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Abstract
Human parainfluenza viruses (HPIVs) are significant causes ofBackground: 

both upper and lower respiratory tract infections with type 3 (HPIV3) causing
the most severe disease in the immunocompromised cohorts.  The objective of
this study was to analyse the epidemiological nature of a cluster of cases of
HPIV3 in a pediatric oncology unit of a major teaching hospital.

In order to determine whether the activity observed represented aMethods: 
deviation from the norm, seasonal trends of HPIV3 in the surrounding
geographical area as well as on the ward in question were analysed.  The
genetic link between cases was established by the phylogenetic analysis of the
non-coding hypervariable region between the M (Matrix) and F (fusion) genes
of HPIV3. The 15 cases involved and 15 unrelated cases were sequenced. 
Transmission routes were subsequently inferred and visualized using Konstanz
Information Miner (KNIME) 3.3.2.

Of the 15 cases identified, 14 were attributed to a point sourceResults: 
outbreak. Two out of 14 outbreak cases were found to differ by a single
mutation A182C. The outbreak strain was also seen in 1 out of 15 unrelated
cases, indicating that it was introduced from the community. Transmission
modeling was not able to link all the cases and establish a conclusive chain of
transmission. No staff were tested during the outbreak period. No deaths
occurred as a result of the outbreak.

A point source outbreak of HPIV3 was recognized   onConclusion: post factum
an oncology pediatric unit in a major teaching hospital. This raised concern

about the possibility of a future more serious outbreak. Weaknesses in existing
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about the possibility of a future more serious outbreak. Weaknesses in existing
systems were identified and a new dedicated respiratory virus monitoring
system introduced.  Pediatric oncology units require sophisticated systems for
early identification of potentially life-threatening viral outbreaks.
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Introduction
Human parainfluenza viruses (HPIV) are members of the family 
Paramyxoviridae and are subdivided into four types, which fall 
into two genera rubulavirus (types 2 and 4) and respirovirus  
(types 1 and 3)1,2. All four types of HPIV are significant causes 
of both upper and lower respiratory tract infections with human  
parainfluenza virus type 3 (HPIV3) accounting for the majority 
of these, and has the highest mortality3. Immunity to HPIV is 
incomplete and repeated infections occur throughout life2. In 
England and Wales HPIV3 has been shown to have seasonal 
late spring and summer peaks with little variation from this  
pattern reported globally4.

Transmission of HPIV3 is through respiratory droplets and  
fomites, where the virus can remain viable for up to 10 hours  
given the right conditions of temperature and humidity5. 
Extensive studies conducted with respiratory syncytial virus 
(RSV), a closely related paramyxovirus, have also identified 
gloves and hospital gowns as potential sources of nosocomial 
transmission6. Transmission within the immunocompromised 
cohort is exacerbated by prolonged asymptomatic shedding, 
although in the pediatric cohort the evidence for this is  
conflicting7,8. Pediatric outbreaks are further complicated by  
complex shared transmission routes involving communal areas, 
toys and patterns of behavior that involve self-inoculation via  
eyes, nose and mouth6.

A number of small studies have evaluated the impact of  
respiratory viruses including HPIV3 in the pediatric oncology 
cohort8–17. In each case, outbreaks were identified retrospectively 
and prospective identification of a point sources has not been  
possible8,9. There is limited consensus on prevalence, severity of 
infection and clinical outcome. HPIV3 has been reported as a  
causative pathogen in 1–18% of respiratory viral infections in  
pediatric oncology patients, presenting both as a common, as 
well as a relatively rare, pathogen12,13,15–17 with conflicting clini-
cal outcome9–14 and immunosuppression status as a potential 
confounding factor13–15. Additionally, the prevalence of infec-
tions with more than one respiratory virus in this cohort has 
been quoted to be between 2 and 26% with both no clinical  
impact14,17 and increased severity of infection reported13,18. 
The above suggests that dual infections may additionally play 
an important role in the clinical outcome and the possibility 
of dual transmission in pediatric outbreaks should not be  
overlooked.

The above paucity of data and lack of consensus is in stark  
contrast with the adult oncology cohort where studies have  
quoted figures ranging from 27% to 75% mortality due to lower 
respiratory tract infection (LRTI) attributed to HPIV319. This 
highlights the importance of further study and surveillance of 
the impact of HPIV3 in the pediatric cohort. This is particularly 
salient as currently, despite significant advances in the field, 
there is no vaccine or treatment for HPIV3, putting the onus on  
prevention and infection control. In this paper we present a highly 
robust system that allows both the incorporation of molecular 
and epidemiological data using Structured Query Language  
(SQL)20, as well as a clear visualization tool based on Konstanz 

Information Miner (KNIME) version 3.3.221. The latter is an open 
source tool that has been successfully used in the pharmaceutical 
and food industries and clinical epidemiology analysis22–25.

Methods
Ethical considerations
Ethical approval 12/EE/0069 including use of anonymised or  
link-anonymised patient data for outbreak investigation.

Clinical details of the patients
The clinical details of the patients involved, including their  
underlying diagnosis, any other organisms isolated and potential 
impact of the infection are summarized in Table 1. It is impor-
tant to note that although all patients involved were under some 
degree of immunosuppression due to their underlying condi-
tion or treatment, one was post transplant. The most common  
underlying diagnosis (6/15) was acute lymphocytic leuke-
mia (ALL) and other blood cancers such as Non Hodgkin’s  
lymphoma, anaplastic large cell lymphoma (ALCL) and acute 
myeloid leukemia (AML) accounting for 3 more cases. There  
were four cases of CNS malignancy, one of a non-haematologi-
cal malignancy and one post transplant. The most common cause 
of admission (8/14) was febrile neutropenia, which is defined 
as pyrexia with a low (<0.5 x 109) neutrophil count26, the rest 
were either routine admissions or admissions otherwise unre-
lated to infection: one relapse and one new diagnosis. Standard  
infection control measures include isolation of symptomatic 
patients, even before laboratory diagnosis is available, where 
possible or cohorting if single rooms are not available. Daily  
communication between the infection control team and senior 
unit nursing staff, informed by any virology results was used to 
determine the correct management for each potentially infected  
patient.

Respiratory virus diagnosis
All patients were diagnosed by routine respiratory diagnostic 
PCR on upper respiratory tract samples (either swabs or naso- 
pharyngeal aspirates). The validated multiplex PCR diagnostic 
panel used includes the following common respiratory viruses:  
influenza A and B, RSV, enterovirus, rhinovirus, human metap-
neumovirus (HMPV), adenovirus and human parainfluenza  
viruses. Turnaround time for results is generally 48 hours. The 
samples were identified as belonging to human parainfluenza  
virus 1 and 3 by the respiratory diagnostic panel and subsequently 
subtyped further by the HPIV subtyping PCR panel.

Outbreak identification and sample collection
The number of samples tested positive for HPIV3 was extracted 
from the local databases from January 2011 until end of August 
2017. Positive samples were deduplicated by each patient’s 
unique hospital number, their date of birth, and if they had a  
positive sample within 72 days of a previous positive sample8. 
The data was visualized in GraphPad Prism v 6.00 for Mac,  
GraphPad Software, La Jolla California USA. Epidemiological 
trends were compared between the number of positive samples 
for the six adjoining geographical areas covered by the labora-
tory and those for the hospital alone for years 2014–2017 and  
the pediatric oncology unit for the same dates up to and including  
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Table 1. Clinical details of patients involved in the outbreak. This table summarises the clinical details including the underlying 
diagnosis as well as other microorganisms isolated for patients 1-9,11,12,13,14 and 15. Patient 10 had a genetically different strain 
 of human parainfluenza viruses type 3 (HPIV3) and was therefore not included in the final analysis. There was only one fatality 
(patient 6) that was unrelated to infection with HPIV3. Negative numbers of days indicate that the patient became symptomatic before 
the admission when they were diagnosed for HPIV3. This does not exclude a potential infection prior to this admission (see Figure 5).

Lab 
ID

Underlying 
diagnosis

Reason for 
admission

Interval 
between 

AD 
and SD 
(days)

Interval 
between 
AD and 

SOD (where 
available) 

(days)

Interval 
between 

SOD (where 
available) and 

SD (days)

Potential 
nosocomial 
infection?

Potential cause of 
admission/prolonged 

stay?

Other 
organisms 

isolated

1 CNS tumour febrile 
neutropenia 1 -2 3 N Y rhinovirus

2 CNS tumour febrile 
neutropenia 2 0 2 Y Y adenovirus

3 CNS tumour febrile 
neutropenia 4 0 4 N Y rhinovirus

4 AML new 
diagnosis 15 13 2 Y N

5 ALL elective 0 N Y Gram +ve 
cocci*

6 ALL febrile 
neutropenia 33 N N

7 ALCL febrile 
neutropenia 1 0 1 Y Y rhinovirus

8 ALL elective 1 0 1 N N

9 ALL relapse 18 11 7 Y N

10 post-
transplant

post- 
transplant 253 N N

11 ALL febrile 
neutropenia 2 Y Y rhinovirus

12
non-malignant 
haematology 

disorder
elective 0 N N

13 Non Hodgkin’s 
lymphoma elective 0 -3 3 Y Y

14 CNS tumour febrile 
neutropenia 4 Y Y rhinovirus

15 ALL febrile 
neutropenia 0 N Y rhinovirus

* blood culture
AD = admission date
SD = sample date
SOD=symptom onset date
CNS=central nervous system
AML=Acute myeloid leukemia 
ALL = Acute lymphoblastic leukemia
ALCL = Anaplastic large cell lymphoma

August 2017. Once the outbreak was identified, samples from 
the 15 outbreak cases and 15 non-outbreak parainfluenza cases  
were collected for further analysis.

All samples were link-anonymised for laboratory work and  
patient demographics and immunosuppression status were  
retained where possible. Further patient information including 

patient movement, symptom onset, other organisms isolated 
and clinical outcome were extracted from the hospital electronic  
patient record.

Primer design
Thirty four HPIV3 whole genome sequences from diverse  
backgrounds and twenty UK based sequences from a companion  
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paper were aligned in UGENE v 1.26.0 using the Mus-
cle algorithm27. A hypervariable region suitable for phy-
logenetic analysis (bp 4703-5160 KM190938.1) was identified 
in a companion paper28. Two nested sets of primers flanking 
this region were designed (Figure 1) and used for subsequent  
amplification.

Extraction and amplification
Total RNA from samples was extracted using the GenElute 
Mammalian Total RNA Miniprep kit (Sigma, catalogue 
number RTN350) according to the manufacturer’s guidelines. 
Amplification was carried out using nested PCR with primers 
summarized in Figure 1. The first cycle was carried out with  
Superscript III One-step RT-PCR System with Platinum Taq High 
Fidelity from Invitrogen. The reverse transcription (RT) step 
was performed at 50°C for 30 min. This was followed by a 2min  
denaturation step at 94°C, and 35 cycles of denaturation (94°C  
for 15s), annealing (55°C for 30s) and extension (68°C 3min 
30s). After the final extension step (68°C for 5min) the reaction 
was held at 4°C. The second cycle was performed with Taq  
DNA polymerase (Invitrogen) with the same cycling conditions  

without the RT step (5μl of product of the first cycle amplification 
was used as template).

Following two cycle amplification the products were ran on a  
1% agarose gel for confirmation and cleaned following the  
Epoch Life Science Quick Protocol for EcoSpin All-in-one Mini 
Spin Columns. (catalogue number 1920-050/250) Rhinovirus  
genotyping was attempted for patients 1,3,7,11,14 and 15 and 
was conducted according to a previously published protocol29. 
In brief, the protocol specifies two separate RT-PCR assays,  
targeted to the VP4/VP2 and 5′ UTR (untranslated region) regions 
of the rhinovirus genome. The VP4/VP2 assay constitutes a  
one-step RT-PCR reaction followed by a nested-PCR reaction.  
The 5′ UTR assay is a one-step RT-PCR reaction. The amplifi-
cation products were then purified and sequenced by Sanger  
sequencing. For full details including primers used, please see 29.

Sequencing and alignment
The amplicons were subsequently sequenced by Sanger  
sequencing and the contigs were assembled to a reference genome 
using Sequencher 5.4 from Genecodes. For HPIV3 a consensus  

Figure 1. Hypervariable region of human parainfluenza viruses type 3 (HPIV3) and primer design. Figure 1A shows the mean (relative) 
evolutionary rate per site with a window of 200. These rates are scaled such that the average evolutionary rate across all sites is 1. This means 
that sites showing a rate <1 are evolving slower than average and those with a rate >1 are evolving faster than average. These relative rates 
were estimated under the General Time Reversible model (+G+I) in MEGA7. The analysis involved 56 nucleotide sequences. The position 
along the HPIV3 genome is shown on the X axis. Figure 1B summarises the sequences and positions of the two primer pairs for nested 
amplification of the hypervariable region as well as the segment used for subsequent phylogenetic analysis. The positions of these are shown 
diagrammatically in 1A.

Page 5 of 19

Wellcome Open Research 2018, 3:119 Last updated: 15 JAN 2019

http://ugene.net/
https://www.genecodes.com/sequencher


sequence of the hypervariable region was extracted using  
UGENE v 1.26.0 (Figure 1) as described in the companion paper28. 
It was subsequently trimmed by 50 bp and 52 bp at the 3′ and 5′ 
prime ends respectively. The resulting fragment had good quality  
coverage in both directions and was therefore deemed to be 
suitable for further phylogenetic analysis. For rhinovirus, the  
alignments were done to the consensus sequence of published  
rhinovirus sequences KX610685; KY131965; KY645964; 
MF422576; MF422577; MF422578; MF422580; MF422581, 
as described previously29. The consensus was extracted using  
alignments in UGENE v 1.26.0 using the Muscle algorithm27.

Phylogenetics
Phylogenetic analysis was performed as described in the  
companion paper28. In brief the most suitable phylogenetic substi-
tution model was selected using the JModelTest 2.0 Software30 for  
Maximum likelihood analysis using Molecular Evolutions  
Genetics Analysis (MEGA) software MEGA v 731 and marginal 
likelihood estimation using path sampling (PS) and stepping 
stone sampling (SS) was used for Bayesian Markov Chain Monte  
Carlo (MCMC) inference using BEAST v 1.8.432–35. Phylogenetic 
trees were visualized and edited using FigTree v 1.4.3.

Epidemiology
15 patients involved in the outbreak were identified as described 
above. Data pertaining to patient admissions was collected 
between 08/05/2017 and 31/08/2017. In order to visualize 
the respective locations of patients, a timeline incorporating 
admission dates, symptom onset and first confirmed HPIV3  
positive sample was constructed in GraphPad Prism version 6.00 
for Mac, GraphPad Software, La Jolla California USA. Data 
was then organized in an SQL database. For the purposes of the  
model, the susceptibility period was defined as 1–7 days prior 
to symptom onset and the infectious period as 4 days prior to  
symptom onset. The patient was then considered infectious 
for the remaining duration of the outbreak due to prolonged  
asymptomatic shedding exhibited by this patient cohort. Symp-
tom onset was defined as any viral respiratory symptom in either 
the upper or lower respiratory tract including exacerbations of  
previously known respiratory conditions. Where no symptom 
date was available the date of the first positive HPIV3 sample 
was used. The locations of patients included the pediatric oncol-
ogy ward involved in the outbreak, the pediatric day unit (PDU) 
and the pediatric intensive care unit (PICU). Patients were in  
isolation at various times during their stay and freely ambulant  
on the wards during others. The data was subsequently visualized  
in KNIME 3.3.2 FoodChain-Lab24.

Results
Outbreak identification and sample selection
The number of positive cases identified by the PHE laboratory 
at the index teaching hospital between the years 2014–2017 is  
summarized in Figure 2a. Expected seasonal fluctuations in 
HPIV3 prevalence, with peaks in late spring and summer were  
observed. No unusual activity pointing to a potential outbreak 
was identified. This was confirmed when the number of total  
HPIV3 cases in the index teaching hospital was compared to the 
number of cases within the full geographical area covered by the 

laboratory (Figure 2b). However the number of cases observed 
in the pediatric oncology unit clearly reflected a peak centered 
in June–August 2017 (Figure 2c). This was seen to exceed the  
usual seasonal fluctuations observed on this ward during  
previous seasons and an outbreak was suspected on the 14th of July 
2017. 

Molecular analysis of the outbreak
Consequently an attempt was made to confirm nosocomial 
transmission by genotyping the HPIV3 strains in this cluster.  
30 cases were selected for molecular analysis, where 15 consti-
tuted the suspected outbreak and 15 were control cases unrelated 
to the outbreak. The pertinent clinical information for all cases 
is summarized in Figure 3a and b. All patients involved in the  
outbreak were coded 1-15. These were all pediatric patients 
in the oncology unit. Samples obtained for background  
phylogenetic information were coded A-O. These were drawn  
from a wider demographic in terms of age (range 7 months 
– 92 years), geographical location and immunosuppression  
status. It is of note that among the unrelated cases, the majority 
of patients (9/15) were not known to be either immunocompro-
mised or immunosuppressed.

The maximum likelihood tree was constructed using the  
Tamura-Nei model with invariant sites36 (Figure 3c) using MEGA7, 
as detailed in the methods. Phylogenetic analysis indicated that 
12/15 outbreak strains were genetically identical, with strains  
11 and 12 differing from the rest of the cohort by one nucleotide, 
A182C. For confirmation, strains 11 and 12 were sequenced 
twice to exclude sequencing errors. Background strain G was  
shown to be identical to the main outbreak strain. This confirmed 
that this strain was circulating in the community rather than  
being unique to this outbreak. Outbreak sample 10 was seen to 
cluster separately from other cases involved in the outbreak. This 
was consistent with the clinical history of patient 10, who had  
been an inpatient for a number of months prior to this incident 
(Table 1) and has had no points of contact with any of the other 
cases. Other non-related strains were shown to form two sepa-
rate clusters, one being closely related to the outbreak strains 
(approximately 98% conformity with the outbreak strain) and the  
other more distinct (approximately 87% conformity with the  
outbreak strain). 

As rhinovirus was identified as a common secondary  
pathogen (6/15 cases), genotyping of rhinovirus was attempted 
using an established protocol26. To this end the VP4/VP2 region 
of the rhinovirus genome sequence was amplified and aligned 
successfully for patients 7, 11 and 3. All strains of the virus 
were found to be different and therefore no evidence of dual  
infection transmission was found in these cases.

Phylogenetic analysis in the context of other strains of 
HPIV3
Having confirmed a point-source outbreak, the sequences  
obtained were analyzed in the context of other historically circu-
lating strains to establish whether the outbreak was caused by a 
newly emerging strain. To this end a Bayesian phylogenetic tree  
including the hypervariable region from the 30 strains identified 
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Figure 2. Epidemiological incidence of human parainfluenza viruses type 3 (HPIV3) and outbreak identification. The total number of 
HPIV3 cases diagnosed by the Public Health England (PHE) diagnositic laboratory, at the index teaching hospital, subdivided by adult and 
pediatric cases during the period Jan 2011 to August 2017 is shown in A. Number of cases for the same time period, geographically located 
within the index teaching hospital itself, compared to the total number of cases diagnosed are shown in B. Cases on the pediatric oncology 
ward within the same time period are shown in C.
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Figure 3. Outbreak (1-15) and non-outbreak (A-O) sample details and molecular phylogenetic analysis by Maximum Likelihood 
Method. Panel A summarises the dates of first human parainfluenza viruses type 3 (HPIV3) positive samples for all patients (1-15)  involved in 
the outbreak. Demographics of patients not involved in the outbreak (A-O) are shown in panel B, those marked with an asterix originated in the 
wider geographical area rather than at the index teaching hospital. Panel C shows the molecular phylogenetic analysis of all the samples. The 
evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei +I model and 1000 bootstrap repetitions. 
The tree is drawn to scale, with branch lengths measured in the number of substitutions per site with the legend shown. There were a total of 
351 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.
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above, as well as the 54 strains used for primer design, as detailed 
in the methods, was constructed using BEAST v1.8.4 (Figure 4). 
This analysis confirmed a point source outbreak and served to  
illustrate that the outbreak strain was closely related to USA strain 
MF166750 2017, which was identified as a potential emerging 
strain in a the companion paper. 7/15 of strains (A, B, C, F, H, O, 
J) not involved in the outbreak were shown to be closely related 
to the outbreak strain. The remaining 7 background strains and  
outbreak strain 10 were found in subclusters 1A (L, M, N, D, and 
E) and 1C (K, I and 10) and demonstrate the diversity of HPIV3  
strains circulating within a given time period.

Epidemiological analysis – timeline
After identifying the cluster as a point source outbreak the  
potential transmission routes between patients were investigated. 
First an attempt was made to identify the overlap of patients in  
space and time, to this end a timeline was constructed based 
on admission dates, symptom onset and first positive sample 
date for the patients involved (Figure 5A). This clearly demon-
strated a significant temporal overlap between patients involved 
in the outbreak as well as potential delays between symptom 
onset and a sample being taken where available (8/15 cases). 
The number of cumulative new cases at the end of each week is 
shown in Figure 5B, together with the date when the outbreak was  
suspected. It is clear that the outbreak was identified as the  
number of cases was already on the decline and therefore the  
window for meaningful intervention had passed.

Epidemiological analysis – transmission
In order to map the potential transmission of infection, further 
data including the exact patient location, was then extracted and  
summarized in SQL together with the defined periods of  
potential susceptibility, infectivity and phylogenetic plausibility. 
Based on molecular data, Patient 10 was identified as not 
part of the outbreak. Patients 11 and 12, that had a strain that  
differed by one identical nucleotide from the main outbreak  
strain, remained as part of the outbreak. This was because the  
possibility of an original infection by the main outbreak strain 
or the acquisition of their unique strain from another patient  
could not be excluded. It was however considered impossible 
for them to infect another patient with a strain that lacked this  
unique nucleotide difference.

KNIME visualization for potential transmissions using the date 
of symptom onset and confirmed HPIV3 positive sample is  
summarized in Figure 6. KNIME analysis by symptom onset 
date (Figure 6a) has identified 12 phylogenetically plausible  
transmission events, linking 10/14 patients involved in the  
outbreak, and identifying a potential source of infection in  
6/14 cases. Analysis by first positive sample date identified  
15 phylogenetically plausible transmission events, linking 
10/14 patients and identifying a potential source of infection in 
7/14 patients. It is interesting to note that although these highly  
complex patients were periodically admitted onto a number of  
different wards, the pediatric oncology unit (ward and day unit) 
were the main hotspots for transmission. It is also of interest  
that despite extensive data mining and the flexibility of the model, 
it was possible neither to connect all the patients involved, nor  

identify a chain of infection from an index case. This indicates  
that an external source of infection, that has not been accounted  
for within the model, was involved.

Clinical background and impact
Having established the molecular and epidemiological nature 
of the outbreak, an attempt was made to assess the potential  
clinical impact on the patient cohort in question. Of the 14 cases, 
identified as part of the outbreak, there was one fatality, which 
was not linked to the HPIV3 infection. It is however important 
to note that in 9/14 cases the infection with HPIV3 was  
identified as a potential cause for either an admission or  
extended stay. The most common additional organism isolated 
was rhinovirus and this reflects the common occurrence of this  
virus within the pediatric patient cohort.

Discussion
In this study we have presented an outbreak involving 14 cases 
of HPIV3 on a pediatric oncology ward in a major teaching  
hospital. As reported in the literature by others, this nosoco-
mial outbreak was not identified contemporaneously8,9. The 
nature of the outbreak was, to an extent, masked by the normal  
epidemiological pattern of HPIV3 involving late spring and sum-
mer time peaks3 (Figure 2). Seasonal bias is a well-recognized  
confounder in public health reporting. Outbreak detection  
algorithms usually include trend adjustments for seasonality37–39. 
Moreover, failures to identify outbreaks have previously been 
described in viral diseases with a strong seasonal bias40,41. In this 
case, root cause analysis identified failure of data integration 
systems and processes to facilitate rapid communication to allow 
the possibility of outbreak detection. To this end a respiratory 
virus tracking system using CHEQS software has since been  
incorporated into normal clinical practice to allow cumulative  
data collection and visualization of trends by time and geographical 
location.

Previous HPIV3 genomic analysis in the context of outbreaks 
has been conducted by amplifying the HN part of the genome8 
as well as a fragment of the hypervariable region as ampli-
fied in this study42,43. The protocol was originally attempted side 
by side with the protocol described in this study with the latter  
yielding much higher success rates. The temporal component 
was analyzed using Bayesian phylogenetics in the context of 
other currently and previously circulating strains of HPIV3  
(Figure 4). The phylogenetic analysis served to establish this 
as a point-source outbreak (Figure 3) and the strain involved as  
newly emerging with some of the community strains closely  
related to it (Figure 4). As this cluster of strains has only been  
identified in 2017, it could be argued that it could cause  
re-infections in otherwise healthy individuals. The above was  
supported by phylogenetic data: a case of the outbreak strain (case 
G, Figure 4) was identified in the wider community.

Other community strains (K, I, L, M, N, D and E, Figure 4)  
as well as the patient 10 strain have been classified as belonging 
to two different subclusters (Figure 4), one of which, subcluster  
1C, had been identified as early as 2011. The latter demonstrates 
the variety of circulating HPIV3 strains within any given time  
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Figure 4. Molecular analysis of outbreak (1-15 red) and non-outbreak (A-O blue) strains in the context of historically circulating 
strains of human parainfluenza viruses type 3 (HPIV3). The evolutionary history was inferred using Bayesian Phylogenetics based on the 
Tamura-Nei +I model using BEAST v1.8.4 with a strict clock and constant coalecent prior. The MCMC length was 10,000,000. Convergence 
was assessed with Tracer (effective sample size >200). Inferred dates of strain emergence (in years) are shown in the figure legend. Clusters 
were defined with Automatic Barcode Gap Discovery. Clusters B and D have been collapsed for ease of visualization. All outbreak strains 
(1-15) are outlined in red and all background non-outbreak strains (A-O) are in green. The outbreak cluster is highlighted in yellow. The full 
details of UK circulating strains can be found in the companion paper28.
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period with no clear geographical correlation. Although the  
newly emerging outbreak strain is clearly related to a strain  
originating in the USA in 2017, one cannot infer that these two 
strains are confined to UK and USA. Furthermore it cannot be 
discounted that strains 11 and 12 that differ by a single muta-
tion A182C from the rest of the outbreak strains, have evolved  
separately from the outbreak strain. For the purposes of epide-
miological analysis it was therefore only inferred that both of  

these patients have either been infected by a single source or that 
one had infected the other.

In the context of nosocomial outbreaks, symptom onset data is 
frequently not available and the date of first positive sample is 
used for all epidemiological modeling. Although sufficient for  
outbreak tracing, this can potentially underestimate the impact of 
early symptom identification and prompt screening on outbreak  

Figure 5. Timeline of patients’ admissions to the hospital including the date (A) and cumulative number of new cases of human parainfluenza 
viruses type 3 (HPIV3) at the end of each week (B) during May–August 2017. Panel A shows the movements in and out of hospital of 15 
patients (coded 1-15 on the y axis) involved in the outbreak during the period encompassing a week before the first confirmed positive sample 
(15 May; patient 1) and until two weeks after the resolution of the outbreak in the end of August (last positive sample date 13 August; patient 
15). Corresponding dates are shown on the x axis. Patient’s inpatient admissions are shown in black. Where a day visit was recorded in the 
notes, it is reflected as an admission of 1 day on the timeline. Symptom onset dates, if available, are shown in red. Dates of confirmed positive 
samples are shown in green. Panel B shows the cumulative number of new cases of HPIV3 at the end of each week for the same period. The 
date that the outbreak was recognized (14 July) is marked with an arrow.

Page 11 of 19

Wellcome Open Research 2018, 3:119 Last updated: 15 JAN 2019



prevention. To this end, this data, together with data on patient 
admission was collected where possible (Figure 5). Subsequently, 
transmission models involving both dates, if available, were 

included in this study (Figure 6). Twelve transmission events,  
linking 10 patients were identified using the symptom onset 
date, whereas 15 potential transmission events were identified  

Figure 6. Inferred infection transmission routes between patients. Transmission routes between patients have been analysed with SQL 
and visualized using KNIME 3.3.2. Patient location, as well as symptom onset date, where available (A) and first positive human parainfluenza 
viruses type 3 (HPIV3) sample date (B) were used. All phylogenetically implausible connections have been removed. The connectors between 
patients are color coded according to patient location as shown in the legend and the direction of the arrow conforms to the direction of 
infection spread. The map of the unit with locations shaded in corresponding colors is shown in panel C.
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by the model using the positive sample date. Neither model 
could be used to pinpoint a clear infection chain from the index 
case, and an infection source was only identified in 5 cases for 
symptom onset date analysis and 6 cases for confirmed positive 
case date analysis (Figure 6). It is important to note that data on 
symptom onset was only available in 8 out of 14 cases involved 
in the outbreak and this was further confounded by secondary  
infections (Table 1). Overall within the limitations of the data 
available, the current analysis identified 3 potential transmission  
events and one potential infection that could have been prevented  
if screening were carried when symptoms were first identified.

It is also important to note that neither model could successfully 
identify transmission between all the patients involved in the  
outbreak. We could therefore surmise that either another source 
of infection or other points of contact between patients were  
present. Cases of health care workers contributing to nosoco-
mial outbreaks are well documented44–47. Although stringent  
infection control policies are usually in place, transmission from  
a member of staff cannot be excluded.

The clinical impact of this outbreak is difficult to assess. No  
fatalities that could be related to HPIV3 infection were identified. 
A recent investigation of an HPIV3 outbreak in a similar setting 
has also failed to identify any fatalities associated with this virus8.  
However, HPIV3 was recognized as a potential cause of an  
admission or prolonged stay in 9 out of 14 cases, although in 8 
out of 9 cases a potential secondary pathogen was also identi-
fied, emphasizing the potential importance of dual infections  
(Table 1). Rhinovirus was a notable secondary viral respiratory 
pathogen, isolated in six of the cases. It is a highly prevalent 
virus in the pediatric cohort with a non-seasonal occurrence 
and especially common in dual infections11. Rhinovirus geno-
typing was successful in 3 of the cases but did not identify any 
instances of dual infection transmission in this study, although 
the incidence was broadly in keeping with some previous  
reports16.

In conclusion in this study we have presented a cluster of  
HPIV3 cases in a pediatric oncology unit in a major teaching 
hospital. This cluster was subsequently identified as a point-
source outbreak involving 14 out of 15 cases and as in other 
reported outbreaks in pediatric cancer units, was only identified  
retrospectively8,9. Root cause analysis has identified a number 
of factors that contributed to inability to identify the outbreak.  
This was addressed by introducing a new respiratory virus  
tracking software.

The outbreak strain was recognized as a new emerging strain. 
The epidemiological transmission analysis has highlighted the  
importance of early identification and screening of both patients 
and staff. Potential spread by staff was inferred from trans-
mission hotspots identified by the epidemiology transmission 
model. The challenge of managing staff with minimal respiratory  
symptoms in a pediatric oncology unit has not been studied 
sufficiently and the literature in this area is sparse. Until this  
outbreak, it was not policy to screen staff – this is now under 
review. The main clinical impact of the outbreak in this study 

was in the number of increased admissions and hospital stay. 
Further analysis of the importance of HPIV3 within the pediatric 
oncology cohort, is required to evaluate the pertinence of these  
investigations in this context. 

Data availability
All HPIV3 sequences have been uploaded to NCBI with the  
following references and accession numbers:

HPIV3/UK/1/15/05/2017      MH699933

HPIV3/UK/2/24/05/2017      MH699934

HPIV3/UK/3/20/06/2017      MH699935

HPIV3/UK/4/24/06/2017      MH699936

HPIV3/UK/5/15/05/2017      MH699937

HPIV3/UK/6/01/07/2017      MH699938

HPIV3/UK/7/04/07/2017      MH699939

HPIV3/UK/9/01/07/2017      MH699941

HPIV3/UK/13/16/07/2017    MH699942

HPIV3/UK/14/31/07/2017    MH699943

HPIV3/UK/11/13/07/2017    MH699944

HPIV3/UK/12/14/07/2017    MH699945

HPIV3/UK/15/13/08/2017    MH699946

HPIV3/UK/10/12/07/2017    MH699947

HPIV3/UK/A/18/05/2017     MH699948

HPIV3/UK/B/26/05/2017     MH699949

HPIV3/UK/C/24/06/2017     MH699950

HPIV3/UK/D/26/06/2017     MH699951

HPIV3/UK/E/28/06/2017     MH699952

HPIV3/UK/F/01/07/2017      MH699953

HPIV3/UK/G/05/07/2017     MH699954

HPIV3/UK/H/06/07/2017     MH699955

HPIV3/UK/I/08/07/2017      MH699956

HPIV3/UK/J/12/07/2017       MH699957

HPIV3/UK/K/13/07/2017     MH699958

HPIV3/UK/L/14/07/2017      MH699959

HPIV3/UK/M/19/07/2017    MH699960

HPIV3/UK/N/31/07/2017     MH699961

HPIV3/UK/O/13/08/2017     MH699962

All uploaded sequences can be accessed together via PopSet: 
1470015972
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Raw sequences and annonymised epidemiological data has been 
deposited on Open Science Framework. Dataset 1: Unrecog-
nised Outbreak: Human Parainfluenza Virus Infections in a pedi-
atric oncology unit. A new diagnostic PCR and virus monitoring  
system may allow early detection of future outbreaks https://doi.
org/10.17605/OSF.IO/X4ZYC48

License: CC0 1.0 Universal
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The authors provide a high-quality retrospective investigation into a potential human parainfluenza virus 3
(HPIV3) outbreak in a pediatric oncology unit.  Through PCR and Sanger sequencing of a hypervariable
region of the HPIV3 genome and phylogenetic analysis, the authors investigated 15 samples from the
potential outbreak.

Sequencing and phylogenetic analysis revealed that 12 HPIV3 outbreak samples were identical, 2
samples varied by only a single nucleotide from the cluster of 12, but were identical to each other, and 1
outbreak sample that varied significantly from the other 14 samples, but was phylogenetically grouped
with non-outbreak samples. Sequencing of non-outbreak samples showed distinct phylogenetic clustering
and higher genetic variability as compared to 14 of the 15 potential outbreak samples. Taken together,
these results suggested a nosocominal outbreak of HPIV3 that consisted of at least 14 patients.

It is notable that the majority of infections and transmission events (78%) occurred prior to the outbreak
being suspected and staff were suspected to account for some of the transmission source of contact. 
Furthermore, it is likely that the 14 cases is an under-representation of the outbreak since additional
patients may have been missed. Thus, the authors suggest that this study highlights the importance of
early identification and screening/surveillance of patients and staff.

The authors attempted to assess the clinical impact of the outbreak, but the analysis was complicated by
a high number of potential co-infections. Nonetheless, an infection or co-infection was recognized as a
contributing factor in hospital admission or prolonged stay in the majority of patients from the outbreak.  A
nice followup study might assess the clinical impact and costs of respiratory infections from HPIV3 and
other pathogens as compared to infection control and surveillance/screening efforts.
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insight into the event.
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screening, whether IT systems can help identify out breaks early. Perhaps it was out with the scope of the
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