graph sub-components were identified 

among the connections using a t-statistic threshold t > 3.1. From here, a family-wise 

error (FWE) corrected p-value was calculated for the size of each resulting 

component using permutation testing (5000 permutations).  Two (CAN < CON and 

CAN > CON) analyses were conducted independently on the gain, loss and neutral 

anticipation conditions. NBS has previously been used to explore connectivity 

strength between nodes of a connectome while psychiatric populations perform 

cognitive tasks (Fornito et al., 2011; Ray et al., 2017).
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Network visualisation

Networks that emerged from group comparisons conducted in NBS were 

visualised using the Brain Net Viewer (www.nitrc.org/projects/bnv/) software 

package (Xia et al., 2013) for MATLAB (The MathWorks, Inc., Natick, 

Massachusetts, United States).

Other Statistics

Group demographics were compared using simple independent t-tests. For 

analyses conducted on the MID behavioural data, we performed two (Group: CON 

vs. CAN) by three (Condition: Gain vs. Loss vs. Neutral) univariate analyses of 

variance. We also conducted independent t-tests on an index of the relative 

motivational value (RMV) for the gain and loss trials. This value is based on the ratio 

of percentage accuracy on the gain and loss trials compared to that on the neutral 

trials - i.e. Accuracy gain/loss/Accuracy neutral. Here a value >1 reflects a higher relative 

value of gain and loss incentives. We conducted two (Group: CON vs. CAN) by five 

(0.1 ⩽ K ⩽ 0. 5) univariate analyses on the four global graph dependent variables, 

separately for the gain, loss and neutral anticipation conditions. For these analyses 

we invoked a Bonferroni correction (0.05/N, with N = 12 tests) to correct for multiple 

comparisons at a p<0.004 threshold. Therefore, only group effects with p<0.004 are 

reported in the results section for the graph measures. To test for potential 

differences in movement during scanning (mean mm absolute displacement), we 

conducted a two (Group: CON vs. CAN) by three (Run: run 1 vs. run 2 vs. run 3) 

repeated measures analyses of variance. Pearson correlation analyses were also 

conducted to test for associations between cannabis use (estimated life-time 

cannabis joints, age onset of use) and graph estimates (mean of K thresholds), but 
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only where the CON and CAN groups were found to significantly differ. As these 

correlation analyses were more exploratory, we did not protect against a potential 

type 1 error by correcting for multiple comparisons. Estimated life-time cannabis 

joints values were Log (10) transformed to eliminate positive skew. All analyses 

were conducted using the Statistical Package for the Social Sciences (SPSS Inc., 

Chicago).

Results

Demographics

Table 1 (supplementary section) shows the demographic and substance use 

measures for the CON and CAN groups. The groups were balanced for gender and 

age, but did significantly differ on a number of measures, particularly alcohol, 

cigarette and illicit drug use, where the CAN group were significantly higher. The 

CAN group additionally had significantly lower mean WRAT score. 

MID Performance

A two (Group: CON vs. CAN) by three (Condition: Gain vs. Loss vs. Neutral) 

analysis of variance showed that there was a significant effect of condition (F=4.9; 

df=104, 2; p<0.05; Gain>Neutral), and group (F=9.3; df=104, 1; p<0.01; 

CAN>CON), but no condition x group interaction (F=0.001; df=104, 2; p>0.05) for 

MID accuracy (see Supplementary Fig 3a). The same analysis showed a significant 

effect of condition (F=7.8; df=104, 2; p<0.01; Gain<Neutral), but no effect of group 

(F=0.09; df=104, 1; p>0.05), and no condition x group interaction (F=0.005; df=104, 

2; p>0.05) for mean MID reaction time (see Supplementary Fig 3b). Independent t-

test analyses, however, did not reveal any significant group differences for the loss 
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(t = 0. 5, df = 34, p>0.05) or gain (t = 0.60, df = 34, p>0.05) rmv (see Supplementary 

Fig 3c), appearing to suggest that the two groups were well matched on the relative 

value of gain and loss incentives.

Functional MRI

There was no effect of run (F = 0.82; df = 2, 33; p>0.05), group (F = 0.14; 

df = 1, 34; p>0.05), or run x group interaction (F = 0.81; df = 2, 33; p>0.05) for motion 

during the MID task (CON 0.38 mm ± 0.06; CAN 0.42 mm ± 0.07). Mixed effects 

cluster-based one-sample t-test analyses showed that both the CON and CAN 

groups activated a predominantly fronto-striatal network of regions for all three 

anticipation periods (see Supplementary Fig 4). Mixed effects cluster-based 

independent t-test analyses, however, did not detect any significant differences 

between the two groups on these fMRI measures.

 

Graph theory results

The results from all univariate statistical tests conducted can be 

viewed in the supplementary results section. Here we report only the main effects of 

group that were detected for analyses on the graph measures. Two (Group: CON 

vs. CAN) by five (0.1 ⩽ K ⩽ 0. 5) univariate analyses revealed a significant effect of 

group for gain anticipation Cp (F=17.13; df=170, 1; p<0.001; CAN>CON - Fig 1a), 

Lp, (F=12.35; df=170, 1; p=0.001; CAN<CON - Fig 1b), and Eglob (F=20.20; df=170, 

1; p<0.001; CAN>CON - Fig 1c).  There were no significant interactions indicating 

that these group differences were not sensitive to the specific K threshold that was 

employed.  Supplementary Figure 5 also shows the mean of the K thresholds for the 
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three measures where the groups significantly differed. There were no group 

differences on the graph measures for the loss and neutral anticipation conditions.      

   

-Insert Figure 1 about here-

Functional connectivity results

Using NBS to test for group differences on the Cij, and to probe which nodes 

and connections could be driving the observed global graph differences, we 

detected a graph sub-network comprising 63 edges between 47 nodes where the 

CAN group demonstrated significantly greater connectivity strength (p<0.05) 

compared to the CON group during the gain anticipation period. This sub-network 

was made up of a number of nodes, including the amygdala, nucleus accumbens, 

hippocampus, insula, OFC, temporal, and lateral and medial pre-frontal cortical 

regions (Fig 2). There were no significant group differences for the loss or neutral 

anticipation periods. 

-Insert Figure 2 about here-

Correlations

There were a number of correlations observed in the CAN group. The 

reported age of onset of cannabis use was found to be significantly correlated with 

Cp (r(16)=0.65, p<0.01 - Fig 3a), Lp (r(16)=-0.61, p<0.01 - Fig 3b) and Eglob 

(r(16)=0.72, p<0.001 - Fig 3c) during the gain anticipation condition. These 

correlations suggest that these measures of network efficiency are enhanced by the 
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latency of cannabis use onset in the CAN group. There were no significant 

correlations between life-time cannabis joints and the graph measures. 

-Insert Figure 3 about here-

Discussion

   The present study compared the behavioural and neural correlates of gain, 

loss and neutral stimulus processing in an acutely abstinent adolescent cannabis-

dependent (CAN) group against a control (CON) group using an MID task. 

Behaviourally, we observed significant performance differences between the two 

adolescent groups, where the CAN group demonstrated superior accuracy across 

all trial types. Additional analyses, however, revealed that the two groups appeared 

to be well matched on the metrics of loss and gain relative motivational value. 

Therefore, it is unclear whether the observed difference across all trial types is a 

reflection of more motivated behaviour in the CAN group, or merely superior 

psychomotor performance. 

We also report an absence in group differences with respect to activation 

within neural systems during the gain, loss and neutral anticipation periods. This 

result, particularly with respect to gain anticipation does not appear to corroborate 

previous findings in cannabis users that have demonstrated hyperactivity within 

regions that underlie reward processing (Filbey et al., 2013a; Jager et al., 2013; 

Nestor et al., 2010). The CAN group did, however, demonstrate differences in global 

network topology and connectivity strength during the gain anticipation period that 

suggest differences in reward-associated connectivity. The group differences in 

global network topology appeared to be well correlated with the latency of cannabis 

use age onset in the CAN group. We discuss how these functional characteristics of 
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brain connectivity may point to an enhanced level of network processing efficiency in 

adolescent cannabis dependence.     

Increased network integration and segregation in the adolescent CAN group

The current study reports that during monetary gain anticipation the CAN 

group demonstrated enhanced Eglob and reduced Lp compared to the CON group. 

These global measures of integration appear to suggest a higher level of general 

information exchange across nodes of a brain network associated with reward 

processing. These measures of information transfer are not specific to any node or 

sub-network, but instead demonstrate differences across a network at varying 

connection densities, that appear to represent superior processing efficiency. This 

increase in processing efficiency appears to be in contrast to that reported in other 

addiction populations during rest (Holla et al., 2017; Wang et al., 2015). The CAN 

group additionally expressed enhanced Cp across the network during monetary gain 

anticipation. The Cp quantifies the number of connections that exist between the 

nearest neighbours of a node, and has been proposed as an index of local efficiency 

(Rubinov et al., 2010; Sporns et al., 2004). This apparent enhancement of local 

efficiency may suggest that there is more information processing within sub-

networks of the brain in the CAN group that represents a tendency for neural 

segregation during reward processing. The markers of global efficiency and path 

length, by contrast, could indicate deficits in “neural refinement” (Gentili et al., 2015) 

that alternatively allude to “noisy” functioning across parts of the network (Prashad 

et al., 2018), while more clustered, local information processing may be a feature of 

less flexible information transfer across other parts. The observation of reduced Lp 

and concurrent increases in Cp might refute this possibility, however, and suggest 
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more global processing efficiency through both segregated and connected network 

processing that is analogous to enhanced small-world propensity. While we did not 

observe significant groups differences on this global network metric, the CAN group 

did demonstrate an enhanced “small-world” signature compared to the CON group 

during the gain anticipation condition. This metric is characterized by increased 

interconnectivity and reduced path length between clusters of nodes (Bullmore et 

al., 2009b), indicating a concurrent efficiency of functional network segregation and 

integration (Achard et al., 2006; Salvador et al., 2005). The current findings could, 

however, be an indication of lower brain maturation in the CAN adolescent group. 

For example, there is evidence in adolescents with just one or two instances of 

cannabis use of significantly increased grey matter volume across the brain (Orr et 

al., 2019) that may be akin to cannabis-induced deficits in synaptic pruning. These 

deficits in typical maturation processes across the brain, could conceivably, be 

represented by increased connectivity across networks due to an increased number 

of synapses across nodes.     

We further report that the age of cannabis use onset appeared to predict the 

enhancement of these network measures in the CAN group during reward 

anticipation. These correlations suggest that a delayed onset of cannabis use during 

adolescence was more strongly associated with processing efficiency across the 

network. This is contrary to what we would have expected in the CAN group. Distinct 

trajectories of cannabis exposure since initiation of use could conceivably have 

different consequences for the development of neural circuitry (Lichenstein et al., 

2017) and implications for key psychological functions such as reward processing. 

Cannabis use shows a clear pattern of development, where initiation typically occurs 

during mid-teens and develops into a disorder between mid to late adolescence 
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(Stinson et al., 2006). Sharp increases in cannabis exposure since the onset of use, 

for example, may challenge adaptation during the window of rapid neural 

development in adolescence (Kuhn et al., 2013). The observed associations 

reported here, therefore, could be a consequence of rapid escalations of, and 

dependence to, cannabis use since the initiation of use. This could have a 

sensitizing effect on brain networks that is represented through the enhanced 

segregated and integrated processing efficiency observed during reward 

processing. Alternatively, the observed correlations may reflect some 

“epiphenomenon”, whereby the enhanced network functioning in the CAN group is 

actually a by-product less cannabis use. 

   

Increased reward-related connectivity in the adolescent CAN group

We additionally report that the CAN group demonstrated greater connectivity 

strength across a sub-network of the connectome during the gain anticipation 

period. This network-based analysis revealed a total of 63 connections involving 

mostly frontal, temporal and subcortical nodes. This sub-network was made up of 

principally inter hemispheric connections between nodes, suggesting more long 

range routes of information exchange across the network during reward processing. 

Notably embedded in these inter hemispheric links were connections between the 

anterior parahippocampal gyrus (PHG) and orbitofrontal cortex (OFC). The PHG is 

implicated in the process of context appraisal (Kveraga et al., 2011), where in the 

present setting, expectations could be generated through contextual associative 

processing of reward cues. The OFC codes both the implicit motivational value 

(Rothkirch et al., 2012) and the incentive salience of a stimulus (Walter et al., 2010). 

Increased connectivity between these regions could represent enhanced contextual 
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binding between cues and potential reward outcomes during anticipation. Intra 

hemispheric connections, while less prevalent, included links from the anterior PHG 

and the hippocampus to the NAcc, which may similarly represent a strengthening 

between circuits involved in memory and motivational processes. This sub-network, 

therefore, appears to show superior connectivity strength between nodes that 

integrate the cognitive, motivational and memory components of reward processing 

in the CAN group.

The presence of connectivity differences across a distributed sub-network of 

nodes, in the presence of group differences on graph topological measures of 

network efficiency in the same group, is notable. Previous studies (Cocchi et al., 

2012; Fornito et al., 2011; Hong et al., 2013), using concomitant graph theory and 

network-based approaches, were not able to detect group differences using both 

these measures of network functioning. While topological and connectivity strength 

may be viewed as distinct measures, an apparent convergence of our findings 

across both analyses, in the same group, and on the same condition, may afford 

some level of fidelity to the current findings. The current findings, however, should 

be tempered with the possibility that reward-related connectivity differences across 

the network may, to some degree, pre-date cannabis use – they may have been a 

risk factor for cannabis (and other drug) use. 

Limitations of the current study include an absence in matching of the 

adolescent CON and CAN groups with respect to WRAT scores, alcohol and 

cigarette use, anxiety, as well as recent illicit drug use. Strong correlations between 

covariates and independent variables, however, should be avoided (Suckling, 2011). 

There is currently no known statistical technique that can adequately account for 

such confounds, and the use of covariates (e.g., smoking) correlated with the 
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independent variable (in this case, group) can lead to unpredictable results. 

Therefore, we did not use covariates in any of our analyses. We cannot, however, 

indisputably dismiss their potential influence on the network differences reported. 

Moreover, we did not collect data on the socioeconomic status of individuals in the 

CAN and CON groups, which if different, may have influenced behavioural and 

neural responses to financial rewards, which is indeed the very nature of the MID 

task. Furthermore, we did not assess cannabis craving and withdrawal in the CAN 

group, which may have had a disrupting effect on functional network connectivity. 

We cannot unequivocally dismiss the possibility of cannabis intoxication in the CAN 

group at the time of testing either, as we had no method of disqualifying this through 

means of toxicology. We also acknowledge that the current study involves small 

sample sizes in both groups, potentially curtailing the generalizability of our results 

to larger populations of cannabis-dependent and adolescent populations.

Conclusion  

The period of adolescence is reflected by changes in brain networks that are 

likely to have significant effects on reward-seeking behaviours, and which are 

vulnerable to the onset of drug use. The current study has provided some 

preliminary evidence, albeit in a modest sample, that cannabis-dependent 

adolescents in acute abstinence show differences in global reward-associated 

network topology that are significantly correlated with cannabis use age onset. 

Further analyses show that there were differences in both intra and inter 

hemispheric connectivity strength across a distributed sub-network of nodes in the 

same group of cannabis-dependent adolescents. We propose that cannabis 

dependence in adolescence induces enhanced processing efficiency across a 
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network during reward anticipation. This superior processing efficiency may be the 

product of sensitization, possibly through “accelerated” dependence. This 

sensitization may kindle the use of more harmful illicit drugs of abuse in adolescents 

with cannabis addiction.       
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For Review OnlyFigure 1. Group global network differences during the gain anticipation condition for a) Cp 
(***p<0.001, CAN>CON); b) Lp (***p<0.001, CAN<CON) and c) Eglob (***p<0.001, CAN>CON). 
Data were analyzed using two (group: CON vs. CAN) x five (0.1 ⩽ K ⩽ 0. 5) univariate 
analyses. Data are expressed as means and standard errors.
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Figure 2. Network based statistics graph sub-component comprising 63 edges (p<0.05) where 
the adolescent CAN group demonstrated significantly greater connectivity strength compared 
to the adolescent CON group during the gain anticipation period. Graph sub-components were 
identified among all node pairwise connections with a t-statistic threshold of t > 3.1, corrected 
for multiple comparisons. L=left hemisphere; R=right hemisphere; Acc; nucleus accumbens; 
CALC=intracalcarine cortex; COC=central opercular cortex; CGp=posterior cingulate gyrus; 
FP=frontal pole; Hip=hippocampus; INS=insula; OFC=orbitofrontal cortex; OFG=occipital 
fusiform gyrus; PHa=parahippocampal gyrus, anterior division; POC=parietal opercular 
cortex; SCLC=supracalcarine cortex; SMC=supplementary motor cortex; SPL=superior 
parietal lobule; T1p=superior temporal ryrus, posterior division; T3a= inferior temporal gyrus, 
anterior division; TOF=temporal occipital fusiform cortex; TP=temporal pole.
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Figure 3. Showing significant correlations in the adolescent CAN group between cannabis use age onset (yrs) and a) Cp (r(16)=0.65, p<0.01); b) 
Lp (r(16)=-0.61, p<0.01) and c) Eglob (r(16)=0.72, p<0.001) during the gain anticipation period.
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