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Abstract
Human parainfluenza viruses type 3 (HPIV3) are a prominentBackground: 

cause of respiratory infection with a significant impact in both pediatric and
transplant patient cohorts.  Currently there is a paucity of whole genome
sequence data that would allow for detailed epidemiological and phylogenetic
analysis of circulating strains in the UK. Although it is known that HPIV3 peaks
annually in the UK, to date there are no whole genome sequences of HPIV3 UK
strains available. 

Clinical strains were obtained from HPIV3 positive respiratory patientMethods: 
samples collected between 2011 and 2015.  These were then amplified using
an amplicon based method, sequenced on the Illumina platform and
assembled using a new robust bioinformatics pipeline. Phylogenetic analysis
was carried out in the context of other epidemiological studies and whole
genome sequence data currently available with stringent exclusion of
significantly culture-adapted strains of HPIV3.

In the current paper we have presented twenty full genomeResults: 
sequences of UK circulating strains of HPIV3 and a detailed phylogenetic
analysis thereof.  We have analysed the variability along the HPIV3 genome
and identified a short hypervariable region in the non-coding segment between
the M (matrix) and F (fusion) genes. The epidemiological classifications
obtained by using this region and whole genome data were then compared and
found to be identical.

The majority of HPIV3 strains were observed at differentConclusions: 
geographical locations and with a wide temporal spread, reflecting the global
distribution of HPIV3. Consistent with previous data, a particular subcluster or
strain was not identified as specific to the UK, suggesting that a number of
genetically diverse strains circulate at any one time. A small hypervariable
region in the HPIV3 genome was identified and it was shown that, in the
absence of full genome data, this region could be used for epidemiological
surveillance of HPIV3.
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Introduction
Human parainfluenza viruses (HPIV) are members of the family 
Paramyxoviridae and are subdivided into four types, which fall 
into two genera Rubulavirus (types 2 and 4 and Respirovirus 
(types 1 and 3). Human parainfluenza 3 (HPIV3) (recently renamed  
human respirovirus 3) is a negative strand non-segmented 
RNA virus of 15462 nucleotides in length. It consists of a core 
containing the RNA bound to the nucleocapsid protein (NP),  
the phosphoprotein (P) and the large RNA polymerase (L)  
surrounded by an envelope composed of the matrix protein (M) 
and a lipid bilayer. The haemagluttinin neuraminidase (HN) 
protein and the fusion (F) protein are found on the envelope 
surface and facilitate the binding of HPIV3 to the sialic acid 
receptors of the target cell via the haemagluttinin component 
of HN, the fusion (F) with the cell and the release of new viral  
particles via the neuraminidase component of HN1,2.

All four types of parainfluenza are significant causes of both 
upper and lower respiratory tract infections. Human parain-
fluenza 3 (HPIV3) has been identified as the most prevalent  
circulating parainfluenza serotype in the UK3. It is an important  
respiratory pathogen with a broad spectrum of presentations and 
a significant impact both in the paediatric and the immunocom-
promised cohorts. In the former it is responsible for up to 6.8% 
of all paediatric admissions for respiratory presentations4. In the  
immunocompromised population, the reported incidence of 
infection has varied between 5 and 12% with lower respira-
tory tract infections (LRTIs) and mortality of up to 75% being  
reported5,6. Transmission is by respiratory droplets and HPIV3 
can persist up to 10 hours on non-absorbant surfaces7. Pro-
longed shedding in vulnerable patient groups leads to outbreaks 
and an increased burden on the health services8,9. Although a  
number of previous studies have looked at circulating HPIV3  
strains throughout the world, there is currently no genetic data  
on the circulating HPIV3 strains in the UK.

Previous phylogenetic analysis of HPIV3 has been based on com-
ponents of the genome rather than full-length genome data. To 

date there appears to be no unified phylogenetic classification 
of HPIV3. Recently the HN gene has been used to character-
ize emerging strains as well as tracing outbreaks10–14. Automatic  
barcode gap discovery (ABGD)15 was used to separate HPIV3 
into 3 clusters with currently circulating strains confined to 
one of these. In another study it was shown that the F gene is 
equally valid for HPIV3 phylogenetic classification11. The region 
directly preceding and overlapping with the start of the F genome 
has previously been identified as highly variable and has been  
historically used to trace outbreaks8,9.

Additionally there is currently little experimental evidence linking 
HPIV3 HN and F phenotype with variations in the adaptive 
immune response16,17 and currently no consensus on the con-
nection between genotype and clinical pathogenesis of HPIV3. 
Therefore there is a clear need to rationalize the approach to the  
phylogenetic and epidemiological analysis of HPIV3.

To this end, in this study we have presented the genetic analysis 
of full genome sequences of twenty circulatingUK strains 
between the years 2011–2015. We have used this data, together 
with other full genome sequences available in the genebank to 
conduct a full genome phylogentic analysis of HPIV3. Although 
rapid metagenomic sequencing has been conducted in a  
small outbreak18, given the relative expense of obtaining full 
genome data in a clinical setting we have identified a short  
hypervariable region in the HPIV3 genome and evaluated the 
reliability of using this segment for future phylogenetic analysis  
and potential epidemiological investigation.

Methods
Clinical samples
Clinical strains were obtained from HPIV3 positive respiratory 
patient samples collected between 2011 and 2015 by Public 
Health England (PHE) laboratory in a major teaching hospital. 
All identifiable information was removed prior to the study. 
Anonymous patient demographics such as age, sex, location, 
as well as date and type of the sample were retained where  
possible (ethics approval number 12/EE/0069).

All clinical strains were grown on PLC/PRF/5 human Alexander 
hepatoma cell line as described in a separate study19 and under-
went an additional passage for RNA harvesting. 43 samples 
were successfully grown and 20 clinical strains were selected 
for subsequent sequence analysis. Laboratory strain MK9 
obtained from PHE cultures was used as a reference strain for  
sequencing pipeline validation.

RNA extraction and amplification
Total RNA from samples was extracted using the GenElute  
Mammalian Total RNA Miniprep kit (RTN350, Sigma) according 
to the manufacturer’s guidelines. Full genome amplification was  
achieved using a set of twelve primers producing twelve  
overlapping amplicons (Figure 1).

The Superscript III One-step RT-PCR System with Platinum 
Taq High Fidelity from Invitrogen (12574035 Invitrogen) was 
used for amplicon generation. The RT-PCR was carried out 
on the Eppendorf Mastercycler nexus GSX1. The RT step was 
performed at 50°C for 30 min. This was followed by a 2min  

            Amendments from Version 1

We would like to thank the reviewers for their helpful comments, 
the manuscript has been adjusted to reflect them and has been 
modified as follows:

1. A note on the renaming of human parainfluenza virus 3 as human 
respirovirus 3 was added in Introduction.

2. Additional clarification on why whole genome sequencing was 
used for the analysis was added in Introduction

3. A note on geographical clustering was added in Discussion.

4. A discussion on effects of cell culture adaptation was added in 
Discussion

5. Additional analysis of the HN coding region was carried out and 
is summarised in a new figure (Figure 7), corresponding sections 
were added to Results and Discussion

6. A similar analysis using the F coding region was attempted, 
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values and therefore was deemed to be an inadequate method 
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Results.
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denaturation step at 94°C, and 35 cycles of denaturation (94°C 
for 15s), annealing (55°C for 30s) and extension (68°C 3min 
30s). After the final extension step (68°C for 5min) the reac-
tion was held at 4°C. Following amplification the products were 
ran on a 1% agarose gel for confirmation and purified following 
the Epoch Life Science Quick Protocol for EcoSpin All-in-one  
Mini Spin Columns (1920-050/250 Epoch Life Science).

Reference sequence and validation of the pipeline
Two of the isolates, MK9 and 153, were first sequenced by 
Sanger sequencing to validate the NGS sequencing pipeline. 
RNA was extracted and amplicons were generated as described 
above. Primers were originally designed using the genscript 
sequencing primer design tool. These were used for Sanger  
sequencing (Applied Biosystems 3730xl DNA Analyser  

Figure 1. Primers used for amplicon generation for full genome sequencing (a) and the position of the amplicons along the human parainfluenza 
viruses type 3 (HPIV3) genome. 12 primer sets (a) were designed and used to generate overlapping amplicons covering the entire HPIV3 
genome, as shown in (b).
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(Department of Biochemistry, University of Cambridge)) together 
with the amplification primers (See Dataset 120 for primer 
sequences, manufactured by Eurofins) aiming for overlapping  
amplicons of approximately 700bp each. The sequence was 
then aligned to a consensus sequence of the following accession  
numbers KF687321, KF530255, EU326526, KF530227, KF687319, 
KF530232, KF687317, KF530249, KF530245, KF530250, 
KF530229, KF530243, AB736166, KF530252, KF530236, 
KF530225, KF687340, KF530254, KF687318, KF530230, 
KF687346, KF530233, KF530242, KF530251, KF530241, 
KF530253, KF530257, KF530238, KF530231, KF530234, 
KF530247, EU424062, KF530256, FJ455842, KF687336,  
U51116, NC_001796.2 (see Data availability section) using 
Sequencher 5.4.

NGS sequencing and analysis
The amplicons generated were combined in equimolar con-
centrations and sequenced on the Illumina platform (MiSeq 
(Clinical Translational Research Unit, Cambridge University 
Hospitals, NHS Foundation Trust)). Paired short reads were 
then processed with Trimgalore v 0.4.2 to remove the Illumina 
paired end library adapters as well as short and low quality  
reads to retain those with length >20bp and Phred scores >20.  
Terminal primer sequences were subsequently removed with  
Cutadapt v 1.1421. Alignment was performed with Bowtie2  
v 2.2.922 using the Sanger sequences obtained above as reference 
and consensus was extracted with Samtools v 1.3.123. The 
results were validated using Sanger sequencing of the laboratory 
strain MK9 and sequence 153 as well as the previously pub-
lished de novo Ebola pipeline using QuasR v 1.20 for quality 
control and Spades 3.5 for assembly24. Variant analysis was  
conducted using V-Phaser225.

Phylogenetics
All HPIV3 full genome sequences available on NCBI were  
downloaded and genomes originating from the same source  
and found to contain minimal variance were removed for clar-
ity and to minimize bias. Sequences that originated from strains 
that were repeatedly passaged in culture or were deliberately 
modified, such as strain 47885, C243, 14702 and strain JS, 
were also removed, leaving 36 diverse full genome sequences.  
These, together with the 20 sequences obtained in this study  
were aligned in UGENE v 1.26.0 using the Muscle algo-
rithm26. Subalignments were extracted using UGENE v 1.26.0. 
The most suitable substitution model was selected using the 
JModelTest 2.0 Software27. Position by position rates, distance  
matrices and maximum likelihood trees were generated using 
Molecular Evolutions Genetics Analysis (MEGA) software  
MEGA v 728. Bootstrap iterations of 1000 were used for maximum  
likelihood tree confidence estimates. Clusters were visualized 
using ABGD15. Bayesian Markov Chain Monte Carlo (MCMC)  
inference model was selected using marginal likelihood  
estimation using path sampling (PS) and stepping stone sam-
pling (SS) with BEAST v 1.8.4 with a chain length of one million 
and one hundred path steps respectively29–32. Tracer was used to 
assess convergence based on the effective sample size with 10%  
burn-in and effective sample size (ESS) values above 200.  

Maximum clade credibility trees were generated with Tree 
Annotator and subsequently visualized and edited using FigTree  
v 1.4.3.

Results
Clinical samples and epidemiology of HPIV3
The number of samples that tested positive for HPIV3 on the 
respiratory virus panel in PHE laboratory of a major teaching  
hospital during the years 2011–2017 is shown in Figure 2a.

The prevalence of HPIV3 follows a cyclical pattern with peaks 
occurring towards the end of spring and start of summer every 
year. Patient demographics for each strain are summarized in 
Figure 2b. The patients for which strains were sequenced repre-
sented a diverse demographic with an age distribution reflecting 
the usual susceptibility to HPIV3 with 18/20 being below  
the age of five or over the age of 50. All samples were obtained 
from the upper respiratory tract including swabs, nasopharyngeal 
aspirates and tracheal aspirates. The majority of the samples 
(14/20) were taken from inpatients, reflecting an unavoidable 
sampling bias towards cases requiring admission and potential  
co-morbidities. Although the majority of the cases originated 
from one hospital (A) (12/20), the rest were from a more diverse 
geographical distribution reflecting the area covered by the 
PHE laboratory. Relevant past medical history (PMH) is shown 
where available (7/20) and in most cases includes patients with  
haematological oncology conditions such as relapsed acute  
lymphocytic leukaemia (ALL), immunosuppressive chemother-
apy treatment (alemtuzumab) and post bone marrow transplant  
including allograft and volunteer unrelated donor (VUD). This 
reflects the immunosuppressed population where HPIV3 is 
known to have the highest impact5,33. Two chronic respiratory 
conditions have also been identified: cystic fibrosis (CF) and 
asthma. Parainfluenza viruses have known to contribute to infec-
tive exacerbations of asthma34, particularly in paediatrics and the  
clinical impact of respiratory viruses on cystic fibrosis patients is 
well recognised35.

Genome coverage and variant analysis
In order to evaluate the genetic variability of UK circulating 
strains of HPIV3, the twenty clinical strains detailed in Figure 2a 
and the laboratory reference strain were sequenced by NGS on 
the Illumina platform. The laboratory strain and strain 153 were 
first sequenced by Sanger sequencing and used as reference  
strains for NGS pipeline validation. The depth of NGS cover-
age for both strains as well as the average depth achieved for all  
the strains sequenced is shown in Figure 3.

The depth of coverage remained consistently high apart 
from the 5’ and 3’ prime ends, confirming the robustness of 
the pipeline. Variant analysis was then performed using V- 
Phaser2 and the summary results are shown in Table 1.

Phylogenetic analysis of the full genome sequence
In order to assess the epidemiology and evolution of HPIV3, in 
the context of strains circulating within the UK, a phylogenetic 

Page 5 of 21

Wellcome Open Research 2018, 3:118 Last updated: 07 DEC 2018

https://www.ncbi.nlm.nih.gov/nuccore/KF687321.1/
https://www.ncbi.nlm.nih.gov/nuccore/KF530255
https://www.ncbi.nlm.nih.gov/nuccore/EU326526
https://www.ncbi.nlm.nih.gov/nuccore/KF530227
https://www.ncbi.nlm.nih.gov/nuccore/KF530227
https://www.ncbi.nlm.nih.gov/nuccore/KF530232
https://www.ncbi.nlm.nih.gov/nuccore/KF687317
file:///\\C17\F1000 Combined\22) WELLCOME OPEN RESEARCH\Wellcome Submissions\14730 - Anna Smielewska\Revisions from author\KF530249
https://www.ncbi.nlm.nih.gov/nuccore/KF530245
https://www.ncbi.nlm.nih.gov/nuccore/KF530250
https://www.ncbi.nlm.nih.gov/nuccore/KF530229
https://www.ncbi.nlm.nih.gov/nuccore/KF530243
https://www.ncbi.nlm.nih.gov/nuccore/AB736166
https://www.ncbi.nlm.nih.gov/nuccore/KF530252
https://www.ncbi.nlm.nih.gov/nuccore/KF530236
https://www.ncbi.nlm.nih.gov/nuccore/KF530225
https://www.ncbi.nlm.nih.gov/nuccore/KF687340
https://www.ncbi.nlm.nih.gov/nuccore/KF530254
https://www.ncbi.nlm.nih.gov/nuccore/KF687318
https://www.ncbi.nlm.nih.gov/nuccore/KF530230
https://www.ncbi.nlm.nih.gov/nuccore/KF687346
https://www.ncbi.nlm.nih.gov/nuccore/KF530233
https://www.ncbi.nlm.nih.gov/nuccore/KF530242
https://www.ncbi.nlm.nih.gov/nuccore/KF530251
https://www.ncbi.nlm.nih.gov/nuccore/KF530241
https://www.ncbi.nlm.nih.gov/nuccore/KF530253
https://www.ncbi.nlm.nih.gov/nuccore/KF530257
https://www.ncbi.nlm.nih.gov/nuccore/KF530238
https://www.ncbi.nlm.nih.gov/nuccore/KF530231
https://www.ncbi.nlm.nih.gov/nuccore/KF530234
https://www.ncbi.nlm.nih.gov/nuccore/KF530247
https://www.ncbi.nlm.nih.gov/nuccore/EU424062
https://www.ncbi.nlm.nih.gov/nuccore/KF530256
https://www.ncbi.nlm.nih.gov/nuccore/FJ455842
https://www.ncbi.nlm.nih.gov/nuccore/KF687336
https://www.ncbi.nlm.nih.gov/nuccore/U51116
https://www.ncbi.nlm.nih.gov/nuccore/NC_001796.2
https://www.genecodes.com/sequencher
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://cutadapt.readthedocs.io/en/stable/index.html
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/
http://spades.bioinf.spbau.ru/release3.5.0/manual.html
https://www.broadinstitute.org/viral-genomics/v-phaser-2
http://ugene.net/
https://github.com/ddarriba/jmodeltest2
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://beast.community/index.html
http://tree.bio.ed.ac.uk/software/figtree/


tree of full length genome sequences available was constructed  
using the Maximum Likelihood method (Figure 4).

The automated barcode gap discovery analysis of the full 
genome sequences allowed us to define anything separated by 

more than a genetic distance of 0.043 as a cluster and 0.02 as a 
sub cluster. Therefore 2 clusters have been identified. Cluster 1 
was further subdivided into subclusters, 1a and 1b, with smaller 
subdivisions into strains, as shown in Figure 4. It is of note that  
apart from strain 1b(ii) that currently only contains one full 

Figure 2. Total samples tested positive for human parainfluenza viruses type 3 (HPIV3) by Public Health England (PHE) diagnostic laboratory 
during 2011–2017 (a) and provenance of sequenced clinical strains (b). Total number of samples that have tested positive for HPIV3 in PHE 
diagnostic laboratory of a major teaching hospital each month are shown in (a) for the period 2011–2017. The data has been extracted 
from the local hospital database and is separated by age. The provenance of sequenced clinical strains collected between 2011 and 
2015 is shown in (b). All samples originated from the upper airway and 12/20 samples were from hospital A. PMH = past medical history; 
NPA = Nasopharyngeal aspirate; URT = upper respiratory tract; VUD = volunteer unrelated donor (transplant); ALL = acute lymphocytic 
leukaemia.
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genome sequence from the USA (2017) we have not observed 
a temporal or geographical correlation between strains. The 
rate of substitution/site/year has been calculated to be 4.2 x10-4  
subs/site/year using an uncorrelated relaxed clock37, general 
time reversible model (GTR) with gamma distributed rate and 
invariant sites38–40 and an MCMC length of 600 million, using 
BEASTv1.8.4 as described in the methods. This is consistent 
with rates observed for other RNA viruses41–44 The average 

variability across the strains available was calculated using  
MEGA7 and found to be 2%.

Analysis of variability along the genome can be used to 
identify a hypervariable region in HPIV3
Full genome sequencing, particularly in the context of diag-
nositic laboratories can be expensive and time consuming. To 
this end a smaller region for epidemiological and phylogentics 

Figure 3. Depth of coverage achieved for laboratory strain (A), strain 153 (B) and FastQC36 statistics for both sequences (C). Consistent 
coverage of above 1000 was achieved over the full length of the genome of both sequences excluding the very 5′ and 3′ prime ends. The 
length of the final sequence was 15409 base pairs, as the forward primer (26 bases) of the first amplicon, and the reverse primer of the last 
amplicon (27 bases) were removed in the pipeline.

Page 7 of 21

Wellcome Open Research 2018, 3:118 Last updated: 07 DEC 2018



analysis was identified by calculating relative variability rates  
along the HPIV3 genome (Figure 5).

The site by site variability was calculated using the Tamura-Nei 
(TRN) model45 of substitution with 1000 bootstrap repetitions.  
We have observed a peak in variability in the non-coding  

region between the M gene and the F gene. For the purpose 
of this study this region has been defined as a region of 357 
base pairs in length from position 4703 to 5160 as shown in  
Figure 5.

Analysis of the hypervariable region reflects the 
phylogenetic profile of HPIV3
The suitability of the hypervariable region for phylogentic  
analysis was then evaluated by constructing a phylogentic 
tree and comparing it to the one obtained by using full genome 
sequences. The BEAST evolutionary tree for the hypervariable  
region can be seen in Figure 6.

The rate of substitution for this region was calculated to be 
1x10-3 subs/site/year with an average variability of 5%. This 
is markedly above the values calculated for the full genome 
sequence. Hence ABGD analysis15 has been used to separate the 
sequences into subclusters corresponding to strains in the full 
genome analysis with a potential for finer classification for the  
purposes of epidemiology. The corresponding classifications are 
summarized in Table 2.

It is of note that only two strains (Figure 4) were not classified 
in the same manner by both the full genome and hypervariable 
analysis methods. Strain 180 has moved from subcluster 1b to 
subcluster 1a and strain KF530247.1 (USA2006) was noted to 
have moved from cluster 2 to cluster 1. It was found that strain  
180 contained 3.7% ambiguous bases within its hypervariable 
region. This falls just below the definition of a subcluster 
(genetic distance of 0.04) and would potentially place this  
sample into two subclusters depending on the alignment. This 
could suggest a potential co-infection with a second strain, a 
feature of this sample that would not have been noted if this 
additional analysis were not performed. Strain KF530247.1,  
on the other hand contains no ambiguities and therefore the  
migration between clusters cannot be explained this way. It has, 
however been identified as a potentially recombinant sequence  
in a previous study11.

Additionally, we observed that strain 1b(ii) (MF166750.1 
(USA2017)) that has been identified as an emergent strain 
by full genome analysis (Figure 4), can now be defined as a  
subcluster in its own right, supporting the hypothesis that this 
may form a new emergent strain and subsequently subcluster  
of HPIV3 (Figure 6).

Analysis of the HN coding region does not fully reflect 
the phylogenetic profile of HPIV3 when compared to whole 
genome data
In order to evaluate the current findings in the context of  
previously published phylogenetic classification of HPIV346–49 
an additional analysis using only the HN coding region of the 
HPIV3 genome was carried out (Figure 7) and the results were  
compared to those obtained using whole genome sequences.  
Phylogenetic analysis using the F coding region was also 
attempted but the tree constructed did not yield clustering with 
high enough bootstrap values and therefore was deemed to be  

Table 1. Total number of unique minor 
variants detected by V Phaser2 analysis. 
The total number of unique minor 
variants detected by V Phaser 2 at each 
percentage level of total reads is shown. 
In brief, the variants are calculated both 
by recording the probability that a non-
consensus base occurs with a greater 
frequency than expected by sequencing 
error probabilities and by analyzing he 
probability for non-consensus pairs of 
bases to co-occur given sequencing 
errors expected. Systematic artifacts 
inherent in some sequencing technologies 
are removed by calculating strand bias 
for each variant. This data is then FDR 
corrected and all variants with a significant 
(p>0.05) strand bias were excluded.

number of variants

Lab ID <1% 1%–5% 5%–20% >20%

14 7 0 2 0

16 4 1 0 0

21 7 3 1 1

30 3 1 1 0

53 12 7 0 0

60 9 5 1 1

65 9 5 1 0

82 2 8 4 0

112 0 6 13 0

113 4 13 22 8

121 0 3 2 0

122 9 1 0 0

128 1 1 4 1

129 1 1 0 0

153 4 3 0 0

180 4 3 23 5

362 7 0 1 0

371 4 9 1 0

390 2 1 0 0

395 5 3 1 1

MK9 36 8 1 0
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inadequate for the current data set. It is of note that the  
clustering patterns observed in Figure 7 were not wholly consist-
ent with those obtained with whole genome data (Figure 5) or 
the hypervariable region (Figure 6). Strain 1b(ii) was found to  
contain 4 sequences: KF687319.1; KF530245.1; KJ67605 and 
MF166750.1. When using whole genome data, only the latter  
was classified within this strain, whereas the other sequences  
were clustered within strain 1b (i).

Discussion
In this study we have presented a robust amplicon based sequenc-
ing pipeline for the evaluation of genetic variability of circula-
tion UK strains between the years 2011–2015. The consensus 
sequences generated by the pipeline were validated using both 
Sanger sequencing and a published de novo pipeline24. The 
depth of coverage obtained across all genome sequenced was  
consistently high (Figure 3). Variant calling analysis was  

Figure 4. Molecular Phylogenetic analysis of human parainfluenza viruses type 3 (HPIV3) full length genome by Maximum Likelihood 
method. The evolutionary history was inferred by using the Maximum Likelihood method based on the General Time Reversible + I + G model 
and 1000 bootstrap repetitions. The tree with the highest log likelihood (-42087.04) is shown. The tree is drawn to scale, with branch lengths 
measured in the number of substitutions per site. The analysis involved 56 nucleotide sequences. Evolutionary analyses were conducted in 
MEGA7. Clusters, subclusters and strains were identified using Automatic Barcode Gap Discovery and genetic distances of 0.043 (cluster); 
0.02 (subcluster) and 0.015 (strain) were identified. All strains (and cluster 2) are colored for ease of visualization and tracking.
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performed using VPhaser2 and the numbers of unique variants 
determined did not demonstrate a high degree of within host  
variability. This may be a reflection of the amplicon based  
amplification method used for this pipeline as capture-based 
methods have been shown to provide a more robust minor  
variant amplification approach50,51. However amplicon based  
methods have previously been used successfully for variant  
calling in a clinical setting52 and have been considered to be  
effective for minority variable identification. On the other hand, 
as all the sequenced strains were grown from clinical samples 
in immortalized cell tissue culture, it most likely reflects the  
genetic bottleneck due to this method53.

The clinical strains sequenced were drawn from a wide demo-
graphic with an inevitable bias towards inpatient admissions 
due to increased viral testing in these circumstances. The  
sample demographic reflected known populations with a known 
severe impact by HPIV3. 18 out of 20 strains were obtained from 
patients aged below 5 or over 50. Although clinical data was  
only available in seven cases, two patients were identified as 
having chronic respiratory conditions and five were immuno-
suppressed due to a haemato-oncological condition. Although 
this sample formed a good representation of the population 
most commonly severely affected by HPIV333–35, further studies 
focusing on the occurrence of HPIV3 in the otherwise healthy  
cohort could enhance the knowledge of its variability.

To this end the phylogenetic analysis of HPIV3 UK sequences 
obtained was conducted in the context of other full genome 
sequences currently available in the NCBI database. We have 
excluded all duplicate and highly similar sequences as well as 

significantly culture adapted strains. Consequently we have 
observed only two clusters, which contrasts with three previ-
ously identified in literature54. This is most likely due to the  
exclusion of strains from the last century that are known to be 
heavily culture adapted and have therefore not been included 
in this study. We have observed that cluster 1 (Figure 4)  
contains most strains that are currently circulating including 
all the UK strains sequenced in this study. Cluster 1 can further 
be subdivided into two subclusters with UK strains falling into  
both rather than forming a UK specific subcluster or strain.

We have not noted any significant geographical or tempo-
ral correlation between strains and clusters using the limited 
number of diverse sequences available to us (Figure 4). The 
majority of the strains were observed at different geographical  
locations and with a wide temporal spread. This reflects  
that HPIV3 is a global problem that has been identified as an  
important respiratory pathogen in all countries conducting  
respiratory virus surveillance4. The rate of substitution for  
HPIV3 (4.2x10-4 subs/site/year) is consistent with other RNA 
viruses41,42 and would predict a development of a new subcluster 
roughly every 50 years and a new cluster every 107 years. We 
have observed a potential new emerging strain MF166750.1 
(USA2017), and a strain (1a(ii)) that has not appeared since 
2012 (Figure 4). Although the rate of evolution, in itself,  
would be insufficient to account for the yearly rise in cases 
seen, it does reflect a number of globally circulating strains  
as well as regularly emerging new ones.

Limited geographical clustering observed in this analysis 
was most likely due to the scarcity of diverse sequences from  

Figure 5. Relative site by site evolutionary rate of the human parainfluenza viruses type 3 (HPIV3) genome. Mean (relative) evolutionary 
rate are shown for each site next to the site number with a window of 200. These rates are scaled such that the average evolutonary rate 
across all sites is 1. This means that sites showing a rate < 1 are evolving slower than average, and those with a rate > 1 are evolving faster 
than average. These relative rate were estimated under the General Time Reversible model (+G+I). The analysis involved 56 nucleotide 
sequences. The position along the HPIV3 genome is shown on the x axis with the hypervariable region identified between positions 4703 to 
5160. Evolutionary analyses were conducted in MEGA7.

Page 10 of 21

Wellcome Open Research 2018, 3:118 Last updated: 07 DEC 2018



specific geographical regions, particularly for South/East Asia. 
Over the last few years, this number has increased, partially 
due to decreased cost and greater access to next generation  
sequencing55 and a greater interest in viral metagenomics of respi-
ratory infections56. However the bulk of whole genome sequences 
available centers on a small number of episodes or studies, 
yielding clusters of highly similar or identical genomes57. Most  

historical sequences used for previous phylogenetic analyses46–48, 
omitted in this study, have been propagated and maintained in  
cell culture prior to sequencing58–60 Cell culture adaptation 
of HPIV3 has been well studied both phenotypically, where  
culture adapted strains were shown to produce larger plaques 
in cell culture as well as genotypically, with a particular focus 
on HN and F coding regions, where it has been shown that  

Figure 6. Molecular Phylogenetic analysis of human parainfluenza viruses type 3 (HPIV3) hypervariable region by Bayesian 
Phylogenetics using BEAST. The evolutionary history was inferred by using Bayesian Phylogenetics based on the TRN +I model using 
BEAST v1.8.4. The tree with the highest log likelihood (-2020.47) using path sampling and stepping stone analysis is shown. A strict clock and 
a constant coalescent prior were used. The MCMC length was 10,000,000. Convergence was assessed with Tracer and the maximum clade 
credibility tree was generated with Tree Annotator. Dates of strain emergence (in years) are shown in the figure legend. Automatic Barcode 
Gap Discovery was used to analyse genetic distances and 0.1 (cluster) and 0.04 (subcluster) were defined. Subclusters A-E are shown 
next to their respective branches. All strains and cluster and subcluster labels are colored identically to the phylogenetic analysis using full 
genome (Figure 4) to demonstrate near identical clustering patterns.
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Table 2. Subdivisions identified by Automatic 
barcode gap discovery (ABGD) analysis of whole 
genome sequences of HPIV3 and hypervariable 
region of human parainfluenza viruses type 3 
(HPIV3). The corresponding subdivisions into clusters, 
subclusters and strains, identified by ABGD for whole 
genome sequences (Figure 4 and the hypervariable 
region of HPIV3 (Figure 6) are summarized.

Subdivisions identified by ABGD analysis of

Whole genome Hypervariable 
region

Cluster Subcluster Strain Cluster Subcluster

1

1a

1a(i)

1

A

1a(ii) B

1a(iii) C

1b
1b(i) D

1b(ii) E

2 2

different adaptations are required for growth in cell culture as 
opposed to the natural host61–63.

It could be argued that some degree of adaptation was also inher-
ent in the strains used in this study, as they have undergone one 
passage in PLC/PRF/5 cells prior to sequencing. However 
the sequences obtained were minimally adapted compared to  
historical strains maintained in cell culture over many passages64.  
Additionally these clinical sequences were found to be  
phylogenetically diverse and to cluster with other clinical strains 
of HPIV3, whereas significantly culture adapted strains have 
previously been shown to form a separate cluster, as described 
above. An alternative approach to whole genome sequencing,  
using the small hypervariable region, easily sequenced from  
clinical samples was also explored in this paper, and could be  
used for phylogenetic typing of HPIV3 where whole genome  
data cannot be obtained.

We have demonstrated that a salient phylogenetic and epide-
miological analysis can be performed on a short hypervariable 
region of the HPIV3 genome described in this study. Although 
an overlapping region has been used previously for outbreak 
monitoring, it was a shorter segment of 244 bases, position 4880  
to 51248,9. This would place the primer sites within the  
hypervariable region itself (defined here as position 4703 to 
5160, Figure 3), potentially limiting amplification success 
rate. In the current analysis the region identified is flanked by 
two regions of reduced variability, creating ideal locations for  
primer localization (Figure 5).

A faster substitution rate of the hypervariable region (1x10-3)  
has facilitated the division into 2 clusters and 5 further subclus-
ters. All strains apart from two, have been shown to cluster 

in an identical pattern to that identified in the full genome  
analysis. MF166750.1 (USA2017) has been identified as 
forming its own subcluster, which was consistent with full 
genome analysis, where it was identified as an emerging strain  
(Figure 2). This is particularly salient in a clinical environment 
where whole genome sequencing may not be feasible due to the  
quality and storage of the clinical samples. The costs and turn 
around times associated with next generation sequencing are 
often prohibitive in a diagnostic laboratory. The comparatively  
short hypervariable fragment can be sequenced by Sanger 
sequencing, decreasing costs, turn around times and removing 
the need for complex bioinformatics analysis as demonstrated  
in the companion paper65.

It is of note that only three full genome strains were found to fall 
into cluster 2 when full genome phylogenetic analysis was con-
ducted and one of the strains (KF530247.1) moved to cluster 1 
when only the hypervariable region was used for analysis  
(Figure 2 and Figure 4). KF530247.1 was previously identified in 
literature as a potential recombinant strain, where phylogenetic 
analysis using its HN genome did not correlate with that of the  
F genome11. It is important to note that this strain and the two 
remaining strains form part of the same sequencing project, 
accession number PRJNA73055, however other strains from 
the same project behaved as predicted in our analysis. Hence, 
this likely reflects the scarcity of full genome data available for 
the analysis of HPIV3. Overall, the geographical distribution  
of sequences available was noted to be heavily biased towards 
the northern hemisphere and the Americas. This highlights the  
necessity to conduct further epidemiological surveillance of  
HPIV3 as well as the utility of a smaller part of the genome  
that could be used for this purpose, as identified in this study.

The second sample that did not cluster in the same fashion as 
that predicted by full genome analysis was UK strain 180. Fur-
ther analysis of the sequence revealed that there were 3.7% 
ambiguous bases in the hypervariable region of this strain. 
This ambiguity could influence the subcluster (genetic distance  
0.043) in which this strain would have been grouped. As a 
number of different strains have been shown to circulate globally 
each year, we could hypothesise that this is a case of dual infec-
tion that was identified when the analyses of the hypervariable  
region and the full genome were compared.

As the HN coding region has previously been used for phy-
logenetic characterization of HPIV346–49 this approach was also 
applied to the current data set (Figure 7). It is interesting to note 
that the resulting clustering patterns were not wholly consist-
ent with those obtained by whole genome sequencing. Three 
strains (KF687319.1; KF530245.1; KJ67605) were classified  
differently (Figure 7). However both strains 180 and strain 
KF530271.1 were classified in agreement with whole genome 
analysis (Figure 5). The discrepant strains in this case were 
sourced from different projects, have not been previously iden-
tified in literature as atypically clustering, and did not contain  
sufficient ambiguous bases that could have potentially influenced  
the classification, as described above for strains 180 and 
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KF530271.1 Unfortunately, without further understanding of 
the connection between genotype and clinical and evolutionary 
phenotype of HPIV3, it is impossible to infer which analysis 
produced more biologically salient results. However we have  
shown that phylogenetic analysis using HN did not fully reflect 
the clustering obtained using whole genome data for this data 
set and this was matched more closely by the hypervariable  
region identified in this study. 

Figure 7. Molecular Phylogenetic analysis of human parainfluenza viruses type 3 (HPIV3) HN coding region by Maximum Likelihood 
method. The evolutionary history was inferred by using the Maximum Likelihood method based on the TRN +G model and 1000 bootstrap 
repetitions. The tree with the highest log likelihood (-4490.43) is shown. The tree is drawn to scale, with branch lengths measured in the 
number of substitutions per site. The analysis involved 56 nucleotide sequences. Evolutionary analyses were conducted in MEGA7. Clusters, 
subclusters and strains were identified using Automatic Barcode Gap Discovery and genetic distances of 0.043 (cluster); 0.02 (subcluster) 
and 0.01 (strain) were identified. All strains (and cluster 2) are colored consistent with Figure 4 for ease of visualization and tracking.

In conclusion, in this study we have presented a first genetic 
analysis of whole genome sequences of circulating UK strains 
of HPIV3 in the period of 2011–2015. We have concluded that, 
consistent with previous data, the circulating strains fall into the 
same cluster but do not form a particular subcluster or strain11–13,54.  
Within the constraints of the amount of sequences available we 
have not observed a temporal or geographical correlation with a 
particular strain of HPIV3. However the number of full genome 
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HPIV3 sequences is limited, necessitating further epidemio-
logical investigation both in a laboratory and clinical setting.  
To this end, we have identified a small hypervariable region 
in the HPIV3 genome and have shown that, in the absence of 
full genome data, this region can be used for epidemiological  
surveillance of HPIV3.

Data availability
Raw data and details of primers used for Sanger sequencing 
available on Open Science Framework. Dataset 1: UK circu-
lating strains of human parainfluenza 3: an amplicon based 
next generation sequencing method and phylogenetic analysis.  
https://doi.org/10.17605/OSF.IO/SUQ9520

All HPIV3 sequences have been uploaded to NCBI with the  
following accession numbers:

HPIV3/UK/ 65/06/2011 MH678674

HPIV3/UK/ 112/06/2012 MH678675

HPIV3/UK/ 113/07/2012 MH678676

HPIV3/UK/ 121/11/2012 MH678677

HPIV3/UK/ 128/02/2013 MH678678

HPIV3/UK/ 129/02/2013 MH678679

HPIV3/UK/ 153/04/2013 MH678680

HPIV3/UK/ 180/05/2013 MH678681

HPIV3/UK/ref/ MK9 MH678682

HPIV3/UK/ 14/11/2014 MH678683

HPIV3/UK/ 16/05/2014 MH678684

HPIV3/UK/ 21/06/2014 MH678685

HPIV3/UK/ 30/07/2014 MH678686

HPIV3/UK/ 60/06/2011 MH678687

HPIV3/UK/ 82/07/2011 MH678688

HPIV3/UK/ 122/12/2012 MH678689

HPIV3/UK/ 362/03/2015 MH678690

HPIV3/UK/ 371/04/2015 MH678691

HPIV3/UK/ 390/02/2014 MH678692

HPIV3/UK/ 395/04/2015 MH678693

HPIV3/UK/ 53/04/2014 MH678694

All uploaded sequences can be accessed together via PopSet: 
1470015825
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A very detailed, comprehensive write-up from the NGS methods viewpoint – which seems to be
the main focus of this paper/studentship.

But a more global contextualization would make the paper more interesting and relevant to an
international readership – this is very brief at present:

“Overall, the geographical distribution of sequences available was noted to be heavily biased
towards the northern hemisphere and the Americas. This highlights the necessity to conduct
further epidemiological surveillance of HPIV3 as well as the utility of a smaller part of the genome
that could be used for this purpose, as identified in this study.”

Especially in the Discussion where the UK sequences cluster with the other North/South American
and European sequences. Why is there no clustering with South/East Asian PIV3 sequences? Were
they too few or just not included in the alignment – or some other reason? See:

Godoy   (2016)  et al.
Kim  . (2017)et al
Almajhdi   (2012)et al.
Piralla   (2009)et al.
Zhang   (2013)et al.

The authors should also discuss the possible impact of cell-cultured PIV3 viruses and how this may
impact on the sequence fidelity in the resulting sequence obtained. This has been a problem for
influenza viruses cultured in MDCK cell-lines for sequencing – and probably applies to other
respiratory viruses cultured/amplified for sequencing:

Lee   (2013)et al.

Also as well as just analyzing the whole genome sequence phylogenetically, the authors should
also analyse the individual PIV gene sequences ( at least where sufficient numbers of comparative
sequences are available on Genbank) to see if the same cluster pattern is maintained compared to
the whole genome phylogenetic analysis they have performed already. If the individual gene
sequence analyses show different topologies, this may indicate some increased variability/
hypermutation/
recombination ongoing in some genes more than others, e.g. the fusion F gene. This
data may impact on vaccine design considerations, where a globally conserved region is an
important target consideration - see:

Tang  (2017)et al. 
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1. A note on geographical clustering has been added in Discussion 
2. A note on the effects of cell culture adaptation has been added in Discussion 
3. Analysis of the HN coding region has been included – additional figure (Figure 7) added in
Results and a paragraph added in Discussion
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data set. A note to this effect has been added in Results. 
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   Hirokazu Kimura
 School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, Japan
 Graduate School of Health Science, Gunma Paz University, Gunma, Japan

The authors performed detailed genetic analyses of human respirovirus 3 (HRV3) strains detected in UK
using primer walking combined with the NGS method. I feel that methodology is sound. Moreover, the
present genetic and molecular epidemiological data may be partly contribute to understand HRV3
virology. However, some major concerns were found.

1. HPIV3 has been reclassified into another Genus (Respirovirus) and species (respirovirus 3) by ICTV. It
should be amended.

2. The authors phylogenetically analyzed using full genome of the present strains. Why?

3. No discussion of the phylogenetic relationships between your country and other countries was seen .
The authors could refer to them.

4. The present strains could be genotyped and/or subgenotyped as previously described .
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have been addressed in version 2 of the manuscript as follows:
 
1. A note on renaming of human parainfluenza virus 3 as human respirovirus 3 has been added in
Introduction. 
2. Additional clarification on why whole genome sequencing was used was added in Introduction 
3. A note on geographical clustering has been added in Discussion 
4. Analysis of the HN coding region was carried out, an additional figure (Figure 7) was added in
Results and a paragraph added in Discussion.
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