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Influence of accelerator pedal force feedback on 

truck drivers' speed control 

 

Christopher William Rosier 

 

 

The UK government has set clear targets for 80% reductions (compared with 1990 levels) in 

greenhouse gas emissions by 2050 and pressure is increasing on the road transport industry to 

reduce the fuel consumption and harmful exhaust emissions of Heavy Goods Vehicles (HGVs). 

Vehicle manufacturers and operators alike are having to investigate and find new ways of making 

reductions. It is thought that improving driver behaviour offers significant potential for these 

reductions in fuel consumption and emissions. This thesis considers the use of Active Accelerator 

Pedals (AAPs) and the potential for improved driver performance that they may offer by providing 

pedal force feedback to the driver. 

In order to develop understanding of the interactions between the human driver and 

accelerator pedal, two near identical tractor units, operated by Turners of Soham Ltd, were fitted 

with the a data logger. Data was collected and stored over a period of four months as they operated 

on the road. This data provided the basis for a vehicle model to be developed using real-world 

conditions, rather than strictly controlled test track conditions. Analysis of the behaviour of the two 

drivers also identified differences is styles, and explained 7% fuel consumption differences between 

the two drivers when negotiating roundabouts. 

A new mathematical model of the human driver’s longitudinal control was also developed 

to include the driver’s cognitive control of the accelerator pedal. Model Predictive Control theory, 

commonly used for modelling the driver’s steering control, was used and different driving styles 

were replicated by varying the weightings in a cost function, and a series of driving simulator 

experiments were performed to validate the model. Nine human drivers, two of which were 

professionals, performed two driving scenarios (drive cycle and car-following). The driver model 

was fitted to each driver individually to mathematically express the differences in their styles. The 

simulated RMS pedal forces from the fitted driver models lay within 20% of the measured simulator 

values. 

The driver model was also extended to include the interactions between a human driver and 

an AAP using mathematical game theory. Three frameworks were proposed: decentralised, 

cooperative and one-sided cooperative, but, as the cooperative framework would have been very 



difficult to implement experimentally, it was only considered theoretically. The same nine human 

drivers were presented with drive cycle and car-following scenarios whilst being assisted by pedal 

feedback to validate the model. Both decentralised and one-sided cooperative frameworks were 

applied to the fitting and compared. In the drive cycle scenario, the one-sided cooperative 

framework output an identical controller to the decentralised framework. In the car-following 

scenario, the one-sided cooperative framework produced the best fit, suggesting that the human 

drivers adapted their strategy to reflect the guidance from the AAP. It was noted in both scenarios 

that the peak pedal displacement decreased by approximately 20% with the presence of pedal force 

feedback. 

Further work is suggested to improve the mass and road gradient data obtained from the 

data loggers in vehicles in order to reduce the uncertainty in the traction force and fuel rate maps. 

With a model for the interactions of a human driver with an AAP now in place, the pedal feedback 

strategy can now be optimised to improve the performance of the human driver. 
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Chapter 1 - Introduction and Literature Review 

1.1     Background and Research Aim 

Heavy Goods Vehicles (HGVs) contribute 21% of surface transport CO2 emissions, 28% of NOx 

emissions and 16% of particulate matter emissions (Low Emission HGV Task Force, 2014). Despite 

this, they only make up 1.5% of road vehicles. Pressure is now increasing on the transport industry 

to reduce fuel consumption and harmful exhaust emissions. HGVs need to contribute to the 

government’s 80% reduction in greenhouse gas emissions by 2050 (when compared with 1990 

levels). There are also tightening EU regulations, specifically targeting the emissions and fuel 

consumption of HGVs. 

It is not only the vehicle manufacturers that tackle these reductions, but also the end users: 

the drivers the companies that run the vehicles. To achieve these necessary reductions, several 

approaches can be taken. The engine and vehicle can be redesigned to be more efficient – for 

example, the engine could be tuned to produce the same power with lower emissions and fuel 

consumption, or the cab reshaped to reduce aerodynamic drag forces. These modifications would 

be undertaken by the vehicle manufacturer. The vehicle manager could adopt a more fuel efficient 

logistical plan, optimising delivery planning to reduce road miles for instance. The driver could 

also adopt a more sustainable driving style. 

Driving style differences can make differences of tens of percent to emissions and fuel 

consumption (Ericsson, 2000) (DeVlieger, 1997). There are four main approaches to altering driver 

behaviour: driver training, visual feedback, auditory feedback and haptic feedback 

There are many ways of encouraging drivers to behave more efficiently and sustainably. 

Several companies exist to train drivers in specialist driving styles designed to reduce fuel 

consumption. However, these are sometimes sold with grand claims of large fuel consumption 

reductions that can be difficult to reach in reality (Wahlberg, 2002). A training course can be good 

at motivating a driver to behave well, but the trainer cannot remain in the cab with a truck driver all 

the time. Many drivers will have conflicting objectives; productivity and efficiency do not always 

go hand in hand, and the weighting of these two in the driver’s mind may change over time. Training 
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is shown to have strong benefits in the short-run (Huang and Ford, 2012), but diminishing effects 

over time as a driver’s motivation decreases (Johansson et al., 2003). 

Support can be offered to drivers in the form of post-driving feedback (Gonder, 2011). 

Drivers could be scored or ranked against others in a fleet to add a competitive element to 

motivation. Financial rewards could also be offered to drivers with good performance to increase 

motivation (Lansdown and Saunders, 2012). Constructive feedback informing the drivers of what 

they did well and what they can improve on is likely to achieve better results than a simple score 

on its own. For this to work though, driving data would be needed. 

In-vehicle feedback can continuously support and motivate the driver. There are different 

channels within which feedback can be communicated to the driver. Visual feedback is the most 

used feedback channel. A feedback device could be used to indicate to the driver when high 

demands are on the engine (Vagg et al., 2013), or when the vehicle is speeding (Varhelyi et al., 

2014). The effect of visual feedback, as with many feedback channels, can be dependent on the type 

of driver (Stillwater et al., 2012). A driver that wants to improve will achieve better results than one 

that does not. However, improvements in one area of driver performance may result in detrimental 

effects in other areas due to driver distraction (Recarte and Nunes, 2003). 

Alternatively, the audio channel may be used to communicate feedback to the driver. In 

order to prevent speeding, a simple beeper could be enough to inform the driver (Adell et al., 2008). 

The noise of the engine itself is a good source of auditory feedback. When under high demand, the 

engine becomes much louder than when idling. 

The final practical channel of communication to a driver is through haptics. Haptic devices 

have been used in steering wheels, foot pedals and even seat belts to communicate with the driver. 

Foot pedals potentially offer a significant improvement in fuel consumption and emissions as they 

are directly linked to the longitudinal control of the vehicle. 

The aim of the research described in this dissertation is to extend knowledge and 

understanding of how force feedback at the accelerator pedal can reduce HGV energy use. This 

research is part of the programme of the Centre for Sustainable Road Freight - a collaboration 

between the University of Cambridge, Herriot Watt University, and a consortium of road haulage 

operators. The centre’s aim is the research of low carbon vehicle technologies and logistics in the 

road haulage sector and runs a series of projects to achieve this aim.  

The next section reviews the published literature in the field of pedal force feedback and 

section 1.4 reviews the literature in the field of human driver longitudinal control.  Published work 

on autonomous vehicle speed control is reviewed in section 1.5.  
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1.2     Literature Review: Pedal Force Feedback 

This first section of the review examines the current state of research on pedal force 

feedback and how it can be used to affect driver behaviour. Focussing on three major areas: car 

following; speeding; and fuel consumption and emissions, research has so far neglected the HGV 

industry but is showing promise for the car and light goods vehicle industries.  

An accelerator pedal fitted with a feedback device is known as either a force feedback foot 

pedal, or an Active Accelerator Pedal (AAP) (Varhelyi et al., 2004). Gonder, (2011) identified the 

potential benefits of pedal feedback but acknowledged the complexity involved in equipping a 

vehicle with the technology. It was estimated that by improving driver techniques, a fuel saving of 

the order of 20% could be achieved for the most aggressively driven trips. Generally, in-vehicle 

feedback systems can be one of two categories: a system fitted to a vehicle when built or a system 

fitted to a vehicle already in service. An AAP is most likely to fall into the first category. 

1.2.1     Car-following Support 

For car-following support, the aim is to use pedal feedback to assist the driver in keeping a safe 

distance from the car in front. Whilst considering a car-following support system, Mulder et al., 

(2011) identify the three main design issues as: the measuring of parameters; choosing the type of 

haptic feedback; and deciding on a relationship between the feedback and the measured parameters.  

For car following, relevant parameters might be inter-vehicle separation and relative vehicle speeds 

or time-to-collision (Mulder, 2007). There are many possible parameters and combinations of 

parameters, leading to a range of car-following performance. Each combination comes with both 

advantages and disadvantages relating to measurement methods and how well the driver interacts 

with the controller.  

In pedal feedback, the resistive force that the driver experiences when pushing on the pedal 

can be modified either by varying the stiffness, or by overlaying an additional force. These two 

methods are known as stiffness feedback and force feedback respectively, see Figure 1-1. Mulder 

et al., (2011) uses a stiffness feedback approach with parameters of time-to-collision and time-

headway in order to assist in the control of vehicle acceleration. The apparent effectiveness of an 

AAP may depend on the distance to the car in front. The driver's visual perception of closing speed 

is more accurate at closer distances, so their need for assistance from the pedal will be less than at 

greater distances (Mulder et al., 2008).  

Mulder et al., (2008) examined feedback of time headway (THW) for the car-following 

situation. THW is length of time required for the following vehicle to travel the distance between 

it and the car in front. It can be considered as the maximum length of time a driver has to react to a 

decrease in speed of the vehicle in front. A force or stiffness, proportional to the THW error 

(between current THW and a target of 1.5 s) was added or subtracted from the pedal. It was found 
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that the introduction of feedback increased the mean time headway, away from the target, and that 

stiffness feedback, over force feedback, offered the greater increase, see Figure 1-2. The standard 

deviation of THW was significantly lower for the cases with feedback. 

 

 

Figure 1-1 – Force against pedal position for force feedback (top) where a force offset 𝐹𝑣(𝑡) is applied to a 

constant stiffness of 𝐾𝑝 and stiffness feedback (bottom) where a stiffness offset 𝐾𝑣(𝑡) is applied to a 

constant stiffness 𝐾𝑝 (Mulder 2011) 

 

Figure 1-2 – Mean time headway (THW) for different feedback types when car following (Mulder, 2008) 

Mulder et al., (2004) examined the influence of secondary tasks on car-following when 

supported by an AAP. Given a target THW, Drivers were also asked to press a button near the 

steering wheel when a shape appeared on the driving simulator screen. Drivers supported by 

stiffness feedback had the fastest reaction times, whilst drivers supported by force feedback had 
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slower reactions than the base line, unsupported case. Car-following performance was compared 

with and without the secondary task. It was found that the secondary task had little effect on car-

following performance, but the driver’s control activity increased in the supported cases, but the 

mean THW increased with the secondary task in the base-line test. 

It is possible to extend the acceleration strategy to include deceleration support as well 

(Mulder et al., 2010). To do this, an algorithm was designed to increase the braking force when the 

driver lifts off the accelerator pedal. A relatively small experiment, with twenty participants, found 

that this adaptation reduced the driver's maximum braking effort during a drive cycle task in a 

driving simulator, whilst maintaining the frequency of braking, when compared with the standard 

acceleration pedal feedback device. It was also found that this deceleration support had a bigger 

effect when cars were closer together. In situations where cars are close together, for example in 

traffic jams, car-following support from an AAP can help smooth the flow of traffic and reduce the 

level of congestion (van Driel and van Arem, 2007). This system could also offer increased safety 

by encouraging the driver to approach a traffic jam more slowly. 

The work by Mulder, who focuses on the effects of different feedback approaches, is quite 

closely supported by Abbink, who models the driver-pedal interaction. Abbink et al., (2008) models 

the driver and vehicle as a closed loop system and observes that continuous haptic feedback offers 

more support to the driver than a binary warning system. Continuous feedback gives the driver a 

better situation awareness and provides enough information to the driver to compensate for 

temporary loss of a visual feedback loop due to driver distraction. 

A more detailed driver model (Abbink et al., 2006), shown in Figure 3, models the driver 

and vehicle as five subsystems: central nervous system (CNS), spinal system (together these two 

form the driver), pedal, driver support system (DSS) and vehicle dynamics. A relative velocity error 

signal is input into the CNS (target relative velocity is zero for car following) and converted to a 

supra-spinal command by what is known as the visual controller. This is modelled as a simple 

proportional-derivative (PD) controller. The spinal system converts this to a torque on the pedal by 

taking into account the limb inertia, muscle activation dynamics, neural time delays, intrinsic 

viscoelasticity due to muscle co-contraction and other neuromuscular properties. A second pedal 

torque is superposed on top of the driver torque from a driver support system (DSS). The pedal 

dynamics, including inertia, variable stiffness (from the DSS) and damping, results in a pedal 

position that is the input to the vehicle dynamics, which in turn determines the speed of the vehicle. 
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Figure 1-3 – Frequency Domain driver behaviour model (Abbink 2006) 

With torque feedback in the pedal enabled, three main effects were identified by Abbink et 

al. (2006). Higher admittance (velocity response of a system to force input) of the ankle-foot 

complex was observed as the driver tried to maintain a constant pedal torque, meaning that the foot 

moved readily in response to torques from the driver support system. The driver achieved this by 

decreasing muscle co contraction, indicated in the experiment by reduced electromyography (EMG) 

activity for all muscles. This behaviour is categorised as a ‘force control’ task, where the driver 

attempts to maintain constant force at the foot, rather than a position control task (driver attempts 

to maintain constant foot position) or relaxation (driver tries to relax all muscles). Secondly, better 

coupling between perception and action was observed, because the addition of the DSS caused 

fewer nonlinear pedal displacements compared to the driver operating with visual feedback alone. 

Thirdly, performance metrics such as THW were only marginally improved, which suggested the 

DSS was used by the driver to reduce workload rather than improve car-following performance. 

Although Abbink’s work represents the effects of pedal force feedback on the neuromuscular 

dynamics, it does not account for the driver’s cognitive response to the force feedback (there is no 

force feedback to the CNS in Figure 1-3). 

de Rosario et al., (2010) took a slightly different approach and used a vibrating accelerator 

pedal as a warning to the driver that the distance to the vehicle in front was below a threshold. 

Numerous vibration characteristics were assessed. Driver response was judged on reaction times 

and how quickly the speed of the car in front was matched. This highlighted a trade-off between 

effectiveness and driver satisfaction. As warnings became stronger and more annoying, responses 

were quicker, but drivers became annoyed at the system and experienced discomfort. A successful 

design, therefore, must find a balance. The author also suggests that staged warnings may offer 

better results because the problem of familiarity is less likely to arise for second or third stage 

warnings. 
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Work in this area, especially by Abbink and Mulder at TU Delft, has studied the interaction 

between the driver and pedal, however, little has said on the cooperative interaction of the two. Na 

and Cole, (2013) have applied game theory to modelling the cooperative (and non-cooperative) 

interaction between the driver and active front steering. Mosbach introduces the concept of a 

cooperative interaction between an AAP and the human driver’s longitudinal control of the vehicle, 

but expresses the difficulty in tuning the fully cooperative AAP to each individual driver (Mosbach 

et al., 2017). 

1.2.2     Speed Limiting 

Another application of the Active Accelerator Pedal is to prevent a vehicle from exceeding the 

speed limit (Schumann et al., 1992). By using the haptic channel, rather than visual channel, the 

visual demand on the driver is reduced and less time is spent looking at the speedometer. When the 

driver’s gaze is on the speedometer their attention on other driving tasks, such as staying in lane, 

reduces (Summala et al., 1996). 

A three state system on the pedal (off, soon and imminent) allows the driver to drive 

independently most of the time, the pedal only becoming active when a potential danger is detected 

(Adell et al., 2011). By using two categories of warning – soon and imminent – the pedal can 

suggest how urgently the driver needs to react. In the EU-financed SASPENCE (SAfe SPEed safe 

distaNCE) project, two-stage pedal feedback was integrated into a warning system with other 

feedback channels, including a visual display and auditory warning, to assist drivers behave safely. 

The system aimed to assist in maintaining safe speeds and distances from the vehicle in front, but 

other safety factors were also considered. The need for a warning was assessed by using an array 

of sensors to detect surroundings and then understand the driver’s objective (Bertolazzi et al., 2010). 

By comparing with a library of safe manoeuvres that would achieve the objective, unsafe 

manoeuvres can be flagged and an alarm sounded. The foot pedal exerted a 30N counterforce for a 

first warning and vibrated to warn that a dangerous event was imminent. In a test with twenty 

drivers, this system was observed to increase driving safety in some aspects but worsen it in others. 

For example, drivers were perceived to have improved interactions with vulnerable road users but 

the number of centre line crossings increased and harder braking occurred at traffic lights. 

A study in the city of Lund, Sweden, looked into the long term effects of use of an active 

accelerator pedal  (Varhelyi et al., 2004). 284 vehicles were fitted with an active accelerator pedal 

for a year. The pedal exerted a counterforce if the vehicle was speeding within the geographical 

boundaries of Lund. A GPS system tracked which road the vehicle was on and the corresponding 

speed limit. The magnitude of the pedal feedback force was such that it could be overridden by the 

driver if needed in emergency situations. It was found that the AAP reduced speeding and also the 

speed variation. Perhaps surprisingly, the AAP had a negligible effect on journey time, but 

beneficial effects on emissions were detected. The effect the pedal had over time decreased slightly 
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as drivers became used to the device. When leaving the city, the system became inactive, but data 

was still recorded. Many drivers slipped back to their old driving styles and the number of speeding 

occurrences increased. When interviewed on their experiences with the system, the AAP was 

judged by drivers to be effective but not attractive (Adell and Varhelyi, 2008). On a sliding scale, 

drivers considered the system to be more ‘effective’ than ‘ineffective’, ‘clear’ than ‘unclear’ and 

‘informing’ than ‘confusing’ Young male company car drivers were identified as being the least 

enthusiastic about the AAP. Most of the time, this was a preconceived bias against the system, from 

before first use, that was maintained throughout the trial. 

In the same Lund study, Hjalmdahl and Varhelyi, (2004) also observed that drivers’ 

behaviour adapted over time. They noticed that in the long term, drivers were safer, but when the 

AAP was not operating, many drivers failed to adapt their speed to the surroundings. In some 

instances, drivers were recorded as exceeding the speed limit. This suggested that the drivers 

became reliant on the system to maintain safe speeds in traffic. 

A study in Belgium in 2002 (Vlassenroot et al., 2007) aimed to investigate the effects of an 

AAP on speed change, traffic safety and drivers' attitudes. Force resistance was activated in the 

pedal when the driver tried to exceed the speed limit. Some drivers who frequently exceeded the 

limit before installation of the system would still speed as they would override the pedal. Less 

frequent speeders would accelerate up to the speed limit and then drive exactly on the limit rather 

than just below. This resulted in the unintended consequence of increasing the average vehicle 

speed. Even though the average speed increased, the number of speeding detections decreased. 

The level of driver acceptance of AAP speed control devices is hard to measure. There are 

many variations of the definition adding to the difficulties. One definition of acceptance is ‘the 

degree to which an individual intends to use a system and, where available, incorporates the system 

into their driving’ (Adell, 2010). Many drivers don’t like the system and even though they find the 

system useful, they would ‘rather not use it’ (Hof et al., 2013). 

Adell et al., (2008) investigated the effects that an AAP system and a similar auditory 

system had in two countries: Spain and Hungary. Drivers in Hungary perceived the workload to be 

higher in than drivers in Spain but performance results showed little difference between the two 

countries. Of note is that more drivers wanted to keep the auditory system rather than the AAP even 

though drivers judged the AAP to be more effective. 

2.1.3 Emissions and Fuel Consumption 

As mentioned in the preceding section on speed control, the use of an AAP has resulted in reduced 

emissions whilst aiming for safer driving (Varhelyi et al., 2004). Birrell et al., (2013) used an AAP 

to provide a counterforce when the driver exceeded 50% throttle with the aim of reducing emissions. 

No emissions data were recorded, but the mean and maximum accelerations were reduced when 

compared with drivers being asked to drive ‘economically’ in a simulator.  
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Azzi et al., (2011) devised a feedback strategy around a mathematical model of a Renault 

diesel engine. This allowed feedback to be based on comparing vehicle acceleration with an optimal 

acceleration (calculated from the engine model) for current road speed. The optimal acceleration 

was calculated from a proprietary fuel consumption model of the Renault diesel engine in which 

vehicle speed, but not engine speed, was taken into account (Figure 1-4). If the current acceleration 

exceeded the optimal, then a counter force proportional to the position of the pedal was applied. On 

a simulated test track, with no other cars, 28 drivers were encouraged to change gear below 2000rpm 

and were supported with the acceleration feedback from the AAP and a screen on the console. When 

utilising the combined feedback, the engine model calculated a 7% reduction in polluting emissions. 

It was also concluded that, on the simulated test track, there was no detectable difference between 

emissions when only one out of two feedback systems were used (visual or a haptic). A visual 

device may have had a comparative advantage on the test track rather than public roads as there 

was no visual stimulus from other vehicles to distract the driver. Further studies were suggested on 

driving in traffic and reactions to critical conditions.  

Larsson and Ericsson, (2009) fitted AAPs in four postal vehicles that drove a variety of 

routes from urban to rural. Pedal feedback was proportional to the speed of the accelerator pedal. 

Emissions were calculated using the Veto micro mechanical emission model and in contrast to Azzi 

et al., (2011), they found that an acceleration advisory AAP had no significant reduction in fuel 

consumption and only slight improvements in emissions for two out of three routes. The urban 

routes were found to offer a slight reduction in polluting emissions, whereas the rural routes did 

not. The difference in findings between Larsson and Eriscsson and Azzi et al. could be down to the 

difference in feedback, emissions model or road conditions. 

 

 

Figure 1-4 – Renault Diesel Engine Optimal acceleration against vehicle speed (Azzi, 2011) 
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Jamson et al., (2013) examined three different feedback options for the accelerator pedal 

as part of the ecoDriver Project. The aim was to discover which feedback offered most assistance 

to drivers aiming for maximum fuel economy. Force feedback, stiffness feedback and an ‘adaptive’ 

stiffness feedback design were compared using a paired comparison approach. In force feedback, 

step changes in force were applied to the pedal. In stiffness feedback, changes in pedal firmness 

were applied, and in adaptive stiffness, the spring stiffness of the pedal was removed so that a 

constant force was applied until a maximum throttle point was reached, and then additional stiffness 

was implemented (Figure 1-5). Twenty drivers compared the three designs when being given a 

target accelerator pedal position (7% for cruise and 23% for acceleration phase). The designs were 

rated and results showed that the drivers preferred force feedback over stiffness feedback. This 

seems to contradict an earlier study by Mulder, (2007) which found that stiffness feedback was 

preferred. The difference could arise from the slightly different driving objectives that were being 

used. In Jamson’s study, the aim was to reach a target throttle position, whilst in Mulder’s, a vehicle 

separation was targeted. Jamson acknowledged that the study was not conclusive and that further 

investigation was required on the longer term effects of force feedback versus stiffness feedback. 

Driver fatigue may cause a change in conditions that would result in higher physical workload 

(Abbink, 2006).  

Also part of the ecoDriver project, Toffetti et al., (2014) investigated a visual feedback 

device. Comparisons were made between the visual feedback system alone and the system 

supported by an AAP. He concluded that when supported by the AAP as well as the visual feedback 

system, drivers reacted more promptly to feedback. It was also noted that there was little preference 

from the drivers for one system or the other. 
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Figure 1-5 – Difference between stiffness feedback (top) and adaptive  

stiffness feedback (bottom) (Jamson, 2013) 

An alternative to looking at the acceleration phase of the drive cycle for fuel savings is to 

look at the deceleration phase. A warning vibration from the pedal could be used to prompt the 

driver to lift off the accelerator pedal (Hajek et al., 2011). By anticipating when the vehicle will 

have to stop, a coast to stop could prevent energy being wasted through braking. This study claimed 

to find fuel consumption reductions of up to 7.5%. The test participants were interviewed and 70% 

viewed the device positively. Rather than viewing the warning as a signal to coast to a halt, some 

drivers simply saw it as a warning that deceleration would be required in the future, and still resorted 

to braking. The device was more warmly welcomed in rural and highway environments, rather than 

urban environments, where start-stop driving is prevalent. Extending this, McIlroy (2017) also used 
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a warning vibration to encourage coasting, but found in some situations, where the warning came 

too close to event occurring, performance decreased, and the driver’s acceptance of the device was 

low. With warnings of 8-12s, driver acceptance was higher, and fuel savings of up to 11% observed 

(McIlroy, 2017). 

1.2.3     Summary 

Many of the papers reviewed offer similar opinions on the AAP. It is frequently deemed effective, 

but not attractive to the driver. This is summarised in Table 1. There has also been very little said 

on use of such a system in HGVs, where the vehicle is often very limited in available power, so 

driving strategy may be different. 

Key: ✓ = agrees,  = disagrees, - = not mentioned 

Table 1 – Pedal Force Feedback Summary 

 

Paper Summary Effective Attractive  F
u

el C
o
n

su
m

p
tio

n
 a

n
d

 E
m

issio
n

s 

Azzi (2011) -Investigated haptic pedal feedback and visual 

feedback in cars 

-Haptic feedback judged more effective and 

stabilised foot pedal 

✓ - 

Birrel (2013) -Pedal vibrated when throttle exceeded 50% 

-Reduced mean acceleration and maximum throttle ✓ - 

Hajek (2011) -Anticipated when to lift off accelerator pedal to 

coast to stop 

-Calculated 7.5% fuel reduction from simulations 

✓ ✓

Hof (2013) -Review of various driver support systems for 

reducing emissions 

-No haptic devices for trucks 

✓ - 

Jamson 

(2013) 

-Compared force, stiffness and adaptive stiffness 

feedback 

-Drivers preferred high levels of force feedback 

✓ - 

Larsson 

(2009) 

-Acceleration advisory AAP fitted to post vans 

-No significant drop in fuel consumption across a 

range of routes 

 - 

Toffetti 

(2014) 

-Investigated haptic pedal feedback and visual 

feedback in cars 

-No preference from the driver for either system 

✓ ✓

Varhelyi 

(2004) 

-Speed limiting AAP long term test 

-11% reduction in CO, 7% reduction in NOx ✓ ✓

McIlroy 

(2017) 

-Vibrating pedal warnings given to indicate coasting 

opportunities 

-Drive acceptance was low; fuel savings up to 11% 
✓ 

 C
a

r F
o

llo
w

in
g
 

Abbink 

(2006) 

-Neuromuscular analysis of haptic pedal for car 

following 

-Developed driver-haptic feedback driver model 

✓ - 

Abbink 

(2008) 

-Models driver as a closed loop system 

-Continuous feedback offers better support than 

binary for car following 

✓ - 
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Abbink 

(2011) 

-Neuromuscular analysis of haptic pedal for car 

following 

-High admittances of ankle foot complex 

✓ - 

Adell (2011) -Haptic, visual and audio warning system for speed 

and distance control 

-Potential for safety enhancement 

✓ ✓

Bertolazzi 

(2010) 

-AAP and audio warning system for unsafe 

manoeuvres 

-Judged as effective and well accepted 

✓ - 

Mulder 

(2004) 

-Secondary task test whilst car following with AAP 

-Little impact on car following performance but 

increased control activity 

✓ - 

Mulder 

(2007) 

-Use of AAP for car-following 

-Driver adopts a 'force-task' ✓ - 

Mulder 

(2008) 

-Investigated car following behaviour changes with 

AAP 

-Performance improved and control activity 

decreased 

✓ - 

Mulder 

(2010) 

-Extends AAP strategy to include extra braking 

control 

-Reduced maximum breaking and increased safety 

✓ - 

Mulder 

(2011) 

-Identifies three design issues for AAP: 

-Type of feedback, relationship between feedback 

and distance and quantification 

✓ - 

Mosbach 

(2017) 

-Proposes cooperative AAP system 

-Considers difficulties of fully cooperative system ✓ - 

 S
p

eed
 

Adell (2008) -Comparison of AAP with audio warning for 

speeding 

-Drivers preferred the audio warning even though 

AAP was judged to be more effective 

✓ 

Adell (2008) -Acceptance analysis of AAP 

-Judged as effective but not attractive ✓ 

Hjalmdahl 

(2004) 

-Long term effects of driving with AAP 

-Safer when using AAP, but frequent speeding when 

turned off 

✓ - 

Schumann 

(1992) 

-AAP can help reduce speeding 

-Feedback in pedal prevents driver from looking at 

the speedometer for too long 

✓ - 

Varhelyi 

(2004) 

-Effects of AAP decreased over time 

-Negligible effect on journey time ✓ ✓

Varhelyi 

(2014) 

-Visual and Haptic warnings for blind spot, 

collision, speeding 

-Confusion about which haptic warning was issued 

 

Vlassenroot 

(2007) 

-AAP to prevent speeding saw large variation in 

driver performance 

-Average speed increased due to quick acceleration 

to speed limit 

✓ ✓

 C
o

n
g
estio

n
 

van Driel 

(2007) 

-AAP and automated 'stop-and-go' reduced 

congestion 

-Safety increased as cars approached traffic jams 

slower 

✓ - 
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 C
o

llisio
n

 A
v

o
id

a
n

ce 

de Rosario 

(2010) 

-Vibration warnings for separation distance 

-Unsafe distances produced annoying warnings 

✓ - 
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Drivers are inherently difficult to model accurately due to the complexity of the human mind. An 

understanding of how the decision making process works and how drivers choose and process their 

objectives is important if feedback is to be provided effectively. This review examines the current 

state of research on human driver models, with a focus on those for longitudinal vehicle control.  

There are many driver models already in use. These driver models take a variety of inputs 

and produce an equally varied array of outputs, depending on the objective of the model. Most 

models include the dynamics of the vehicle in the model, so will output a vehicle acceleration or 

speed. 

Driver model objectives may be to mimic human drivers whilst following a car in front, or 

may be to produce an ideal and perfectly safe driver. Many of these driver models have a very 

specific application, due to the complex nature of modelling human behaviour. 

In a thorough review of many driver and vehicle models, (Mastinu and Ploechl, 2014), it is 

pointed out that the vehicle is much better understood than the driver and that the weak point in any 

driver/vehicle simulations is the driver model. Driver models have very specific applications, so the 

best model for the task is very dependent on the individual applications. In some cases, the driver 

model is identified as the ‘test driver’. In some others, however, such as in development of new 

vehicle components, the role demanded of the model is closer to that of a ‘driver robot’, needing to 

maintain a target speed. For that, a different type of model may be more appropriate. 

An early driver model, that is now used as a benchmark by many others, is Chandler’s 

(Chandler et al., 1958). In this paper, the author uses a simple controller to determine the desired 

acceleration of the vehicle by applying a gain to the relative speed of the two vehicles in order to 

study the stability of traffic flow. The response is not instantaneous, however, and a 1.5 s delay is 

implemented between the time the relative speed is assessed by the driver and the time the vehicle 

accelerates to respond. This is due to driver processing time and the dynamics of the engine and 

vehicle.  
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As a slight extension to the proportional controller, limits can be added to parameters. For 

example, a driver may choose to operate at a maximum acceleration until reaching a maximum 

speed (Gipps, 1981). This could resemble any acceleration to cruise scenario. The selection of these 

limits is dependent on the surroundings and the driver’s attitudes. 

The gains used in driver models can be varied to simulate the attributes of different drivers 

(Tang et al., 2014). Common classifications of drivers are aggressive, normal and conservative, but 

real drivers sit across a spectrum. These classifications were used to study the effects of different 

drivers on individual vehicles and hence traffic flow as these vehicles interacted with each other. It 

was found that there was little difference between the cases with homogenous neutral drivers and 

mixed drivers. 

Newell, (2002) proposed a simple driver and vehicle model of cars in traffic. As one car 

follows another, its own speed profile is simply a translation in time and space of the vehicle in 

front. This allows for simplified analysis of traffic dynamics. 

Alternatively, optimal control can be used to model the human driver. This is where a cost 

function is minimised or maximised by the controller. Burnham et al., (1974) used a minimum 

energy and relative distance function to model car following behaviour. Using data collected from 

Interstate 71, it was identified that driver behaviour differed between acceleration and cruise phases 

of a drive cycle as different cost functions resulted in better fits to recorded data. 

Hunt et al., (2011) produced a driver model with two control modes: acceleration control 

and speed control – see Figure 1-6. In both modes of control, the driver’s output is throttle position. 

In acceleration control, the driver operates an integrator controller on acceleration error. The 

reference acceleration is set at a maximum allowable acceleration for driver comfort. The driver 

model interacts with a vehicle model to convert the throttle input into vehicle acceleration. Once 

the target speed has been reached by the vehicle, the driver model switches from acceleration 

control mode to speed control mode.  In speed control, the driver operates a PI controller on speed 

error. The model also includes a gear selector, using an array of maximum allowable engine speeds 

to prompt a shift.  
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Figure 1-6 – Hunt et al., (2011) switched control mode driver model 

Unlike the previous models, the Hunt system models a driver’s response to a drive cycle, 

rather than a car following task. The objective of the driver model is to predict the fuel consumption 

of an HGV during set simple drive cycles (Odhams et al., 2008). Of note is that, unlike some models 

that incorporate the driver’s behaviour, there is a clear output of the driver model (the throttle 

position), rather than just a combined driver-vehicle system output. 

Drivers are not perfect, and make mistakes. To cover this, an ‘errorable’ car following 

model was developed by Yang and Peng, (2010) to take into account three potential driver errors: 

perceptual limitations, distraction and driver time delays – see Figure 1-7. 

 

Figure 1-7 – Errorable car following model (Yang 2010) 

Perceptual limitations were modelled as a quantisation on the inputs to the driver and driver 

distraction was modelled by randomising the acceleration of the vehicle. An extreme value 

distribution was applied to the vehicle acceleration with a mean determined as a function or range, 

range rate and THW. The standard deviation of the distribution was defined as a second order 

polynomial of range. Large discrepancies from the mean implied distraction. 
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The final type of error is defined by a time delay on the vehicle acceleration. This time 

delay is due to internal delays within the driver in the neuromuscular system for example, as well 

as eyes off the road distraction. If the driver is not paying attention to the road, then the feedback 

loop is opened and no new data is received by the driver. A probability distribution was also used 

to recreate the variable length time delay. Others have also looked at using an errorable model for 

similar purposes: (Przybyla et al., 2012) and (Nishiwaki et al., 2007). 

Rather than introducing random errors into the driver model, McGordon et al., (2011), 

suggests a model based on a series of times to model the slow response of a driver. A driver speed 

check time models the ‘recognition of cues’ by setting a frequency at which the driver samples the 

vehicle speed. A transport delay allows for thinking time and comparison between real vehicle 

speed and a calculated target vehicle speed. Finally, a throttle correction time allows for the delay 

between comparing speeds and correcting the throttle position. A PID controller manages the 

magnitude of the response from the driver. 

Model predictive control (MPC) is currently mostly used to model driver steering 

behaviour (Cole et al., 2006) (Qu et al., 2015) and (Flad et al., 2013). This is another optimal control 

method, meaning it is based on the minimisation/ maximisation of a cost function. In this case, the 

costs are associated with a predicted desired path in the future compared with an expected vehicle 

path. With a little modification, this could be used to model longitudinal control situations where 

the driver can preview a short way into the future.  

Model predictive control has been used to propose an ideal response to cut in and cut out 

during car following (Okuyama and Murakami, 2012). The MPC minimised a weighted cost 

function of jerk, velocity error and distance error to simulate the response of a driver to a vehicle 

cutting in in front of them and providing a step change in following distance. The output of this 

system was a torque on the accelerator pedal. This ideal solution was used a reference for force 

feedback on the accelerator pedal - torque proportional to the difference between the driver’s actual 

pedal torque, and the torque proposed by the ideal response was applied as the feedback torque on 

the pedal. 

Sharp, (2007) used a similar optimal control algorithm, Linear Quadratic Regression 

(LQR), for speed tracking. By applying different cost function weightings (a cost function of 

performance error and control input), different performance characteristics could be achieved. 

Control became either ‘tight’ when error was made significant, or ‘loose’ when control input 

minimised.  

As an alternative to predefined parametric model structures, it is possible to use non-

parametric dynamic systems where the structure is determined by data instead. In a comparison of 

four parametric models (Constant Speed, Constant Acceleration, SUMO Simulator model and 

Intelligent Driver Model) with two non-parametric ones (Gaussian Mixture Regression and 

Artificial Neural Network), Lefevre et al., (2014) observed that for short prediction horizons, simple 
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parametric models were sufficient, but as prediction horizons increased, more complex parametric 

models, or non-parametric models were needed. The non-parametric models were noticed to 

perform better over all prediction horizons tested – 1-10s. 

The Gaussian Mixture Model is an example of a non-parametric model. It has been used to 

predict  pedal operation in Angkititrakul et al., (2009). Whilst close matches were achieved in the 

controlled simulation environment, results were less impressive when real world driving data was 

compared with the predictions. It was thought that this was due to the diverse uncontrolled factors 

present in the real world driving environment.  

This review has highlighted the fact the complexity of the human driver by identifying 

many different approaches, each with its own specific application. The reviewed literature is 

summarised in Table 2. 

Table 2 – Driver Models Summary 

 Model Type 

Model 

Objective 
P, PI, PID 

Linear 

Quadratic/MPC 
Random Process Sequential 

Car-

following/ 

Speed 

Chandler (1958) 

Tang (2014)  

Gipps (1981) 

Burnham (1974) 

Sharp (2007) 

Yang (2010) 

Przybyla (2012) 

Nishiwaki (2007) 

Newell (2002) 

Emissions 

Hunt (2011) 

McGordon (2011) 

Rafael (2006) 

   

1.4     Literature Review: Autonomous Speed Control 

Subtly different to the Human Driver models, speed control algorithms have been developed to 

achieve high driving performance. Several algorithms have also been produced in an attempt to 

create a perfect driver that delivers high quality driving performance, rather than to recreate the 

human driver. An application of such an algorithm would be an adaptive cruise controller for 

example. This is where the vehicle wishes to maintain a safe distance from the vehicle in front 

whilst also maintaining passenger comfort by limiting acceleration for example. These algorithms 

fall into similar categories as the human driver models. 

Adaptive Cruise Controllers (ACC) operate as an extension of standard cruise controllers. 

ACCs adapt to the environment around them in order to maintain safe conditions. To do this, many 

ACC equipped vehicles utilise a radar or laser system to detect any vehicles around them. However, 

with many vehicles following each other stability issues can occur (Rajamani, 2011). It is possible 

for an individual vehicle to be stable, but for a string of vehicles to be unstable. This is due to the 

delay in response of each vehicle, and the lack of information available on what vehicles further 
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down the chain are doing. An analysis of this phenomenon results in conditions on the properties 

of the ACC control system (Swaroop, 1997). 

A non-cooperative car following control law was proposed by Chien and Ioannou, (1992) 

that was free of oscillations and the ‘slinky effect’. This used relative distance, relative velocity and 

relative acceleration between the host vehicle and the vehicle immediately in front. The key to 

eliminating oscillations in this case was the introduction of a safe following distance as a function 

of speed. 

Sivaji and Sailaja, (2013) proposed an adaptive cruise controller that utilised a PID 

controller in a similar method to the benchmark Chandler model mentioned earlier (Chandler et al., 

1958). However, in this model, the ‘driver’ receives inputs from the speed of the host vehicle, 

distance between the two vehicles and a target time headway (THW).  

It is possible to customise a PID controller by introducing gain scheduling, (Shakouri et al., 

2011). This allows different gains to be used at different speeds, meaning the controller can perform 

better over a range of speeds.  

Yanakiev and Kanellakopoulos, (1996) suggest a cruise controller for use specifically in 

HGVs. A specialist controller is needed as an HGV is often very power restricted, and so a drive 

profile is determined by amount of available power, rather than just the driver’s desired speed.  A 

linearised HGV model is used and a couple of control techniques explored: standard and adaptive 

PID controllers. It was found that for good control characteristics, especially when in truck platoons, 

aggressive control actions were needed. This was due to the much heavier mass of HGVs compared 

with cars. However, the heavier mass reduces the discomfort of passengers by restricting 

acceleration and jerk of the vehicle. A non-linear adaptive PID controller was found to have the 

best characteristics of those tested, but did require the most tuning to the individual vehicle, even 

though steps were taken to extend the operating range of the controller.  

In a different approach at ACC design, the standard drawbacks of a Dynamic Programming 

controller (such as slow convergence) were reduced by the implementation of what was called a 

Supervised Adaptive Dynamic Programming (Zhao and Hu, 2011) – see Figure 1-8. Machine 

learning, like this, can offer the potential for excellent control in a wide range of conditions, but the 

large training times required can be a major disadvantage. In this example, the control was split into 

two controllers: an upper and a lower controller. The upper controller studied the environment and 

used a Reinforced Learning (RL) approach to decide a desired acceleration. The lower controller 

utilised a fuzzy logic control algorithm to control the pedal and brake inputs to the host vehicle. In 

comparisons with a standard PI controller, it was noted that the SADP controller performed well, 

especially in an emergency stop situation, where it outperformed the standard ACC. 
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Figure 1-8 – Supervised Adaptive Dynamic Programming Control System (Zhao 2011) 

As well as being used to model a human driver, Model Predictive Control has also been 

used in speed control algorithms for ACC’s (Corona et al., 2006). A benefit of MPC is that it can 

utilise a cost function covering many variables and can satisfy constraints. This means that it can 

span a range of objectives. ACCs may wish to achieve good tracking performance, whilst reducing 

fuel consumption and keeping the driver comfortable.  

Simulations of a heavy truck using such a Model Predictive Controller (Li et al., 2011) 

showed that it was possible to limit longitudinal acceleration to keep the driver comfortable, and by 

constraining the vehicle-following distance, fuel reductions were achieved as it could discourage 

other drivers to cut in and cause braking in the host vehicle - Figure 1-9. The car following model 

was based around a Generalised Vehicle Longitudinal Dynamics Model (following vehicle) and the 

interactions with a preceding vehicle. Desired acceleration 𝑎𝑓𝑑𝑒𝑠and inter-vehicle distances 𝑑𝑑𝑒𝑠are 

determined by an upper level controller and the corresponding error signals are considered as 

variables in the cost functions to be optimised  
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Figure 1-9 – MPC car following system (Li 2011) 

Most of the reviewed literature fits into one of several categories of algorithm, as 

summarised by Table 3. 

Table 3 – Speed Control Algorithms Summary 

 
Algorithm Type 

Objective P, PI, PID 
Linear 

Quadratic 

Dynamic 

Programming 

Model 

Predictive 

Car 

following - 

Machine 

Sivaji (2013) 

Shakouri (2011) 

Rajamani 

(2011) 

Shakouri 

(2011) 
Zhao (2011) 

Li (2011)  

Corona (2006) 

 

Several approaches have already been investigated for determining a suitable and safe 

speed for a vehicle. Each has its own strengths and weaknesses. A feedback controller may use one 

of these algorithms for deciding a reference speed for feedback. 
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1.5     Research Objectives 

The review of published literature revealed that pedal force feedback has been investigated 

experimentally, and, although it is found to be effective, it is often disliked by the driver. Many 

mathematical models of driver speed control have been developed, but only a few include pedal 

force feedback. Existing models of pedal force feedback do not explicitly account for cooperation 

between the driver and the vehicle speed controller. The objectives of the research described in this 

dissertation therefore centre on applying model predictive control and cooperative control theory 

to understanding a driver's cognitive response to pedal feedback: 

• Obtain long term measurements of the vehicle and driver states of a heavy goods vehicle 

and driver in real-world conditions over the period of at least one month, for at least two 

drivers, to better understand real-world vehicle and driver behaviour. 

• Develop a mathematical model relating the longitudinal control input to the vehicle 

(accelerator pedal position) to the vehicle states and fuel consumption. The model should 

be validated using the measured data and will then be used to simulate the response of the 

vehicle to control inputs from drivers with and without pedal force feedback. The model 

should be able to estimate cumulative fuel used to within 20%. 

• Investigate and quantify the differences between different human driver behaviours on the 

road to understand a range of driving styles. 

• Develop a model of the driver’s longitudinal control of heavy goods vehicles to simulate 

changes in driving style and behaviour. The driver model should be validated using 

driving simulator experiments. 

• Extend the driver model to incorporate mathematical-game-theoretical interactions with 

an AAP. The extended driver model should be validated using driving simulator 

experiments and the driver model will used to simulate the driver’s cognitive control 

response to the pedal force feedback. 

1.6     Thesis Structure 

Chapter 1 of this thesis provided the background and motivation to the project. A thorough literature 

review also reviewed previous research in the fields of pedal force feedback and vehicle speed 

control models. 

In Chapter 2, operational heavy goods vehicles are fitted with data loggers to monitor the 

location and performance of the vehicle and driver. Statistical analysis is completed to quantify the 

differences between human drivers. The data is also used to generate a vehicle model, specific to 

the HGVs on the road. 
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A driver model is proposed in Chapter 3, utilising Model Predictive Control Theory. This 

driver model is designed to replicate driver behaviour in two driving tasks: drive-cycle following, 

and car-following. A set of driving simulator experiments were carried out to validate the model. 

In Chapter 4, mathematical game theory is used to model the effect of pedal feedback on 

driver behaviour. Different structures are proposed for the interaction, and further driving simulator 

experiments are used for validation purposes. 

Chapter 5 concludes the thesis with concluding remarks and further work. 
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Chapter 2 - Analysis of on-road data 

 

In order to fully explore the potential of pedal force feedback in the road freight sector, first a 

thorough understanding of the human driver is needed to provide the baseline. In later chapters, a 

theoretical model is proposed and validated with simulator experiments, but to start with, in this 

chapter, on-road driving behaviour is observed by collecting on-road data. 

The purpose of this data collection is two-fold: firstly, as already mentioned, the data will 

allow observation of on-road driving styles rather than the more controlled, but less realistic 

strategies observed in driving simulator experiments. Secondly, the data collected will help identify 

a suitable model of the engine and automatic gearbox to assist in accurate theoretical simulations 

later on. 

Data loggers were placed in several vehicles, operated by Turners of Soham Ltd, over a 

period of time to collect and store data for a range of drivers and driving styles. 

2.1. Data Collection 

When in complete control of the vehicle, the driver has two outputs with which to control the 

longitudinal dynamics of the vehicle (assuming an automatic gearbox), the accelerator pedal and 

the brake pedal. The driver may choose to remove this immediate control by switching on the 

vehicle’s cruise control, at which point they can remove their feet from the pedals. The vehicle 

speed and acceleration are the consequences of the driver’s control. These need to be logged in 

order to develop a mathematical model of the vehicle. In order to assess the effectiveness of pedal 

feedback in reducing the fuel consumption of a truck, a fuel consumption model will also need to 

be developed. This means that the vehicle’s fuel consumption also needs to be recorded. The 

environment through which the vehicle is driving can offer many disturbances to the vehicle. For 

example, the road gradient will affect the relationship between pedal position, vehicle speed and 

acceleration. For this reason, a GPS position is added to the list of required data signals. 
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2.1.1. Data Logging Apparatus 

The SRF Logger is a tool developed by the Centre for Sustainable Road Freight to log data whilst 

a vehicle is driving and to transmit data back to a central database in real time. The purpose of this 

logger is to easily enable high frequency data logging from real-world driving conditions, rather 

than a simulated environment.  

The logger uses a mobile phone running the Android operating system to connect to the 

truck’s Fleet Management System (FMS) port via a Bluetooth connection. This provides access to 

a wide variety of signals from the truck’s own management systems. The data available through 

this port is dependent on vehicle manufacturer and FMS standards, but data summaries for a FMS 

v3 and SRF Logger equipped vehicle are available in Table 2-1. Note that some signals are sourced 

from the phone itself, rather than via the FMS port. 

Many modern ‘smart’ mobile phones are fitted with GPS receivers and accelerometers. An 

application on the Android platform uses these sensors, as well as the data received via the 

Bluetooth connection to collect data. This data is then transmitted over mobile data networks to a 

central database in the Department of Engineering at the University of Cambridge. 
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Table 2-1 – SRF Logger Data 

Source Description Units 

FMS Engine fuel use low resolution L 

FMS Engine speed RPM 

FMS Vehicle distance high resolution  m 

FMS Engine coolant temperature  °C 

FMS Wheel-based Vehicle Speed km/h 

FMS Clutch pedal switch - 

FMS Brake pedal switch - 

FMS Cruise control switch - 

FMS Accelerator pedal position - 

FMS Axle weight for 1st axle  kg 

FMS Axle weight for 2nd axle  kg 

FMS Axle weight for 3rd axle  kg 

FMS Ambient air temperature  °C 

FMS Fuel rate  L/hour 

FMS Instantaneous fuel economy km/L 

FMS Engine fuel use high resolution  L 

FMS Engine percent load  % 

FMS Engine percent torque  % 

FMS Air pressure in the service brake circuit or reservoir #1  kPa 

FMS Air pressure in the service brake circuit or reservoir #2  kPa 

FMS Diesel exhaust fluid tank level  % 

FMS Combination vehicle weight kg 

FMS Retarder percent torque % 

Phone Latitude  deg 

Phone Longitude  deg 

Phone Altitude  m 

Phone Bearing  deg 

Phone Speed  m/s 

Phone Longitudinal acceleration  m/s2 

Phone Lateral acceleration  m/s2 

Phone Vertical acceleration  m/s2 
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A diagrammatic representation of the logger and sensors is included in Figure 2-1 and 

installation of the logger in this setup is straight-forward. The phone is fixed in available space 

underneath the dashboard on the passenger side of the vehicle. This is to prevent any tampering 

from the driver. An adapter box is connected to the FMS port, and a FMS splitter is used if the truck 

is already fitted with telemetry equipment. This box houses the Bluetooth dongle and is also fitted 

with USB sockets to keep the phone permanently on charge. When installed correctly, the 

equipment is invisible to the driver. The logger is calibrated for vehicle orientation by experiencing 

a longitudinal acceleration over five seconds after installation is completed. 

The logger is triggered by the vehicle ignition signal and data is transmitted back to the 

central server over the 4G network in data packets. Data is organised by truck, date and trip number 

and stored securely.  

 

 

Figure 2-1 – SRF Logger block diagram  

2.1.2. Vehicles 

Two phases of data collection were carried out. The initial test phase was completed on a 

2015 Euro 6, FMS v3, DAF CF85 - Figure 2-2. Due to the nature of this tractor’s duties, the tractor 

did not operate with a single trailer or driver. This meant that driving style and ability were variable, 

along with the physical properties of the vehicle (such as drag coefficients).  

In the second, and more significant phase, two trucks were fitted with the SRF Logger. 

These trucks, with consecutive registration numbers, were identical models and were both 2016 

Euro 6, FMS v3, DAF CF85s - Figure 2-3. These trucks are operated as bulk powder transporters 

and were consistently paired with a single tractor and trailer and had one driver allocated to each, 

meaning that drag properties and driving styles would be constant for each vehicle. 
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Figure 2-2 2015 DAF CF85, fitted with SRF Logger during test phase 

  

Figure 2-3 2016 DAF CF85 with bulk powder trailer  

 

The operator’s telematics system identifies Driver 1 as one of the drivers with highest fuel 

consumption at the depot, and Driver 2 as one of the drivers with low fuel consumption. As bulk 

powder trucks are weighed on leaving the depot on a weigh bridge, accurate mass information is 

available for these trucks on departure from their home depot. However, the exact return weight is 

not known. It is assumed that the return weight of the vehicle will be its empty weight i.e. no powder 

is returned to depot. 
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114 days of driving data were collected for Driver 1, and due to logger reliability issues, 44 

days of driving data were collected for Driver 2. For both drivers, this is sufficient time to see the 

variety of routes used and to observe the driver’s style and behaviour. These routes are displayed 

in Figure 2-4. 

Where applicable, in this chapter, journey data is labelled with the following trip ID 

notation: 

 

YYYY.MM.DD-t 

 

where YYYY is the year, MM the month, DD the day, and t the trip number. 

 

 

Figure 2-4 – Map illustrating routes used by both phase 2 trucks. Darkness of line indicates the 

frequency of use (the darker the line, the more frequent its use) 

 

 

 

 

Home depot 

Key:                1                         3                                5+ 
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2.2.  Identifying the vehicle model 

In this section, the processing of data collected by the logger is explained. The data used here as an 

example comes from the 2015 DAF CF85. 

2.2.1. Data extraction, resampling and filtering 

The data is extracted from the database and resampled. The logger records the data at which 

ever frequency the FMS port or on-board sensors update so it is necessary to resample all data to a 

consistent frequency. In this case 20 Hz was selected, in order to allow suitable analysis of the 

driver’s control of the accelerator pedal. The raw data includes many signals and these have a range 

of sampling frequencies from 100 Hz to 1 Hz. Where necessary, the data is interpolated to produce 

a consistent sample time across all data. The data is filtered to remove noise using a fourth-order 

Butterworth low-pass filter with cut-off frequency of 1 Hz (Figure 2-5). Due to excessive levels of 

noise in the acceleration data recorded from the phone’s internal accelerometers, longitudinal 

vehicle acceleration is calculated by differentiating the filtered vehicle speed, rather than using the 

acceleration data from the phone.  

 

Figure 2-5 – Raw and filtered speed data for a sample drive 
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2.2.2. Speed ratios 

At this point, the engine speed is divided by the vehicle speed to calculate speed ratios. 

Gear ratios from the vehicle specification are compared with the calculated values to ensure correct 

spacing between the vehicle speed-engine speed ratios - Figure 2-6. All data points are then allotted 

to the nearest ratio. Gear change events are identified in the time series and corresponding locations 

recorded. It can be seen from Figure 2-6 that most data points lie in good agreement with the 

specified gear ratios.  

 

 

 

Figure 2-6 – Gear ratios are identified by comparing the easily identifiable top gear with the 

manufacturer’s specifications. Note reverse gear is not included. Data is from the 2015 DAF 

CF85 Trip ID 2016.09.09-1 

 

2.2.3. Road gradient 

With a heavy truck, significant forces can be experienced when on an incline. It is therefore 

important to take the road gradient into account (Sentoff et al., 2015). As no direct measure of truck 

inclination is measured using the SRF logger, it is derived from the GPS data. 
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The land elevation is queried in Google Maps by inputting the GPS longitude and latitude 

position. The road gradient is estimated by dividing the change in elevation between two time steps 

by the product of vehicle speed and time step length: 

𝜃𝑟𝑜𝑎𝑑 =
Δℎ

𝑣𝑡𝑠
 

( 2.1 ) 

Where 𝜃𝑟𝑜𝑎𝑑 is the road gradient in radians, Δℎ is the change in road elevation in metres, 

𝑣 is the vehicle speed is m s−1 and 𝑡𝑠 is the time step in seconds. 

Google Maps does not offer elevation data at sufficiently high resolution in latitude and 

longitude to include the effects of cuttings and embankments (typical resolutions are within 20m 

latitude and longitude). This means that in some instances, the prevailing land gradient, and the 

road gradient may be quite different. The use of the GPS altitude for this calculation was ruled out 

due to the poor accuracy of GPS receivers in the vertical direction. A comparison between the 

Google Maps data and the data collected by the GPS is illustrated over a drive (trip ID 2016.09.09-

1 for this vehicle) in Figure 2-7.  

 

 

Figure 2-7 – Comparing GPS elevation to Google Maps elevation. Trip ID 2016.09.09-1 
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It can be seen that the elevation data from Google is consistently lower than the GPS data. 

This could be due to the difference in definitions of reference elevations between the GPS system 

and Google, but the offset is not consistent.  

There are many mapping data providers offering similar datasets. Google was selected as 

it is openly available and widely accessible. Higher resolution datasets are available from 

elsewhere, but tend to be offered at high cost, and in less practical formats. 

2.2.4. Drag properties 

Estimates of the drag properties, the drag area, 𝐶𝑑𝐴 and the coefficient of rolling resistance, 

𝐶𝑟𝑟, of the vehicle are taken from the output of the SRF Mapper tool. These estimates are consisted 

with Hunt et al. (2011). This uses a general approach to estimate the engine maps for a vehicle using 

only the data available from the SRF Logger (Bishop et al. 2016). The other outputs of the Mapper 

tool are not utilised outright here as better estimates of the vehicle characteristics are achievable in 

this case. This is because there is more information available on the specific trucks used here than 

the Mapper tool would utilise, as it takes a generalised approach – see 2.2.5. 

  

2.2.5. Mass estimation 

The mass is a very significant factor in the forces applied on the truck. For this reason, it is 

beneficial to have knowledge of the mass at all times. Although mass data is available for the 2016 

DAF trucks in Phase 2 on departure, the mass may change during the drive after a drop has been 

made. 

In this section, an attempt is made at estimating the vehicle mass using the data recorded 

using the SRF Logger. Ultimately, this approach was unsuccessful in estimating the vehicle mass, 

but it is recorded here for completeness, and also to outline how changes in mass are detected. 

Weighbridge masses are henceforth used for calculations, and any data from after a detected mass 

change is discarded.  

In some specifications of the FMS standard, vehicle mass is reported. It is commonly 

derived from the air suspension pressures. However, examination of this data shows that the 

reported value can vary significantly over a short time. The SRF Mapper analyses this data and 

attempts to identify the vehicle mass by searching for data where the vehicle is stationary. When 

stationary, the effects of vehicle motion or road gradients are not expected to be seen, or they are at 

least minimised. 

With more information about the specific trucks used, a further iteration on vehicle mass is 

made. The maximum power and maximum torque output of the engine, along with the 

corresponding speed ranges were sourced from the manufacturer - Table 2-2. It is assumed that the 

engine will operate at this point when the engine speed is within the specified range, accelerator 
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pedal position has been at greater than 95% for at least two seconds, the brake and cruise control 

are not being used, and no gear change event occurs within two seconds. Power losses through the 

transmission are approximated to 8% of the engine power (Hunt et al. 2010).  

 

Table 2-2 – Engine Specification 

Parameter Name Symbol 
Numerical 

Value 
Units 

Maximum Torque 𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥 2100 Nm 

     -low speed cut off 𝜔𝑇1 104 rad/s 

     -high speed cut off 𝜔𝑇2 151 rad/s 

Maximum Power 𝑃𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥 320 kW 

     -low speed cut off 𝜔𝑃1 151 rad/s 

     -high speed cut off 𝜔𝑃2 178 rad/s 

 

 

Figure 2-8 –Estimated maximum traction forces were limited by the torque regime more than the 

power regime on this drive. 2015 DAF trip ID 2016.09.09-1 

Figure 2-8 illustrates how observed data from a trip in the 2015 DAF (trip ID 2016.09.09-

1 for this vehicle) is fitted to the maximum engine curves. For each gear a maximum traction force 
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(horizontal line) and maximum power (curved contour) are plotted. Where suitable data exists, as 

determined by the criteria above, the speed and gear are assessed and the points are plotted on the 

corresponding gear contour. It can be seen that the vast majority of this data, from this one drive, 

fits more closely to the maximum torque specification of the engine, rather than its maximum 

power. This is a characteristic of the driver/vehicle combination. 

Using a force balance on the vehicle (Figure 2-10) at every time step meeting the above 

criteria, an estimate of the mass is made using the equation: 

𝑀𝑒𝑠𝑡 =
𝜂𝑃𝑒𝑛𝑔 −

1
2

𝜌𝐶𝑑𝐴(𝑣 + 𝑣𝑤𝑖𝑛𝑑)2

𝑎 + 𝑔(𝛼 + 𝐶𝑟𝑟)
 

( 2.2 ) 

Where 𝜂 is the power train efficiency, 𝑃𝑒𝑛𝑔 is the engine power rating corresponding to the 

engine speed, 𝜌 is the density of air, 𝐶𝑑𝐴 is the drag area, 𝑣 is the vehicle speed, 𝑣𝑤𝑖𝑛𝑑 is the average 

effective wind speed, 𝑎 is the vehicle acceleration, 𝛼 is the road gradient and 𝐶𝑟𝑟 is the coefficient 

of rolling resistance. As the drag area and coefficient of rolling resistance are constant in this 

calculation, and these properties are estimated in the Mapper tool through use of the mass reported 

over the FMS port, the calculation in ( 2.2 ) is in effect a second iteration of the vehicle mass. 

Quantifying the effective wind speed is difficult, as no accurate data exists for the winds 

experienced by the truck. This is very environmentally dependent, and depends on other road users 

and driving environment. An approximation of the wind speed is made by manually searching 

weather logs for a prevailing wind speed and direction on the day of travel. The average direction 

of travel of the truck is considered and the longitudinal component of the wind relative to the truck 

direction is incorporated. 

A log-normal curve is fitted to the distribution of mass estimates to take into account its 

positive skew. Figure 2-9 illustrates the mass estimate distribution for a sample journey.  

The modal mass estimate is 29.7 tonnes, the median mass is 40.8 tonnes and the mean mass 

is 46.9 tonnes. In comparing these masses with the recorded masses from weighbridges, it soon 

becomes apparent that the modal and mean mass estimates are unreliable, with errors up to 25%, 

or 10 tonnes (the example in Figure 2-9 has a weighbridge gross mass of 39.1 tonnes), whereas the 

median mass estimate has an error of 1.5 tonnes, or 4%, which is quite reasonable.  
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Figure 2-9 – Estimated vehicle mass distribution 

The mass reported over the FMS port is useful in detecting a change in mass of the vehicle. A 

moving average reported mass is monitored and should a change of over 10% of the vehicle mass 

be detected a possible mass change is flagged. As has been shown, the mass estimation strategy 

explained here has not proved successful, so when a mass change is detected, the remaining journey 

data is discarded from analysis. 

 

2.2.6. Traction forces 

With an estimate of the mass and the other information gathered, it is possible to estimate the 

traction force at every time step. Figure 2-10 shows the forces on the truck. A force balance is used 

to calculate the traction forces. 
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Figure 2-10 – Force diagram for truck driving up an incline 𝜃 

Examining data from a typical real road drive, the contributions to the total traction force 

of the four constituents (inertia, road gradient, air resistance and rolling resistance) are estimated 

and displayed in Figure 2-11. It can be seen that the major contributor in this case is the road 

gradient. This factor is very uncertain due to the limited resolution from the ground elevation data. 

The steep gradients here may be because the ground points that are interpolated between may be 

very different if they fall on the road, or immediately off the road, up or down a steep bank. It is 

unlikely that the real vehicle experienced such great gradients. The second most significant factor 

in the traction force is the vehicle mass. For a 40 tonne vehicle, these two terms dominate, and the 

aerodynamic drag and rolling resistance are minimal in comparison.  

𝐹𝐴𝑒𝑟𝑜 =
1

2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴(𝑣 + 𝑣𝑤𝑖𝑛𝑑)2 
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Figure 2-11 – Estimated traction force components against time. 2015 DAF trip ID 2016.09.09-1 

 

In order to simulate the driver’s control of the vehicle, a relationship between the traction 

force produced, vehicle speed and the accelerator pedal position is sought. Known as a traction 

force map, the relationship needs to encompass the behaviour of both the engine and the truck’s 

automatic gearbox – a complicated system with its own sophisticated control algorithms. For this 

reason, the more common form of engine torque maps will not be used, as a gear change strategy 

would then need to be modelled. The traction force map removes the need for accurate gear change 

modelling. 

Figure 2-12 illustrates in a scatter form how the estimated traction forces relate to the 

driver’s pedal position and vehicle speed. Data from both 2016 vehicles is combined as they are 

identical vehicles and the different driving styles of each driver populate different areas of the map. 

As the relationship that incorporates the pedal position is sought, it has been necessary to eliminate 

some data. The included data must meet the following criteria: 

• Cruise control must not be engaged 

• The brake pedal must not be depressed 

• There must be no gear change within two seconds 
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The three events listed are cases where the accelerator pedal is not directly controlling the 

vehicle or the vehicle is not in steady state.  

 

Figure 2-12 – 3D scatter plotter of estimated traction forces against pedal position and vehicle 

speed 

The suitable data is broken down into bins and the mean and standard deviation in each bin 

is calculated. A two-two order polynomial, of the form below, is sought: 

 

𝐹𝑇𝑟𝑎𝑐𝑀𝑎𝑝 = 𝑝00 + 𝑝10𝑣 + 𝑝01𝜙 + 𝑝20𝑣2 + 𝑝11𝑣𝜙 + 𝑝02𝜙2 

( 2.3 ) 

 

This order of polynomial was set by a trade-off of modelling complexity against accuracy. 

A least squares method is then applied to the mean bin values, located at the bin centres, to identify 

the polynomial relationship between pedal position, vehicle speed and traction force.  

The vehicle is slower to respond to changes in pedal position than the pedal position’s 

response to changes in pedal force. This could be because it takes time for the engine controller to 

interpret demands and to act accordingly. It is therefore necessary to model the transient response 

of the vehicle to pedal demands. To model this, a first order lag filter (selected to minimise the 

number of parameters to fit) is applied to the pedal position before feeding it into the traction force 

map. 
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The pedal lag time constant is determined using the Matlab fmincon function. The function 

varies the lag frequency, and assesses the corresponding 𝑟2 value of the second order polynomial 

traction force map. The calculated lag frequency is 2.84 Hz and the 𝑟2 is 0.667, meaning a good fit 

to the data. The corresponding polynomial coefficients are in Table 2-3 and the surface is displayed 

in Figure 2-13, alongside the mean bin values (circles) and the published maximum engine power 

(displayed in red on the maximum throttle position plane). Assuming a perfectly efficient engine 

and power train (for illustrative purposes only), the engine power is equal to the product of traction 

force and vehicle speed, which results in the contour depicted in the figure. 

 

Table 2-3 – Traction force map polynomial coefficients for the dynamic surface 

Coefficient Value Units 

𝑝00 1090 kg m s−2 

𝑝10 703 kg s−1 

𝑝01 106 kg m s−2 

𝑝20 -23.2 kg m−1  

𝑝11 -6.6 kg s−1 

𝑝02 1.1 kg m s−2 

 

 
Figure 2-13 - Least squares polynomial fit for the dynamic traction force map 
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It can be seen that the polynomial surface falls below the maximum power contour. 

Powertrain inefficiencies are taken into account in this contour, but as different gears are used, the 

engine will not always be operating at its maximum traction force, even when pedal position is 

maximum. This means that the mean traction force is reduced, explaining the difference noted. At 

low speeds, the difference become very significant. This is thought to be because the vehicle is 

unlikely to be able to apply maximum power at low speeds without slipping wheels or clutch. The 

result is effectively reducing the maximum power. 

By examining the bin standard deviations (Figure 2-14) it is noted that the larger 

inconsistencies occur at high pedal positions at mid-range speeds. More generally, the standard 

deviations are approximately 20% of the mean value. This is a significant uncertainty and reflects 

the uncertainty in the estimation of traction forces, primarily due to road gradient errors, and truck 

mass errors. 

 

Figure 2-14 – The bin standard deviations of the steady state traction force map 

In some modelling situations, it is beneficial to have a very simple traction force map to 

minimise the complexity of the vehicle model, and hence minimise computing expense, as is the 

case in Chapters 3 and 4. Here one such model is proposed, and then assessed, using the traction 

force estimates already discussed. 

The polynomial traction force maps already produced demonstrate a definite trend of 

increasing traction force with pedal position. The trend is less strong in the vehicle speed direction. 
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The proposed simple model exploits this by assuming the traction force is independent of vehicle 

speed, and that the traction force is proportional to the pedal position. The purpose of this model is 

simplicity, in computing terms, and in generation, so the proportionality constant is set to mean that 

the maximum engine torque (as stated in vehicle documentation) is reached at 100% pedal position, 

assuming the vehicle is in a mid-range gear. This model can be expressed as: 

 

𝐹𝑇𝑟𝑎𝑐 =
𝜙𝑃𝑒𝑑𝑎𝑙

𝜙𝑚𝑎𝑥
𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥 

( 2.4 ) 

A plot of the simple traction force map for the trucks fitted with the logger, in middle gear, 

is included in Figure 2-15. It is noted that this model predicts higher traction forces than the second 

order polynomial already examined, but with 𝑟2 = 0.38, does correlate with the bin means 

reasonably well, and therefore is fit for purpose. 

 

 

Figure 2-15 – Simple traction force map 
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2.2.7. Fuel consumption 

The vehicle’s fuel use is reported in two ways over the FMS port. Firstly, a cumulative fuel use is 

recorded, and secondly a high precision fuel rate is also recorded - Figure 2-16 demonstrates these 

for a segment of a real drive. The limited precision of the cumulative fuel used is clearly visible 

when compared to the high precision fuel rate. The cumulative fuel use appears to have a 

discretisation step of 0.5 L/min. 

 

Figure 2-16 – Recorded fuel use and fuel rate 

For predicting fuel use of the model vehicle, a relationship between fuel rate, vehicle speed 

and pedal position is sought. A steady state map is fitted to data deemed to be steady state i.e. low 

rate of change of pedal position and away from any gear changes. Cruise control and braking also 

had to be disengaged. These are the same requirements as for the traction force plot earlier. As the 

fuel rate is affected by vehicle mass, the map uses data from multiple journeys from both trucks, 

but with a very narrow gross mass band of 41.8T to 42.0T, as measured at the weighbridge. As 

described in 2.2.5, if a vehicle mass change occurs during the journey, data after the change is 

discarded. Figure 2-17 illustrates the suitable data for these requirements. 
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Figure 2-17 - 3D scatter plotter of fuel rate against pedal position and vehicle speed 

The same method of polynomial fitting is used as in the traction force case. A first order 

lag was applied again, but, in this case, the polynomial is required to take on a higher order in order 

to better reflect the shape of the data: 

 

𝜆𝑀𝑎𝑝 = 𝑝00 + 𝑝10𝑣 + 𝑝01𝜙 + 𝑝20𝑣2 + 𝑝11𝑣𝜙 + 𝑝02𝜙2 + 𝑝30𝑣3 + 𝑝21𝑣2𝜙 + 𝑝12𝑣𝜙2 

( 2.5 ) 

 

A dynamic fuel rate model is also sought, so the same approach is taken with the fuel rate 

as was taken with the traction force. The calculate fuel rate lag frequency is 5.0 Hz, with 𝑟2 = 0.89, 

and the corresponding coefficients are in Table 2-4, and the corresponding surface for the steady 

state fuel map is illustrated in Figure 2-18. The value of 𝑟2 is 0.87, indicating good correlation 

between surface and data. Notice here that the general trend is for increasing fuel rate with speed 

and pedal position, but at high speeds, the fuel rate surface gradients get very steep. 
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Table 2-4 – Steady state fuel map polynomial coefficients 

Coefficient Value Units 

𝑝00 -1.15 L/hour 

𝑝10 1.97 L/hour  𝑚−1𝑠 

𝑝01 0.052 L/hour 

𝑝20 -0.175 L/hour  m−2s2 

𝑝11 0.015 L/hour  m−1s 

𝑝02 0.0013 L/hour 

𝑝30 0.0049 L/hour  m−3s3 

𝑝21 -0.00095 L/hour  m−2s2 

𝑝12 0.00017 L/hour  m−1s 

 

 

 

 

Figure 2-18 - Least squares polynomial fit for the steady state fuel map 
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The standard deviation of the individual bins in the fuel rate map are depicted in Figure 

2-19. With the exception of some extreme variation in the top right corner, the standard deviations 

are generally low, between 10% and 20% of the mean values. There is much better agreement in 

these points than in the traction force estimates due to the fact that this data comes directly from 

measurements, whereas the traction force maps are based on estimates of the traction force. The 

estimation process introduces a degree of uncertainty. 

 

Figure 2-19 – The bin standard deviations of the steady state fuel map 

 

2.2.8. Modelling Fuel Consumption 

In 2.2.6 and 2.2.7, maps were generated to relate the traction forces and fuel rates to the pedal 

position, 𝜙𝑃𝑒𝑑𝑎𝑙, and the vehicle speed, 𝑣. In this section, these maps applied to recorded pedal 

position and vehicle speed data, and predicted fuel use is compared to the measured fuel used. 

Firstly, the pedal map is applied to pedal position and vehicle speed data without Cruise 

Control. For illustration, a 500s extract Driver 1 trip 2017.03.21-1 is seen in Figure 2-20. It can be 

seen that there is good agreement between the two, except for a small region between 1280s and 

1320s where the measured data exceeds the estimated data. In this region of the map (corresponding 

to vehicle speeds between 15 ms−1 and 20 ms−1, and pedal positions over 80%), the gradient of 

the map does not reach the very high mean fuel rates observed in Figure 2-18. The map does, 
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however, reach the highest fuel rates when the pedal position is greater than 90% and vehicle speed 

is above 22 ms−1. This explains why the simulated fuel rate is higher between 1400 s and 1450 s 

than between 1280 s and 1320 s. By integrating the fuel use over the segment, it is possible to 

quantify the performance of the fuel rate map – the estimated total fuel use is 2.19 L and the total 

measured fuel use is 2.63 L, an error of 16%. This is considered a reasonable performance for the 

fuel rate map. Similar results are achieved for Driver 2’s vehicle (figures not included). The 

performance may be improved through the use of a higher order map, or through a surface of 

different formulation. The suggested surfaces may better reflect the nature of the relationship over 

a broader range of pedal positions and vehicle speeds. 

 

Figure 2-20 – Measured and estimated fuel rate 

However, the use of Cruise Control complicates the relationship, as the accelerator pedal 

is no longer linked to the control of the vehicle. To overcome this, the ‘effective accelerator pedal 

position’ is calculated. Using vehicle mass, speed, acceleration and road gradient data for when 

cruise control is engaged, an estimate of the traction force at any instant is made - Figure 2-10. The 

vehicle speed and estimated traction force are input to the traction force map (Figure 2-13) to back-

calculate the effective accelerator position. As the traction force map is quadratic in pedal position 

( 2.3 ), there are two possible solutions for the pedal position. The solution of interest is the one 

solution in the range 0-100% pedal position. 
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This estimated pedal position is then fed into the fuel rate map ( 2.4 ) and the estimated fuel 

rate is calculated - Figure 2-21. Where cruise control is not engaged (white background in the 

figure), the model is able to utilise the measured pedal position data. Where cruise control is 

engaged (grey background in the figure), the estimated pedal position is used. It can be clearly seen 

that the estimated cruise control fuel rate does not fit the measured data so well as the non-cruise 

control case. This is because in this combined traction force map and fuel rate map approach, the 

uncertainties combine to produce very significant uncertainties. In the cruise control region of 

Figure 2-21, the total measured fuel used is 0.87L, and the estimated fuel used is 0.43L, an error of 

51%. In comparison, in the non-cruise region, the measured fuel use is 0.31L and the estimated fuel 

use is 0.33L, an overestimate of 4%. Simulations over entire journeys produce similar results with 

very large errors in fuel rate. 

 

Figure 2-21 - Measured and estimated fuel rate during Cruise Control 

 

The very high errors of the cruise control fuel estimation mean that this technique is not 

appropriate for use in examining the effects of changing a driver’s behaviours as a whole. The 

results for fuel consumption with the accelerator pedal are better, and some analysis could be 

completed with these maps. Further work is required to improve the performance of the fuel rate 

and tractions force maps. 
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2.3. Identification of driver behaviour 

In this section, the data collected from the logger is analysed with the intent of better understanding 

the behaviour of the two drivers of the phase 2 vehicles, Driver 1 and Driver 2. To start, the journey 

data is broken down into a series of driving states in 2.3.1 before examining the roundabout 

manoeuvre in 2.3.2 and 2.3.3. 

2.3.1. Classification of driving activities 

The data is broken down at this point into two groups of driving states as defined in Table 2-5 and 

Table 2-6. Group A states are purely based on the speed of the vehicle whereas Group B states 

reflect the driver’s control input to the vehicle. 

 

Table 2-5 – Group A: Speed-Acceleration States 

State Definition 

Accelerating 𝑎 > 0.2 ms−2 

Constant Speed |𝑎| < 0.2 ms−2 

Decelerating 𝑎 < −0.2 ms−2 

Stationary |𝑣| < 0.5 ms−1 

 

 

Table 2-6 – Group B: Driver Control States 

State Definition 

Braking Brake pedal engaged 

Cruise Control Cruise Control engaged; no braking 

Accelerator 𝜙𝑃𝑒𝑑𝑎𝑙 > 5%; No braking or Cruise Control 

Coasting 𝜙𝑃𝑒𝑑𝑎𝑙 < 5%; No braking or Cruise Control 

 

Firstly, the data is simplified to reduce the number of data points being dealt with. The 

Douglas-Peucker algorithm (Douglas & Peucker, 1973) is used to break down the vehicle speed 

data into a series of variable length segments. 

The algorithm recursively breaks the data down into smaller segments by splitting the data 

at the point furthest from the line segment formed by connecting the start and end points of the 

existing segment. This process is repeated on all newly formed sub-segments until all data lies 
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within a threshold distance of the new line segments. The results of this applying this algorithm to 

the vehicle speed data are displayed in Figure 2-22. The acceleration over these new segment is 

calculated and each segment is classified as either acceleration, constant speed or deceleration.  

 

Figure 2-22 – Results of the applying the Douglas-Peucker algorithm to the vehicle speed data 

A Boolean coasting signal is defined by identifying when pedal position drops below 5%. 

This Boolean function, along with the cruise control and braking Boolean signals are overlaid. The 

journey segments are then classified into the two groups of states above.  

 

 

2.3.2. Junction detection 

With a bank of data built up over time, it is possible to analyse the behaviour of different 

drivers. As it is the drivers’ interaction with the accelerator pedal that is of interest, it is important 

to identify when the drivers commonly use it. 

The situations in which the driver uses the accelerator pedal can be broken down into two 

groups: lateral manoeuvres and longitudinal manoeuvres. In lateral manoeuvres, such as crossing a 

roundabout and other junctions, the driver is strongly guided by the fixed environment and is also 

affected by the dynamic environment (other road users). The driver’s speed choice is therefore 

influenced by predictable events such as bends and roundabouts. In longitudinal manoeuvres, such 

as passing traffic lights, or responding to speed changes in the traffic ahead, the driver is more 
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significantly affected by other road users, and this makes the scenarios less repeatable. The driver’s 

speed choice is hence influenced by unpredictable evets. It is also difficult to distinguish between 

traffic lights and other road user dependent scenarios with the data available. The lateral 

manoeuvres are therefore considered more predictable and repeatable, so are explored in more depth 

here. 

Lateral manoeuvres are detectable in two ways: by searching for high lateral accelerations, 

or searching for low radii of curvature of the vehicle path. The first is simply a case of searching 

the recorded lateral accelerations from the accelerometers in the phone for any peak accelerations 

beyond a threshold. The second approach uses the relation 𝑎 = 𝑣2 / 𝑟 rearranged to give the 

curvature. With these calculations completed, the threshold for each method is manually adjusted 

to reach a compromise between maximising the number of true detections and minimising the 

number of false detections (cases where the algorithm outputs a location where there is no 

roundabout or junction in reality). The results of both methods are combined to provide the greatest 

chance of identifying junctions.  Figure 2-23 depicts the junctions detected using the method 

outlined above for a drive from Thurrock to Weymouth. All junctions are successfully identified, 

but several false detections occur when the vehicle is travelling along the M25. There were no other 

false detections in this instance. 

 

 

Figure 2-23 – Map of junction detections on Thurrock-Weymouth route 

Each approach for detection of junctions has its own strengths and weaknesses. The first 

does not cope well with low speed manoeuvres, as the accelerations could be low. The radius 

approach better accounts for this because both the speed and lateral acceleration are lower for slow 

speed turning. 

False detections 

on M25 
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2.3.3. Roundabout Analysis 

When roundabouts or junctions are successfully identified, they can be analysed to see how 

different drivers choose to travel them. As an example, a roundabout near the trucks’ home depot 

is selected as both trucks frequently pass over it.  

 A border is manually defined around the junction or roundabout to encompass all entrances 

and exits - Figure 2-24. The latitude and longitude of the entrances and exits are noted and stored. 

The GPS history of all trips is then explored for any trace that falls within the boundary. The time 

and date of any detected crossing is recorded in a log. The distance between the first GPS position 

logged inside the border and each of the entry points is measured, and the smallest distance 

corresponds to the entry point used. Similarly, the distance of the last GPS position inside the border 

before leaving the roundabout and all exit points are also calculated. The smallest distance is 

corresponds to the exit used. The entry and exit points are added to the log.  

Figure 2-24 maps the selected roundabout with its entry/exit points. The border is placed 

non-centrally around the roundabout in order to incorporate as much of the approach/exit roads as 

possible without encroaching on neighbouring junctions. The A282 is a major three lane dual 

carriageway in this location, so the slip roads south of the roundabout are included up into the point 

of merging. There is another major roundabout north of this one, before northbound traffic can 

merge with the A282, so the slip roads are fully included in this direction. Note that one extra exit 

point is marked that does not encompass the roundabout. This route from entry point 1 to exit point 

2 is only included as one of the trucks travels down it once. 

 

Figure 2-24 – Map of selected roundabout. Entrances onto the roundabout are marked with a 

green dot, exits off the roundabout with a red dot 
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With all roundabout crossings logged, an insight into the drivers’ behaviour is sought. 

Obviously, the route the driver takes across the roundabout is going to have a strong effect on the 

observed behaviour. For a direct comparison in this analysis, the route from the home depot (entry 

4) to the A282 southbound (exit 4) is selected due to a high frequency of journeys. 

Approaching the roundabout from entry point 4, the speed limit is set to the national limit, 

but the driver does not have far to accelerate from the previous roundabout and the driver may have 

to stop at traffic lights as they hit the roundabout itself. There is a second set of traffic lights just 

before the road curves sharply to the right to allow traffic from entry point 5 to join the roundabout. 

A third set of traffic lights controls the traffic from entry point 1 joining and a fourth set controls 

the traffic from entry point 2 joining. On leaving the roundabout and entering the slip road, the 

speed limit becomes 50mph for all vehicles. 

The driver’s journey across the roundabout is therefore very dependent on how heavy the 

traffic is and the timing of the traffic lights. Although it is considered that lateral manoeuvres such 

as roundabouts are more predictable than longitudinal ones, it is still quite possible that the driver 

will have to stop at every set of lights, or may be able to travel straight through and onto the slip 

road without stopping. This means that simply taking the mean of the measured variables over 

multiple passes may not produce a representative example of any real drive as stopping at different 

locations, or not stopping at all will have a severe impact on the averaged accelerations and hence 

fuel use. An alternative approach is therefore proposed to account for this. 

Cross correlation is a method used in signal processing to measure how similar two signals 

are. By using the cross correlation function between every set of pairings of journeys for each driver 

individually, a ‘most typical’ journey across the roundabout can be identified by summing the peak 

cross correlation coefficients for each journey. The journey with the highest sum of cross correlation 

coefficients is marked as the most typical for each driver.  

By using one set of data in its entirety, rather than averaging data between sets, it is ensured 

that the accelerations and hence fuel uses examined are representative of real behaviour from the 

driver. Figure 2-25 and Figure 2-26 demonstrate the ‘most typical’ journey for each driver by 

depicting the speed of the vehicle and also the driving modes. 
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Figure 2-25a - Driver 1 Group A states 

 

Figure 2-25b – Driver 1 Group B States  
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Figure 2-26a – Driver 2 Group A States 

 

Figure 2-26b – Driver 2 Group B States 
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Firstly, Figure 2-25a displays the Group A states for Driver 1. The driver enters the area 

accelerating from the previous roundabout, but soon has to decelerate to stationary at the traffic 

lights to enter the roundabout. When the lights change, the vehicle accelerates up to 12 ms−1 and 

manages to maintain that speed through to the final lights. On passing the final lights at green, the 

driver accelerates the vehicle up to 15 ms−1 and exits the roundabout onto the slip road. Once out 

of the bend of the slip road, the driver starts accelerating again to merge with the traffic on the A-

road. Figure 2-25b displays the control states, or Group B states, and it can be seen that the driver 

is exclusively on the accelerator pedal, apart from when braking for the red light at the entrance to 

the roundabout. 

Figure 2-26a depicts the Group A states for Driver 2 on the roundabout. The driver here 

has adopted a lower target speed on approach to the roundabout, so is maintaining a constant speed 

on entry into the area, rather than still accelerating as the case was with Driver 1. Once again though, 

the driver has to stop for traffic lights on entry to the roundabout, although this time, due to traffic 

conditions, the vehicle stops further away from the roundabout. When clear, the vehicle accelerates 

up to 12 ms−1 before having to decelerate to another stop for the traffic lights managing traffic 

joining from entry point 1.The driver is also stopped at the traffic lights for entry point two, before 

then being able to accelerate onto the slip road and then onto the dual carriageway. Figure 2-26b 

illustrates the Group B modes for Driver 2. It is clear here that the two drivers have very different 

styles. When Driver 2 has accelerated out of the first set of traffic lights, they apply cruise control 

briefly before having to disengage it to brake to stop for traffic lights. Once Driver 1 has navigated 

the last of the traffic lights, he engages cruise control again to accelerate onto and through the slip 

road. 

The analysis explained so far has shown that Driver 2 adopts a lower speed throughout the 

manoeuvre and engages cruise control to manage some of the vehicle acceleration, but the 

variations in traffic conditions and traffic lights mean that the two ‘most typical’ journeys of each 

driver across this roundabout are not directly comparable. For further analysis, the focus is now 

switched to the slip road, where both drivers are assumed to have sufficient space on the road for 

them to manage vehicle acceleration without any interference from other road users. 

Whereas the roundabout itself was assumed flat and gradients could be ignored, the slip 

road has gradients that need to be taken into account - Figure 2-27 illustrates the road elevation. 

Using the change in elevation from this figure, the recorded vehicle speed and the vehicle model in 

Figure 2-10, an estimate is made of the traction forces. By plotting this information on axes of 

vehicle speed and traction force, the demanded tractions forces are now compared with the 

maximum output power and torque of the engine - Figure 2-28. This demonstrates that Driver 1 is 

consistently demanding higher forces at higher speeds from the engine as Driver 1 desired greater 

speeds and accelerations. 
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Figure 2-27 – Ground elevation over the slip road 

 

 

The cyan, magenta and blue lines of Figure 2-28 are the maximum power and torque 

contours of the engine, as already seen in Figure 2-8. The stars (Driver 2) and circles (Driver 1) on 

the driver traction force traces indicate which gear the vehicle is in at that moment. Figure 2-28 

clearly shows the difference in speed of the two drivers. The vehicles are accelerating up the slip 

road. Both traces are a similar shape, due to the dominance of the road gradient term of the traction 

force, but it is noted that Driver 1 is speed shifted by approximately 3ms−1 in the positive direction 

throughout. It is also noted that under Driver 1, the vehicle is changing gear at higher speeds – this 

could be ab indication of the high demands on the engine meaning that the gearbox chooses to shift 

up later.  

Also of note is that the demanded traction force for both drivers goes above the maximum 

power of the vehicle. This particularly unlikely, especially as it falls within a gear change period, 

also for both drivers. On investigation, this peak in traction force is put down to unrealistically steep 

gradients calculated from the road elevation data in Figure 2-27. Observing the lay of the land 

around the slip road, there are steep embankments up to the dual carriageway on the west of the slip 

road, and steep embankments down towards former chalk quarry pits on the east side. It is quite 

probable that the quoted land elevations may drift off either side of the road and individual points 

may in fact be land heights of either embankment. 
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Figure 2-28 – Estimated traction forces against vehicle speed. The force profile for Driver 1 is 

plotted in red with ∗, and for Driver 2 in green with ∘. Maximum power/torque contours are 

plotted in blue, cyan and magenta for gears 7 to 12 and asterisks and circles are coloured for the 

corresponding gear.  

 

The final characteristic to be examined is the fuel use. Figure 2-29 illustrates the cumulative 

fuel use across the slip road. By the end of the slip road, Driver 2 has made a 7% fuel saving 

compared with Driver 1, but this is at the cost of 5s journey time, or an increase in 15% of the time 

taken to cover the slip road. 

In summary, the analysis of this roundabout and slip road has shown that by a combination 

of slightly lower speeds and much greater use of cruise control, Driver 2 has been able to achieve 

significant fuel use savings of 7%.  
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Figure 2-29 – Measured fuel use of slip road 

The roundabout analysis already covered in this section is extended to cover 9 other 

roundabouts. The route over each roundabout is determined by identifying the most frequent route 

across both drivers, and then the ‘most typical’ pass for each driver is identified in the manner 

already described. Table 2-7 summarises the different cruise control use for each driver and the fuel 

used in the most typical journey for each driver. The difference in fuel is calculated as a percentage 

of Driver 1’s fuel use. Note that in not one of the roundabouts examined, does Driver 1 engage 

Cruise Control, whereas Driver 2 is frequently using it for approximately 40% of the distance 

covered over the roundabout. In terms of fuel use, Driver 2 is consistently using up to 7% less fuel 

than Driver 1. Detailed analysis of the roundabouts, in the same manner as Figure 2-25 and Figure 

2-26 (not included for the extra roundabouts for the sake of conciseness), reveals that Driver 2 

adopts a lower speed through the manoeuvre and makes better utilisation of cruise control. 
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Table 2-7 – Roundabout Data Summary 
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51.487 0.266 0 42 0.97 0.90 -7% 

51.525 0.073 0 36 1.04 0.97 -7% 

50.867 -0.155 0 47 0.61 0.58 -5% 

51.462 -0.185 0 31 1.10 1.06 -4% 

51.531 -0.293 0 40 0.75 0.71 -5% 

51.258 -0.198 0 44 0.92 0.86 -7% 

51.259 -0.065 0 39 1.23 1.17 -5% 

51.727 -1.260 0 43 0.91 0.85 -7% 

51.219 -0.778 0 46 0.71 0.76 -6% 

51.426 0.238 0 42 1.05 1.00 -5% 

 

 

 

2.3.4. Statistical analysis over multiple journeys 

Journey data has been amassed over a significant period of time for each driver. It is therefore 

possible to analyse statistics spanning multiple journeys as any differences in routes or duties should 

average out over time, leaving the underlying driver behaviour in the statistics. 

Firstly, as a test of this, Figure 2-30 illustrates a Probability Density Function (PDF) 

histogram of the gross vehicle masses and Table 2-8 presents gross vehicle mass statistics. It can 

easily be seen that Driver 2 (lower fuel consumption) has a higher average vehicle gross mass. The 

mean, median and mode of both drivers are well within one standard deviation of each other, 

suggesting the two data sets could have insignificant difference. A heteroscedastic Student T-Test, 

however, produces a t-value of 0.0027, meaning that the two means are statistically significantly 

different. With these mass distributions, the driver behaviours should still be observable through 

the statistics. 
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Figure 2-30 – PDF histogram of gross truck masses 

 

Table 2-8 – Gross vehicle mass statistics (all units in tonnes) 

 Driver 1 Driver 2 

Mean 40.96 41.53 

Median 41.30 41.78 

Mode 40.56 41.22 

𝜎 1.88 1.61 

 

 

The driving data is broken down into the two groups as first described in 2.3.1. Figure 2-31 

and Figure 2-32 illustrate the proportion of time each driver spent in each state for Group A and 

Group B. In terms of Group A states, both drivers spend the greatest amount of time with the vehicle 

stationary. Whilst some stationary time is inevitable (at traffic lights for example), there is a six 

percent gap between Driver 1 and Driver 2, suggesting that there may be scope for Driver 1 to 

reduce stationary time and hence engine idling.  

Both drivers spend an identical proportion of the time maintaining a constant speed. Driver 

2, however, spends longer accelerating. On first inspection, this may seem a negative trait, as 

Gross Mass, 𝑀 / tonnes 
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acceleration is well known as a high-fuel consumption task, but the inference could also be that the 

driver is accelerating slower than Driver 1, but is still aiming for the same target speed. In this case, 

the higher proportion of time accelerating is a positive, as acceleration rates are lower.  

 

Figure 2-31 – Group A: Speed-Acceleration states over multiple journeys. Percentages are of 

engine-on time 

 

Figure 2-32 – Group B: Driver Control states over multiple journeys. Percentages are of non-

stationary time 

Now observing the Group B tasks, it can be seen that both drivers spend a similar proportion 

of the time braking and coasting, but there is a significant difference in the accelerator pedal and 

cruise control use. Driver 1 demonstrates a clear preference for controlling the vehicle with the 

accelerator pedal, whereas Driver 2 uses the Cruise Control. Although these pie charts are useful in 

giving an overview of the drivers’ preferences, they do not give a thorough analysis of their styles. 
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The first characteristics to be examined in more detail are the vehicle speed and acceleration 

logs. Figure 2-33 illustrates the PDF histogram of vehicle speeds, with probabilities given the 

vehicle is non-stationary. At low speeds, the two histograms are similar, with Driver 2’s PDF’s 

slightly higher than Driver 1. This changes significantly, however, at high speeds. For vehicle 

speeds great than 24 ms−1, Driver 1 has much high probability density than Driver 2. This implies 

that Driver 2 is choosing slightly slower speeds, probably with the aim of better fuel consumption, 

where Driver 1 is determined to minimise journey time. 

In Figure 2-34, the vehicle acceleration is examined. Of interest is the apparently higher 

accelerations of Driver 2 than Driver 1. However, what this figure does not illustrate well is the fact 

that Driver 1 does have high acceleration rates, but as their target speeds are therefore reached 

quickly, the probabilities (which are related to time), are seemingly lower. At the tails of the 

distribution, Driver 1 has higher acceleration probabilities. 

The next section of analysis focusses on the control states of the vehicle. A PDF histogram 

of pedal position (Figure 2-35) shows clear differences in driver preferences between the two 

drivers. The probabilities are calculated given a non-zero pedal position, so this histogram does not 

include the use of cruise control, or coasting (these are split into separate statistics). It is very 

apparent, however, that Driver 2 spends a much higher proportion of the time when they are using 

the pedal at low pedal positions, whereas Driver 1 is prepared to push the vehicle with high pedal 

demands. This figure, however, does not show the full picture, as the driver’s pedal control is also 

very dependent on vehicle speed. The bivariate histograms in Figure 2-36 explore the relationship 

in more detail. 
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Figure 2-33 – PDF histogram of vehicle speeds, given non-zero vehicle speed 

 

Figure 2-34 – PDF histogram of vehicle acceleration 
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Figure 2-35 - PDF histogram of pedal position, given non-zero pedal position 
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Figure 2-36a– Vehicle speed against pedal position bivariate histograms given pedal position is 

non-zero for Driver 1 

Figure 2-36b – Vehicle speed against pedal position bivariate histograms given pedal position is 

non-zero for Driver 2 
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The bivariate PDF histograms in Figure 2-36 clearly demonstrate the differences in the 

drivers’ control of the accelerator pedal with speed. Driver 1’s histogram is completely dominated 

by very high pedal positions at very high speeds. Slightly less apparent is the habit of lifting off the 

pedal at high speeds when target speed is reached as well as the depression of the pedal to near full 

depression and the acceleration up from low speeds to maximum speed. Driver 2, on the other hand, 

chooses to keep pedal position low over a range of speeds, but there is still a trend apparent to 

depress the pedal and then wait for acceleration through to higher speeds. Driver 2 doesn’t show 

high use of large pedal positions because they use Cruise Control a lot more than Driver 1. 

Finally, the drivers’ use of Cruise Control is examined in more detail. Figure 2-37 illustrates 

the probability of Cruise Control usage at any speed given the vehicle is non-stationary, and Figure 

2-38 illustrates the accelerations experienced under Cruise Control. The main difference noted from 

the speed figure, is that Driver 2 is using Cruise Control over a much greater range of speeds – from 

8 ms−1 upwards. Driver 1 on the other hand only really starts using cruise control at 20 ms−1. It 

can be seen from Figure 2-38 that Driver 1 mostly uses Cruise Control to maintain a constant speed, 

whereas driver 2 is using it to accelerate as well as maintain constant speed. Note that for both 

Figure 2-37 and Figure 2-38, the areas under the curve do not sum to one for each driver, as the 

probabilities plotted to not include the condition of cruise control disengaged – ie the greater area 

implies that Driver 2 uses Cruise Control significantly more often than Driver 1. 

 

 

Figure 2-37 – PDF histogram of Cruise Control with vehicle speed, given non-zero vehicle speed 
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Figure 2-38 – PDF histogram of Cruise Control with vehicle acceleration, given non-zero vehicle 

speed 

 

2.4.  Conclusions 

In this chapter, two heavy goods vehicles were fitted with the SRF Logger and on-road data 

collected over a period of four months. A large variety of routes and journey types have enabled 

identification of a vehicle model representative of the vehicle during its working life, rather than on 

a test track in very controlled conditions – an extension of Hunt’s work (2011). Improvements in 

road gradient estimation were made by using an alternative source of ground elevation data; rather 

than the inbuilt SRF Logger sensors, Google Maps data was used, although there is still further 

room for improvement. Traction force and fuel maps were generated by fitting multi-dimensional 

polynomials to recorded data. However, when applying these maps to recorded vehicle speed and 

pedal position data, significant errors were identified when simulating Cruise Control. 

The bank of data has also been used for new analysis of truck driver behaviour. Firstly, two 

groups of driving tasks (Group A and B) were defined to specify the driving tasks. Through use of 

the Douglas Peucker algorithm, the number of data points is reduced. This analysis demonstrated 

Vehicle Acceleration, 𝑎 / m s−2 
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that a large proportion of the distance covered by the two drivers is done so under cruise control on 

dual carriageway, so there is little effect from the driver’s behaviour. The drivers do, however, use 

the accelerator pedal extensively throughout junctions and roundabouts, so a technique was 

developed to identify the crossings of the junctions and roundabouts over a route. This proved very 

successful, with a 100% of all junctions suitably identified but also a 7% false detection rate over a 

sample route from Thurrock to Weymouth. 

With junctions successfully detected, analysis of individual roundabouts showed that 

through use of slightly lower speeds and increased cruise control engagement, Driver 2 was able to 

achieve fuel savings of 7% over the roundabout.  

Statistical analysis over the entire bank of data was also completed to explore the 

differences in driver behaviour. Both vehicles were found to be operating at a similar average gross 

mass, and the difference in driver preferences was once again made clear by the differences in 

accelerator pedal against cruise control usage. This analysis has identified the potential to bring 

Driver 1 closer to Driver 2’s style and corresponding fuel savings by modifying Driver 1’s 

behaviour. Increasing use of their cruise control, reducing the extreme high pedal positions, 

reduction harsh accelerations and adopting a smoother speed profile are all identified as positive 

potential actions for Driver 1. 

 

 



Chapter 3 - Driver Model 

As highlighted in the literature review, human drivers are difficult to model due to their complexity. 

Most existing models, as reviewed in the literature review in Chapter 1, break the driver’s control 

of the vehicle down into several tasks and will only simulate certain aspects of it, such as the lateral 

or longitudinal control of the vehicle. In this project, the driver’s interaction with the accelerator 

pedal is of interest so a longitudinal control model is required. Many of the existing models 

incorporate the vehicle as well and directly relate the driver’s target to the states of the vehicle (eg. 

vehicle speed). As already stated, it is the driver’s interaction with the accelerator pedal that is of 

interest, so these models are of little use in their published form. A Model Predictive Control (MPC) 

control framework was selected as it can account for the preview the driver has of the upcoming 

speed demands, but can also take into account constraints, such as actuator limitations and can 

easily reflect different driving styles (Sharp, 2007). However, Sharp’s model did not directly 

incorporate the driver’s control of the accelerator pedal. 

For the interaction of the driver with the accelerator pedal to be examined a vehicle model 

is also required. The structure of the combined driver and vehicle model is displayed in Figure 3-1. 

The driver model, represented by the controller 𝐊𝟏 (here the subscript one indicates the human 

driver, in later chapters, subscript 2 is used to indicate the pedal feedback controller), compares the 

current vehicle speed with the driver’s target vehicle speed and decides to exert a force on the pedal 

in order to accelerate the vehicle if necessary. The pedal converts this force into a demand signal 

(pedal displacement) and feeds this into the engine and vehicle model and the vehicle responds and 

accelerates. 
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Figure 3-1: Driver Model Block Diagram 

 

Model Predictive Control relies on a plant model to calculate control actions. Whether this 

model is linear, or non-linear, has significant effects on the method of control, and complexity of 

control. This chapter will explore linear optimal control (notes on non-linear control are included 

as an appendix). Firstly, the linear vehicle and pedal models are defined in 3.1. Linear Model 

Predictive Control theory is documented in 3.2. In 3.3, the control tasks are defined as a drive-cycle 

scenario and a car-following scenario, before a parameter study explores the behaviour of the driver 

model. In 3.4, driving simulator experiments are described and the results analysed before model 

identification in 3.5. Conclusions are drawn in 3.6 

3.1     Vehicle and Pedal Model 

The vehicle and pedal models are key components of the driver-vehicle model. They are described 

here in full. 

 

3.1.1     Linear Vehicle Model 

The vehicle dynamics model is composed of engine and vehicle dynamics, and a pedal and foot 

dynamics model. Firstly, the engine and vehicle are modelled: Figure 3-2. 

 

 

Figure 3-2 - Vehicle Model Block Diagram 
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For the engine, the engine torque was set as proportional to the throttle displacement – see 

2.2.6. Zero torque would be output at zero throttle displacement and maximum torque at maximum 

throttle displacement. The maximum torque was set to 2000Nm – the maximum engine torque of 

the DAF CF85 trucks logged in Chapter 2, as specified by the manufacturer. The Engine block can 

be expressed as: 

 

      𝑇𝐸𝑛𝑔𝑖𝑛𝑒 =
𝜙𝑃𝑒𝑑𝑎𝑙

𝜙𝑚𝑎𝑥
𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥                 ( 3.1 ) 

 

where 𝑇𝐸𝑛𝑔𝑖𝑛𝑒 , is the engine torque, 𝜙𝑃𝑒𝑑𝑎𝑙 is the pedal displacement, 𝜙𝑚𝑎𝑥 is the maximum pedal 

displacement, and 𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥 is the maximum engine torque. Assuming no losses, the engine 

torque to total wheel torque conversion is a multiplication by gear ratio, 𝐺𝐺𝑒𝑎𝑟 = 𝜔𝐺𝑖𝑛/𝜔𝐺𝑜𝑢𝑡, and 

the final drive ratio, 𝐺𝐹𝐷 = 𝜔𝐹𝐷𝑖𝑛/𝜔𝐹𝐷𝑜𝑢𝑡, where 𝜔𝐺𝑜𝑢𝑡 = 𝜔𝐹𝐷𝑖𝑛: 

 

𝑇𝑊ℎ𝑒𝑒𝑙 = 𝐺𝐺𝑒𝑎𝑟𝐺𝐹𝐷𝑇𝐸𝑛𝑔𝑖𝑛𝑒     ( 3.2 ) 

 

To convert from wheel torque, to traction force, the wheel torque is divided by the wheel radius: 

 

𝐹𝑇𝑟𝑎𝑐 =
𝑇𝑊ℎ𝑒𝑒𝑙

𝑟𝑊ℎ𝑒𝑒𝑙
                                   ( 3.3 ) 

 

Four opposing forces were applied to the vehicle: an inertial force, a gravitational 

component from road inclination, a constant rolling resistance and a linearized aerodynamic drag. 

The forces were defined as illustrated in Figure 3-3 (very similar to Figure 2-10, with the exception 

of aerodynamic drag). 

 

 

Figure 3-3 – Vehicle Model Forces 
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Applying Newton’s Second Law to the vehicle gives: 

 

𝑀
𝑑𝑣

𝑑𝑡
= 𝐹𝑇𝑟𝑎𝑐 − 𝐹𝐴𝑒𝑟𝑜 − 𝐹𝑅𝑜𝑙𝑙𝑖𝑛𝑔 −𝑀𝑔 sin 𝜃    ( 3.4 ) 

 

The conventional aerodynamic drag equation is 

 

𝐹𝐴𝑒𝑟𝑜 =
1

2
𝜌𝑣2𝐶𝑑𝐴  ( 3.5 ) 

As a quadratic, this doesn’t meet the requirement of a linear model, so a first order 

polynomial, 
1

2
𝑘𝜌𝐶𝑑𝐴𝑣, constrained to pass through the origin was sought. This constraint ensures 

that aerodynamic drag always resists motion (and will not accelerate the vehicle backwards) and by 

linearising about a fixed operating point, the model does not need to be linearised at every time 

step, reducing computational cost. A least squares regression of the errors between the quadratic 

drag term, and a linear drag term over the vehicle speed range of interest (0 to 30ms−1 ) calculated 

the desired constant, 𝑘, as 22.5 ms−1 (Figure 3-4). 

 

 

Figure 3-4 – Quadratic and Linearized aerodynamic drag 
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Table 3-1 summarises all vehicle parameters used in the vehicle model to simulate a generic 

tractor. With the exception of maximum engine torque and the linearised aerodynamic drag constant 

of proportionality as already discussed, all remaining vehicle parameters were set to those stated by 

Hunt et al., (2011), or taken from the output of the SRF Mapper tool discussed in Chapter 2. Hunt 

et al. measured the properties of a three axle Volvo tractor unit, similar to the DAF trucks logged 

in Chapter 2, albeit operating with a three axle box trailer, rather than bulk powder trailer. For this 

reason, the SRF Mapper tool was used to estimate the drag properties of the DAF tractor, bulk 

powder trailer combination from Chapter 2. The maximum engine torque was not defined in the 

Hunt paper, so was extracted here from the manufacturer’s specifications of the Chapter 2 trucks as 

already described.  

 

 

Table 3-1 – Vehicle Model Parameters 

Parameter Name Symbol 
Numerical 

Value 
Units Source 

Maximum engine torque 𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥 2000 Nm Engine specification 

Gear ratio   𝐺𝐺𝑒𝑎𝑟 5.74 - Hunt et al. 

Final drive ratio 𝐺𝐹𝐷 3.44 - Hunt et al. 

Wheel radius 𝑟𝑊ℎ𝑒𝑒𝑙 0.5 m Hunt et al. 

Air density 𝜌𝐴𝑖𝑟 1.225 kg m−3 Hunt et al. 

Drag Area 𝐶𝐷𝐴 6.62 m2 SRF Mapper 

Mass 𝑀 36600 kg Hunt et al. 

Coefficient of rolling resistance 𝐶𝑟 662 × 10−5 - SRF Mapper 

Linearised aerodynamic drag 

constant of proportionality 
𝑘 22.5 ms−1 

- 
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3.1.2     Accelerator Pedal Dynamics 

The dynamic properties of the accelerator pedal will play a large part in any simulation of the 

driver’s speed control of a vehicle. A Volvo truck accelerator pedal was deemed representative of 

a typical truck pedal and one was acquired for use in experiments. The objective of this section is 

to determine a linear dynamic model of the pedal for addition to the linear model of the vehicle. 

Due to the curvature of the pad of the pedal (noticeable in Figure 3-6) meaning that the 

contact point between foot and pedal may move as the foot rotates, and the complication of the foot 

rotation about the contact point between heel and floor, an approximation of the pedal –foot system 

is required. Figure 3-5 illustrates the dimensions and layout of such a simplified pedal. The force 

from the driver’s foot is applied normal to the pad of the pedal. It is assumed that the centre of 

pressure of the contact between the foot and the pedal is at the centre of the pad, a distance 𝑙𝑃𝑒𝑑𝑎𝑙 =

0.16m from the pedal pivot point, and that this distance remains constant for all pedal positions. As 

this remains a constant distance, the driver’s input can be considered either a force, or torque, 

independent of pedal displacement. 

 

 

 

Figure 3-5 – Free body diagram of the pedal arm 

 

The first property of the pedal to be examined was the static force-displacement 

relationship. The pedal was installed in a rig to angle the pedal such that the direction of travel of 

the centre of the pad remained as near vertical as possible throughout the full range of travel. Known 

masses were hung from the centre of the pedal pad and the corresponding displacements were 

measured using a protractor, as illustrated in Figure 3-6. 

𝑓𝑃𝑒𝑑𝑎𝑙 

𝑙𝑃𝑒𝑑𝑎𝑙 =  0.16m 

𝑇𝑃𝑒𝑑𝑎𝑙 

Φ1 = 0.5 rad 

𝜙𝑃𝑒𝑑𝑎𝑙 

𝑓𝑅 
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Figure 3-6 – Volvo accelerator pedal measurement rig 

 

Figure 3-7 illustrates the recorded torque displacement relationship. There are two clear 

regions where the pedal is static – at zero travel and at maximum travel. The remaining data then 

falls neatly onto a loading and an unloading line. The different regions of the curve are manually 

identified and a line of best fit is then fitted in each by minimising the square of deviation, resulting 

in the hysteretic loop. This hysteresis pattern indicates a constant friction with preloaded, constant 

stiffness. Nearly 2.9 Nm of torque is needed before any motion occurs, but on return to the zero 

position, the measured torque is only 1.5 Nm. This means that there is an effective 0.7 Nm friction 

torque (corresponding to a 2.5 N friction force on the centre of the pedal) opposing any motion of 

the pedal. The maximum achievable pedal depression was measured as 0.36 rad. The dynamic 

stiffness, determined by averaging the gradients of the top (5.01 Nm/rad) and bottom 

4.95 Nm/rad)  of the hysteresis loop, was calculated as 4.98Nm/rad. It is worth noting here that 

the pedal force-displacement behaviour is clearly non-linear, but the objective is to identify 

equivalent linear stiffness, damping and inertia terms. 

𝑓𝑃𝑒𝑑𝑎𝑙 
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Figure 3-7 – Torque-rotation characteristics of the Volvo accelerator pedal 

When installed in the driving simulator, this pedal has additional linkages attached to allow 

additional forces to be applied to the pedal, by a motor, for the purposes of pedal feedback (see 

Figure 3-8 and Chapter 4). As a direct comparison is sought between the driver-only model 

developed in this chapter, and the driver-and-feedback models developed in Chapter 4, the pedal 

dynamics are here extended to include the additional linkages and motor. The major difference this 

makes is through the additional inertia added to the system by the motor (later, it is shown that the 

motor inertia is minor compared to the additional linkages). Figure 3-9 illustrates the resulting 

mechanism produced when the motor is connected to the pedal. An estimate of the effective moment 

of inertia of the mechanism about the point A is made in the method explained below. 
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Figure 3-8 – Pedal assembly including motor and linkages 

 

 

Figure 3-9 – Pedal mechanism diagram 

 

The original pedal forms linkage AB, the motor lever arm forms linkage CD and the 

connecting rod between the motor and pedal forms linkage BC. Linkage AB has a linearised stiffness 

coefficient, 𝜅, damping coefficient 𝐶 and moment of inertia 𝐼𝐴𝐵, all about 𝐴. 𝐶 and 𝜅 are linearised 

parameters determined from experimental data. Linkage CD has the moment of inertia 𝐼𝐶𝐷 and the 

effects of damping and stiffness are assumed negligible. Due to the relative lengths  

𝑙𝑃𝑒𝑑𝑎𝑙 and 𝑙𝐶𝐷 to the length 𝑙𝐵𝐶, the linkage BC remains within 0.06 rad of horizontal at all times 

(measured experimentally). The vertical travel of the linkage (5mm) is also much smaller than the 

Motor 

Force transducer 
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transducer 

Pedal 

𝐵 

𝑙𝑃𝑒𝑑𝑎𝑙 

𝜙𝑚 
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𝜙𝑃𝑒𝑑𝑎𝑙 

𝜙1 

Φ3 

𝑙𝐵𝐶 



 

80 Driver Model 

horizontal travel (50mm). Linkage 𝐵𝐶 is therefore modelled as a mass constrained to move 

horizontally. As the rotation is small, the moment of inertia of this rod becomes irrelevant, as inertial 

forces are dominated by the rod’s inertia in the horizontal directions. A D’Alembert force balance 

equation on the linkages can identify the effective moment of inertia of the whole system, as 

experienced at the pedal. 

 

 

Figure 3-10 – Free body diagram of linkage 𝐶𝐷 

 

Summing moments about point D of Figure 3-10: 

 

𝐼𝐶𝐷𝜙̈𝑚 = 𝑓
𝐶
𝑙𝐶𝐷               ( 3.6 ) 

 

Figure 3-11 – Free body diagram of linkage 𝐵𝐶 

 

Examining horizontal equilibrium for Figure 3-11: 

 

𝑓𝐶 +𝑚𝐵𝐶𝑎𝐵𝐶 = 𝑓𝐵     ( 3.7 ) 

 

𝜙𝑚 

𝐷 

𝐶 
𝐼𝐶𝐷𝜙̈𝑚 

𝑓𝐶 

Φ3 
𝑙𝐶𝐷 

𝑓𝐷 

𝐵 𝐶 𝑓𝐶 𝑚𝐶𝐵𝑎𝐶𝐵 𝑓𝐵 
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Figure 3-12 – Free body diagram of linkage 𝐴𝐵 

 

Figure 3-12 illustrates the forces acting on the core pedal. The forces from the feedback assembly 

are applied at B, and the foot forces are applied at the centre of the pad. At the other end of the 

pedal, the dynamic pedal torque is applied, and a reaction force at the pivot point. Summing 

moments about point A of Figure 3-12:  

 

𝐼𝐴𝐵𝜙̈𝑃𝑒𝑑𝑎𝑙 + 𝐶𝜙̇𝑃𝑒𝑑𝑎𝑙 + 𝜅𝜙𝑃𝑒𝑑𝑎𝑙 + 𝑙1𝑓𝐵 = 𝑙𝑃𝑒𝑑𝑎𝑙𝑓𝑃𝑒𝑑𝑎𝑙    ( 3.8 ) 

 

Combining (3.6 ) to ( 3.8 ): 

 

𝑙1 (
𝐼𝐶𝐷𝜙̈𝑚
𝑙𝐶𝐷

+𝑚𝐵𝐶𝑎𝐵𝐶) + 𝐼𝐴𝐵𝜙̈𝑃𝑒𝑑𝑎𝑙 + 𝐶𝜙̇𝑃𝑒𝑑𝑎𝑙 + 𝜅𝜙𝑃𝑒𝑑𝑎𝑙 = 𝑙𝑃𝑒𝑑𝑎𝑙𝑓𝑃𝑒𝑑𝑎𝑙 

( 3.9 ) 

 

As the linkage BC is modelled as a rigid rod, is horizontal, and assumed to be constrained to move 

horizontally, the speed of point B is equal to the speed of point C: 

 

𝑙𝐶𝐷𝜙̇𝑚 = 𝑙1𝜙̇𝑃𝑒𝑑𝑎𝑙 

 

which rearranges to: 

 

𝜙̇𝑚 =
𝑙1

𝑙𝐶𝐷
𝜙̇𝑃𝑒𝑑𝑎𝑙                     ( 3.10 ) 

𝐵 

𝜙𝑃𝑒𝑑𝑎𝑙 

𝐴 

𝑓𝐵 

𝐼𝐴𝐵𝜙̈𝑃𝑒𝑑𝑎𝑙 + 𝐶𝜙̇𝑃𝑒𝑑𝑎𝑙 + 𝜅𝜙𝑃𝑒𝑑𝑎𝑙 

𝑓𝑃𝑒𝑑𝑎𝑙 

𝑙𝑃𝑒𝑑𝑎𝑙 

𝑙1 

𝑓𝑅 
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Differentiating ( 3.10 ) with respect to time produces: 

 

𝜙̈𝑚 =
𝑙1

𝑙𝐶𝐷
𝜙̈𝑃𝑒𝑑𝑎𝑙          ( 3.11 ) 

 

The horizontal displacement, in the direction of increasing pedal displacement, of the centre of mass 

of BC is given by: 

 

𝑥𝐵𝐶 = 𝑙1𝜙𝑃𝑒𝑑𝑎𝑙          ( 3.12 ) 

 

Differentiating ( 3.12 )with respect to time produces: 

 

𝑎𝐵𝐶 = 𝑙1𝜙̈𝑃𝑒𝑑𝑎𝑙          ( 3.13 ) 

 

Now, substituting ( 3.11 ) and ( 3.13 ) into ( 3.9 ) gives: 

 

𝑙1(
𝐼𝐶𝐷

𝑙1
𝑙𝐶𝐷

𝜙̈ 

𝑙𝐶𝐷
+𝑚𝐵𝐶𝑙1𝜙̈𝑃𝑒𝑑𝑎𝑙) + 𝐼𝐴𝐵𝜙̈𝑃𝑒𝑑𝑎𝑙 + 𝐶𝜙̇𝑃𝑒𝑑𝑎𝑙 + 𝜅𝜙𝑃𝑒𝑑𝑎𝑙 = 𝑙𝑃𝑒𝑑𝑎𝑙𝑓𝑃𝑒𝑑𝑎𝑙 

( 3.14 ) 

 

which rearranges to: 

 

(𝐼𝐴𝐵 + (
𝑙1
𝑙𝐶𝐷
)
2

𝐼𝐶𝐷 + 𝑙1
2𝑚𝐵𝐶) 𝜙̈𝑃𝑒𝑑𝑎𝑙 + 𝐶𝜙̇𝑃𝑒𝑑𝑎𝑙 + 𝜅𝜙𝑃𝑒𝑑𝑎𝑙 = 𝑙𝑃𝑒𝑑𝑎𝑙𝑓𝑃𝑒𝑑𝑎𝑙 

( 3.15 ) 

 

Hence  

𝐼𝑃𝑒𝑑𝑎𝑙 = 𝐼𝐴𝐵 + (
𝑙1
𝑙𝐶𝐷
)
2

𝐼𝐶𝐷 + 𝑙1
2𝑚𝐵𝐶 

( 3.16 ) 

 

It is impractical to disassemble the pedal assembly to weigh the linkage AB, including the 

pad of the pedal, so it’s mass is estimated as third of the total mass of the pedal assembly (excluding 

any additional linkages applied). This results in a mass estimate of 0.30kg. The cross section of the 
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linkage AB changes significantly along its length. Because of this, the mass is considered equally 

distributed along its length when the pad of the pedal and the force transducer are taken into account. 

For the sake of this model, although not strictly accurate due to the changing cross sections, linkage 

AB is modelled as a rod of length 0.16m and mass 0.30kg in order to take into account the pad of 

the pedal. This corresponds to a moment of inertia of 0.00256kg m2. The remaining values are 

summarised in the Table 3-2. 

 

Table 3-2 – Pedal Assembly Parameters 

Parameter name Symbol Numerical value Units 

Pedal arm length 𝑙𝑃𝑒𝑑𝑎𝑙 0.16 m 

Pedal lever arm length 𝑙1 0.14 m 

Connecting rod length 𝑙𝐵𝐶 0.33 m 

Motor lever arm length 𝑙𝐶𝐷 0.04 m 

Pedal arm moment of inertia 𝐼𝐴𝐵 2.56 × 10−3 kg m2 

Motor moment of inertia 𝐼𝐶𝐷 8.53 × 10−5 kg m2 

Connecting rod mass 𝑚𝐵𝐶 0.4 kg 

Pedal reference angle Φ1 0.50 rad 

Motor reference angle Φ2 1.05 rad 

 

 

Using the values from Table 3-2 produces an effective moment of inertia of the pedal 

assembly, 𝐼𝑃𝑒𝑑𝑎𝑙 = 0.0596 kg m
2. 

The stiffness and inertia of the pedal assembly has now been measured or estimated, but 

the damping is not yet quantified. To estimate the damping of the assembly, data is needed to relate 

the pedal force to the pedal motion.  

The accelerator pedal has an inbuilt potentiometer used to provide a pedal displacement 

signal. The voltage varies linearly with pedal displacement. A force transducer was installed on the 

pad of the pedal to measure the force between the driver’s foot and the pedal. As already described, 

the pedal is connected via a mechanical linkage to a motor for the application of pedal force-

feedback at a later date. This linkage has a second force transducer built into it to measure the 

feedback forces in later experiments. To calibrate the force measurements, known masses were 

applied in compression to the pedal force transducer. Masses were applied in tension on the 
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feedback force transducer, and the transducer was assumed to have the same calibration factor in 

compression. The force calibration data is illustrated in Figure 3-13. 

 

 

Figure 3-13 – Pedal and feedback force transducer calibration 

 

A set of data from a drive cycle task (see Section 3.4.4     ) was selected to represent the 

motion of the pedal in normal use and the force on the pad of the pedal was recorded, along with 

the pedal displacement. Values of the linear inertia, stiffness and damping were optimised to 

minimise the error between the recorded force-displacement relationship and the modelled 

relationship. The recorded pedal force was applied to the model pedal and the squared errors 

between the modelled pedal displacement and velocity and the recorded ones were calculated. The 

Matlab function fmincon was used to search for the three values that produce the minimum 

weighted square error: 

 

Λ = 𝜆1∑(𝜙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜙𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2 + 𝜆2∑(𝜙̇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜙̇𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)

2
 

( 3.17 ) 

 where the weightings 𝜆1 and 𝜆2 were defined as the reciprocal of the RMS measured pedal 

displacement, 𝜙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, and pedal velocity, 𝜙̇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, respectively. 

𝑓𝑃𝑒𝑑𝑎𝑙 = 8.23𝑉𝑃𝑒𝑑𝑎𝑙 𝑓2 = 7.21𝑉2 
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All three parameter values were constrained to be positive. The initial value of inertia was 

𝐼𝑃𝑒𝑑𝑎𝑙 from earlier, the initial value of stiffness was taken from the linear gradients of Figure 3-7 

and the initial value of the damping factor was set to zero, as no estimates are easily acquired. 

The inertia and stiffness were allowed to vary in this optimisation, even though they were 

already estimated. In the case of the stiffness, this is because the recorded pedal force-displacement 

relationship was very non-linear and a linear approximation of the relationship was sought. Simply 

taking the gradient of the constant stiffness region of the static curve may not be the best 

approximation to the dynamic curve. The optimal values are as recorded in Table 3-3 below. 

 

 

Table 3-3 – Effective Pedal Assembly Parameters 

Parameter name Symbol Numerical value Units 

Effective pedal moment 

of inertia 
𝐼𝑃𝑒𝑑𝑎𝑙 2.96 × 10−9 kg m2 

Effective pedal damping 

coefficient 
𝐶 0.219 Nms rad−1 

Effective pedal stiffness 𝜅 18.9 Nm rad−1 

 

The effective pedal stiffness calculated here is approximately three and a half times greater 

than the static value (the gradient of the hysteresis loop). This is because of the large friction forces 

experienced in the pedal. The forces in the real pedal are a sum of the linear stiffness, and the non-

linear friction forces. This optimisation has tried to approximate this over the used region of pedal 

displacement and speeds.  

The effective pedal moment of inertia, on the other hand, is significantly smaller than the 

estimated value. This is because the inertia acts on an acceleration, and acceleration is not measured 

directly, but differentiated twice from the recorded pedal displacement signal. The result is a very 

noisy acceleration signal. This noise is not replicated in the measured force signal, so the 

optimisation algorithm sets the inertia to a low value. This value is much lower than expected, so 

the initial estimated value is used instead. The same problem applies to the velocity data and 

damping, but to a lesser extent as the displacement data is only integrated once. 

Figure 3-14 illustrates the recorded torque-displacement relationship for the static and 

dynamic cases, alongside the modelled torque-displacement relationship using the parameters 

above. It is interesting to note that dynamic cases looks slightly different to the static test case. In 

the dynamic test, there is a slight offset in torque, but it is also noted that there is a slight stiffening 

effect with displacement. This is because as the pedal is depressed, the contact patch between the 
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foot and the pedal shifts slightly towards the pivot point of the pedal. This effect is small, so is not 

incorporated into the model. 

Due to the fact that the foot would lose contact with the pedal at negative forces, the pedal 

measured force is considered to be constrained to be positive. Constraints are not placed on the 

simulated pedal position, however, as the forces are expected to be dominated by the pedal stiffness, 

which will correspond to the constraint. 

 

 

Figure 3-14 – The recorded and modelled force displacement relationship for the accelerator 

pedal 

 

The model can now be expressed in equation form: 

 

          𝐼𝑃𝑒𝑑𝑎𝑙𝜙̈𝑃𝑒𝑑𝑎𝑙 + 𝐶𝜙̇𝑃𝑒𝑑𝑎𝑙 + 𝜅𝜙𝑃𝑒𝑑𝑎𝑙 = 𝑇𝑃𝑒𝑑𝑎𝑙    ( 3.18 ) 

 

and solved using standard second order differential equation techniques.  

The pedal torque can now be related to the force exerted on the pedal: 

 

𝑓𝑃𝑒𝑑𝑎𝑙 =
𝑇𝑃𝑒𝑑𝑎𝑙

𝑙𝑃𝑒𝑑𝑎𝑙
                                       ( 3.19 ) 

𝜙𝑃𝑒𝑑𝑎𝑙/𝜙𝑚𝑎𝑥 / %  
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It is worth noting that this is just one way of linearising the pedal dynamics. It is also 

possible to use a non-linear model and linearise the model at every time step – this is examined in 

Appendix 2. 

With the addition of the pedal and driver blocks, the block diagram first illustrated in Figure 

3-2 is now complete and illustrates the driver acting in closed loop - Figure 3-15.  

 

 

Figure 3-15 – Closed loop vehicle control block diagram. Relevant equation numbers are included 

in brackets 

The combined linear vehicle and pedal model (equations ( 3.1 ) to ( 3.4 ) and ( 3.18 )) can then be 

expressed in matrix form: 

 

𝒙̇ = 𝐀𝐶𝒙 + 𝐁𝐶𝑓𝑃𝑒𝑑𝑎𝑙              ( 3.20 ) 

 

where 

𝒙 =

{
 
 

 
 
𝜙𝑃𝑒𝑑𝑎𝑙
𝜙̇𝑃𝑒𝑑𝑎𝑙
𝑣
𝑦
1 }

 
 

 
 

, 

 

𝐀𝐶 =

[
 
 
 
 
 
 

0 1 0 0 0

−
𝜅

𝐼𝑃𝑒𝑑𝑎𝑙
−

𝐶

𝐼𝑃𝑒𝑑𝑎𝑙
0 0 0

1

𝜙𝑀𝑎𝑥
×
𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑎𝑥𝐺𝐺𝑒𝑎𝑟𝐺𝐹𝐷

𝑟𝑊ℎ𝑒𝑒𝑙𝑀
0 −

1

2

𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑘

𝑀
0 −𝑔 sin θ + 𝐶𝑟

0 0 1 0 0
0 0 0 0 0 ]

 
 
 
 
 
 

, 
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𝐵𝐶 =

[
 
 
 
 
 
0
𝑟1

𝐼𝑃𝑒𝑑𝑎𝑙
0
0
0 ]

 
 
 
 
 

 

 

3.2     Linear Model Predictive Control Theory 

The driver model is developed using Model Predictive Control Theory. The objective of the driver 

model is to mimic the driver’s cognitive interpretation of current vehicle speed and target speed in 

order to produce a plan of pedal forces to reach the target speed, exploiting the driver’s knowledge 

of the vehicle. 

In linear Model Predictive Control, a linear internal vehicle and pedal model is used, and 

then, taking the current vehicle state and a previewed speed demand, a control action is calculated. 

The preview time for a real driver is very dependent on the road conditions, the number of other 

road users present for example. Conventionally, the prediction horizon is set as a time, meaning the 

driver is aware of the speed demand for the next 𝑡 seconds. The controller calculates control actions 

up until the control horizon. In this case, the prediction horizon and the control horizon were set 

equal. The control actions are determined by minimising a cost function. For a longitudinal control 

scenario, the speed error, pedal displacement and pedal force are suitable variables for the cost 

function as they can be interpreted as a function of accuracy (speed error), energy consumption 

(pedal displacement is used an indicator) and driver effort (pedal force). The cost function used was 

defined as a weighted sum of the mean square pedal force, mean square pedal position and mean 

square speed error. The optimum pedal force control action up to the end of the control horizon was 

calculated using a least squares solution. It is the weightings of the variables in the cost function 

that is likely to result in the variation in driving styles observed in human drivers. Weighting values 

will be sought experimentally. 

Due to the linearity of the vehicle model and that fact that parameters remain constant, a 

set of state gains for a set preview can be calculated and then applied again without needing any 

recalculation. Once these gains are known, they are applied to the current states and preview 

information, control actions decided, and then only the first time step of control is used, before the 

process is repeated on the next time step. The derivation of the control law is included below. 

The controller works in discrete time, so the vehicle model must also be in discrete time 

steps. The model discussed in the previous section, ( 3.20 ), becomes: 

                

𝒙(𝑘 + 1) = 𝐀𝒙(𝑘) + 𝐁𝑓1(𝑘)    ( 3.21 ) 
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where 𝐀 and 𝐁 are the discrete time state-space matrices, 𝐱(𝑘) the state vector at time step 𝑘 and 

𝑓1 is the driver pedal force. Notice that this is different to 𝑓𝑃𝑒𝑑𝑎𝑙 from the previous section. This 

subtlety of notation is defined to highlight the difference between contributions to total pedal force 

from the human driver and the contributions from the pedal force feedback controller in Chapter 4. 

The outputs of the vehicle model are given the symbol 𝐳(𝑘) and are defined as 

 

𝐳(𝑘) = 𝐂𝐱(𝑘)     ( 3.22 ) 

where 𝐂 is a matrix mapping the states, 𝐱(𝑘), to the desired outputs, 𝐳(𝑘). 

By iterating every time step, it is then possible to predict the state of the vehicle at every 

time step up until the prediction horizon, 𝑁𝑝 steps ahead: 

 

{

𝒙(𝑘 + 1)

𝒙(𝑘 + 2)
⋮

𝒙(𝑘 + 𝑁𝑝)

} = [

𝐀
𝐀2

⋮
𝐀Np

] 𝐱(𝑘) +

[
 
 
 
 
 

𝐁 0 ∙ ∙ ∙ 0
𝐀𝐁 𝐁 0 ∙ ∙ ∙
𝐀𝟐𝐁 𝐀𝐁 𝐁 0 ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙

𝐀𝐍𝐩−𝟏𝐁 ∙ ∙ ∙ 𝐀𝐁 𝐁]
 
 
 
 
 

{
 

 
𝑓1(𝑘)

𝑓1(𝑘 + 1)
⋮

𝑓1(𝑘 + 𝑁𝑝 − 1)}
 

 
  

  ( 3.23 ) 

For the case where the prediction horizon and control horizon are equal (the controller plans control 

actions up until the prediction horizon), the following can be shown by following Maciejowski 

(2002) and Cole (2006). 

𝐙(𝑘) = 𝚿𝐱(𝑘) + 𝚯𝐔𝟏(𝑘)                            ( 3.24 ) 

where 

𝐙 (𝑘) =

{
 

 
𝐳(𝑘+ 1)

𝐳(𝑘+ 2)
⋮

𝐳(𝑘+ 𝑁𝑝)}
 

 

                            𝐔𝟏(𝑘) = {

𝑓1(𝑘)

𝑓1(𝑘 + 1)
⋮

𝑓1(𝑘 + 𝑁𝑝 − 1)

} 

𝚿 = [

𝐂𝐀

𝐂𝐀2

⋮

𝐂𝐀𝑁𝑝

]                               𝚯 =

[
 
 
 
 
 

𝐂𝐁 0 ∙ ∙ ∙ 0

𝐂𝐀𝐁 𝐂𝐁 0 ∙ ∙ ∙

𝐂𝐀𝟐𝐁 𝐂𝐀𝐁 𝐂𝐁 0 ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙

𝐂𝐀𝐍𝐩−𝟏𝐁 ∙ ∙ ∙ 𝐂𝐀𝐁 𝐂𝐁]
 
 
 
 
 

 

 

Carrying on with Maciejowski’s approach, the next stage is to calculate a control action that 

optimises a chosen cost function. In this instance, a cost function, 𝑉(𝑘), of mean square pedal force 

and speed error was chosen. 
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𝑉1(𝑘) = ∑ ‖𝐳(𝑘 + 𝑖) − 𝐫𝟏(𝑘 + 𝑖)‖𝐐(𝑖)
2 + ∑ ‖𝑓1(𝑘 + 𝑖)‖𝐑(𝑖)

2𝑁𝑝−1

𝑖=0

𝑁𝑝
𝑖=1

             ( 3.25 ) 

   

where  ‖𝐲‖𝐐(𝑖)
2 = 𝐲T𝐐(𝑖)𝐲 and 𝐫𝟏(𝑘 + 𝑖) are the future speed demands for the vehicle as previewed 

by the driver. 𝐐(𝑖) is the cost function matrix associated with time step 𝑖 ahead of the current time, 

and 𝐑(𝑖) is the cost function matrix associated with the future pedal force values. Defining 

 

ℚ𝟏 = [

𝐐𝟏(1)

⋱
𝐐𝟏(𝑁𝑝)

]               ℝ𝟏 = [

𝐑𝟏(0)

⋱
𝐑𝟏(𝑁𝑝 − 1)

]             

𝐓𝟏(𝑘) =  {

𝐫𝟏(𝑘)

𝐫𝟏(𝑘 + 1)
⋮

𝐫𝟏(𝑘 + 𝑁𝑝 − 1)

} 

Note the subscript 1 indicates that these apply to the driver. It is now assumed that 𝐐(𝑖) and 𝐑(𝑖) 

are constant throughout the preview. Maciejowski states it is now possible to rewrite ( 3.25 ) without 

the summation: 

 

𝑉1(𝑘) = ‖𝐙(𝑘) − 𝐓1(𝑘)‖𝑸𝟏
2 + ‖𝐔1(𝑘)‖𝐑1

2                    ( 3.26 ) 

 

The predicted error, 𝛆𝟏(𝑘), is 

 

𝛆𝟏(k) = 𝐓𝟏(k) − 𝚿𝐱 (k)                                  ( 3.27 ) 

 

Substituting ( 3.27 ) into ( 3.26 ) results in 

 

𝑉1(k) = ‖𝚯𝐔𝟏(k) − 𝛆𝟏(k)‖𝐐𝟏
2 + ‖𝐔𝟏(k)‖𝐑𝟏

2                              ( 3.28 ) 

Rewriting: 

𝑉1(𝑘) = ‖[
𝐒𝐐𝟏{𝚯𝐔𝟏(𝑘)−𝛆𝟏(𝑘)}

𝐒𝐑𝟏𝐔𝟏(𝑘)
]‖

2

                                 ( 3.29 ) 

where 𝐒𝐐
𝐓𝐒𝐐 = 𝐐 and 𝐒𝐑

𝐓𝐒𝐑 = 𝐑. 

 

In order to minimise the cost function, the least squares solution of the following is sought: 
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      [
𝐒𝐐𝟏{𝚯𝐔𝟏(𝑘)opt−ε1(𝑘)}

𝐒𝐑𝟏𝐔𝟏(𝑘)opt
] = 0                      ( 3.30 ) 

 

This can be solved using QR decomposition: 

𝐔1opt(𝑘) = 𝐊1full𝛆𝟏(𝑘)                               ( 3.31 ) 

where 

𝐊1full = [
𝐒𝐐𝟏𝚯

𝐒𝐑𝟏
] \ [

𝐒𝐐𝟏
0
]                          ( 3.32 ) 

where ‘\’ is the Matlab command for QR decomposition. 

This produces a set of future pedal forces that would minimise the cost function. The first 

of these is taken, and then new set of optimised pedal forces, 𝐔(𝑘 + 1)opt are calculated, and the 

process repeated. The time independence of 𝐊full means that the optimum pedal force can be 

determined by a linear time-invariant controller: 

 

𝑓1(𝑘) = 𝐊1w𝛆𝟏(𝑘)                                ( 3.33 ) 

 

where 𝐊1w is the first row (corresponding to first control action) of 𝐊1full. 

Using equation (14), and the substitution 𝐊1𝑝 = [−𝐊1w𝚿   𝐊1w], the control law can be written as: 

 

𝑓1(𝑘) = 𝐊1𝑝 {
𝐱 (𝑘)

𝐓𝟏(𝑘)
}                 ( 3.34 ) 

3.3     Control Tasks 

The real-world driving task can be complex. In one journey a single vehicle may experience empty 

roads with few other vehicles, or may encounter heavy traffic jams. The presence of pedestrians or 

other road side obstacles may also affect the driver’s choice of speed in a complex manner. In this 

project, two simple driving scenarios are considered – drive-cycle following and car-following.  

3.3.1     Drive-Cycle Following 

In the first scenario, drive-cycle following, it is assumed that the driver has a target speed profile 

that is unaffected by external influences. Therefore, the driver is free to aim for their own target 

without having to respond to a changing environment. 

The Millbrook Suburban Cycle for HGVs (Barlow et al., 2009) represents a typical HGV 

drive in a suburban area with low to medium speeds - Figure 3-16. As the purpose of this project is 
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to look at the use of the accelerator pedal, the drive cycle is modified slightly to eliminate the need 

for use of a brake pedal. This is achieved by selecting sections of the drive cycle that do not include 

a decelerating to stop. The identified sections are highlighted in grey. The sections are re-joined to 

form a new drive-cycle. The join produces a discontinuity in acceleration, but is continuous in speed 

demand. The acceleration discontinuity is consistent with the rest of the drive cycle.  The resulting 

four minute drive cycle is displayed in Figure 3-17. 

 

 

Figure 3-16 – Millbrook Suburban Drive Cycle for HGVs 
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Figure 3-17 – Modified Millbrook Suburban Drive Cycle for HGVs 

For a driver undergoing a drive-cycle task, their style may be determined by a cost function 

of performance and effort. As the target is clearly defined as a speed demand, an obvious measure 

of performance is the error between the vehicle’s current speed and the target. There are many other 

measures of performance that the driver may choose to adopt, such as fuel economy. The 

relationship between fuel use and the driver’s control of the pedal position and vehicle speed is non-

linear (see Chapter 2), making it unsuitable for the current linear driver model. However, Chapter 

2 also demonstrates that for a given speed, the fuel rate increases with pedal position, so pedal 

position is therefore used as an indicator of fuel use. The physical effort the driver has to put into 

the control of the vehicle is a function of the force applied on the pedal and the pedal motion. Pedal 

force is used as the measure of driver effort for this controller. Another potential measure of driver 

effort is pedal speed. The more the driver is having to move the pedal, the more effort is being 

required. The weightings of these variables are given the symbols 𝑞1𝑠, 𝑞1𝜙,  𝑟1 and 𝑞1𝜙̇respectively. 

The subscript 1 indicates these weightings are applied to the driver’s cost function. As the pedal 

force is the output of the proposed driver model, the weighting on this is given the symbol 𝑟1.  

This chapter will examine a variety of potential combinations of these variables and will 

seek to identify a suitable cost function to represent driver behaviour once simulator experiments 

are analysed. To encompass all variable discussed, the final model predictive control matrices, 

𝐂,𝐐𝟏(𝑖) and 𝐑𝟏(𝑖) are hence defined as 

 

S
ec

ti
o

n
 1

 

S
ec

ti
o

n
 2

 



 

94 Driver Model 

𝐂 = [
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

]                                              ( 3.35 ) 

 

𝐐𝟏(𝑖) = [

𝑞1𝑠 0 0
0 𝑞1𝜙 0

0 0 𝑞1𝜙̇

]                                                ( 3.36 ) 

 

𝐑𝟏(𝑖) = 𝑟1                                                          ( 3.37 ) 

 

This scenario will allow the comparison of the driver’s trade-off between a clearly defined 

target and the effort put in by the driver.  

 

3.3.2     Car-Following 

The second driving scenario modelled is the car-following scenario. In a lot of real-world driving, 

the driver’s speed choice is very dependent on other road users around them. The driver’s target is 

therefore determined by their own speed targets and the behaviour of other vehicles. The aim of 

analysing this scenario was to evaluate the driver’s trade-off between a more complicated target 

and driver effort. 

In this scenario, the driver may have a cost function trading off matching the speed of the 

vehicle in front, maintaining a safe following distance (both indicators of performance), pedal 

displacement (as an indicator of fuel use again), pedal force (as an indicator of driver effort) or 

pedal speed. The weightings of these three variables are given the symbols 𝑞1𝑠, 𝑞1𝜙, 𝑞1𝑑, 𝑟1 and  

𝑞1𝜙̇ respectively. The subscript 1 indicates these weightings are applied to the driver’s cost function. 

The safe following distance is dependent on the speed of the driver’s vehicle. A common 

method for determining the safe following distance is to use a constant time headway (THW) 

method (Mulder et al., 2011). This determines the safe following distance target to be the distance 

travelled by the following vehicle in a set period of time. This method breaks down at low speeds, 

where the following distance will fall to near zero. Therefore, it is a good idea to add a constant 

distance offset to the target to eliminate low speed collisions. The safe following distance target is 

therefore defined as: 

 

𝑥𝑇𝐻𝑊 = 𝑣𝑡𝑇𝐻𝑊 + 𝑙𝑇𝐻𝑊                                               ( 3.38 ) 

 

For the purposes of the driver model, the controller matches the target speed to the vehicle 

in front, and matches the displacement of the vehicle in front to the safe following distance added 
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to the following vehicle’s displacement. The final model predictive control matrices, 𝐂,𝐐𝟏(𝑖) and 

𝐑𝟏(𝑖) are therefore defined as 

 

𝐂 = [

1 0 0 0 0
0 0 1 0 0
0 0 𝑡𝑇𝐻𝑊 1 𝑙𝑇𝐻𝑊
 0 1 0 0 0

]                                            ( 3.39 ) 

 

𝐐𝟏(𝑖) = [

𝑞1𝑠 0 0
0 𝑞1𝜙 0

0 0 𝑞1𝑑

]                                                 ( 3.40 ) 

 

𝐑𝟏(𝑖) = 𝑟1                                                            ( 3.41 ) 

 

 

 

 

3.4     Driving Experiments and Data Analysis 

The longitudinal control driver model was validated in the CUED driving simulator using both the 

drive-cycle following and car following scenarios. 

3.4.1     Experiment Design 

The CUED driving simulator has been used for a variety of experiments since its conception in 

2003. At the start of this project, its software and hardware were upgraded by the author of this 

thesis to reflect improvements in technology. 

The simulator has a fixed base and three 4K 65 inch screens providing the driver with a 

120° field of view. The seat is positioned so that the vertical distance between base of the seat and 

the pad of the pedal is the same as that measured in a Volvo truck cab. The horizontal distance 

between the seat and the pedal is also set to match the Volvo cab, taking into account that both the 

Volvo seat, and simulator seat are adjustable in the longitudinal direction of the vehicle. No other 

controls are available to the driver. Figure 3-18 illustrates the layout of the driving simulator. 
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Figure 3-18 – Driving simulator plan view 

 

The simulator operates using Simulink Real-Time over three computers – the Host PC, 

Target PC, and Audio PC. The Target PC operates the vehicle model in real time and interfaces 

with the analogue sensors; the Host PC produces the graphical interface of the simulator and the 

Audio PC produces an engine sounds audio track to provide extra speed feedback to the driver. 

In the Drive-Cycle following task, only the centre screen is used. The driver is presented 

with a graph previewing the next four seconds of speed demand and illustrating the past four 

seconds of speed demand and achieved speed. 

In the car-following scenario (Figure 3-19), all three screens are used. A virtual driving 

environment was created using Simulink 3D Animation. The virtual road consists of a straight road 

with houses lining either side. The wide field of view assists with the driver’s perception of speed.  

Adjustable Seat 

Accelerator 

Pedal 

Three 65 inch screens 

forming 120° driver 

field of view 
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Figure 3-19 – Driving simulator set up for a car following scenario 

The Target PC records the three pedal signals, pedal position, pedal force, and feedback 

force, at 50Hz. The simulated vehicle speed and displacement are also recorded at 50Hz. These 

signals are fed to the Host PC for storage.  

The noise synthesizer’s purpose is to produce an additional feedback loop to the driver, 

incorporating engine and vehicle information through the frequency spectrum and amplitude of 

engine and vehicle sounds. Specifically, engine noise and tyre noise and recreated, with the aim of 

improving the driver’s perception of speed. The Host PC sends on the simulated vehicle speed and 

recorded pedal positon via Ethernet connection to the Audio PC.  

At 0.02s intervals, the Audio PC assesses the speed and pedal position from the Host PC. 

In order to represent the engine and tyre noise of the vehicle, two key frequencies, the engine noise 

centre frequency and tyre noise centre frequency, are then calculated using equations ( 3.42 ) and   

( 3.43 ) below: 

 

𝑓𝑒𝑛𝑔 =
𝑣𝐺𝐺𝑒𝑎𝑟𝐺𝐹𝐷
𝑟𝑊ℎ𝑒𝑒𝑙

 

( 3.42 ) 
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𝑓𝑡𝑦𝑟𝑒 =
𝑣

𝑙𝑡𝑟𝑒𝑎𝑑
 

 ( 3.43 ) 

where 𝑙𝑡𝑟𝑒𝑎𝑑 is a characteristic length of the tyre tread. For the trucks modelled here, the tyre tread 

length is set to 5cm. 

Two tenth order band pass Butterworth filters are defined to produce engine and tyre noise. 

The centre frequencies from ( 3.42 ) and ( 3.43 ) are used and each filter has -3dB cut-off frequencies 

at 90% and 110% of the centre frequency. Each filter is then applied to a 0.2s clip of white noise, 

before the two clips are summed in the time domain. 

A gain is applied to define the amplitude of the new signal as 

 

𝐴𝑛𝑜𝑖𝑠𝑒 =
1

2
(
𝜙𝑝𝑒𝑑𝑎𝑙𝑣

𝜙𝑚𝑎𝑥𝑣𝑚𝑎𝑥
+ 1) 

( 3.44 ) 

 

Figure 3-20 illustrates the complete sound process in block diagram form. The noise signal 

is output to a set of headphones to provide the driver with audio feedback. 

 

Figure 3-20 – Audio generation in the driving simulator. Equation numbers are included for the 

centre frequencies of the noise filters, and of the amplitude function 

 

3.4.2     Participants 

Nine human drivers were selected to participate in the validation of the driver model. The drivers 

were between 23 and 55 years old and all held driving licences. One out of the nine drivers were 

Tyre Noise 
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female. Drivers 1 to 7 were non-HGV drivers, and drivers 8 and 9 were professional, and 

experienced, HGV drivers. 

3.4.3     Procedure 

The experiment was divided into two halves – the drive cycle scenario and the car-following 

scenario. 

In the first scenario, drive cycle following, the Modified Millbrook Suburban Drive Cycle 

for HGVs was set as the target speed. The driver was given a practice run through to familiarise 

themselves with the behaviour of the vehicle and the dynamics of the pedal. Drivers were asked to 

follow the target speed. The test was then completed three times, to improve the reliability of the 

results. 

In the second scenario, car following, the speed of the target vehicle was set as the Modified 

Millbrook Suburban Drive Cycle for HGVs. Again, the driver was allowed a familiarisation run to 

get used to the virtual world. Drivers were asked to follow the vehicle in front at a safe distance, as 

they normally would on the road. Again, once the familiarisation run was completed, the test was 

repeated three times, resulting in four runs in total. 

When all drivers had completed the experiment, the data was analysed and driver 

behaviours compared. 

3.4.4     Drive Cycle Results  

Figure 3-21 illustrates the recorded mean speed errors from the drivers. Generally, the drivers 

maintain a speed quite close to the target speed profile. After high accelerations, however, some 

overshoot tends to occur. At lower acceleration rates, the drivers were better at anticipating the 

future speed demand. At speed peaks, the human drivers tended to keep accelerating until the 

maximum speed was reached, and then coasted down until they reached the target speed again.  

Figure 3-22 illustrates the drivers’ control of the accelerator pedal. For the vast majority of 

the time, the drivers are able to accurately follow the target speed, without depressing the pedal 

beyond 50%. There are definite trends apparent in the pedal position against time plot. Examining 

the pedal position more closely, the drivers’ intermittent control becomes apparent (Johns et al., 

2015). This is where drivers update their control actions at discrete points and maintain near 

constant pedal force between those times.  

Comparing the pedal position with pedal forces in Figure 3-23 shows that there are higher 

frequency elements to the driver pedal force. The friction in the pedal force damps out a lot of these 

higher frequencies, resulting in the more apparent noise in the pedal position. It was noted post 

experimentation that there was potentially a small cable-tie intruding over the force transducer, and 

that the forces measured, may not be accurate over all pedal positions below approximately 15%. 

For this reason, later analysis will focus on the pedal position, rather than pedal force. 
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Figure 3-24 demonstrates the costs for the drivers in the drive-cycle task. Surprisingly, there 

is a near linear trend of increasing RMS speed errors with increasing RMS pedal forces. However, 

the variation in RMS pedal forces, only has a small impact on the RMS speed errors, so this results 

may be due to the different drivers being better or worse at locating the optimal weightings of their 

cost functions. 

In this scenario, there is little to distinguish the professional HGV drivers from the non-

professionals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-21 – Mean vehicle speed error against time for the drive cycle following task (top) and 

drive cycle speed profile for reference (bottom) 
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Figure 3-22 – Mean pedal position against time for the drive cycle following task 

 

Figure 3-23 - Mean pedal force against time for the drive cycle following task 
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Figure 3-24 – Cost diagram for drive cycle scenario 

 

It is interesting to note that it is the professional drivers that have the highest RMS pedal 

forces, 𝐹𝑃𝑒𝑑𝑎𝑙𝑅𝑀𝑆 of all the drivers. This could reflect a difference in styles observed between truck 

and car drivers, or may be coincidental in a small sample size such as this one. 

As a final consideration, the mean vehicle speed for each driver is plotted with one standard 

deviation of the individual’s runs shaded either side in Figure 3-25. This clearly demonstrates that 

the standard deviations amongst each driver is similar to the standard deviation across drivers in 

this scenario, meaning that there is not a statistically significant difference between most of the 

drivers across most of the test. 
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Figure 3-25 – Driver mean vehicle speeds with one driver standard deviation shaded either side 

 

3.4.5     Car-Following Results 

Figure 3-26 illustrates the recorded mean (across all three runs) speed profiles from the drivers 

alongside the speed of the target vehicle. Generally, the drivers maintain a similar speed to the target 

vehicle. There is more variation in the speed between drivers in this task than there was in the drive-

cycle task, due mostly to the fact that the drivers were asked to follow at a safe distance, not match 

speeds. However, characteristic overshoots in speed are still present, as they were in the drive-cycle 

task.  

Figure 3-27 illustrates the drivers’ control of the accelerator pedal. It is apparent that the 

change of task from drive-cycle to car-following leads drivers to demand more from the vehicle as 

higher pedal positions are witnessed. The maximum pedal position in this scenario reaches 80% in 

Driver 6’s case. Once again, general trends are still apparent between drivers.  

In this scenario, the drivers’ intermittent control is even more apparent. With perception 

thresholds impacting the control actions, and much more visual stimulus to the driver, large step 

changes in pedal displacement (Figure 3-27) and pedal force (Figure 3-28) are very apparent. 
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Figure 3-26 - Mean vehicle speed against time for the car-following task 

 

Figure 3-27 - Mean pedal position against time for the car-following task 
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Figure 3-28 - Mean pedal force against time for the car-following task 

The additional variable measured in the car-following scenario is distance between the two 

vehicles. This is simply illustrated in Figure 3-29. Most drivers remain somewhere between 20m 

and 40m behind the target vehicle throughout most of the experiment. However, drivers 4 and 9 are 

the exception to this case, falling up to 120m behind the target vehicle. On communicating with the 

subjects, it became apparent that Driver 4 felt a greater distance was required. As the driver did not 

have a brake pedal, deceleration rates would be limited, and hence the safe distance was considered 

much greater. Driver 9, a professional driver, was uncomfortable driving without a brake, and found 

it very difficult to maintain any sort of constant following distance. This is clearly demonstrated by 

the significant oscillations in following distance observed. 

An alternative way of looking at the following distance is to look at the Time Headway 

(THW) ( 3.38 ). The THW for the seven drivers is in Figure 3-30. All drivers, bar Drivers 4 and 9, 

maintain near constant THW over the final 180s of the experiment. This corresponds to when the 

vehicle has accelerated from very low speeds to medium speeds.  
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Figure 3-29 - Mean following distance against time for the car-following task 

 

Figure 3-30 - Mean Time Headway (THW) against time for the car-following task 
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Figure 3-31 demonstrates the costs for the drivers in the car following task. In this 

comparison, the drivers target following distance is set to the mean THW observed from each driver 

over the final 180s of the task ( 3.45 ). This ensures that all starting effects are not included.  

 

𝑡̅𝑇𝐻𝑊 =
𝑡𝑠

240 − 60
∑ 𝑡𝑇𝐻𝑊

𝑡=240

𝑡=60

 

( 3.45 ) 

As drivers were not set a specific THW target, this approach ensures all drivers are 

compared fairly about whichever value of THW they followed. Driver 9 stands out once again as 

due to the variability of their following distances. The remainder of the drivers demonstrate a slight 

trend for increasing pedal forces with increasing following distances error. This trend suggests that 

the drivers are of different ability levels. 

In this scenario, once again, there is little to distinguish the professional HGV drivers from 

the non-professionals, but the HGV drivers are at the higher end of the RMS pedal force scale. 

 

 

Figure 3-31 – Cost diagram for car following scenario. 

Like with the drive cycle case, as a final consideration, the mean following distance for 

each driver is plotted with one standard deviation of the individual’s runs shaded either side in 

Figure 3-32. It is very noticeable that Driver 9, one of the professional drivers, has a very high 
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following distance standard deviation, indicated by the large shaded region either side of the mean 

line. It is of particular interest to note that at 80s and 230s, the standard deviation is so high that the 

shading crosses the zero axis, implying a collision might be possible. The following distance 

behaviour of Driver 9 is clearly very inconsistent, possibly due to a lack of familiarity with the 

driving simulator, so further conclusions should be made cautiously. 

Of the other drivers, Driver 4, also has a very high standard deviation, but not as high as 

Driver 9. The remaining drivers all have significantly lower standard deviations across the cycle, 

and in most cases, overlap is seen in the following distances adopted by the drivers. 

 

Figure 3-32 - Driver mean following distances with one driver standard deviation shaded either 

side 

 

3.5     Model Identification 

3.5.1     Driver model drive-cycle task 

An optimisation algorithm is used to fit the driver model cost function weightings to the recorded 

data. The Matlab fmincon function is used to find the cost function weightings that minimise the 

sum of squared speed errors and pedal displacement errors when the driver model is applied to a 

drive cycle following task. This is called the fitting function: 
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Γ𝐷𝐶(𝑞1𝑠, 𝑞1𝜙, 𝑞1𝜙̇)

=
1

2|∑ (𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2𝑡=240

𝑡=0 |
0

∑ (𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑡=240

𝑡=0

− 𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2

+
1

2|∑ (𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑣𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2𝑡=240

𝑡=0 |
0

∑ (𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑣𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2

𝑡=240

𝑡=0

 

( 3.46 ) 

where |… |0 denotes a term to be assessed with all 𝑞 values set to zero (i.e. the only component of 

the driver cost function is pedal force, so the model will respond by keeping the vehicle stationary 

throughout each task). The component weightings are such that the value of  Γ𝐷𝐶 will be 1 for the 

case of all 𝑞 values set to zero. It is worth noting that there are two cost functions in this process: 

the driver cost function, 𝑉1, which determines how the driver model behaves, and the fitting 

function, Γ𝐷𝐶, which determines how the driver model is fitted to the data. 

For the optimisation, each driver cost function weighting is constrained to be positive and 

the pedal force weighting, 𝑟1, is set to 1. In order to assess the significance of each term in the 

driver’s cost function, different cost function combinations were assessed to see the effect on the 

fitting function. The results are summarised below in Table 3-4. The numbers included here are the 

average values over all drivers.  

 

Table 3-4 – Average fitting function values for different driver cost functions. A dash indicates 

that the corresponding 𝑞 value was not included in that particular cost function. 

𝑞1𝑠 𝑞1𝜙 𝑞1𝜙̇ Γ𝐷𝐶 

4.3 × 104 2.3 × 10−1 4.1 × 108 0.0135 

3.8 × 102 5.0 × 10−4 - 0.0134 

6.5 × 106 - 4.2 × 108 0.0135 

3.8 × 102 - - 0.0134 

 

It can be seen from Table 3-4 that there is little difference in the fitting function value if 

neither of the pedal displacement or pedal speed weightings are included. As extra weightings add 

extra complexity to the driver model, it is proposed to adopt the simplest cost function assessed, the 

cost function that includes only speed errors, 𝑞1𝑠, and pedal force, 𝑟1. As the pedal force weighting, 

𝑟1, is set to a value of 1, the value of speed error weighting, 𝑞1𝑠, is hence the relative weighting on 

speed errors compared with pedal force. 
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A sensitivity study is completed to assess how the fitting function values vary with speed 

error weighting, 𝑞1𝑠, for Driver 2: Figure 3-33. In this figure the components of the fitting function 

are also included. It can be seen that at low values of speed error weighting, 𝑞1𝑠, the Fitting 

Function, Γ𝐷𝐶 , approaches 1. This is where the vehicle remains stationary and the difference 

between measured and modelled forces are large as the model exerts zero force. There is a critical 

weighting at which point the modelled vehicle is able to accelerate from stationary, and this is 

detected from the kink in the speed curve. At high speed error weightings, 𝑞1𝑠, the speed errors 

reach near zero as both modelled and measured drivers are close to the speed target, but there is 

some steady pedal force error required. As the speed error weighting, 𝑞1𝑠, increases, the modelled 

pedal force increases to achieve smaller speed errors relative to the target, but this results in greater 

speed and pedal force errors relative to the measured driver. 

The resulting curve (Figure 3-33) identifies a clear lower bound to the value of speed error 

weighting, 𝑞1𝑠 at approximately 𝑞1𝑠 = 5. A minimum is found at approximately 𝑞1𝑠 = 300. 

Examining how the driver’s cost function summed over the task varies with speed error weighting, 

𝑞1𝑠, as well (Figure 3-34), reveals that the driver’s cost also varies little above the minimum 

detected from the fitting function technique. This suggests that the fitting function technique is a 

good method for finding a lower bound to the value of speed error weighting, 𝑞1𝑠, and that 

exceeding the lower bound has little in the way of impact on driver cost function performance. 

Similar conclusions are drawn from the other drivers, although their sensitivity studies are not 

included here for conciseness. 
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Figure 3-33 – Fitting function sensitivity study for the drive cycle task 

 

Figure 3-34 –Summed driver cost function sensitivity study for drive cycle task  
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The resulting cost function weightings for all nine drivers are displayed in Figure 3-35. The 

fitting function values are included in Figure 3-36 as an indicator of goodness of fit.  

It can be seen that the driver model had a best fit with Driver 9, and the worst fit with Driver 

7. Driver 7’s speed profile is dominated by large overshoots when acceleration demands change – 

a behaviour that the driver model will not replicate because it demonstrates a better anticipation of 

future speed demands. The poor fit is also exaggerated because the driver model does not account 

for the driver’s imperfect perception of speed and limited understanding of the vehicle dynamics. 

Driver 9 on the other hand has much smaller overshoots and achieves speeds closer to the target. 

The driver model is able to recreate this behaviour much more closely. 

 

Figure 3-35 – Fitted cost function weightings for the Drive Cycle scenario 
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Figure 3-36 – Total driver-model driver squared errors for Drive Cycle scenario 

Figure 3-37, Figure 3-38 and Figure 3-39 compare the recorded speeds, pedal positions and 

pedal forces of Driver 9 going through the drive cycle scenario with the modelled Driver 9. (Driver 

9 is selected as the best agreement between human driver and model driver occurs for this driver). 

The speed profiles of the two compare very well, with the most significant difference being the lack 

of small overshoots in the model driver’s performance. The model driver sticks very close to the 

target speed profile, except for rounding off speed troughs and peaks where accelerations change 

sharply. 

The modelled pedal position and pedal forces differ slightly more from the recorded values. 

In the pedal position case, as the human driver is driving at a slightly different speed and 

acceleration to the model driver, the demanded torque from the engine is slightly different. As the 

vehicle models are identical in both the driving simulator and the model case, this means that 

different pedal positions are required. These differences are passed onto the pedal forces as well. 

However, as discussed in Section 3.1.2, the linear pedal model does not represent the actual pedal 

dynamics completely accurately. It is also expected that the human driver also introduces significant 

noise to the system that is not included in the driver model. The result is that the modelled pedal 

positions and forces are much smoother than the recorded data from the simulator. 

The high pedal force and displacement witnessed at the start of the drive cycle are explained 

by the one non-linearity programmed into the driving simulator – the constant opposition forces 
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(rolling resistance and gradient component of mass) drop to zero at zero speed. In the driver model, 

this is not the case as the full model is linear. 

 

Figure 3-37 – Measured human driver and modelled driver speed profile for Driver 9 

 

Figure 3-38 - Measured human driver and modelled driver pedal position for Driver 9 
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Figure 3-39 - Measured human driver and modelled driver pedal force for Driver 9 

 Further analysis of the driver model is completed through a parameter study examining 

how by varying the cost function weightings, differences in driver model behaviour can be seen. 

Figure 3-40 demonstrates the trade-off between different costs for different driving styles. The 

driver model is given a drive-cycle following task using the modified Millbrook cycle and the RMS 

pedal force and RMS speed error are calculated.  

Looking at the RMS speed error and RMS pedal force plot (Figure 3-40), several key 

features of the shape are noted. Firstly, generally, as the weighting on speed error (𝑞1𝑠) increases, 

the RMS pedal force increases.  
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Figure 3-40 – Trade off graph for drive-cycle scenario 

The horizontal line at approximately 16 ms−1 in the speed errors plot is a result of the 

weightings meaning that the pedal is not depressed enough to overcome the drag forces and 

accelerate the vehicle. As the vehicle cannot accelerate, the RMS speed error is therefore equal to 

the RMS value of the drive-cycle speeds – a constant value.  

At some critical speed error weighting, approximately 𝑞1𝑠 = 1.2, the driver model is able 

accelerate the vehicle from stationary, and the corresponding RMS speed error decreases. There is 

a limit to this behaviour, however, as to keep reducing the speed errors further, high accelerations 

of the vehicle are required. For high accelerations, high pedal displacements are required, and hence 

high pedal forces. This results in a higher RMS pedal force for the drive cycle. 

It is interesting to compare the data points from the individual drivers with the curve for 

the driver model. Although the human drivers all have a similar RMS speed error to each other, 

their RMS pedal forces vary more, and it is this variation that draws the individuals away from the 

driver model plot. 

 

 

3.5.2     Driver model car-following task 

In the car following driver model, the safe displacement of the target vehicle is included as a state. 

The safe displacement is defined as a safe following distance added to the following vehicle’s 

displacement. Section 3.5.1 has demonstrated that in most cases the THW approach is a good 
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approximation to the observed driver behaviour. To incorporate this into the driver model, it is 

therefore required to assess the target THW for each driver. To do this, the average THW is 

calculated by taking the mean of the THWs in Figure 3-30 over the time 60s to 240s. These average 

THWs are displayed in Figure 3-41 with error bars indicating the standard deviation of the THW 

over the same time segment. 

 

Figure 3-41 – Mean THW by driver including error bars of ±1 standard deviation 

In the car following scenario, the cost functions have an extra variable, following distance, 

so an extra weighting is included in the fitting optimisation. Using the same approach as before, the 

fmincon function is used in Matlab to identify the cost function weightings that minimise the fitting 

function defined in ( 3.46 ): 

 

Γ𝐶𝐹(𝑞1𝑠, 𝑞1𝜙, 𝑞1𝜙̇)

=
1

2|∑ (𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2𝑡=240

𝑡=0 |
0

∑ (𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑡=240

𝑡=0

− 𝜙𝑃𝑒𝑑𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2

+
1

2|∑ (𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑑𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2𝑡=240

𝑡=0 |
0

∑ (𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑑𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2

𝑡=240

𝑡=0

 

( 3.47 ) 
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where |… |0 denotes a term to be assessed with all 𝑞 values set to zero (i.e. the only component of 

the driver cost function is pedal force, so the model will respond by keeping the vehicle stationary 

throughout each task). The weightings are such that the value of the fitting function,  Γ𝐶𝐹 , will be 1 

for the case of all other weighting, 𝑞, values set to zero. 

For the optimisation, each driver cost function weighting is constrained to be positive and 

the pedal force weighting is set to 1. In order to assess the significance of each term in the driver’s 

cost function, different weightings were set to zero to see the effect on the fitting function. The 

results are summarised below in Table 3-5. The numbers included here are the average values over 

all drivers.  

 

Table 3-5 – Average fitting function values for different driver cost functions. A dash indicates 

that the parameter is not included in a combination 

𝑞1𝑠 𝑞1𝑑 𝑞1𝜙 𝑞1𝜙̇ Γ𝐶𝐹 

4.3 × 10−4 7.2 × 102 4.0 × 104 8.4 × 10−2 0.0808 

6.9 × 10−4 8.1 × 102 4.3 × 104 - 0.0808 

4.7 × 10−4 7.3 × 102 - 7.2 × 10−2 0.0806 

5.6 × 10−4 7.4 × 102 - - 0.0808 

- 7.5 × 102 - - 0.0805 

- 8.1 × 102 4.4 × 104 - 0.0805 

- 7.5 × 102 - 3.0 × 10−2 0.0807 

 

In a similar result to the drive cycle case, it can be seen from Table 3-5 that there is little 

difference in the fitting function value if none of the vehicle speed, 𝑞1𝑠, pedal displacement, 𝑞1𝜙 or 

pedal speed, 𝑞1𝜙̇ weightings are included. As extra weightings add extra complexity to the driver 

model, it is proposed to adopt the simplest cost function assessed, the cost function that includes 

only following distance error, 𝑞1𝑑 and pedal force 𝑟1. As 𝑟1 is set to a value of 1, the value of 𝑞1𝑑 

is hence the relative weighting on following distance errors compared with pedal force. 

A sensitivity study is completed to assess how the fitting function values vary with 

following distance error weighting. 𝑞1𝑑 for Driver 3: Figure 3-44. In this figure the components of 

the fitting function are also included. It can be seen that at low weightings on following distance 

error, 𝑞1𝑑, the Fitting Function, Γ𝐶𝐹, approaches 1. This is where the vehicle remains stationary and 

the difference between measured and modelled forces are large as the model exerts zero force. 

There is a critical weighting at which point the modelled vehicle is able to accelerate from 

stationary, and this is detected from the kink in the following distance curve. At high values of 𝑞1𝑑, 

the following distance errors reach near zero as both modelled and measured drivers are close to 
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the target following distance, but there is some steady pedal force error. As the weighting increases, 

the modelled pedal force increases to achieve smaller errors relative to the target, but this results in 

greater errors relative to the measured driver. 

The resulting curve identifies a clear lower bound to the value of following distance 

weighting, 𝑞1𝑑, at approximately 𝑞1𝑑 = 10
−2. A minimum is also found at approximately 𝑞1𝑑 =

200.  

Examining how the summed driver’s cost function varies with following distance error 

weighting, 𝑞1𝑑, as well, reveals that the driver’s cost does vary at weights above the minimum 

detected from the fitting function. This is because the weighting on following distance errors 

increases faster than the following distance errors decrease, meaning that the summed driver cost 

function increases rapidly with high values of 𝑞1𝑑. Over most of the weighting ranges, the cost 

function is dominated by the following distance, and pedal force is a minor contributor. Similar 

conclusions are also drawn from the data for the other drivers. 

 

 

Figure 3-42 – Fitting function sensitivity study for the drive cycle task 
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Figure 3-43 – Summed driver cost function sensitivity study for car-following task 

Now examining the cost function weighting calculated for the other drivers, it is noted that 

there are significant differences - Figure 3-44. Although the differences in weightings are 

significant, all weightings are well above the lower bound observed in Figure 3-42 and the 

equivalents for other drivers. These weightings do not therefore cause major differences in the 

behaviour of the model. Figure 3-45 indicates there is good agreement between for modelled and 

measured drivers for all cases.  
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Figure 3-44 - Fitted cost function weightings for the car-following scenario 

  

Figure 3-45 – Total driver-model driver squared errors for car-following scenario 
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As the driver with best agreement between model and driver, Driver 1 is selected to 

demonstrate the performance of the driver model. Figure 3-46 to Figure 3-49 illustrate the recorded 

and modelled vehicle speed, following distance, pedal displacement and pedal force. Due to 

accurate knowledge of the motion of the vehicle in front, the driver model is very quick to respond 

to changes in speed of the target vehicle. The result of this is that in the first minute of the test, the 

driver model is considerably closer to the target vehicle. 

Throughout the rest of the scenario, the driver model maintains a much smoother speed, 

with little overshoot from the reference vehicle speeds (Figure 3-46).The driver model is also able 

to balance the speed and following distance targets to reach a more consistent following distance 

than the oscillating distances recorded from the driver(Figure 3-47). Again, this is due to the driver 

model’s better knowledge of the vehicle in front as perceptual limitations are not included in the 

model. 

Mostly, the driver model produces pedal forces that agree well with the measured human 

driver (Figure 3-48). There are several impulses in the driver model pedal forces which occur when 

the acceleration of the target vehicle changes. As the driver model is unable to anticipate this (it 

works on a constant acceleration assumption for preview information), when changes in 

acceleration are detected, it results in sharp changes to its pedal force to meet the new following 

distance and speed targets. The noise that the driver adds to the system is also not included in the 

driver model, so the pedal force appears much smoother from the driver model than the human 

driver (with the exception of the impulses as already discussed). 

Finally, the pedal displacement plot shape (Figure 3-49) is well represented by the driver 

model, but the displacement values frequently vary by ± 20% when compared to the human driver. 

This is a direct consequence in the difference in speed profiles between the human driver and the 

driver model, as the vehicle models are identical. 
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Figure 3-46 – Measured human driver and modelled driver vehicle speed for Driver 1 

 

Figure 3-47 - Measured human driver and modelled driver following distance for Driver 1 
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Figure 3-48 – Measured human driver and modelled driver pedal force for Driver 1 

 

Figure 3-49 – Measured human driver and modelled driver pedal displacement for Driver 1 
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Finally, a parameter study on the effects of the cost function weighting 𝑞1𝑑 during a car 

following task, where the target vehicle follows the modified Millbrook cycle described earlier, 

reveals the driver model behaviours in Figure 3-50. 

Outside the range illustrated in Figure 3-50, at low values of following distance error 

weighting, 𝑞1𝑑 , the vehicle is stationary, and will therefore have constant RMS speed and following 

distance errors. At some critical weighting, the vehicle will accelerate away from rest. As the 

vehicle is able to accelerate up to speed the speed and following distance errors decrease. As the 

following distance errors get smaller, large changes in weightings are required to achieve further 

improvements in following distances. 

The limits of Figure 3-50 are set to allow comparisons between the recorded data from the 

human drivers and the driver model. Over the range of following distance error weightings (𝑞1𝑑) 

illustrated, it is interesting to note that there is very little change in the RMS pedal force, but the 

RMS pedal force does tend to increase at both extremes of the figure. This is because the controller 

undergoes a slight regime change from smooth steady forces to generally lower forces, but with 

high impulses to achieve changes in acceleration (as illustrated in Figure 3-48). Although the time 

histories themselves will look very different, the RMS value of pedal force is not significantly 

affected. 

Outside the range of 𝑞1𝑑 covered in the parameter study covered in Figure 3-50, the RMS 

pedal force tends to zero as 𝑞1𝑑 approaches zero. At this point, the RMS following distance error is 

equal to the RMS distance travelled by the leading vehicle, as the host vehicle will not accelerate 

beyond rest, if pedal forces are zero, and hence pedal displacements zero. 

It is noted that once again there is a much greater variation in the RMS pedal forces from 

the human drivers than is displayed by the driver model. Driver 7 is of particular note as they appear 

to lie on the driver model contour. However, as Figure 3-45 illustrates, the fitting function for this 

driver is not the minimum across all drivers. This is because although the RMS pedal forces are 

near equal, the pedal force time histories themselves are different. 
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Figure 3-50 – Trade off graph for the car following scenario 

 

3.6     Conclusions 

In this chapter, a new mathematical model of the human driver’s longitudinal control of a heavy 

goods vehicle through use of the accelerator pedal is proposed. Model Predictive Control theory, 

commonly applied to the driver’s lateral control of the vehicle, is used as the basis for the model. 

This model is similar to Sharp’s (2007), but extends it to explicitly incorporate the pedal control, 

and uses MPC, instead of Linear Quadratic Regression (LQR). 

A linear vehicle model was first developed using parameters suitable for a heavy goods 

vehicle and pedal properties are taken from a pedal assembly installed in a driving simulator. The 

vehicle model is the key central component to the driver model (as the driver’s internal vehicle 

model) and the simulation of the vehicle response to the driver’s control actions. 

The driver model was validated using a fixed base driving simulator and a range of human 

drivers. The driving simulator was extensively upgraded and developed to improve the realism of 
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the driving experience. Each driver completed a drive-cycle following and car-following scenario 

multiple times.  

It was found that the human drivers had a range of driving styles and that this was reflected 

in the results. Using an optimisation to minimise the squared errors between simulated and 

measured variables, a suitable driver cost function of pedal force and speed error or following 

distance error (depending on task) was identified. The sensitivity of the fitting function to changes 

in driver cost function weightings means that the optimal value calculated can be treated as a lower 

bound to the weighting value. Weightings above the lower bound had little impact on model 

performance. 

The driver model was tuned to each of the human drivers in turn. Weightings on driver 

pedal force were set to one and the relative speed error weightings ranged from 100-750 and the 

following distance error weightings ranged from 25-2200. This means that the human drivers were 

more consistent in their weighting of speed errors than following distances. The fact that following 

distance weighting reached approximately triple the maximum speed error weighting signifies that 

in this scenario, the drivers were placing much more emphasis on performance over effort than in 

the drive cycle following scenario. Much more variation was witnessed in the car following task in 

terms of numerical weightings, but the model performed acceptably well, with goodness-of-fit 

being up to twenty times better than the no-action cases (a fitting function value of 0.05). 

It was found that there was acceptable agreement between the human driver and the driver 

model, with RMS pedal forces within approximately 20% of each other, but that the driver model 

was unable to represent the noise and disturbances observed in the human drivers. The fully linear 

model also has limitations at low speeds where the presence of constant drag forces results in pedal 

depression to maintain a stationary position. A non-linear vehicle model may assist the driver model 

in better recreating the control forces from the human drivers. A parameter study explored how 

different parameters in the driver model could be selected to represent the different driving styles 

of different drivers.  

This chapter has applied the work Cole et al. (2006), Qu et al. (2015) and Flad et al. (2013) 

to the longitudinal control of a vehicle and has extended the work of Sharp (2007),  by expanding 

optimal preview control to the car-following scenario, as well as the drive-cycle scenario. This new 

application is also applied to the heavy goods industry, which previously had been little touched by 

similar research. Driving simulator experiments have also validated the modelling approach taken. 
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Chapter 4 - Pedal Feedback 

In the previous chapter, the driver was modelled using Model Predictive Control Theory (MPC). 

The pedal feedback controller can also be represented in the same manner. When considering the 

effectiveness and ‘likeability’ of pedal feedback, it is important to look at how the two controllers 

(human driver and the separate pedal controller) interact. The literature review identified that game 

theory can be used to model how two different ‘players’ interact as they try to achieve their own 

objectives. Mathematically, there are several subtly different game theoretical frameworks that can 

be taken. In this chapter, three two-player frameworks are proposed for consideration in turn: 

decentralised feedback in 4.1, cooperative feedback in 4.2 and one-sided cooperative feedback in 

4.3 (Na and Cole, 2013) and (Rawlins and Mayne, 2009).  

 

4.1 Two Player Decentralised Control Theory 

In the first case to be considered, the driver and pedal feedback controller are said to have no 

knowledge or understanding of each other’s control. This means that both act completely 

independently and apply forces on the pedal in parallel. 

In Chapter 3, the human driver was modelled as a Model Predictive Controller with 

additional limb dynamics. In this chapter, a second Model Predictive Controller is added to work 

in parallel with the driver model. This controller is considered the ‘feedback pedal controller’ and 

can apply additional forces on the pedal, to feedback to the driver - Figure 4-1. 

The feedback pedal controller is derived in the same manner as the driver model was 

(equations ( 3.21 ) to ( 3.34 )), so derivation is not included here. The matrices relating to the 

feedback controller are denoted with a subscript ‘2’. In the driver model, the input dependence 

matrix was given the symbol 𝚯. As the driver input may also affect the states of the pedal, a second 

symbol, 𝛀, is used to denote the dependence on the feedback pedal controller’s input. 
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Figure 4-1 – Decentralised Control block diagram 

The unassisted driver prediction equation from ( 3.24 ) is: 

 

𝐙1(k) = 𝚿1𝐱(k) + 𝚯1𝐔1(k) 

 

When modified to include feedback, the prediction equations for both controllers are as follows: 

 

𝐙1
dec (k) = 𝚿1𝐱(k) + 𝚯1𝐔1(k) + 𝛀1𝐔2(k)                                        ( 4.1 ) 

𝐙2
dec(k) = 𝚿2𝐱(k) + 𝚯2𝐔1(k) + 𝛀2𝐔2(k)                                        ( 4.2 ) 

 

Where the superscript ‘dec’ is used to indicate this is the decentralised feedback case. The prediction 

equations can be combined: 

 

𝐙dec(k) = 𝚿dec𝐱(k) + 𝚯dec𝐔1(k) + 𝛀dec𝐔2(k)                            ( 4.3 ) 

 

where 

𝒁dec(𝑘) = [
𝐙1

dec(𝑘)

𝐙2
dec(𝑘)

] , 𝚿dec = [
𝚿1

𝚿2
] , 𝚯dec = [

𝚯1

𝚯2
]  and 𝛀dec = [

𝛀1

𝛀2
] 

 

Sustainable 
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Each ‘player’ has their own cost function to determine performance. The cost functions for the 

driver and feedback pedal controller, respectively, are below:  

𝑉1(𝑘) = ∑ ‖𝒛𝟏(𝑘 + 𝑖) − 𝒓𝟏(𝑘 + 𝑖)‖𝑸𝟏(𝑖)
2 + ∑ ‖𝑓1(𝑘 + 𝑖)‖𝑹𝟏(𝑖)

2𝑁𝑝−1

𝑖=0

𝑁𝑝

𝑖=1
    ( 4.4 ) 

𝑉2(𝑘) = ∑ ‖𝒛𝟐(𝑘 + 𝑖) − 𝒓𝟐(𝑘 + 𝑖)‖𝑸𝟐(𝑖)
2 + ∑ ‖𝑓2(𝑘 + 𝑖)‖𝑹𝟐(𝑖)

2𝑁𝑝−1

𝑖=0

𝑁𝑝

𝑖=1
    ( 4.5 ) 

 

Using the defined cost functions, and the approach outlined in Chapter 3, the forces at any time 

step are hence given by: 

f1(k) = 𝐊1p {
𝐱𝟏(k)
𝐓𝟏(k)

}                                                    ( 4.6 ) 

And  

f2(k) = 𝐊2p {
𝐱𝟐(k)
𝐓𝟐(k)

}                                                     ( 4.7 ) 

 

 

4.2 Two Player Cooperative Feedback Theory 

The second framework to be examined here it is that of cooperative control. In this framework, the 

two controllers have knowledge of the other’s objectives and targets (Figure 4-2 – Cooperative 

Control with independent reference signals block diagram) and are prepared to work together to 

reach a common goal. This common goal is a compromise between each individual target’s 

objectives.  

The driver’s understanding of the vehicle may be very different to the internal model the 

feedback controller has of the vehicle. For this reason, in the derivation of both controllers, we 

explicitly consider the case where the internal models are different. 

The prediction equations for both controllers are as follows: 

𝐙1
coop(k) = 𝚿1𝐱(k) + 𝚯1𝐔1(k) + 𝛀1𝐔2(k)                                        ( 4.8 ) 

𝐙2
coop(k) = 𝚿2𝐱(k) + 𝚯2𝐔1(k) + 𝛀2𝐔2(k)                                        ( 4.9 ) 

Where definitions are as in Section 3.2 but subscript numbers denote relevant player: Player 1 is 

the human driver and player 2, the feedback controller. 
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Figure 4-2 – Cooperative Control with independent reference signals block diagram 

These two equations are combined as follows: 

𝐙coop(k) = 𝚿coop𝐱(k) + 𝚯coop𝐔1(k) + 𝛀coop𝐔2(k)                            ( 4.10 ) 

Where 

𝒁coop(𝑘) = [
𝐙1

coop(𝑘)

𝐙2
coop(𝑘)

] , 𝚿coop = [
𝚿1

𝚿2
] , 𝚯coop = [

𝚯1

𝚯2
]  and 𝛀coop = [

𝛀1

𝛀2
] 

Following Rawlings and Mayne (2009) analysis, a common objective, or plant objective, 

is set as a weighted sum of the individual controllers’ cost functions. Each controller tries to 

maximise performance whilst minimising its own control effort by penalising the plant objective 

cost alongside its control effort: 

𝑉1
coop(𝑘) =

1

2
∑ [(𝐳(𝑘 + 𝑗) − 𝐫1(𝑘 + 𝑗))

T
𝜌1𝐐1(𝐳(𝑘 + 𝑗) − 𝐫1(𝑘 + 𝑗))

𝑁𝑝

𝑗=0

+ (𝐳(𝑘 + 𝑗) − 𝐫2(𝑘 + 𝑗))
T

𝜌2𝐐2(𝐳(𝑘 + 𝑗) − 𝐫2(𝑘 + 𝑗))]

+
1

2
𝜌1 ∑ [𝑓1(𝑘 + 𝑗)T𝐑1𝑓1(𝑘 + 𝑗)]

𝑁𝑢−1

𝑗=0

 

( 4.11 ) 
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𝑉2
coop(𝑘) =

1

2
∑ [(𝐳(𝑘 + 𝑗) − 𝐫1(𝑘 + 𝑗))

T
𝜌1𝐐1(𝐳(𝑘 + 𝑗) − 𝐫1(𝑘 + 𝑗))

𝑁𝑝

𝑗=0

+ (𝐳(𝑘 + 𝑗) − 𝐫2(𝑘 + 𝑗))
T

𝜌2𝐐2(𝐳(𝑘 + 𝑗) − 𝐫2(𝑘 + 𝑗))]

+
1

2
𝜌2 ∑ [𝑓2(𝑘 + 𝑗)T𝐑2𝑓2(𝑘 + 𝑗)]

𝑁𝑢−1

𝑗=0

 

( 4.12 ) 

Where 𝐳(𝑘), 𝐫𝑖(𝑘), 𝐐𝑖(𝑘) and 𝐑𝑖 correspond to definitions given in 6.2 and subscript 𝑖 indicating 

the relevant player.  𝜌𝑖 is a parameter used to specify the relevant weights on the controllers’ 

individual target-following performance in the plant objective. 

  

In matrix form: 

V1
coop(k) = [𝐙coop(k) − 𝐓coop(k)]T [

𝐐1
coop

0

0 𝐐2
coop] [𝐙coop(k) − 𝐓coop(k)] + 𝐔1(k)T𝐑1

coop
𝐔1(k)  

( 4.13 ) 

V2
coop(k) = [𝐙coop(k) − 𝐓coop(k)]T [

𝐐1
coop

0

0 𝐐2
coop] [𝐙coop(k) − 𝐓coop(k)] + 𝐔2(k)T𝐑2

coop
𝐔2(k)  

( 4.14 ) 

 

 

Where  

 

𝐓coop(𝑘) = [
𝐓1(𝑘)

𝐓2(𝑘)
], 𝑄𝑖

𝑐𝑜𝑜𝑝
= 𝜌𝑖 [

𝐐𝑖 0 ⋯ 0
0 𝐐𝑖 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐐𝑖

] and  𝐑𝑖
𝑐𝑜𝑜𝑝

= 𝜌𝑖 [

𝐑𝑖 0 ⋯ 0
0 𝐑𝑖 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐑𝑖

] 

 

 

Equivalently: 

V1
coop(k) = ‖𝐙coop(k) − 𝐓coop(k)‖𝐐coop

2 + ‖𝐔1(k)‖
𝐑1

coop
2                           ( 4.15 ) 

V2
coop(k) = ‖𝐙coop(k) − 𝐓coop(k)‖𝐐coop

2 + ‖𝐔2(k)‖
𝐑2

coop
2                           ( 4.16 ) 

Where 

𝐐coop = [
𝐐1

coop
0

0 𝐐2
coop] 
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Define tracking errors as: 

𝛆1
coop(k) = 𝐓coop(k) − 𝚿coop(k)𝐱(k) − 𝛀coop𝐔2(k)                             ( 4.17 ) 

𝛆2
coop(k) = 𝐓coop(k) − 𝚿coop(k)𝐱(k) − 𝚯coop𝐔𝟏(k)                             ( 4.18 ) 

 

So cost function is 

V1
coop(k) = ‖𝚯coop𝐔1(k) − 𝛆1

coop(k)‖
𝐐coop

2
+ ‖𝐔1(k)‖

𝐑1
coop

2                        ( 4.19 ) 

V2
coop(k) = ‖𝚯coop𝐔2(k) − 𝛆2

coop(k)‖
𝐐coop

2
+ ‖𝐔2(k)‖

𝐑2
coop

2                       ( 4.20 ) 

 

Alternatively expressed as 

V1
coop(k) = ‖

𝐒Qcoop{𝚯coop𝐔1(k) − 𝛆1
coop(k)}

𝐒R1
coop𝐔1(k) 

‖

2

                                  ( 4.21 ) 

V2
coop(k) = ‖

𝐒Qcoop{𝚯coop𝐔2(k) − 𝛆2
coop(k)}

𝐒R2
coop𝐔2(k) 

‖

2

                                  ( 4.22 ) 

Where  

𝐐coop = 𝐒𝐐coop
T 𝐒𝐐coop and 𝐑𝑖

coop
= 𝐒

𝐑𝑖
coop

T 𝐒𝐑𝑖
coop 

 

 

 

To minimise the cost function: 

𝐔1(k) = 𝐊1full
coop

𝛆1
coop(k)                                                      ( 4.23 ) 

𝐔2(k) = 𝐊2full
coop

𝛆2
coop(k)                                                      ( 4.24 ) 

Where 

 

𝐊1full
coop

= [
𝐒Qcoop𝚯coop

𝐒R1
coop

] \ [
𝐒Qcoop

0
] 

 

𝐊2full
coop

= [
𝐒Qcoop𝚯coop

𝐒R2
coop

] \ [
𝐒Qcoop

0
] 

 

‘\’ is the Matlab operator for matrix left division by the QR algorithm. 

 

Substitute equations ( 4.17 ) and ( 4.18 ) into ( 4.23 ) and ( 4.24 ) respectively: 
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𝐔1(k) = [−𝐊1full
coop

𝚿coop  𝐊1full
coop

] [
𝐱(k)

𝐓coop(k)
] − 𝐊1full

coop
𝛀coop𝐔2(k)                    ( 4.25 ) 

𝐔2(k) = [−𝐊2full
coop

𝚿coop  𝐊2full
coop

] [
𝐱(k)

𝐓coop(k)
] − 𝐊2full

coop
𝚯coop𝐔1(k)                    ( 4.26 ) 

 

Substitute ( 4.25 ) and ( 4.26 ) into each other: 

𝐔1(k) = [𝚲1
coop

 𝚪1
coop

] {
𝐱(k)

𝐓coop(k)
}                                             ( 4.27 ) 

where 

 

𝚲1
coop

= [𝐈 − 𝐊1full
coop

𝛀coop𝐊2full
coop

𝚯coop]
−1

∙ [−𝐊1full
coop

𝚿coop + 𝐊1full
coop

𝛀coop𝐊2full
coop

𝚿coop] 

 

𝚪1
coop

= [𝐈 − 𝐊1full
coop

𝛀coop𝐊2full
coop

𝚯coop]
−1

∙ [𝐊1full
coop

− 𝐊1full
coop

𝛀coop𝐊2full
coop

] 

and  

𝐔2(k) = [𝚲2
coop

 𝚪2
coop

] {
𝐱(k)

𝐓coop(k)
}                                        ( 4.28 ) 

where  

𝚲2
coop

= [𝐈 − 𝐊2full
coop

𝚯coop𝐊1full
coop

𝛀coop]
−1

∙ [−𝐊2full
coop

𝚿coop + 𝐊2full
coop

𝚯coop𝐊1full
coop

𝚿coop] 

 

𝚪1
coop

= [𝐈 − 𝐊2full
coop

𝚯coop𝐊1full
coop

𝛀coop]
−1

∙ [𝐊2full
coop

− 𝐊2full
coop

𝚯coop𝐊1full
coop

] 

 

Now, by applying the receding horizon approach, the two controllers, 𝐊1
coop

 and 𝐊2
coop

 are 

identified: 

𝑓1opt(𝑘) = 𝐊1
coop

{
𝐱(𝑘)

𝐓coop(𝑘)
}                                                    ( 4.29 ) 

where 

𝐊1
coop

=  [𝚲1
coop(1, : )   𝚪1

coop
(1, : )]                                               

and 

f2opt(k) = 𝐊2
coop

{
𝐱(k)

𝐓coop(k)
}                                                   ( 4.30 ) 

where 

𝐊2
coop

=  [𝚲2
coop(1, : )   𝚪2

coop
(1, : )]                                               

where 𝚲1
coop(1, : ) means the first row of 𝚲1

coop
 and so on. 
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Practically, it would be very difficult to produce a fully cooperative AAP due to the need to detect 

changes in the driver’s target and cost functions. Different drivers have different styles, and the 

pedal would need to detect which driver was driving at any one time. For this reason, the two 

player cooperative case is not taken any further forward, but is included as a theoretical case.   

4.3 One-sided Cooperative Feedback 

The third case is an attempt to acknowledge that it is difficult for a machine to learn and understand 

human behaviour, but it is plausible that a human driver will develop an understanding of what the 

pedal feedback controller is aiming for and may well cooperate with it. Figure 4-3 illustrates this 

framework in block diagram form. 

 

Figure 4-3 – One-sided cooperative control block diagram 

 

Start again with the pair of prediction equations from ( 4.1 ) and ( 4.2 ): 

𝐙one(k) = 𝚿coop𝐱(k) + 𝚯one𝐔1(k) + 𝛀coop𝐔2(k)                            ( 4.31 ) 

Where 

𝒁one(𝑘) = [
𝐙1(𝑘)

𝐙2(𝑘)
]   and 𝚯one = [

𝚯1

0
]   

Notice that in place of 𝚯2, we have a zero matrix instead. 
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The feedback controller is unaware of the driver, so the feedback controller gains can be calculated 

as the driver model was in 3.2: 

𝐔2(k) = 𝐊2full
one 𝛆2

one(k)                                                       ( 4.32 ) 

𝐊2full
one = [

𝐒𝐐2
𝚯2

𝐒𝐑2

] \ [
𝐒𝐐2

0
]                                                       ( 4.33 ) 

By applying the receding horizon approach, the control law becomes: 

f2opt(k) = 𝐊2
one {

𝐱(k)
𝐓2(k)

}                                                       ( 4.34 ) 

where  

𝐊2
one = [−𝐊2full

one (1, : )𝚿2  𝐊2full
one (1, : )] 

The cost function for the model driver is the same as that used in the cooperative case 

V1
one(k) = ‖𝐙one(k) − 𝐓coop(k)‖𝐐coop

2 + ‖𝐔1(k)‖
𝐑1

coop
2                           ( 4.35 ) 

and hence the controller can be derived in the same way as the cooperative controllers in 4.2 were. 

The tracking error is defined as 

𝛆1
one(k) = 𝐓coop(k) − 𝚿coop(k)𝐱(k) − 𝛀coop𝐔2(k)                                 ( 4.36 ) 

So the cost function is 

V1
one(k) = ‖𝚯one𝐔1(k) − 𝛆1

one(k)‖𝐐coop
2 + ‖𝐔1(k)‖

𝐑1
coop

2                        ( 4.37 ) 

Alternatively expressed as 

V1
one(k) = ‖

𝐒𝐐coop{𝚯one𝐔1(k) − 𝛆1
one(k)}

𝐒R1
coop𝐔1(k) 

‖

2

                                  ( 4.38 ) 

To minimise the cost function: 

𝐔1(k) = 𝐊1full
one 𝛆1

one(k)                                                      ( 4.39 ) 

where 

𝐊1full
one = [

𝐒Qone𝚯one

𝐒R1
one

] \ [
𝐒Qone

0
] 

Substituting into ( 50 ) into ( 53 ): 

𝐔1(k) = [−𝐊1full
one 𝚿coop  𝐊1full

one ] [
𝐱(k)

𝐓coop(k)
] − 𝐊1full

one 𝛀coop𝐔2(k)                   ( 4.40 ) 

and then substituting ( 46 ) in 

𝐔1(k) = [−𝐊1full
one 𝚿coop    𝐊1full

one     − 𝐊1
one𝛀coop𝐊2full

one ] {

𝐱(k)

𝐓coop(k)

𝐓2(k)
}                 ( 4.41 ) 

Following Wang (2015), by dividing 𝐊1full
one  into two components 𝐊1full1

one and 𝐊1full2
one  that correspond 

to the two previews 𝐓1 and 𝐓2 respectively, the control law can be written as: 
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f1opt(k) = [𝐊s1
one  𝐊p1

one  𝐊p2
one] {

𝐱(k)

𝐓coop(k)
}                                                     ( 4.42 ) 

where  

𝐊s1
one = −𝐊1full

one 𝚿coop + 𝐊1full
one 𝛀coop𝐊2full

one 𝚿2 

𝐊p1
one = 𝐊1full1

one  

𝐊s2
one = 𝐊1full2

one − 𝐊1full
one 𝛀coop𝐊2full

one  

Finally, using the receding horizon method, the control law can be condensed to 

f1opt(k) = 𝐊1
one {

𝐱(k)

𝐓coop(k)
}                                                ( 4.43 ) 

where  

𝐊1
one = [𝐊s1

one(1, : )  𝐊p1
one(1, : )  𝐊p2

one(1, : )] 

 

4.4 Driving Experiments and Data Analysis 

With two frameworks in place for the modelling of the driver’s interaction with pedal feedback, a 

series of experiments were designed and performed to identify and validate the models. 

4.4.1 Experiment Design 

The fixed base driving simulator was used once again, and a full description is in Section 3.4. In 

this experiment, however, the pedal motor was powered, and exerted feedback forces on the pedal.  

For the drive-cycle following task, the feedback pedal controller was given speed error 

weighting, 𝑞2𝑠 = 80 and pedal position weighting, 𝑞2𝜙 = 50 to provide a feedback pedal controller 

driving style more focussed on the reduction in pedal displacements than the human drivers 

measured in Chapter 3. The car-following feedback pedal controller was given speed error 

weighting 𝑞2𝑠 = 80, pedal position weighting 𝑞2𝜙 = 50 and following distance error weighting 

𝑞2𝑑 = 40 (for the same reason as the drive cycle cost function weightings) and a target following 

distance of 2.5s THW plus a constant 5m offset to avoid the risk of collisions at low speeds. In both 

the drive cycle and car following scenario, the feedback pedal controllers generate their previews 

using a constant acceleration assumption – the controller identifies the current target acceleration 

(either demanded drive cycle acceleration, or acceleration of the vehicle in front) and assumes this 

remains constant throughout the preview horizon, enabling the calculation of demanded speeds. For 

the human driver in the drive-cycle scenario, an accurate preview of upcoming speed demands is 

available. For the car following scenario, the human driver, like the feedback controller, has to 

make assumptions on how the target vehicle will behave. 
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4.4.2 Participants 

The same nine participants were selected for this experiment as the experiments in 3.4, so all drivers 

had already completed the unassisted tasks. 

 

4.4.3 Procedure 

Once again, the experiment consisted of two scenarios.  

In the first scenario, drive cycle following, a four minute segment of the Modified 

Millbrook Suburban Drive Cycle for HGVs was set as the target speed. The driver was given a 

practice run through to familiarise themselves with the behaviour of the vehicle, the dynamics of 

the pedal and the characteristics of the feedback. Drivers were asked to follow the target speed. The 

test was then completed three times, to improve the reliability of the results. 

In the second scenario, car following, the speed of the target vehicle was set as the Modified 

Millbrook Suburban Drive Cycle for HGVs. Again, the driver was allowed a familiarisation run to 

get used to the virtual world and the behaviour of the feedback controller. Drivers were asked to 

follow the vehicle in front at a safe distance, as they normally would on the road. Again, once the 

familiarisation run was completed, the test was repeated three times. 

When all drivers had completed the experiment, the data was analysed and differences in 

driver behaviours compared. 

 

4.4.4 Drive Cycle Results 

Figure 4-4 illustrates the recorded mean speed error profiles from the drivers. Generally, the drivers 

maintained a speed quite close to the target speed profile, as they were assisted by the pedal 

feedback. From further analysis, however, it is noted that the higher errors tended to occur after 

high accelerations. At lower acceleration rates, the drivers were better at anticipating the future 

speed demand. At speed peaks, the human drivers tended to keep accelerating until the maximum 

speed was reached, and then coast down until they reached the target speed again.  

The human drivers appear to be more consistently closer to the target with the aid of the 

pedal feedback device. Speed errors in this scenario mostly remain within the range −1.0 ms−1 to 

0.7 ms−1, whereas in the unassisted case of Chapter 3 (Figure 3-21), the speed errors spread within 

the range −1.5 ms−1 to 1.0 ms−1. The pedal feedback has contributed to a 40% drop in the range 

of speed errors. 
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Figure 4-4 – Mean speed error against time for the drive cycle following task 

The introduction of pedal feedback has resulted in several high peaks in pedal position over 

the drive cycle - Figure 4-5. The peaks are more numerous and of greater magnitude than those that 

were observed in the unassisted case (Figure 3-22). This suggests that the feedback controller is 

very sensitive to changes in acceleration, and that when it detects one (its previews operate on a 

constant acceleration assumption, so the controllers are unable to anticipate it) the controller reacts 

very quickly, resulting in the pedal position peaks. Although not very clear in the figure, the driver’s 

intermittent control is still apparent when they are assisted by the pedal feedback. 
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Figure 4-5 – Mean pedal position against time for the drive cycle following task 

By comparing the driver pedal forces for the unassisted and assisted cases, (Figure 4-6 with 

Figures 3-23 show the forces for the full drive cycle), it is noted that the magnitude of the forces 

from the driver decreases by approximately 50%, suggesting that the pedal feedback has helped 

decrease speed errors, whilst keeping effort on the driver’s part, low. Note that, as mentioned in 

Chapter 3, there is some concern about the validity of pedal forces at low pedal displacements, 

caused by a small clip on the pedal. The driver pedal force does not appear in the fitting approaches 

described in later chapters, as the pedal displacement and feedback force are sufficient. 

There is little variation in feedback force across the drivers. A spread of approximately 4N 

of feedback force covers the range of drivers – Figure 4-7. The feedback force remains near constant 

during constant accelerations. 

It is interesting to note that the addition of pedal feedback has greatly reduced the RMS 

pedal forces for the drivers, suggesting the workload has decreased, but that the RMS speed errors 

have not significantly decreased - Figure 4-8 compared with Figure 3-24. This is especially the case 

for Driver 9, which has switched from one the highest RMS pedal forces in the unassisted case, to 

the lowest RMS pedal force in this instance. This implies that the pedal feedback has had a big 

impact on the effort Driver 9 puts into the control of the vehicle. 
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Figure 4-6 – Mean driver pedal force against time for the drive cycle following task 

 

Figure 4-7 – Mean feedback force against time for the drive cycle following task 
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Figure 4-8 – Cost diagram for the drive cycle scenario with feedback – stars (non-professionals) 

and diamonds (professionals) illustrate data from the assisted drivers. Their original data points 

from the unassisted case are illustrated with circles (non-professionals) and squares 

(professionals). Colours are unchanged. 

 

As a final consideration, the mean vehicle speed for each driver is plotted with one standard 

deviation of the individual’s three runs shaded either side in Figure 4-9. Once again, this clearly 

demonstrates that the standard deviations within each driver is similar to the standard deviation 

across drivers in this scenario, meaning that there is not a statistically significant difference between 

most of the drivers across most of the test. It is interesting to note that the addition of pedal feedback 

has greatly reduced the standard deviations in vehicle speed compared with the unassisted case in 

Figure 3-25. 
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Figure 4-9 - Driver mean vehicle speeds with one driver standard deviation shaded either side 

 

4.4.5 Car-Following Results 

The mean speed profiles for the assisted drivers in the car-following scenario are displayed in Figure 

4-10. All drivers remain quite close to the speed of the target vehicle, but it is noted that Drivers 1 

and 9 drift further from the target vehicle speed than other drivers. 

Now observing the pedal position in Figure 4-11, it can be seen that the addition of pedal 

feedback has smoothed the pedal position curve when compared to Figures 3-26. This is due to the 

fact that the pedal feedback assesses and acts at every time step of 0.02s, whereas the driver, when 

implementing intermittent control, can go for much longer (up to a second) without updating. The 

addition of pedal feedback has also reduced the peaks in pedal position. The unassisted driver would 

frequently depress the pedal to 60% and occasionally up to 80%. The assisted driver, on the other 

hand only occasionally depresses above 60%. The reduced pedal positions are an indicator of 

improved fuel usage. 
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Figure 4-10 – Mean vehicle speed against time for the car-following task 

 

Figure 4-11 – Mean pedal position against time for the car-following task 
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As already mentioned, the speed profile for Driver 1 looks different to the other drivers’. 

This is matched by the driver’s pedal force (Figure 4-12). The other drivers maintain forces in the 

0-35N bracket, whereas Driver 1 is exerting forces up to 45N. This implies that the driver is not 

prepared to accept the guidance of the feedback controller and therefore tries to oppose it. The pedal 

feedback force (Figure 4-13) for Driver 1 is also significantly higher than the other drivers.  

The result of this conflict between Driver 1 and the feedback controller is a vehicle that has 

poor vehicle following performance (Figure 4-14 and Figure 4-15) whilst having a highly 

fluctuating pedal position and vehicle speed, which are likely to have negative effects on vehicle 

fuel consumption. The other drivers on the other hand have utilised the guidance from the feedback 

controller to adopt a more consistent vehicle following strategy, and now accurately follow the 

target vehicle at a 2.5s THW gap. 

Unlike the drive cycle scenario, the addition of pedal feedback here has increased both the 

drivers’ RMS pedal forces and RMS following distance errors in some cases - Figure 4-16. This is 

because the RMS following distance error is based on the target estimated from the driver in the 

unassisted case, as explained in 3.4.5. The pedal feedback guides the driver towards a different 

THW target, resulting in greater errors relative to the driver’s original target. This measure is used, 

however, as a direct comparison with the unassisted case in Chapter 3. The RMS pedal forces also 

dramatically increases for Driver 1 as the driver tries and oppose the pedal feedback to remain close 

to their original target. 

 

Figure 4-12 – Mean driver pedal force against time for the car-following task 
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Figure 4-13 – Mean feedback force against time for the car-following task 

 

Figure 4-14 – Mean following distance against time for the car-following task 
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Figure 4-15 – Mean THW against time for the car-following task 
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Figure 4-16 – Cost diagram for the car-following scenario with feedback – stars (non-

professionals) and diamonds (professionals) illustrate data from the assisted drivers. Their original 

data points from the unassisted case are illustrated with circles (non-professionals) and squares 

(professionals). Colours are unchanged. 

Finally, the following distance standard deviations are shaded alongside the means for each 

driver in Figure 4-17. It is very noticeable that the addition of pedal feedback has not only greatly 

reduced the following distances for a few drivers (mainly Drivers 4 and 9), but has also greatly 

reduced the standard deviation in following distance (compare with Figure 3-32). The feedback has 

enabled the drivers to be much more consistent in their following distance behaviour. 
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Figure 4-17 - Driver mean following distances with one driver standard deviation shaded either 

side 

 

4.5 Driver model identification 

The aim of this section is to determine which of the two frameworks, decentralised or cooperative, 

best represents the measured human behaviour. 

4.5.1 Driver model drive-cycle task with feedback 

The Matlab fmincon function is used in an optimisation algorithm to fit the driver model 

frameworks to the recorded data from the simulator. The driver cost function weightings on speed 

error are varied to identify the combination resulting in the minimum fitting cost function value. 

The fitting function is as defined in ( 3.46 ). Constraints are initiated to ensure that the weightings 

are positive. In the one-sided cooperative case, the driver dominance, 𝜌1 is also included in the 

optimisation. 

Figure 4-18 demonstrates the effect of varying the driver dominance, 𝜌1, on the fitting 

function for Driver 6 over a range of values of 𝑞1𝑠. It is noted that the global minimum is located 

on the contour of 𝜌1 = 1, meaning the optimisation will match the decentralised model of the driver. 
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This is also the case for the other eight drivers, although the minima are located at slightly different 

values of 𝑞1𝑠. Hence, for this task, one-sided cooperative control is no longer considered. It is also 

noting that the contour for 𝜌1 = 0 is a horizontal line. This is because, for 𝜌1 = 0, the driver’s own 

target is no longer taken into account, and there is no cost associated with the driver’s pedal force. 

The result is that the driver exerts the forces necessary to reach the sustainable target. 

 

 

Figure 4-18 – Fitting function sensitivity for the one sided cooperative for a variety of values of 

driver dominance, 𝜌1, and decentralised (𝜌1 = 1) cases 

 

Figure 4-19 illustrates the optimal cost function weightings for each of the nine drivers. 

From an initial comparison, it is noted that the weightings on speed error between the unassisted 

driver case (from 3.2) and the decentralised controller model are of similar magnitude, supporting 

the idea that drivers might interact with the feedback controller in a decentralised manner.  

In terms of ‘goodness of fit’, Figure 4-20, shows that the fitting function for the 

decentralised case is less than that for the unassisted case for six of the nine drivers. This means 

that, in most cases the driver model is better able to predict the behaviour of a decentralised driver 

with feedback, than the driver unassisted. The framework is well suited to modelling the human 

driver-active pedal interaction. 
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Figure 4-19 – Fitted cost function weightings for the Drive Cycle task 

 

Figure 4-20 – Total driver-model driver squared errors for the Drive Cycle task 
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The behaviour of the assisted driver model is now demonstrated over the next set of figures. 

Driver 9 is selected for demonstration as the driver models best fitted with this driver over both 

cases of unassisted and assisted. Figure 4-21 illustrates the recorded and modelled vehicle speed 

for the drive cycle following scenario. The real driver, does not have perfect knowledge of the 

behaviours of the vehicle and therefore is unable to control the vehicle to the same high standard as 

the very capable driver model. Another possible explanation for the discrepancy is that there is 

noise in the human sensorimotor system and an inaccurate simulation model (as intermittency is 

not included for example). With this is mind, the driver model does quite closely resemble the shape 

of the driver speed profile.  

Significant differences between the human driver and the driver model occur in the driver 

pedal forces -Figure 4-22. The decentralised driver model underestimates the forces from the driver. 

As the driver pedal forces are inaccurate, the pedal feedback forces will also be inaccurate 

-Figure 4-23. In the model situation, the pedal feedback is having to exert much higher forces to 

reach its objective, as the driver model is exerting lower forces than the human driver did. The 

resultant of these uneven pedal forces between the driver and feedback controller even out to 

produce a pedal position that closely resembles the measured pedal position - Figure 4-24. 

 

 

 

 

Figure 4-21 - Measured human driver and modelled vehicle speed for Driver 9 
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Figure 4-22 – Measured human driver and modelled pedal force for Driver 9 

 

Figure 4-23 – Measured human driver and modelled feedback force for Driver 9 
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Figure 4-24 – Measured human driver and modelled pedal displacement for Driver 9 

Further analysis of the driver model with feedback is completed through a parameter study 

examining how, by varying the cost function weightings, differences in driver model behaviour can 

be seen. Figure 4-25 demonstrates the trade-off between different costs for different driving styles 

(determined by different driver cost function weightings on speed error). The driver model and 

feedback controller are given a drive-cycle following task using the modified Millbrook cycle in 

both the decentralised and one sided cooperative framework (note that the one-sided cooperative 

case is introduced for comparison again, and the value of 𝜌1 is fixed to 0.75.  

Looking at the RMS speed error and RMS pedal force plots (Figure 4-25), several key 

features of the shapes are noted. Firstly, it is noted that the one-sided cooperative control framework 

produces lower (or near equal) speed errors over all driver cost function weightings than the 

decentralised controller. This is because the driver is modelled to have understanding of the 

feedback controller’s objective, and will hence make some accommodation to this. It is also noted 

that in the decentralised case, that by increasing the driver’s weighting on speed errors, 𝑞1𝑠, it is 

possible to increase the resultant speed errors, before a continued increase in speed error weighting 

results in reduced speed errors. This is due to the transition between the driver being overpowered 

by the feedback controller’s strategy at low weighting of speed error and the driver being very 

dominant over the feedback controller at high weightings on speed error. In the region in between 

the two, the controllers behave similarly to each other, which results in non-optimal performance. 
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It is also noted that the experimental data points for each human driver are significantly 

higher than the modelled values, suggesting the human drivers behave in a non-optimal way with 

the pedal feedback – this could be an effect of the presences of sensorimotor noise not included in 

the simulation. 

 

Figure 4-25 –Trade off graph for the drive cycle with feedback scenario 

 

4.5.2 Driver model car-following task with feedback 

The Matlab function fmincon is once again used to find the optimal set of cost function weightings 

to fit the driver model to the recorded simulator data. Each driver is given a target THW equal to 

the observed value from the unassisted case in Chapter 3. The optimisation is then run to find the 

cost function weightings for each driver in the decentralised and one-sided cooperative frameworks 

that minimise the fitting function from ( 3.45 ). 

The calculated cost function weightings are displayed in Figure 4-26 alongside the cost 

function weightings from the unassisted case in Chapter 3. For the one-sided cooperative case, the 

additional parameter values, 𝜌1 is displayed in Figure 4-27. 

There are several significant differences in the cost function weighting between the three 

frameworks – unassisted, decentralised and one-sided cooperative. In most cases, the decentralised 
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cost function weighting is lower than the unassisted case, and the one-sided cooperative case 

frequently produced weightings in between that of the unassisted and decentralised cases. 

The one-sided cooperative model has identified two groups of drivers – those who are 

prepared to cooperate with the feedback, and those who aren’t. In terms of parameter values, the 

split is between those with high values of driver dominance, 𝜌1 (for those who don’t cooperate) and 

those with low driver dominance, with 𝜌1 values in the region of 0.5 for those who do cooperate. 

Only Driver 6 falls in the low 𝜌1 group, classifying them as cooperative. Drivers 2 and 7 are labelled 

as non-cooperative, but demonstrates a significant change in car-following performance between 

decentralised and one sided cooperative. The change in performance is caused by a change in driver 

cost function weightings, rather than by the introduction of a cooperative strategy. 

The fitting function values for each driver are displayed in Figure 4-28 as an indicator of 

goodness of fit. In all cases, bar Driver 1, the assisted driver achieves a better fit with the model 

than the unassisted model achieved. This is because the feedback has aided the driver in becoming 

more predictable. For drivers 1 and 7, very high values of 𝜌1 mean that the decentralised and one-

sided cooperative case are near identical. For the others, the one-sided cooperative case provides a 

better fit to the driver data. 

 

Figure 4-26 – Fitted cost function weightings for the car-following task 
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Figure 4-27 – Fitted 𝜌1 values for the one sided cooperative car-following task 

 

Figure 4-28 – Total driver-model driver squared errors for car-following scenario 

To demonstrate the performance of the driver model in both decentralised and one-sided 

cooperative frameworks, the modelled car following scenario is displayed over the next set of 
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figures for Driver 1 – the driver with the best fit to the model. In Figure 4-29, the vehicle speeds 

are compared. Both modelled scenarios have very similar speed profiles, but the human driver has 

higher accelerations. Similarly, with following distance, the driver models produce a smoother 

output than the human driver. This is because the driver models do not completely accurately 

reproduce the pedal force from the driver (Figure 4-31).  

It is in the pedal force (Figure 4-31) that differences are seen between the two frameworks. 

Unlike the drive cycle following task, in this scenario the driver and the pedal feedback controller 

have sufficiently different objectives that the driver model is forced to work and apply forces to the 

pedal. The one-sided cooperative driver model produces a more constant pedal force which aligns 

with the human driver allowing the pedal feedback to do a lot of the work. The decentralised driver 

model on the other hand fluctuates more as the model is unaware of what the pedal feedback will 

achieve. Due to the discrepancies between the measured and modelled pedal forces, the modelled 

feedback forces are also different to the measured forces, even though the controllers are identical. 

Generally, the model exerts lower forces on the pedal, as the driver model underestimates the 

driver’s pedal forces. 

With the pedal forces summed, the pedal displacement is determined, and broadly, the 

measured pedal position and modelled pedal positions are similar. The one-sided cooperative driver 

model achieves marginally better results as it more closely resembles the human driver. 

Overall, the driver model represents the human driver reasonably well. Although the model 

makes no attempts to model the noise from the human driver, agreement between the driver model 

and human driver is good. In all cases, the one-sided cooperative controller is able to produce a 

better fit to the real human driver than the decentralised controller, suggesting that the human driver 

is able to learn and adapt their control strategy to reflect the feedback given. 
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Figure 4-29 – Measure human and modelled vehicle speed for Driver 1 

 

Figure 4-30 – Measured human and modelled following distance for Driver 1 
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Figure 4-31 – Measured human and modelled driver pedal force for Driver 1 

 

Figure 4-32 – Measured human and modelled feedback force for Driver 1 
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Figure 4-33 – Measured human and modelled pedal displacement for Driver 1 

 

Further analysis of the driver model with feedback is completed through a parameter study 

examining how, by varying the cost function weightings, differences in driver model behaviour can 

be seen. Figure 4-34 demonstrates the trade-off between different costs for different driving styles 

(determined by different driver cost function weightings on following distance error) for both the 

decentralised and one sided cooperative models. The driver model and feedback controller are given 

a car-following task using the modified Millbrook cycle in both the decentralised and one sided 

cooperative framework (note that the one-sided cooperative case is introduced for comparison 

again, and the value of 𝜌1 is fixed to 0.75).  

Looking at the RMS following distance error and RMS pedal force plots (Figure 4-34), 

several key features of the shapes are noted. Firstly, the decentralised controller points appear to lie 

very close to a straight line. On closer inspection, it is also noted that this line is in fact a very sharp 

peak. When the cost function weighting on following distance errors, 𝑞1𝑑=0, the driver model takes 

no action, meaning a zero RMS driver pedal force, and leaves all the work to be performed by the 

pedal feedback controller. As the value of 𝑞1𝑑 is increased, the driver model starts to contribute, 

increasing the RMS pedal force. The net effect of this contribution is in fact to worsen the resulting 

car following performance – the RMS following distance error increases as well. In this region, the 

contribution from the driver can be seen as an interference to the pedal feedback controller. 
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However, at a critical point, located with an approximate value on speed error weighting of 

𝑞1𝑑 = 10, this relationship reverses, and the driver model starts to decrease the force contributions 

in order to reduce the acceleration of the vehicle. This behaviour comes from the difference in cost 

functions between the driver model and the pedal feedback controller. The pedal feedback 

controller has cost function components including following distance, speed errors and pedal 

position and force, meaning that the controller is trying to match speeds as well as achieve safe 

distances. The driver model, on the other hand, is only trying to balance a cost function of following 

distance errors and pedal forces. Due to the relationship between vehicle speed, and safe following 

distances ( 3.38 ), this produces a slight conflict as vehicle speeds change – the following vehicle 

cannot perfectly match vehicle speed and achieve a changing following distance. In this scenario, 

the driver model would prefer slower accelerations, and hence applies lower pedal forces. The result 

is decreasing RMS following distance errors, and decreasing RMS pedal forces from the driver. 

This creates the sharp peak. 

The one-sided cooperative case is also plotted in Figure 4-34. However, the change in driver 

cost function weightings has a very small impact on RMS pedal force and RMS following distance 

errors when compared with the span of errors observed from the human drivers in the simulator 

experiments, and the decentralised controller case. This is because by incorporating a level of 

understanding between the driver model and the pedal feedback controller (reflected in the value of 

𝜌1 = 0.75) the driver model accommodates the demands from the feedback controller as well.  

Finally, it is worth noting again that the span of RMS errors from the human drivers is 

significantly larger than the span of RMS errors modelled in the two frameworks. This may be due 

to the apparent random component of human driver control caused by the noise not incorporated 

into the driver model. 
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Figure 4-34 –Trade off graph for the drive cycle with feedback scenario 

 

4.6 Conclusions 

In this chapter, three mathematical game theoretical frameworks (Rawlings and Mayne, 2009) have 

been proposed for modelling the interaction between a human driver and pedal force feedback 

controller: decentralised, cooperative and one-sided cooperative.  

After reflecting on the practical implementation of such a system, it was deemed that a fully 

cooperative pedal feedback device is not feasible with current technology due to the difficulties in 

continually assessing the drivers target and cost function weightings. The other two frameworks 

were carried forward and a series of driving simulator experiments were designed and carried out 

in a fixed base driving simulator with a range of drivers. 

Two driving scenarios were examined: drive cycle following and car-following. Each 

driver completed multiple runs of the scenario to average out any random behaviour. By optimising 

the variables explored in the parameter study to minimise the errors between modelled and 

measured data, the driver models were fitted to the observed human drivers. This optimisation has 

quantified the difference in driving styles between drivers, but has also demonstrated that the driver 

models are able to represent mean human driver behaviour to a reasonable level. 
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In the first scenario to be examined, the drive cycle following case, the decentralised control 

framework best represented the human driver, as the one-sided cooperative human driver model 

exploited the behaviour of the pedal feedback device to minimise its own workload, to the point of 

exerting near zero forces on the pedal. This is a behaviour that was not observed in the human 

driver. 

In the second scenario, the car-following scenario, the one-sided cooperative control 

framework produced the best fit to the driver data as it was found that the human drivers were 

adapting their driving styles to reflect the guidance given and adopt the time headway target set by 

the feedback controller.  

In both cases, a decrease in peak (by approximately 20%) and average pedal position was 

detected between the unassisted and the assisted drivers, suggesting (but not proving) that driver 

pedal force feedback has potential for reducing the energy consumption of HGV’s. Drivers also 

demonstrated higher performance and maintained more consistent following distances in the car 

following scenario. 

Using a fully linear vehicle model, as developed in the previous chapter, a parameter study 

also explored how, by varying different parameters, different driving styles could be represented 

by the model. 

Looking forward, this chapter has demonstrated that pedal force feedback to the driver does 

have potential to modify the driving styles of human drivers, and it is expected that these behaviour 

changes may lead on to fuel reductions as well. 
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Chapter 5 – Conclusions and Future Work 

5.1 Conclusions 

5.1.1 Chapter 2 

In the literature review, it was identified that there is little data available on the behaviour of Heavy 

Goods Vehicle (HGV) drivers in real-world environments. To overcome this, two identical heavy 

goods vehicles were fitted with data logging equipment and monitored for a period of four months. 

The loggers recorded signals from the vehicle CAN bus through the FMS port and supplemented 

this information with data from built in sensors in an Android smart phone. The bank of data covers 

a wide variety of routes from urban and city roads in central London, to long distance motorway 

driving. Each vehicle is driven by a sole driver, so a good picture of each driver's driving styles is 

developed. 

Firstly, though, another research objective was to create an accurate mathematical model 

relating the driver’s longitudinal control input (accelerator pedal position) to the vehicle states in 

order to develop a greater understanding of the behaviour of human drivers. The bank of data was 

used to develop a mathematical model of the vehicles fitted with the data logger. The gross vehicle 

mass was estimated by iterating the reported vehicle mass from the FMS port. It was found, 

however, that this mass estimate was poor (errors up to 25%), but that it could detect a change in 

mass during a journey (due to a payload drop). Weigh bridge data was made available to measure 

the mass of the vehicle. Drag characteristics of the vehicles were estimated using the SRF Mapper 

tool. Traction force and fuel rate maps were also generated from the recorded data and performed 

well. A large degree of uncertainty made the maps unreliable when combined, and it was deemed 

that suitable conclusions about changes in driving style could not be drawn from the combined map. 

The model was able to estimate cumulative fuel use to within 20% when cruise control was not 

engaged. 

Secondly, the driver behaviour was analysed. To do this, two independent groups of driving 

tasks were defined to separate the speed states of the vehicle from the driver control states. This 

analysis showed that a large proportion of the distance covered by these HGVs was done so under 
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Cruise Control and that a predictable driving manoeuvre frequently utilising the accelerator pedal 

was the navigation of roundabouts and junctions. 

Analysis over several roundabouts revealed differences in the driving styles of the two 

drivers and the potential for one of the drivers to achieve 7% fuel savings by using slower speeds 

and accelerations, and by engaging cruise control through the roundabout. Statistical analysis over 

the bank of data as a whole identified that one driver made much greater use of cruise control than 

the other driver and also noted that this driver was less likely to use very high pedal depressions. 

In Chapter 2, several of the key research objectives of this project were achieved. 

Measurements of vehicle and driver states were obtained from real world driving environments and 

a mathematical model of the vehicle was developed. However, in validating the mathematical 

model, results were not as promising as hoped for, so further work is suggested in 5.2 to improve 

the vehicle model. The chapter was also able to explain how different methods had been used to 

successfully investigate the differences in driver behaviour on the road. 

 

5.1.2 Chapter 3 

In Chapter 3, a new mathematical model of the human driver's longitudinal control of a HGV was 

proposed. Model Predictive Control Theory, commonly used to model the driver's lateral control of 

the vehicle, was used as the basis for the model.  

The base of this model was the vehicle model developed in Chapter 2, along with linearised 

pedal dynamics, derived experimentally from a Volvo truck accelerator pedal. The pedal was then 

incorporated into a fixed base driving simulator. 

The driver model was validated in a series of experiments in the driving simulator. Nine 

human drivers (two of which were professional HGV drivers) were given two driving tasks: drive 

cycle following and car following. Each task was repeated multiple times and an average taken. 

Differences in human behaviour were observed, particularly in the case of choice of safe 

following distances in the car following scenario. Observed mean time headways ranged from 1s 

to 6s. The driver model was fitted to each human driver in turn by tuning cost function weightings 

in the model. For the drive cycle task, the cost function components were speed error and pedal 

force, whilst for the car following scenario, the components were following distance error and pedal 

force.  

After fitting, it was found that there was good agreement between the driver model and the 

human drivers in both scenarios. The simulated RMS pedal forces lay within 20% of the measured 

simulator values. The driver model was, however, unable to represent the noise and disturbances 

observed in the human driver behaviours. 

Chapter 3 was successfully able to accomplish one of the research objectives from 1.6. A 

new driver model, incorporating the driver’s preview of upcoming demands, was developed. This 



 

5.2   Future Work 169 

model was then validated in a series of driving simulator experiments, specifically tailored to the 

heavy goods vehicle application. 

5.1.3 Chapter 4 

The driver model developed in the previous chapter was expanded to incorporate interactions with 

an Active Accelerator Pedal (AAP). Three Mathematical Game Theoretical frameworks were 

considered: decentralised, cooperative and one-sided cooperative. Practically, a cooperative system 

was deemed unachievable, so was not examined beyond a preliminary derivation. The difficulty in 

a cooperative framework is producing a pedal feedback device that would always be capable of 

understanding the driver's targets and style. 

A pedal feedback controller was proposed for both the drive cycle and car following 

scenario and the same nine drivers from Chapter 3 were given both tasks whilst being assisted by 

the pedal feedback. As with the unassisted case, a range of driving styles was observed, and the 

driver model was fitted to each driver for each task. The cost function components were the same 

as the unassisted case but the weighting values were identified specifically for the assisted tasks. 

It was found that for the drive cycle task, the decentralised framework best represented the 

driver behaviour, whilst in the car following scenario, the one-sided cooperative framework was 

best suited. It was also noted that the addition of pedal feedback reduced the resultant RMS pedal 

position, suggesting that fuel savings may also be observed. 

Chapter 4 was able to address the final research objective of this thesis. The driver model 

was successfully extended to incorporate interactions with an AAP, and driving simulator 

experiments were able to support the models. However, the work carried out in this chapter only 

considered the interaction of human drivers with one fixed feedback controller. Further work is 

suggested in 5.2 to examine the interactions with a variety of controllers. 

Overall, it was concluded that pedal feedback to the driver has the potential for dramatically 

improving driver behaviour and speed control, and it is proposed to be worth continual 

investigation. 

 

5.2 Future Work 

5.2.1 Mass Estimation 

In Chapter 2 it was noted that accurate mass information allows better estimations of the traction 

forces, and hence better prediction of the vehicle response to driver control actions. Although mass 

is reported through the FMS port, this information has been shown to be inaccurate compared with 

weighbridge data. A more accurate mass estimation would reduce the uncertainty in the traction 

force maps. 
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5.2.2 Road Gradient 

Another important aspect of the estimation of traction forces is the road gradient. Although two 

sources of road elevation are considered in this thesis, both have flaws. The GPS receiver in the 

phone did not accurately record the road elevation when compared with mapped data. The Google 

Maps data did better represent the prevailing land height but could not account for cuttings and 

embankments meaning that the road height was not similar to the local land height. A suggested 

alternative approach could involve barometric pressure measurements. 

 

5.2.3 Non-linear vehicle and pedal dynamics 

The introduction of traction force and fuel rate maps was a first step towards a non-linear vehicle 

model. However, as they were subject to significant uncertainty, further work is required to improve 

the accuracy of the simulations performed. Improved road gradient and mass data (as discussed in 

5.2.1 and 5.2.2) are likely reduce the uncertainty in the maps. 

If the non-linear vehicle maps are improved, then it is also possible to incorporate other 

non-linear properties into the vehicle model to improve the rest of the model as well. The pedal 

dynamics were linearised for the inclusion in the Model Predictive Controllers in this thesis, but the 

pedal itself has clearly non-linear behaviour. This could be better reflected in a fully non-linear 

model. 

A non-linear vehicle model will result in non-linear control. Initial considerations for a non-

linear model predictive controller are considered in Appendix 2. 

 

5.2.4 Limb dynamics 

A further improvement to the driver model could be achieved by incorporating the driver's limb 

dynamics. The current model does not reflect this, as it focusses solely on the driver's cognitive 

control, and not any reflex control actions. 

 

5.2.5 Pedal Feedback Strategy Optimisation 

In this thesis, the interaction between the driver and one feedback pedal controller has been 

examined. It is now possible to examine the interaction between the human drivers and other pedal 

controllers in order to identify an optimal pedal feedback controller for the purposes of reducing 

fuel consumption in heavy goods vehicles. 
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Appendix 1 – Active Accelerator Pedal 

Mechanism Analysis 

The Active Accelerator Pedal (AAP) analysis included in the main text of Chapter 3 is abbreviated 

for conciseness. Here, a more detailed explanation, and reasoning behind the approximations made, 

is included. Note different notation is used here for the purpose of simplifying the derivations. 

Firstly, a diagrammatic representation of the AAP mechanism with linkage BC able to rotate is 

included in Figure A1-1: 

 

Figure A1-1 – Diagram representation of the AAP mechanism 

Firstly, it is worth defining the new reference angles in terms of the ones used in Chapter 3: 

𝜙1 =
𝜋

2
− Φ1 − 𝜙𝑃𝑒𝑑𝑎𝑙 

( A1.1 ) 

𝜙3 = Φ3 + 𝜙𝑚 

( A1.2 ) 

 

From the diagram, it can be seen that  
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𝑙𝐶𝐷
2 = |𝑨𝑪⃗⃗⃗⃗  ⃗ − 𝑨𝑫⃗⃗⃗⃗⃗⃗ | 

( A1.3 ) 

Now,  

𝑨𝑪⃗⃗⃗⃗  ⃗ = {
𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − 𝑙𝐵𝐶 sin𝜙2

−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 + 𝑙𝐵𝐶 cos𝜙2
} 

( A1.4 ) 

and 

𝑨𝑫⃗⃗⃗⃗⃗⃗ = {
−ℎ1

−ℎ2
} 

( A1.5) 

Subtracting ( A1.5 ) from ( A1.4 ) gives 

 

𝑨𝑪⃗⃗⃗⃗  ⃗ − 𝑨𝑫⃗⃗⃗⃗⃗⃗ = {
𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − 𝑙𝐵𝐶 sin𝜙2 + ℎ1

−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 + 𝑙𝐵𝐶 cos𝜙2 + ℎ2
} 

( A1.6 ) 

 

The modulus of the resulting vector from ( A1.6 ) is therefore 

 

|𝑨𝑪⃗⃗⃗⃗  ⃗ − 𝑨𝑫⃗⃗⃗⃗⃗⃗ | = |
𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − 𝑙𝐵𝐶 sin𝜙2 + ℎ1

−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 + 𝑙𝐵𝐶 cos𝜙2 + ℎ2
| 

( A1.7 ) 

 

Combining ( A1.3 ) and ( A1.7 ): 

 

𝑙𝐶𝐷
2 = (𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − 𝑙𝐵𝐶 sin𝜙2 + ℎ1)

2 + (−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 + 𝑙𝐵𝐶 cos𝜙2 + ℎ2)
2 

( A1.8 ) 

 

Which rearranges to 

𝑓2(𝜙1) cos𝜙2 + 𝑔2(𝜙1) sin𝜙2 = 𝑚2(𝜙2) 

( A1.9 ) 

 

where 

𝑓2(𝜙1) = −2𝑙𝑃𝑒𝑑𝑎𝑙𝑙𝐵𝐶 cos𝜙1 + 2ℎ2𝑙𝐵𝐶 

𝑔2(𝜙1) = −2𝑙𝑃𝑒𝑑𝑎𝑙𝑙𝐵𝐶 sin𝜙1 − 2ℎ1𝑙𝐵𝐶 

𝑚2(𝜙1) = 𝑙𝐶𝐷
2 − 𝑙𝑃𝑒𝑑𝑎𝑙

2 − 𝑙𝐵𝐶
2 − ℎ1

2 − ℎ2
2 − 2𝑙𝑃𝑒𝑑𝑎𝑙(ℎ1 sin𝜙1 − ℎ2 cos𝜙1) 

 

Rearranging ( A1.9 ), squaring both sides, and then using trigonometric identities results in: 
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𝑓2
2(𝜙1) (1 − sin2 𝜙2) = 𝑚2

2(𝜙2)−2𝑚2(𝜙1)𝑔2(𝜙1) sin𝜙2 + 𝑔2
2(𝜙1) sin

2 𝜙2 

( A1.10 ) 

Using the quadratic formula to solve for sin𝜙3: 

 

sin𝜙2 =
2𝑚2(𝜙1)𝑔2(𝜙1) ± √4𝑚2

2(𝜙1)𝑔2
2(𝜙1) − 4(𝑔2

2(𝜙1) + 𝑓2
2(𝜙1))(𝑚2

2(𝜙1) − 𝑓2
2(𝜙1))

2(𝑔2
2(𝜙1) + 𝑓2

2(𝜙1))
 

( A1.11 ) 

 

Now 𝜙2 can be calculated by utilisation of the inverse sine function in the appropriate range. 

 

Similarly, from the Figure A1-1, it can be seen that  

 

𝑙𝐵𝐶
2 = |𝑨𝑩⃗⃗⃗⃗⃗⃗ − 𝑨𝑪⃗⃗⃗⃗  ⃗| 

( A1.12 ) 

 

Now,  

𝑨𝑩⃗⃗⃗⃗⃗⃗ = {
𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1

−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1
} 

( A1.13 ) 

 

𝑨𝑪⃗⃗⃗⃗  ⃗ = {
−ℎ1 + 𝑙𝐶𝐷 cos𝜙3

−ℎ2 + 𝑙𝐶𝐷 sin𝜙3
} 

( A1.14 ) 

 

Subtracting ( A1.14 ) from ( A1.13 ) gives 

 

𝑨𝑩⃗⃗⃗⃗⃗⃗ − 𝑨𝑪⃗⃗⃗⃗  ⃗ = {
𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − ℎ1 + 𝑙𝐶𝐷 cos𝜙3

−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 − ℎ2 + 𝑙𝐶𝐷 sin𝜙3
} 

( A1.15 ) 

 

The modulus of the resulting vector ( A1.15 ) is therefore 

 

|𝑨𝑩⃗⃗⃗⃗⃗⃗ − 𝑨𝑪⃗⃗⃗⃗  ⃗| = |
𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − ℎ1 + 𝑙𝐶𝐷 cos𝜙3

−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 − ℎ2 + 𝑙𝐶𝐷 sin𝜙3
| 

 ( A1.16 ) 

 

Combining ( A1.12 ) and ( A1.16 ): 
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𝑙𝐵𝐶
2 = (𝑙𝑃𝑒𝑑𝑎𝑙 sin𝜙1 − ℎ1 + 𝑙𝐶𝐷 cos𝜙3)

2 + (−𝑙𝑃𝑒𝑑𝑎𝑙 cos𝜙1 − ℎ2 + 𝑙𝐶𝐷 sin𝜙3)
2 

( A1.17 ) 

 

Which rearranges to 

 

𝑓3(𝜙1) cos𝜙3 + 𝑔3(𝜙1) sin𝜙3 = 𝑚3(𝜙3) 

( A1.18 ) 

where 

𝑓3(𝜙1) = −2𝑙𝑃𝑒𝑑𝑎𝑙𝑙𝐶𝐷 sin𝜙1 − 2ℎ1𝑙𝐶𝐷 

𝑔3(𝜙1) = 2𝑙𝑃𝑒𝑑𝑎𝑙𝑙𝐶𝐷 cos𝜙1 − 2ℎ2𝑙𝐶𝐷 

𝑚3(𝜙1) = 𝑙𝐵𝐶
2 − 𝑙𝑃𝑒𝑑𝑎𝑙

2 − 𝑙𝐶𝐷
2 − ℎ1

2 − ℎ2
2 − 2𝑙𝑃𝑒𝑑𝑎𝑙(ℎ1 sin𝜙1 − ℎ2 cos𝜙1) 

 

Rearranging ( A1 .18 ), squaring both sides, and then using trigonometric identities results in: 

 

𝑓3
2(𝜙1) (1 − sin2 𝜙3) = 𝑚3

2(𝜙3)−2𝑚3(𝜙1)𝑔3(𝜙1) sin𝜙3 + 𝑔3
2(𝜙1) sin

2 𝜙3 

( A1.19 ) 

 

Using the quadratic formula to solve for sin𝜙3: 

 

sin𝜙3 =
2𝑚3(𝜙1)𝑔3(𝜙1) ± √4𝑚3

2(𝜙1)𝑔3
2(𝜙1) − 4(𝑔3

2(𝜙1) + 𝑓3
2(𝜙1))(𝑚3

2(𝜙1) − 𝑓3
2(𝜙1))

2(𝑔3
2(𝜙1) + 𝑓3

2(𝜙1))
 

( A1.20 ) 

 

Now 𝜙3 can be calculated by utilisation of the inverse sine function in the appropriate range. 

With expressions now available for 𝜙2 and 𝜙3 in terms of 𝜙1, a drive cycle following driving 

simulator experiment (explained fully in Chapter 3) is completed to examine the expected range for 

the first and second derivatives of 𝜙1, 𝜙2 and 𝜙3. Figures A1-2, A1-3 and A1-4 illustrate the angle, 

angular speed, and angular acceleration of the three linkages. It can be seen that the motor arm, 

denoted by the subscript 3, experiences the highest angular displacements, speeds and accelerations 

by a significant margin. It is also noted that the linkage BC remains very close to the horizontal at 

all times, and has significantly lower angular speeds and accelerations than the other two bars. For 

these reasons, it is proposed that the effect of the moment of inertia of the linkage BC is negligible 

and that the bar remains horizontal at all times.  
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Figure A1-2 – Measured mechanism angles from a drive-cycle driving simulator experiment 

 

 

Figure A1-3 – Measured mechanism angular speeds from a drive-cycle driving simulator 

experiment 
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Figure A1-4 – Measured mechanism angular accelerations from a drive-cycle driving simulator 

experiment 

 

As a further justification to this, the effect of the moment of inertia of BC is estimated. 

From Figure A1-4, at worst case, the maximum angular acceleration recorded was 0.2 rad s−2. 

Modelling the linkage as a rod, of length 𝑙𝐵𝐶 and mass 𝑚𝐵𝐶, the moment of inertia about its centre 

of mass becomes: 

 

𝐼𝐵𝐶 =
1

12
𝑚𝐵𝐶𝑙𝐵𝐶

2  

( A1.21 ) 
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Figure A1-5 – Force components due to the moment of inertia of the linkage BC  

 

Now, looking at Figure A1-5, the normal force on the pedal, due to the moment of inertia of 𝐵𝐶 is 

given by: 

  

𝑓𝐵∗ =
𝐼𝐵𝐶𝜙2̈

𝑙𝐵𝐶
2

sin (
𝜋

2
− 𝜙1 − 𝜙2) 

( A1.22 ) 

 

 Using the properties from the pedal mechanism in Chapter 3 and assuming maximum 

values of  𝜙2̈ and sin (
𝜋

2
− 𝜙1 − 𝜙2) = 1, the effect of the moment of inertia of the connecting rod 

on the pedal arm itself is expected to be less than  

 

     𝑓𝐵∗ = 3.6 × 10−3N 

 

This is much smaller than the measured forces between the pad of the pedal and the foot (up to 

approximately 20N), so it is therefore reasonable to assume the effects of the moment of inertia of 

the linkage BC are negligible.  

 

 

  

𝐵 

𝑓𝑏∗ 

𝐼𝐵𝐶𝜙2̈

𝑙𝐵𝐶

2

 

𝜙2 

𝜙1 
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Appendix 2 – Non-Linear Model Predictive 

Control 

In the main text, the objective was always to produce a linear model for operation in the Model 

Predictive Control Theory (MPC). Linear MPC produces a computationally inexpensive controller 

as the gains used are time-invariant. However, the restrictions of linear MPC limit the accuracy of 

the vehicle model used. In order to get around this, and to add a fuel consumption component in the 

cost function, a non-linear solver can be implemented. This appendix documents some 

considerations for dealing with a non-linear model. 

Two limiting factors observed in the linear approach are: the simplicity of the engine torque 

model, and the absence of a fuel consumption model. The torque output from an engine is highly 

dependent on the speed the engine is operating at. It is restricted by the maximum performance of 

the engine, typically, either a maximum torque rating, or maximum power rating, depending on 

engine speed. The matching of the engine torque to load is completed by an automatic gearbox 

controller in many trucks. In order to fully reflect this, a non-linear torque map is required. 

Secondly, for full analysis of the effectiveness of any pedal force feedback strategies used, a 

detailed and accurate fuel consumption model is needed to predict fuel consumption rates at a time 

step by time step basis.  

The control problem remains the same – an optimal set of control actions is sought that 

minimises the cost function. In the linear method, QR decomposition was used to find the optimal 

set of gains that, when applied to the preview, produced the desired output. In the proposed non-

linear controller, the vehicle model is no longer time invariant as there are non-linear dependencies 

on speed present. 

In the non-linear approach taken here, the vehicle model is linearized at an initial start point 

about its current states and every half second afterwards.  
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Figure A2-1 – Linearised aerodynamic drag 

Conventional aerodynamic drag equations take a quadratic form ( A2.1 ). Here, the 

aerodynamic drag is linearised about the vehicle speed every half second, by calculating the 

gradient of the aerodynamic drag against vehicle speed curve: ( A2.2 ) and   

Figure A2-1. 

 

𝐹𝐴𝑒𝑟𝑜 =
1

2
𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑣

2 

( A2.1) 

 

𝐹𝐴𝑒𝑟𝑜𝐿 =
1

2
𝜌𝑎𝑖𝑟𝐶𝑑𝐴(2𝑣0 × 𝑣 − 𝑣𝑜

2) 

( A2.2 ) 

 

The Matlab function fminsearch was called to find an optimal set of pedal forces that 

minimised the cost function over the preview. Notice that now the pedal forces are the direct output 

of the optimisation, rather than the gains applied to the preview information.  

As the computational cost of such a controller is so much higher than a linear one, a useful 

characteristic of human driver control was exploited to reduce the cost: intermittent control. In the 

linear approach, the preview gains are applied at each time step and only the first control action is 

Linearisation point 

Linearised 

aerodynamic drag 

Aerodynamic drag 
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implemented in a receding horizon approach. However, real human drivers to not optimise their 

control at such high frequencies as there are other tasking occupying the cognitive control 

mechanism as well in what is known as the central bottleneck (Johns and Cole, 2015).  

A driver assesses the current states of the vehicle at a given point and then calculates a set 

of control actions. This processing takes some time. Once the calculations are complete, the 

cognitive processing then switches to secondary tasks, if there are any, as the control signal is sent 

through the limbs and is implemented. When the secondary task is processed, the driving task is 

then reassessed; the current states are assessed and new actions calculated. This means that there is 

a finite time between control updates, called the control update time. The control update time is 

well-studied in the steering control area, and typical update times are approximately 0.5s.  

The same control update time is used in the model here, where 0.5s of control are taken and 

implemented before the next optimisation occurs. This can result in some large discontinuities in 

the demanded pedal force, and these are filtered out by the limb dynamics in the human driver.  

A second step was also taken to reduce the computation cost of the simulation. Instead of 

optimising the pedal force at every time step over the preview, several points are selected to be 

optimised and intermediate points are calculated by linearly interpolating between defining points. 

For example, in a ten second preview, the first second may have defining points at 0.1, 0.2, 0.3 0.4. 

0.5 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0 seconds. The spacing increases at the distant end of the preview, 

as the information is less critical to the control action. The computational resources are focused at 

the key time frame of the first second.  
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Figure A2-2 – Force optimisation points with a sample set of forces 

 Figure A2-2 illustrates how the set of defining forces produce a corresponding set of 

control forces for the timings given in the example. The first half second, sampled at the highest 

rate is implemented, and the second half second is used as the input to the next optimisation, when 

the vehicle model has been linearised about its new states.  

At this point, the controller is given a simple ramp in speed demand, as illustrated by the 

red line in Figure A2-3.  With a 20 second drive cycle, the controller will produce 10.5 seconds of 

control actions (the remaining 9.5 seconds are part of the preview information made available to 

the controller. It can be seen that the initial response oscillates a couple of times before settling in 

to accurately follow the target. 

Figure A2-4 shows the pedal forces corresponding with the ramp speed target. There is a 

definite trend in the force to increase with time, as when the vehicle accelerates (even with constant 

acceleration), the drag forces increase meaning that a higher load is being put on the engine. 

This Appendix has briefly considered aspects of non-linear control as the basis for further 

work on the subject. 
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Figure A2-3 – Vehicle speed when set a 0 to 10ms−1 ramp target over 20s. 

 

Figure A2-4 – Driver pedal forces for a ramp speed demand 
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