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Abstract
CD4-based multi-state back-calculation methods are key for monitoring the HIV epi-
demic, providing estimates of HIV incidence and diagnosis rates by disentangling
their inter-related contribution to the observed surveillance data. This paper, extends
existing approaches to age-specific settings, permitting the joint estimation of age-
and time-specific incidence and diagnosis rates and the derivation of other epidemi-
ological quantities of interest. This allows the identification of specific age-groups
at higher risk of infection, which is crucial in directing public health interventions.
We investigate, through simulation studies, the suitability of various bivariate splines
for the non-parametric modelling of the latent age- and time-specific incidence and
illustrate our method on routinely collected data from the HIV epidemic among gay
and bisexual men in England and Wales.
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1 Introduction

Quantification of HIV incidence and prevalence is key to HIV surveillance and the
design and evaluation of targeted interventions. Direct measurement of these quan-
tities is, however, infeasible: infection times are unobserved and, due to the long
asymptomatic incubation period, a large proportion of infections remain undiagnosed.
Therefore, a number of statistical approaches have been developed to estimate HIV
burden from routinely collected surveillance data. The back-calculation method, ini-
tially proposed by Brookmeyer and Gail (1987, 1988) still plays a key role in the
monitoring of HIV and other long incubation diseases (Deuffic-Burban et al. 2007;
Sweeting et al. 2007; van Sighem et al. 2015). The idea underlying this approach is that
the infection process can be reconstructed from time series data on disease endpoint
events and knowledge of the distribution of the time between infection and the end-
points of interest. For HIV, in a discrete time formulation, this is formally expressed
by the convolution equation (Becker et al. 1991):

ai =
i∑

i0=1

hi0 fi−i0 , i = 1, . . . , T (1)

where ai is the expected number of new AIDS diagnoses in the i th interval, (ti−1, ti ],
hi0 is the expected number of new infections in (ti0−1, ti0 ], and fi−i0 is the probability
of an AIDS diagnosis in the (i − i0)th interval after infection.

The back-calculation model (1) has been extended to: incorporate new information
and data types to refine incidence estimates (e.g. Aalen et al. 1994; Bellocco and
Marschner 2000; Chau et al. 2003; Sweeting et al. 2005; Ndawinz et al. 2011; Yan
et al. 2011); and to usefully characterise the incubation period as progression through
disease stages of increased severity (e.g. Longini et al. 1992; Dietz et al. 1994; Aalen
et al. 1997; Sweeting et al. 2005; Sommen et al. 2009; Birrell et al. 2012).

A further extension, again aimed at providing a better insight into the epidemic, has
been to estimate time- and age-specific infection rates, making use of the information
that age at infection is the strongest predictor of HIV progression. In principle, this
would entail the specification of a latent time- and age-(denoted i0 and j0) specific
bivariate surface hi0, j0 , which is particularly challenging to estimate. To avoid mod-
elling a two-dimensional infection surface,Verdecchia andMariotto (1995),Greenland
(1996) and Wand et al. (2009) applied age-independent back-calculation models to
diagnosis data stratified by birth-cohorts, deriving age-dependent incidence estimates
through the combination of the estimates resulting from each cohort. Also to sim-
plify the problem, some authors (Becker and Marschner 1993; Becker et al. 2003)
used a multiplicative model, hi0, j0 = hi0h j0 which however cannot capture different
time-trends across age-groups. The non-parametric bivariate step-function in Rosen-
berg (1995) added flexibility to the infection surface model and Marschner and Bosch
(1998) improved parameter identifiability by imposing (thin plate spline) smoothing
at the corner-points. The level of smoothing in Marschner and Bosch (1998) was how-
ever isotropic (i.e. equal in both the time and age dimensions), which may not always
be appropriate, for instance when time and age are measured on different scales. All
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these approaches solely considered counts of AIDS diagnoses as endpoint data, with
the exception of Becker et al. (2003) who additionally incorporated HIV diagnoses.

In this paper we reconsider the problem of age specific estimation but in the context
of a CD4 count based multi-state model, extending the work of Aalen et al. (1997),
Sweeting et al. (2005) and Birrell et al. (2012) to estimate age–time dependent HIV
incidence,CD4 state specific diagnosis probabilities and number of undiagnosed infec-
tions. We also extend the work of Marschner and Bosch (1998) by adopting bivariate
splines (Wood 2006a) to model the incidence surface as a continuous function of age
and time and we further investigate tensor product splines (Eilers and Marx 2003;
Wood 2006b), allowing for differential smoothing in the time and age dimensions.
In contrast to earlier age-dependent back-calculation approaches (e.g. Marschner and
Bosch 1998), the use of a multiplicity of data introduces the complication that the
back-calculation model cannot be expressed as a generalised linear model (GLM), so
that the inferential problem becomes non-standard. We propose a Bayesian approach
to estimation, which can more easily tackle the non-standard nature of the problem
and automatically allows propagation of uncertainty to all the derived quantities of
interest.

Section 2 describes the motivating application and describes the data available
from England andWales, with relevant notation. Section 3 introduces the CD4-staged
back-calculation model and links this model to the data. Section 4 looks at a range
of spline models suitable for smoothing the incidence surface and the merits of each
spline are examined in the simulation study of Sect. 5. In Sect. 6, appropriate model
parameterisations are then used to estimate age-stratified HIV incidence in England
and Wales over the last 20 years. We conclude with a discussion in Sect. 7.

2 Motivating application

The methodology developed in this paper is motivated by the surveillance data rou-
tinely collected by Public Health England (PHE) to monitor the HIV epidemic among
men-who-have-sex-with-men (MSM) in England and Wales (see Fig. 1). Available
data include diagnoses of HIV over time classified in two groups, according to the
presence or absence of AIDS related symptoms within 3 months of the initial HIV
diagnosis. Thesewill be loosely expressed as diagnoses ofAIDS andHIV respectively.
Information on the CD4 cell counts around diagnosis (i.e. taken within 3 months of
HIV diagnosis) is also available for a large, and increasing, proportion of the new HIV
diagnoses (see Fig. 1a, b).

A Bayesian back-calculation analysis of this type of data (Birrell et al. 2012) col-
lected over the whole epidemic history (i.e. 1978–2015), resulted in the estimated
yearly number of new HIV infections levelling off at approximately 3000 (see Fig. 2),
following a steady increase over the period 2007–2013. However, stratification of
new diagnoses by age (Fig. 1c) reveals heterogeneous trends, questioning whether the
apparent plateau in incidence might mask contrasting trends in different age-groups,
suggesting the need for age specific incidence estimates.

Formally, assume the epidemic period (t0, tT ] is split into T disjoint, consecutive
intervals (ti−1, ti ], i = 1, . . . , T . Similarly the age-range (a0, aA] is subdivided into
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Fig. 1 Number of new diagnoses, by year of diagnosis: a newdiagnoses, by diagnosis type;bHIVdiagnoses
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Fig. 2 Expected number of new infections estimated using the method of Birrell et al. (2013)

A disjoint, consecutive groups (a j−1, a j ], j = 1, . . . , A. We will, in places, refer to
(ti−1, ti ] as the i th time interval and (a j−1, a j ] as the j th age group. Let yHi, j and yAi, j
denote the observed number of new HIV and AIDS diagnoses in the i th time interval
and j th age group, where the Ath age-group is formed of all diagnoses at ages greater
than aA−1. The K ×1 vector yHC

i, j = (yHC
i, j,1, y

HC
i, j,2, . . . , y

HC
i, j,K )

T gives the distribution of

a subset ni, j (≤ yHi j ) of the HIV diagnoses with a linked CD4 count, classified into K
categories: [c1,∞), [c2, c1), . . . , [0, cK−1), where c1 > c2 > · · · > cK−1 are appro-
priate CD4 thresholds. We further define yH = (yH11, . . . , y

H
1A, . . . , yHT 1, . . . y

H
T A)T

and yA = (yA11, . . . , y
A
1A, . . . , yAT 1, . . . y

A
T A)T to be T A × 1 vectors of the num-
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Fig. 3 Age-dependent back-calculation multi-state model. Dashed and solid boxes denote undiagnosed and
diagnosed states, respectively

ber of new HIV and AIDS diagnoses over time and age respectively, and yHC =
{ yHC

1,1 , . . . , yHC
1,A, . . . , yHC

T ,1, . . . , y
HC
T ,A} to denote the array of CD4-linked diagnoses

over time and age.

3 Age-dependent multi-state back-calculation

3.1 Model specification

The data previously described arise as a result of three distinct, interlinked processes:
infection, disease progression and diagnosis. Figure 3 shows the structure of a discrete-
time non-homogeneous population-level CD4 count multi-state model that explicitly
specifies the contribution of these three processes to the dynamics of an infected
population.

The infection process is modelled by a two dimensional non-homogeneous Pois-
son process (e.g. Rosenberg 1995), with time (u) and age (v) dependent infection rate
λ(u, v). Then the expected number of new infections in (ti−1, ti ] and (a j−1, a j ] is
hi, j = ∫ ti

ti−1

∫ a j
a j−1

λ(u, v) dudv. After infection, individuals are subject to competing
disease progression and diagnosis pressures, represented by movements to undiag-
nosed states (1, . . . , K ) with lower CD4 counts and to the absorbing diagnosis states
(K + 1, . . . , 2K + 1), respectively.

Given the discrete time framework, the progression and diagnosis processes are
expressed in terms of probabilities. Diagnosis probabilities are state, time- and age-
specific, to reflect the weakening of the immune system and to allow for the impact
of testing campaigns over time, possibly targeted at specific age groups. Denote dk,i, j
the probability of being diagnosed from the kth undiagnosed state in the i th time and
j th age group. For those infected in the j0th age group and remaining undiagnosed,
let q j0

k denote the probability of progressing from the kth to the (k + 1)th state in the
same interval.

3.2 Model dynamics

Previous work (Aalen et al. 1997; Sweeting et al. 2005; Birrell et al. 2012) has charac-
terised the number of infected individuals in the disease states through aMarkov chain.
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However, in themodel of Fig. 3, progression depends on the age at infection. The num-
ber of individuals in a state, at a given time and age group no longer depends solely on
the number of individuals at the previous time and age, unless the infected population
is also stratified by age at infection. This substantially complicates the model dynam-
ics, now described by progression and transition matrices, Q j0

i, j and D j0
i, j respectively,

both depending on the age group at infection j0. The K × K matrix Q j0
i, j specifies the

probabilities of moving between the undiagnosed states of the model in the i th time
interval and j th age group, for individuals infected in the j0th age group. Its (k, l)th
entry is expressed as:

(
Q j0

i, j

)

k,l
=

⎧
⎨

⎩

(1 − dk,i, j )(1 − q j0
k ) if l = k

(1 − dk,i, j )q
j0
k if l = k + 1 and k < K

0 elsewhere
(2)

The K×(K+1)matrix D j0
i, j has the (k, l)th entry giving the corresponding probability

of moving from the undiagnosed state k to the diagnosed states K + l:

(
D j0
i, j

)

k,l
=

⎧
⎨

⎩

dk,i, j if l = k

(1 − dk,i, j )q
j0
k if l = K + 1 and k = K

0 elsewhere
(3)

Note that the dynamics are slightly different for individuals in state K as progression
to AIDS is assumed to always result in a diagnosis. The above matrices reflect the
assumption that the time intervals are sufficiently small so that at most one transition
event can happen and that diagnosis events occur before progression. We further
assume that the time intervals and age groups are of equal width.

Let e j0i, j = (e j0i, j,1, . . . , e
j0
i, j,K )T denote the K × 1 vector of the expected number

of individuals in the undiagnosed states in the i th time interval and j th age group
who were infected in the j0th age group. Similarly, μ

j0
i, j = (μ

j0
i, j,1, . . . , μ

j0
i, j,K+1)

T

is a (K + 1) × 1 vector, with entries giving the corresponding expected numbers of
new diagnoses in the absorbing states K + 1, . . . , 2K + 1. These are the result of the
recursive equations:

e j0i, j =
(
Q j0

i, j

)T
e j0i−1, j−1 +

(
Q j0

i, j

)T
e j0i−1, j 1 j=A (4)

μ
j0
i, j =

(
D j0
i, j

)T
e j0i−1, j−1 +

(
D j0
i, j

)T
e j0i−1, j 1 j=A (5)

for j0 = 1, . . . , A − 1, i = 2, . . . , T , j = j0 + 1 . . . ,min( j0 + i − 1, A). 1 j=A is an
indicator function, equal to one if j = A and zero otherwise. The starting values of
the recursion, when j = j0 are defined so that:

e j0i, j0 =
(
Q j0

i, j0

)T
e j0i−1, j0

1 j=A + (hi, j0 , 0, . . . , 0)
T (6)

μ
j0
i, j =

(
D j0
i, j0

)T
e j0i−1, j0

1 j=A (7)
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for j0 = 1, . . . , A, i = 2, . . . , T and we further let e j01, j0 = (h1, j0 , 0, . . . , 0)
T for

j0 = 1, . . . , A. Note that although the Ath age-group, in accordance with the data is
cumulative, it is assumed that infections do not occur at ages greater than aA.

From (4) to (7), the expected number of undiagnosed individuals ei, j and the
expected number of new diagnoses μi, j in the i th time interval and j th age group
are obtained by summing over the infection age-groups j0:

ei, j =
j∑

j0=max(1, j−i+1)

e j0i, j (8)

μi, j =
j∑

j0=max(1, j−i+1)

μ
j0
i, j (9)

Note that the dynamic equations discussed here can be appropriately modified when,
as it may happen in practice, data are available on a coarser time scale, or uneven time
and age scales or they might not be collected from the beginning of the epidemic (see
Sect. 1 of the online resource).

3.3 Likelihood

The aim is to estimate the expected number of new time- and age-specific infections
H = {h1,1, . . . , hT ,A}, to which we refer as the incidence surface (or simply inci-
dence), and the diagnosis probabilities D = {d1,1, . . . , dT ,A}, when the progression
probabilities Q = {q1, . . . , qA} are assumed to be known from external cohort stud-
ies. The components ofH andD could be treated as free parameters, however a more
parsimonious parameterisation can be achieved by introducing parameters θ and δ

respectively, so that H ≡ H(θ) and D ≡ D(δ). Note that all the quantities defined
in Sect. 3.2 become dependent on these parameters. For notational convenience, this
dependency will be suppressed, e.g. di, j ≡ di, j (δ), Q

j0
i, j ≡ Q j0

i, j (δ), D
j0
i, j ≡ D j0

i, j (δ),
ei, j ≡ ei, j (θ , δ), μi, j ≡ μi, j (θ , δ), for all i, j, j0.

By the properties of the non-homogeneous Poisson process (Cox and Isham 1980)
characterising the infection process, the number of arrivals into the diagnosis state k
in (ti−1, ti ] and (a j−1, a j ] results in a set of independent Poisson random variables
with meansμi, j,k [Eq. (9)]. Hence the likelihood of HIV and AIDS diagnoses is given
by independent Poisson random variables, Y H

i, j and Y A
i, j :

Y A
i, j ∼ Po

(
μA
i, j

)
(10)

Y H
i, j ∼ Po

(
μH
i, j

)
(11)

for i = 1, . . . , T and j = 1, . . . , A, where the means are μH
i, j = ∑K

k=1 μi, j,k and

μA
i, j = μi, j,2K+1.
The contribution of the subsample of HIV diagnoses with a linked CD4 count is

included based on the assumption that the distribution of the available CD4 counts
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is representative of the CD4 count distribution for all individuals. As the number
of new HIV diagnoses in the i th time interval and j th age group is the sum of K
independent Poisson random variables with meansμi, j,1, . . . , μi, j,K , the distribution
of the number of diagnoses in the states {K + 1, . . . , 2K } conditional on their sum is
multinomial:

Y HC
i, j ∼ Multinomial(ni, j , pi, j ) (12)

where pi, j = (pi, j,1, . . . , pi, j,K ) and pi, j,k = μi, j,k

μH
i, j

, k = 1, . . . , K .

The likelihood, expressed in terms of θ and δ, is proportional to:

L(yH , yA, yHC | θ , δ) = L(yHC | θ, δ) L(yH , yA | θ, δ)

∝
T∏

i=1

A∏

j=1

(
K∏

k=1

(
pi, j,k

)yHCi, j,k

)
e−μA

i, j

(
μA
i, j

)yAi, j
e−μH

i, j

(
μH
i, j

)yHi, j

4 Bivariate smoothingmethods

4.1 Bivariate splines

To parameterise H(θ) we employ bivariate splines. In general terms, given a vector
of n observations y = (y1, . . . , yn)T with associated two dimensional covariates
x = {x1, . . . , xn}, such that xi = (xi1, xi2)T , a bivariate spline is a flexible function
g(x) : R2 → R used to smoothlymodel the (x, y) relationship. Splines are constructed
from a set of basis functions {b1(xi ), · · · , bp(xi )} and a related p × 1 vector of
parameters θ . For any x, the spline takes values g(x) = ∑

j θ j b j (x) and can be
expressed as a generalised linear model, where the data arise from a distribution of the
exponential family, and with n× p designmatrix X , with (i, j)th entry Xi, j = b j (xi ).
Estimation of θ is typically carried out through minimisation of a penalised log-
likelihood criteria:

l(θ | y) − 1

2

Ns∑

s=1

λsθ
T Ssθ (13)

where l(θ | y) is the log-likelihood of the data and Ns is the number of p × p matrices
Ss chosen to penalise the roughness of the resulting spline curve. A large number
of parameters can be specified to guarantee flexibility, with any induced overfitting
effect counteracted by the scaling, through the smoothing parameters λs , of the penalty
term. Large λs values favour smooth curves over more volatile ones. Closed form, and
numerical, solutions are available for obtaining optimal θ̂ and λ̂s if y arise from
a distribution from the exponential family and can be expressed as a GLM (Wood
2006a).

Note that (13) can be re-interpreted from aBayesian perspective, as a sumof the log-
likelihood and a log-prior giving a log-posterior distribution. Specifically, the penalty
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term is equivalent to a zero-meanmultivariate Normal prior for θ , with p× p precision
matrix

∑Ns
s=1 λsSs. Flat priors are implicitly assigned to the λs , though alternatives

could be chosen.
Table 1 summarizes all the splines considered in what follows. Two main types

of bivariate splines exist: thin plate splines and tensor product splines. Thin plate
splines (Green and Silverman 1994) are defined by a bivariate spline basis obtained
by introducing a set of knot points κ = {κ1, · · · , κ p} (see tps in Table 1 as well as
Sect. 2.2.2 of the online resource). Roughness is quantified by the Laplacian integral:

∫ ∫ ⎛

⎝
(

∂2g(x)

∂x21

)2

+ 2

(
∂2g(x)

∂x1∂x2

)2

+
(

∂2g(x)

∂x22

)2
⎞

⎠ dx1dx2 (14)

that imposes isotropic smoothing (i.e. equal smoothing in the x1 and x2 dimensions)
and can be conveniently expressed in a quadratic form θT S1θ (in this case Np = 1,
see Sect. 2.1.1 of the online resource for details). Thin plate splines may be sensitive to
the choice of κ , hence Wood (2003) proposed thin plate regression splines that avoid
specifying the location of the knots (see Sect. 2.1.2, and 2.2.3 of the online resource
for further details). Here a slight modification, due to Marra and Wood (2011), is
implemented (see tprs in Table 1 aswell as Sect. 2.1.3 and 2.2.4 of the online resource).

Tensor product splines are constructed by defining two univariate splines, with
design matrices X(1) and X(2), (of dimension n1 × p1, and n2 × p2) and roughness
matrices S(1) and S(2) (of dimension p1 × p1 and p2 × p2). The bases for the joint
bivariate spline are then obtained by multiplying the basis functions of the marginal
splines. Tensor product splines allow for differential smoothing in the two dimensions
(Np = 2), by applying the univariate penalty matrices marginally (see Sect. 2.2.5 of
the online resource). Eilers and Marx (2003) constructed tensor product splines from
marginal cubic B-spline and measuring marginal roughness via a first order difference
penalty squared (see ptensbs in Table 1). Wood (2006b) extended their approach to
handle any type of marginal spline, such as thin plate regression splines, and any type
of marginal penalty, such as the integrated second derivative squared (see ptenstprs
in Table 1). The different penalty measures of ptensbs and ptenstprs imply that, in
absence of information, the marginal splines revert towards a flat and linear trend
respectively.

4.2 Splines within back-calculation

The bivariate splines are used to model the log-incidence surface γ = (γ1,1,

. . . , γT ,A)T , where γi, j = log(hi, j ), by letting γ = Xθ . X denotes the design matrix
corresponding to the chosen type of spline. Irrespectively of the parameterisation of
D(δ), back-calculation cannot be expressed as aGLM: the likelihood (Eq. 13) includes
Poisson and Multinomial terms so that a single link function cannot be specified, and
the expected number of diagnosesμi, j is a non-linear function of θ and δ. In this case,
standard algorithms to estimate the spline parameters θ and λs within aGLMpenalised
likelihood context cannot be implemented. Although the penalised likelihood can be
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numerically maximized, estimation of λs and quantification of uncertainty become
computationally prohibitive (Brizzi 2018, Sect. 6.4.4). Even Expectation Maximiza-
tion (EM)based algorithms, often used for back-calculation (Becker et al. 1991;Becker
and Marschner 1993; Marschner and Bosch 1998) cannot be efficiently employed, as
the derivatives of the likelihood are not analytically tractable.

An alternative Bayesian approach (Wood 2016) offers a number of advantages
allowing direct estimation of both model and smoothing parameters and automatic
quantification of uncertainty. Moreover external sources of information (e.g. under-
reporting rates, see Birrell et al. 2012) can easily be incorporated and implementation
can be achieved using standard software for Bayesian analysis.

5 Simulation study

Herewe investigate themost appropriate typeof splinemodel. Todo this,we carriedout
a simulation study starting from the age-dependent back-calculation model described
in Sect. 3.1 with K = 4 undiagnosed states, defined by CD4 count classes: [500,∞),
[350, 500), (200, 350] and (0, 200]. Using yearly time steps to define both the time
intervals and age groups (see Sect. 1.2 of the online resource), 20 time intervals and
52 age groups are considered, corresponding to ages 15 ( j = 1) to 66 ( j = 52). The
starting point is taken to be an intermediate point in the history of the epidemic and the
expected number of undiagnosed infections (by state) π� is specified (see Sect. 1.1 of
the online resource).Values for the data-generating incidence surfaceH� = {h�

1,1, . . . ,

h�
20,52}, diagnosis probabilities D� = {d�

1,1,1, . . . , d
�
4,20,52}, progression probabilities

Q� = {q�
1, . . . , q

�
52}, and π� were chosen to reflect realistic values for the MSM-HIV

epidemic in England between 1995 and 2015 based on previous studies (Aalen et al.
1997; Sweeting et al. 2005; Birrell et al. 2012). The data-generating expected number
of annual HIV diagnoses, AIDS diagnoses and CD4 proportions, denoted μH�

i, j , μ
A�
i, j

and p�
i, j respectively, are then obtained through a generalisation of the dynamical

equations described in (5) and (9) (see Sect. 3.1 in the online resource). These are
used to simulate data according to (10–12), taking n�

i, j to be equal to the ni, j , i.e. the
number of samples observed in the last 20 years of this study (Fig. 1a).

Three data-generating bivariate incidence surfaces are derived by assuming: hi, j =
hivi, j , where hi is the total number of expected infections in (ti−1, ti ] and vi, j is the
proportion of hi occurring among age groups (a j−1, a j ], with∑52

j=1 vi, j = 1, for all i .
Three plausible time profiles hi are considered. These are identical until themost recent
3 years when they differ to allow an increasing, a constant and a decreasing trend in
incidence (see Fig. 4a). The vi, j are constructed such that, in all the three time profiles,
the mean age at infection shifts linearly from age 43, in (t0, t1], to 33, in (t19, t20]. The
resulting age-specific time profiles of the incidence surfaces are shown in Fig. 5.

To limit the computational burden of the simulation study, the diagnosis proba-
bilities used to generate the data (Fig. 4b) are assumed to be independent of age, i.e.
dk,i, j ≡ dk,i for all j . The values specified are available in the online resource, Sect. 3.
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Fig. 4 a Time profiles of the three incidence surfaces used for data generation. The dashed lines denote the
increasing, flat and decreasing scenarios for incidence in most recent years. b Diagnosis probabilities used
for data generation, by undiagnosed state
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Fig. 5 Time profiles of the three data-generating incidence surfaces, stratified by age-range: a 15–24; b
25–34, c 35–44, d 45+
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5.1 Study design

For each of the three incidence surfaces considered, 50 sets of simulated data were
generated. Estimation of the incidence surface was then carried out for each simulated
dataset, with the incidence surface modelled using each of the four splines discussed
in Table 1. All splines considered have 80 parameters. For thin plate splines, knots are
located at intervals of 2 years in the time dimension, and every 6.5 years in the age
dimension (i.e. for a total of 10 and 8 knots in the time and age dimension respec-
tively). For each of the two marginal splines of a tensor product we specified 10 and 8
parameters in the time and age dimension respectively (for a total of 80 parameters),
using equidistant knots. Theweakly informative priors imposed on the reparameterised
coefficients are available in Sect. 3.5 of the online resource.

The smoothing parameters λs have a crucial role as they determine the roughness
of the estimated incidence curve. To reflect a lack of prior knowledge and a weak
preference towards smooth curves, diffuse half-t prior distributions with 2 degrees of
freedom and scale parameter 200 are chosen so that 95% of the prior density lies in
the [0, 400] region (Gelman 2006).

Alongside the smoothed infection process, a model for the diagnosis processD(δ)

is also specified. Diagnosis probabilities are expressed on a logistic scale, i.e. δk,i =
log

(
dk,i

1−dk,i

)
, using a first order random walk:

δk,i ∼ N (δk,i−1, σ
2
k ), i = 2, . . . , 20, k = 1, . . . , 4 (15)

A total of 600 scenarios are considered, where each scenario refers to a combination of
the data-generating incidence surface, a spline model for γ (e.g. tprs) and a simulated
dataset.

Inference is carried out using Stan (version 2.14), which employs Hamiltonian
Monte Carlo methods (Hoffman and Gelman 2014; Carpenter et al. 2017). Each pos-
terior estimate is obtained using three chains of 2000 iterations with burn-in of 1000.
Splines are implemented via the R package mgcv (Wood 2017), and the reparame-
terisations discussed in Wood (2016) are implemented for computational efficiency
(see online resource, Sect. 2.3). The weakly informative priors imposed on the repa-
rameterised spline coefficients, δk,1 and σ 2

k parameters are available in Sect. 3.5 of
the online resource. The approximate running time per scenario is 10 h. Codes are
available at https://github.com/frbrz25/Thesis_Codes.

5.2 Assessment

For the mth (m = 1, . . . , 600) scenario, posterior distributions for the incidence
surface and the diagnosis probabilities for each diagnosis state are obtained with
̂Hm = {̂hm1,1, . . . , ĥm1,A, . . . , ĥmT ,1, . . . ĥ

m
T ,A} and ̂Dm

k = {d̂mk,1, . . . , d̂mk,T } denoting
the corresponding pointwise posterior means respectively. The corresponding α/2

quantiles of the posterior distributions are denoted ̂Hm,α/2 = {̂hm,α/2
1,1 , . . . , ĥm,α/2

T ,A }
and ̂Dm,α/2

k = {d̂m,α/2
k,1 , . . . , d̂m,α/2

k,T }.
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The Predictive Mean Squared Error (PMSE) is the mean of squared errors between
the data-generating and the estimated incidence curves. For the mth scenario this has
the expression:

PMSE( ̂Hm
) = 1

T A

T∑

i=1

A∑

j=1

(
ĥmi, j − h�

i, j

)2
(16)

The distribution of PMSE( ̂Hm
) can be evaluated for different splines, with lower

PMSE( ̂Hm
) values indicating that the data-generating incidence curve is more accu-

rately estimated. PMSE( ̂Dm
k ) for the diagnosis probabilities, from the kth state can

analogously be defined.
Convergence of HMC chains of 1000 (post burn-in) iterations is assessed using the

R̂ statistics of Gelman and Rubin (1992).

5.3 Results

Figure 6 shows that all the spline models considered (tps, tprs, ptenstprs, ptensbs)
reasonably reproduce the time profile of the flat incidence surface, except in the first
and last 3 years of the epidemic, where estimates diverge. Estimates in the initial period
are sensitive to the choice of the initial expected number of infected individuals π�.
A further sensitivity analysis (see Brizzi 2018) showed that these estimates are only
affected by π� for, at most, a period of 7 years.

In the last 3 years, the time profiles of the incidence surface are overestimated
in the majority of the scenarios under each spline model (especially ptenstprs and
ptensbs). This is induced by an incorrect attribution of recent diagnoses to an increase
in incidence (Fig. 6) resulting in a consistent under-estimation of the diagnosis prob-
abilities from state 1 in most recent years. There is also increased variability across
the estimates at this time, a common feature of back-calculation.

The age-specific time profiles of the incidence are adequately estimated for all age
ranges and splinemodels. In Fig. 7 aggregated incidence over the 15–24 and 25–34 age
ranges are accurate, even in the later years. Estimates in the 35–44 and 45+ age-ranges
are more volatile, due to fewer diagnoses occurring in these age-groups.

Figure 8 shows PMSE( ̂Hm
) for each of the splines. Among thin plate splines,

tprs outperform tps (similar findings were obtained in Wood 2003). Among tensor
product splines, ptensbs outperforms ptenstprs with the PMSE( ̂Hm

) distributions of
the tprs and ptensbs being similar. The incidence time profiles, estimated by tprs and
ptensbs (Fig. 7), only differ in the latest years, with the estimates from tprs visibly less
biased, but more volatile (especially in most recent years). This different performance
is attributable to the assumptions on the behaviour of the splines in most recent years,
for which data are only weakly informative. The linear trend of the tprs splines,
occasionally results in extreme estimates, whereas the ptensbs flattens out.

In this simulation study, tprs and ptensbs splines perform similarly. Note that the
time intervals and age groups are both measured on a yearly scale and hence the
isotropy assumption appears to hold. This assumption is hardly testable in practice
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Fig. 6 Pointwise posterior mean (gray solid lines) and 95% credible intervals (light gray dotted lines) of the
incidence surface time profile (a, c, e, g) and diagnosis probabilities from state 1 (b, d, f, h) for the different
splines: tps (a, b); tprs (c, d); ptenstprs (e, f); ptensbs (g, h). Black dashed lines represent the values used
in data generation

and does not apply in situations where data are collected on an uneven time and age
scale; as ptensbs splines do not rely on isotropy, they may be preferred to tprs splines.
All of the above conclusions consistently apply when also considering the increasing
and decreasing incidence profiles for recent infections.
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Fig. 7 Pointwise posterior mean (gray solid lines) and 95% credible intervals (light gray dotted lines) of
the incidence surface time profile for the tprs (a, c, e, g) and ptensbs (b, d, f, h), stratified by age ranges:
15–24 (a, b), 25–34 (c, d), 35–44 (e, f), and 45+ (g, h). Black dashed lines represent the values used in data
generation

Additionally there was no detectable difference in the goodness-of-fit achieved by
the different spline incidence models (see Brizzi 2018, Appendix G.2.1.).

A further sensitivity analysis (see Brizzi 2018, Sect. 4.6.4) revealed that incidence
estimates are robust to the specifiedweakly informative prior for the smoothing param-
eters λs .
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Fig. 8 Comparison of the
performance of four spline
models in terms of the
distribution of the predictive
mean square error PMSE
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6 Application to theMSM-HIV epidemic in England andWales

As an illustration, we apply the back-calculation model described in Sect. 5, to the
data introduced in Sect. 2. Specifically, we focus on reconstructing incidence from
the mid 1990s when CD4 data started to become more reliable, including a total of
45,972 diagnoses from 1995 to 2015. Individuals are assumed to have seroconverted
between 15 and 66 years of age. The expected number of undiagnosed individuals at
the beginning of 1995 (i.e. π ) and progression probabilitiesQ are set as in Sects. 3.2
and 3.3 of the online resource.

6.1 Initial investigations

As in Sect. 5 a yearly scale for both time and age (i.e. T = 21, A = 52) is assumed.
Incidence is modelled using a ptensbs spline and diagnosis probabilities through a
random walk on a logistic scale, independent of current age. As before, models are
implemented in Stan, using four chains of 2000 iterations, the first 1000 of which
were burn-in. The resulting posterior sample of 4000 iterationswas obtained in approx-
imately 8 h.

Figure 9a is a plot of the estimated incidence surfaces obtained by sequentially
including an additional year of data from 2010 to 2015. Let ĥ y

i denote the estimate of
the time profile of incidence in the i th year, using data up to the end of the yth year,
i.e. ĥ y

i = ∑A
j=1 ĥ

y
i, j . Note that ĥ

12
12 and ĥ1313 are approximately 4000, but are revised

downwards (i.e. ĥ1512 and ĥ
15
13) to approximately 2500 when data up to the end of 2015

are used. The additional 2 years of data are informative about infection levels in 2012
and 2013 and thus the increasing trend estimated using data up to the end of 2012 and
2013 is potentially misleading.

6.2 Investigating the robustness of themodel

Ensuring the robustness of the model in most recent years is crucial. Additional flex-
ibility, achieved by considering a finer (quarterly) time scale and/or extending the

123



F. Brizzi et al.

(e) (f)

(c) (d)

(a) (b)

95 97 99 01 03 05 07 09 11 13 15 95 97 99 01 03 05 07 09 11 13 15

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

Year

E
xp

ec
te

d
 n

u
m

b
er

 o
f 

n
ew

 in
fe

ct
io

n
s

Posterior mean 95% Credible intervals

Data to the end of 2015 2014 2013 2012 2011

Fig. 9 Posterior mean of the incidence surface time profile, estimated using data up to the end of 2011, 2012,
2013, 2014, and 2015, stratified by model: a YAID; b QAID; c YADD0; d QADD0; e YAAD1; f QAAD1

model to make the diagnosis probabilities dependent on current age, may allow the
model to better adapt to recent changes in the data.

We consider three models for the age-dependence of diagnosis probabilities and
two alternative time scales, using six models in total.

1. YAID: yearly model, with age-independent diagnosis probabilities (as discussed
in the previous section). Let i = 2, . . . , T , j = 1, . . . , A, k = 1, . . . , 4 and:

δk,i, j = δk,i−1, j + σkεik, εik ∼ N (0, 1) (17)
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with initial condition:

δk,1, j = mk + σ0,kε1k, ε1k ∼ N (0, 1) (18)

where mk and σ0,k are known fixed constants, whereas σk are estimated.
2. YADD0: As YAID, except for an additive term α j in (17) and (18). This term

has the interpretation of an age-specific linear time trend in the logistic diagnosis
probabilities and α j is estimated, after imposing a N(0, 1) prior on it.

3. YADD1: As YADD0, except that we use an age and state specific α j,k time trend
in the logistic diagnosis probabilities.

4. QAID: As YAID, but using a quarterly time scale.
5. QADD0: As YADD0, but using a quarterly time scale.
6. QADD1: As YADD1, but using a quarterly time scale.

Figure 9 displays the sensitivity of the estimated time profile of the incidence surface
to the sequential addition of further years of data and demonstrates that the QAAD1
model is the most robust among the models considered. Estimates of incidence, both
at population and at age-specific level in the most recent years are only slightly revised
when further years of data are added, suggesting that the estimated trends in incidence
are not artificial.

All themodels are consistentwith theHIVdiagnosis data, as judged by the goodness
of fit to the observed data (Brizzi 2018, Appendix H.4.). However the YAAD1 and
QAAD1 seem to better fit the AIDS and CD4 count data, especially in the 15–24 and
45+ age ranges. The number of diagnoses with CD4 count in the (200, 500] range,
between 2005 and 2015, only increase in the 15–24 age range. A model with a state-
and-age dependent starting value for the diagnosis probabilities, allows this feature of
the data to be captured. For all age ranges, the posterior-predictive distribution of CD4
count data include all data points, but credible intervals are wide. Although overfitting
may be an issue, as suggested by the noisy fit to CD4 data, QAAD1 successfully
achieves robust incidence estimates.

6.3 Illustration results

Figure 10 shows the results obtained from the QAAD1 model. Figure 10a plots the
expected number of infections over time; incidence has steadily increased from 2007
onwards, even though a plateau is reached in the latest years. However, age-specific
back-calculation reveals that this plateau hides a sharp increase in the expected number
of infections for the 25–34 age-group from 2007 (Fig. 10b). Incidence has remained
approximately constant in this period for the other age ranges. As a result the dis-
tribution of age at infection has shifted towards younger ages: in 2000, 17%, 42%,
30%, 11%of individuals were respectively newly infected in age ranges 15–24, 25–34,
35–44 and 45+, compared to 19%, 45%, 24%, 12% of individuals in 2015 (Fig. 10c).

Similarly, Fig. 10d shows that the diagnosis probabilities from state 1 vary with
age, and are estimated to be higher for the 25–34 and the 35–44 age ranges.

The age-dependent back-calculation model further reveals that underlying a con-
stant trend in the expected number of undiagnosed infections (Fig. 10e) in the last 5
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Fig. 10 Posterior mean (and related 95 % credible intervals) of a number of relevant quantities for the
chosen final model, QAAD1: a incidence surface time profile; b incidence surface time profile, stratified by
age range; c proportion of incidence in each age range over time; d diagnosis probabilities from state 1; e
expected number of undiagnosed individuals; f expected number of undiagnosed individuals, by age range

years, there is a sharp increase in the expected number of undiagnosed individuals
living with HIV in the 25–34 age range, and a sharp decrease in the 35–44 age range
(Fig. 10f).

It is further interesting to note that age-dependent incidence estimates are reas-
suringly in agreement with results obtained from the simpler age-independent model
(Fig. 2), apart from the 1995–1998 period. Over these years the incidence estimates
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are highly sensitive to the choice of π�, the age specific distribution of the infected
undiagnosed population in 1995, which is instead estimated from historical data in the
age-independent model. Results from the two models become consistent after 1998,
when results are no longer influenced by the specification of π�.

7 Discussion

Back-calculation plays an important role in the monitoring of HIV incidence, based
on routinely collected surveillance data. The contributions of Odd Aalen to the back-
calculation literature, through pioneering the exploitation of newly available sources
of data (Aalen et al. 1994; Farewell et al. 1994), particularly within amulti-state model
(Aalen et al. 1997; Sweeting et al. 2005), have been fundamental. These ideas have
been central to the development of multi-state back-calculation, where the incorpo-
ration of information on CD4 count data around HIV diagnosis, has also enabled
estimation of trends in diagnosis probabilities and, consequently, trends in the num-
ber of undiagnosed infections (Birrell et al. 2012). In this paper, we have proposed a
further extension of this CD4-staged back-calculation model, which allows the joint
estimation of age- and time-specific HIV incidence, as well as age- and time-specific
diagnosis probabilities. This insight into the HIV epidemic is extremely valuable for
targeting and evaluating interventions aimed at reducing HIV prevalence and trans-
mission.

Existing approaches to smoothing incidence over time and age used strong mul-
tiplicative assumptions or step functions, which require the arbitrary definition of
corner-points. We have thoroughly investigated spline models for smoothing inci-
dence jointly over time and age at infection at a finer level of detail (52 yearly age
groups, 80 quarterly time periods). Bivariate splines allow the capture of age- and time-
interactions in a continuousmanner, with tensor product splines permitting differential
smoothing in the two dimensions. Results from the simulation study show that tensor
product splines, constructed frommarginal cubic B-splines measuring roughness with
first order difference penalty squared (ptensbs), are particularly suitable.

Any back-calculation model provides very uncertain incidence estimates over the
most recent period, which are the most crucial to inform public health decision mak-
ing. This is still true, to some extent, for the model we propose here, motivating a
further extension of the backcalculation to incorporate additional data on biomarkers
indicative of recent infection (Ndawinz et al. 2011; Yan et al. 2011). Since 2009, PHE
has introduced the routine application of Recent Infection Testing Algorithms (RITA)
to new HIV diagnoses, allowing the identification of ‘recent’ infections (Aghaizu
et al. 2014). In principle, the proposed multi-state back-calculation framework could
be extended through the addition of undiagnosed states for newly infected individuals
to include RITA data. In practice, this poses some challenges: many new diagnoses
are not RITA tested; and an increase in the number of states will result in both model
complexity and computational demand. The approach proposed here already requires
long running times, and consideration of a reduced and/or more coarse time scale is
often necessary to achieve implementation within an acceptable computational bud-
get. Running times are of the order of 10 and 80 h for a yearly and quarterly time scale,
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respectively, even when only considering the last 20 years of the epidemic. Despite
being faster to implement, yearly models produce estimates that are substantially less
stable (e.g. to the addition of further years of data) than the respective quarterly esti-
mates. To successfully incorporate RITA data, future research would benefit from
focusing on more computationally efficient inferential approaches than used here.

We have presented a method to estimate age-specific trends in incidence, diagno-
sis and undiagnosed prevalence of HIV using information from routine surveillance.
New diagnosis and early infection biomarker data are becoming increasingly avail-
able worldwide, even in less developed countries. Our approach is of value in those
countries, as our model can be easily adapted to accommodate limited historical data.
By assuming an initial distribution π� for the infected individuals across the undiag-
nosed states at a convenient starting point, age-specific incidence can still be estimated
with results sensitive to the choice of π� only for the initial years. In countries with
established surveillance systems as England and Wales, our approach represents an
insightful new tool to guide the targeting of test and treat and pre-exposure prophylaxis
strategies (Volz et al. 2018) and to support their evaluation.
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