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Abstract
We introduce a novel approach to correcting context-dependent dt-mistakes, one of the most

frequent spelling errors in the Dutch language. We show that by using a neural network to
estimate the probability distribution of a verb’s suffix conditioned jointly on its stem and context,
we obtain large improvements over state-of-the-art spell checkers on three different benchmarking
datasets, achieving a perfect score on a verb spelling test from de Standaard, a Flemish newspaper.
The method is unsupervised and only relies on basic preprocessing tools to tokenize the text and
identify verbs, which enables training on millions of sentences. Furthermore, we propose a method
to determine which words in a sentence cause the system to make corrections, which is valuable
for providing feedback to the user.

1. Introduction

Verbs in the Dutch language get assigned different inflections depending on their grammatical role
and position in a sentence. For some verbs different inflections lead to the same pronunciation,
making it impossible to hear which grammar rule applies. This phenomenon gives rise to one of the
most common spelling mistakes in Dutch, commonly referred to as dt-mistakes, which even native
speakers and/or language professionals are prone to make (Paleis maakt dt-fout in kerstboodschap
2017, Dt-fout in Het Journaal 2013). According to a study of spelling errors on the Internet, dt-errors
were the most frequent classical spelling mistake in Dutch (Gheuens 2012).1

An automatic solution for the dt-problem would be very desirable, however, previous investiga-
tions found that current grammar and spelling checkers demonstrate low recall when it comes to
context-dependent dt-mistakes (Laevaert 2017). In this paper, we introduce a new approach that
tackles this problem. More specifically, our work has three main contributions:

• We show how we can successfully train a neural network to correct context-dependent dt-
mistakes, without annotated training examples, on millions of sentences. We report large
improvements over state-of-the-art grammar and spelling checkers on three different bench-
marking test sets.

• We propose a generative process for creating dt-mistakes, motivated by cognitive insights
(Verhaert and Sandra 2016). This enables the creation of two large-scale evaluation sets,
which we use in addition to the three aforementioned test sets.

• We introduce a method for determining which words in a sentence lead the system to make
its prediction. This is a valuable means for providing feedback to the users, especially if they

1. The term “classical mistake” refers to the fact that the mistake was not intentional, unlike mistakes related to
cyber-slang or dialect usage.
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are still not very familiar with the conjugation rules (e.g., for misspelled past participles it
identifies the corresponding auxiliary verb, hereby indicating the rule that applies).

The remainder of this paper is structured as follows. Section 2 provides a brief introduction
to the dt grammar rules and defines the context-dependent dt-error correction task. Section 3
presents an overview of related work. Section 4 describes the proposed approach and different model
architectures that we investigate. Section 5 explains how we construct the training and evaluation
datasets. Sections 6 and 7 report on the setup for our experiments, and the corresponding results
and observations. The conclusions and implications of this work are discussed in Section 8.

2. Dt-rules

In this section we introduce some of the Dutch verb conjugation rules (further also referred to as dt-
rules) and the context-dependent dt-error correction task. Table 1 summarizes the most important
dt-rules. It is not our intention to provide an in-depth explanation of all the rules, though it is
important to observe that verb inflections depend on multiple factors: the verb tense, the number of
the subject, the position of the subject w.r.t. the verb, the raw stem of the verb (i.e., the infinitive
minus the -en suffix), etc. Native speakers typically do not have problems applying these rules when
they can hear the inflection. Verbs that have a homophone form (e.g., beantwoord and beantwoordt)
give rise to many spelling errors, however. Such spelling errors are typically referred to as dt-
mistakes. 2 In this work, we focus on correcting context-dependent dt-mistakes. The sentence ”Ik
beantwoordt de vraag.”, contains an example of a context-dependent dt-mistake: beantwoordt is a
correct Dutch verb form, hence an interpretation of the rest of the sentence is required to determine
which grammar rule applies and detect the mistake. If instead the misspelled verb was beantwoort,
then it would not have been a context-dependent mistake as beantwoort is not part of the Dutch
vocabulary and can therefore be identified using dictionary lookups.

We formally define context-dependent dt-correction as the correction of a sentence s̃, consisting
of N words x1..N to a sentence s such that incorrectly spelled, context-dependent dt-errors are
corrected.

3. Related work

Classical works in context-dependent spelling correction were based on n-gram language models
(Atwell and Elliott 1987, Gale and Church 1990, Church and Gale 1991, Mays et al. 1991). An
important drawback of these approaches is that the n-gram assumption inhibits learning long-range
dependencies. The use of higher order n-gram models to mitigate this issue generalizes badly due
to the sparsity of language. Another line of research views context-dependent spelling correction
as a disambiguation problem, where different classifiers are trained for each word pair that can be
confused (Yarowsky 1994, Gale et al. 1995, Golding 1996, Golding et al. 1999, Mangu and Brill 1997).
This approach is ill-suited for dt-correction as it does not account for the fact that the correct spelling
of any given verb depends on the same set of rules. Learning different classifiers for each confusion
set (e.g., {antwoord, antwoordt}, or {vind, vindt}) therefore limits the generalizations that can be
made from a training set.

2. Some sources use a more narrow definition of dt-mistakes and only consider rules 1-6 in Table 1.



Table 1: Some of the main Dutch verb conjugation rules that illustrate how confusion can arise
between homophone verb forms, for which it is impossible to hear which rule applies (e.g.,
beantwoord vs beantwoordt). Note that this table is not a comprehensive overview of all
Dutch verb conjugation rules and that not all these rules apply to all verbs (e.g., there are
verbs for which the past participles end with -en). † (d/t): depending on the last character
of the raw stem (infinitive - en) -d, -t or nothing should be added.

# tense usage subj. position rule example + translation

1 present 1st person anywhere stem
Ik beantwoord je vraag.
I answer your question.

2 present 2nd person
after
the verb

stem
Beantwoord je de vraag?
Do you answer the question?

3
past
participle

as verb anywhere
(ge) + stem
+ (d/t)†

Hij heeft de vraag beantwoord.
He has answered the question.

4 imperative / no subject stem
Beantwoord de vraag!
Answer the question!

5 present 2nd person
not after
the verb

stem + t
Jij beantwoordt de vraag.
You answer the question.

6 present 3rd person anywhere stem + t
Hij beantwoordt je vraag.
He answers your question.

7
past
participle

adjective anywhere
(ge) + stem
+ (d/t)†+ (e)

De beantwoorde vraag ...
The answered question ...

8 past singular anywhere stem + te/de
Hij beantwoordde de vraag.
He answered the question.

9 past plural anywhere stem + ten/den
Zij beantwoordden de vraag.
They answered the question.

10 present plural anywhere stem + en
Zij beantwoorden de vraag.
They answer the question.

11 infinitive / anywhere stem + en
Ik zal de vraag beantwoorden.
I will answer the question.

Prior work in context-dependent dt-error correction typically relies on handcrafted rules (e.g.,
Vosse (1992) defines an augmented context-free grammar and use a shift-reduce parser to detect
grammatical errors due to morphosyntactic inconsistencies) or uses a shallow statistical model from
a limited context window. While rules can be precise, they are too restrictive and fail to detect
errors when verb and subject/auxiliary verb are further apart. The work of Stehouwer et al. (2009)
can be seen as a first attempt to learn a dt-correction system in a data-driven fashion. They use
IGTree, a fast approximation of k-nearest neighbor classification (Daelemans et al. 1997), to identify
the correct dt-verb forms based on fixed-length feature vectors constructed from context windows
of four words. However, the use of small, fixed-length context windows is an oversimplification that
will again run into problems when verb and subject/auxiliary are further apart. The architectures
we propose address this issue by using a deep classifier which uses the full sentence rather than a
limited window of context words, and learns to represent the context with distributed representations
instead of predefined sparse feature vectors, enabling better generalization over contexts.



Figure 1: Architectural overview of the dt-corrector. The input to the system is the position of the
verb i and the sentence where the input verb is replaced by its stem. Two neural networks
are responsible for encoding the representations of the context and the verb respectively.
The resulting representations are concatenated and fused by a feed-forward neural network
and transformed to a probability distribution over suffixes using a softmax layer.

4. Approach

We use a neural network to estimate the conditional probability distribution of the suffix of the verb
xi at position i given the stem of the verb, the other words in the sentence, and the position of the
verb in the sentence (see Equation 1). During prediction, we use this distribution to select the most
likely homophone verb form.

p(suffix (xi) | x1..i−1, stem(xi), xi+1..N , i) (1)

Figure 1 presents an architectural overview of the system. We train a neural network that
estimates the conditional distribution over verb suffixes (no suffix, -t, -d, -e, -de, -te, -en, -den,
-ten) given the stem of the verb, the other words in the sentence, and the position of the verb in
the sentence. The network can be conceptually divided into three components: a verb encoder,
which builds a representation for the stem of the input verb; a context encoder, which builds a
representation for the sentence using the position i of the verb within this sentence; and a feed-
forward neural network that fuses the verb and sentence representations and transforms them to a
probability distribution over suffixes using a softmax layer.

We also investigated an alternative framework where instead of predicting the suffix from the
stem, we predict the edit rules that correct a potentially wrongly-spelled verb given its context. This
approach has the drawback that it assumes a large annotated set of dt-mistakes. In a preliminary
investigation (Laevaert 2017), we created such a dataset by automatically introducing mistakes
according to a handpicked distribution of dt-errors. However, we found that the performance drops
significantly when the dt-error distributions of the training and test sets do not match, making it
infeasible to build a practical system with this approach.

In this work we show it is possible to obtain a highly accurate dt-correction system without
making assumptions about the distribution of dt-mistakes. In the remainder of this section, we
describe our architecture in further detail.



Figure 2: Illustration of the context encoders: A) BiLstm, B) BiLstm + Attention

4.1 Verb stem representation

We hypothesize that a good verb stem representation is useful for a) determining the suffix of past
participles, this is either -d, -t, or no suffix depending on the last letter of the raw verb stem; and b)
learning a bias towards the most used suffix for a given stem. In the Europarl dataset for instance,
wordt is much more frequent than word. A bias towards the more frequent verb forms could benefit
the precision of a system in cases where it is uncertain about how to interpret the input sentence.
Based on this intuition we will experiment with three different verb stem representations:

– chars obtains a verb stem representation ri,stem from the last state of an LSTM (Hochreiter
and Schmidhuber 1997) to which the verb stem is fed as a sequence of characters. Characters are
represented as one-hot vectors;

– chars+word obtains a verb representation ri,stem by concatenating the chars representation
with a word embedding of the stem;

– last char+word obtains a verb representation ri,stem by concatenating the last character of
the stem embedded into a three-dimensional vector with a word embedding of the stem. The
three-dimensional character embedding is motivated by the fact that characters can be grouped
in three categories based on the suffix that should be added as a past participle.

4.2 Context representation

From the context it should be clear which dt-rule applies (see Table 1). It should therefore encode
information about the subject, the tense in which the verb is used, and the position of the verb
w.r.t. the subject. We experiment with two different context representations (see Figure 2):

– BiLSTM (Figure 2A) obtains a context representation ri,ctxt by concatenating the states,
−→
h i−1

and
←−
h i+1 of a bidirectional LSTMs (Schuster and Paliwal 1997, Graves and Schmidhuber 2005).



A bidirectional LSTM consists of two LSTMs: LSTM forward computes its states
−→
h 1..
−→
h N by

processing the words in order, LSTM backward computes
←−
h N ..

←−
h 1 processes the words in reverse

order.3 Each word xj is represented by its word embedding E(xj) before feeding it to the LSTMs.

ri,ctxt =
−→
h i−1 ‖

←−
h i+1 (2)

−→
h j = LSTMforward(

−→
h j−1, E(xj)) (3)

←−
h j = LSTMbackward(

←−
h j+1, E(xj)) (4)

Here ‖ denotes concatenation.

– BiLSTM + Attention (Figure 2B) obtains a context representation ri,ctxt by first encoding the
sentence, for which the relevant verb is replaced by its stem, with a bidirectional LSTM, and then
using an attention mechanism to extract the relevant information from its states h1..N . A word
xj is fed to the LSTM as the concatenation of its corresponding word embedding E(xj) and a
binary indicator Ij=i to identify the position of the verb.

An attention mechanism summarizes a sequence of vectors to a single vector as a linear combi-
nation of these vectors. The motivation for an attention mechanism is twofold. Firstly, attention
models are typically beneficial when dealing with long sequences. They could therefore perform
better than BiLSTM in cases where the subject and the direct verb are far apart. BiLSTM always
uses the states next to the verb stem, even if the subject is not located nearby. The attention
mechanism, on the other hand, calculates a weighted combination of all the states. Second, an
attention mechanism could help with gaining insights in what the model has learned. By visualiz-
ing the attention weights we might uncover what words/patterns were most relevant for building
the context representation.

There have been different attention mechanisms proposed in the literature. In this paper, we
use single-head attention with an additive attention scoring function (Bahdanau et al. 2015),
the best performing attention mechanism for neural machine translation in the comparison of
Britz et al. (2017).4 The attention weights αj are calculated by normalizing the scores score1, ...,
scoreN calculated by the additive scoring function fadd, which compares a hidden state hj with a
query vector q, computes the dot product between the result (after passing it to a tanh activation
function) and a vector v. The vectors q and v are learned jointly with the rest of the network
parameters. E(x) refers to the embedding of word x.

3. Note that because the model only requires
−→
h i−1 and

←−
h i+1 we do not need to actually process the forward and

backward sequences all the way to the end, see Figure 2.
4. We also performed preliminary experiments with multi-head attention, but this yielded no improvements.



ri,ctxt = Attention(h1..N ) (5)

hj =
−→
h j ‖

←−
h j (6)

−→
h j = LSTMleft(

−→
h j−1, E(xj)) (7)

←−
h j = LSTMright(

←−
h j+1, E(xj)) (8)

Attention(h1..N ) =

N∑
j=1

αj hj (9)

αj =
exp(scorej)∑N
k=1 exp(scorek)

(10)

scorej = fadd(q, hj) (11)

fadd(q, hj) = v · tanh(Wadd,q q +Wadd,h hj) (12)

4.3 Transforming representations to a suffix distribution

The verb and context representations are concatenated and projected to a C-dimensional vector by
a feed-forward neural network, where C is equal to the number of suffixes. The softmax function
normalizes the resulting vector to a probability distribution over suffixes. For our experiments
the feed-forward neural network consists of a single hidden layer with 128 dimensions and uses
a ReLU activation function, which is defined as max(0, x) and is the default recommendation in
modern neural networks (Jarrett et al. 2009, Nair and Hinton 2010, Glorot et al. 2011, Goodfellow
et al. 2016).

p(y|x1..i−1, stem(xi), xi+1..N , i) = Softmax(li) (13)

li = Wl ri + bl (14)

ri = FeedForward(ri,stem ‖ ri,ctxt) (15)

4.4 Training and prediction

We use the cross-entropy with the empirical distribution of the training data D as the training
objective:

L(D) = − 1

|D|
∑

x,i∈D
log p(suffix (xi)|x1..i−1, stem(xi), xi+1..N , i) (16)

where |D| denotes the number of training examples

There are nine suffix classes in total, but during prediction we reduce this to only two relevant
classes for each instance based on the observation that there can be at most one (real-word) homo-
phone verb form for any given verb. For example beantwoord can only be confused with beantwoordt,
not with for instance beantwoorde as their pronunciations differ; similarly beantwoorde can only be
confused with beantwoordde. Hence, during prediction we identify which two suffixes are relevant
based on the input word5 and force the system to predict the most likely of the two.

5. The last letter of the stem and the suffix of the input word uniquely determine the verb forms that can be confused.



5. Dataset & preprocessing

Training neural networks requires a significant amount of data. To our knowledge, no annotated
corpus of dt-mistakes is available. By reducing the dt-correction task to a verb suffix prediction
problem as described in the previous section, it suffices to have a large dataset of correctly written
Dutch text. To this end, we used the Dutch portion of the Europarl corpus (Koehn 2005), which is
written by language professionals.

To have a reliable evaluation of dt-correction systems, we require a significant number of sentences
with annotated dt-mistakes. We have therefore decided to automatically introduce mistakes in
20,000 Europarl sentences to create a validation and test set of 10,000 sentences each. To verify
how well a system generalizes on out-of-domain test data and to enable a fair comparison with
existing systems, we construct three additional out-of-domain test sets from online verb spelling
tests. The remainder of this section discusses the different preprocessing steps and our methodology
for creating validation and test sets. The datasets and preprocessing scripts are available at http:

//liir.cs.kuleuven.be/software.php.

5.1 Identifying and stemming verbs

We automatically identify verbs in a sentence based on their part-of-speech (PoS) tags using TreeTag-
ger (Schmid 1994).6 For some verbs we can easily derive their stem based on their last character(s),
e.g., if a verb ends with −dt. Other word endings are ambiguous, however (e.g., a d-suffix could
be the result of rule 3 of Table 1, in which case we can not be certain if d is part of the stem).
From the infinitive of the verb, in contrast, we can determine the stem unambiguously. We therefore
automatically obtain the lemmas using TreeTagger. For verbs for which the lemma is unknown to
the tagger, we derive the stem from the dt-rules if possible (e.g., when a verb ends with −dt).

5.2 Identifying relevant verbs

Not all verbs are relevant for training and evaluating a dt-correction system. For evaluation purposes,
we are only interested in dt-homophones as these are the verbs for which spelling errors occur. We
thus automatically construct a list of dt-homophones, which is used to filter verbs during evaluation
and testing. For the training data, there is no need to be so restrictive: as the dt-rules apply for
the majority of Dutch verbs, we can significantly increase the amount of training data if we also
incorporate regular, non-dt verbs. To this end, in addition to dt-homophones, we use all regular
verbs for which TreeTagger can obtain the lemma, so that the stem can be determined reliably.
We verify if a verb is regular, by constructing a set of irregular verb forms from online grammar
sources 7,8, and by checking verbs against this list.

5.3 A generative process for dt-mistakes

To create the validation and test datasets, we need a scheme to introduce dt-mistakes in text.
Cognitive research on dt-mistakes has found that people tend to use the more frequent spelling
of a homophone verb form when they are distracted or put under time pressure (Verhaert and
Sandra 2016). Based on this insight, we propose a generative process for dt-mistakes, summarized
in Algorithm 1.

From every sentence s in the text corpus C, the verbs are identified using TreeTagger. For
every verb that has a homophone spelling, we sample a binary variable ifocused from a Bernoulli
distribution that indicates whether a person is focused when writing the verb. In the scenario where

6. Frog (Van den Bosch et al. 2007) could have been a good alternative to TreeTagger.
7. https://educatie-en-school.infonu.nl/taal/28516-regelmatige-en-onregelmatige-werkwoorden-in-de-ott.

html

8. http://users.telenet.be/orandago/nederlands/ww.doc



Algorithm 1: Generative process for introducing dt-mistakes motivated by cog-
nitive insights.

initialize: the focus parameter pf ;
for s in C do

V = identify verbs(sentence)
for v in V do

sample ifocused ∼ Bernoulli(pf )
if not has homophone spelling(v) or ifocused = 1 then

continue
valt = homophone spelling(v)
sample perror ∼ Beta(freq(valt), freq(v)))
sample ierror ∼ Bernoulli(perror)
if ierror = 1 then

replace(s, v, valt)

the person is distracted (i.e., ifocused = 0), we sample the probability perror that the person will use
the wrong spelling from a Beta distribution where the frequencies of the two spellings are used as
the concentration parameters.9 perror is used as the parameter of a Bernoulli distribution to sample
another binary indicator ierror. When ierror = 1, we replace v by its homophone counterpart valt,
hereby introducing a dt-error. This process ensures that we will never introduce mistakes that lead
to words that do not exist in Dutch and that mistakes where the used verb form is dominant to the
correct verb form are more likely, hence incorporating the insights of Verhaert and Sandra (2016).

We note that the generative process could potentially be made more cognitively plausible by
incorporating contextual information as it has been shown that the immediate context in which
homophones occur also plays a role in their selection (Daelemans and van den Bosch 2007). As
the main goal of this work is to build a successful dt-correction system, a rigorous comparison of
different generative processes falls out of our scope. We leave this for further research.

5.4 Out-of-domain test sets

To allow an unbiased comparison with existing spell checkers, we construct three out-of-domain (i.e.,
not related to the domain of the Europarl dataset) test sets from online spelling tests containing
20 verb conjugation exercises each: 1) Nooit meer dt-fouten from de Standaard (a Flemish news
paper)10; 2) the HBO taaltoets, spelling werkwoordsvormen from Uitgeverij Pak (a Dutch publishing
house)11; and 3) a test from Nederlandse taaltest also from Uitgeverij Pak12. The exercises use fill-
in-the-blanks type of questions, where a person has to add the right suffix to a given verb stem
within a given sentence. To be able to compare with other spelling checkers, we manually fill-in the
blanks such that we get the wrongly-spelled homophones. For seven of the sixty verbs no real-word
homophone existed (e.g., for stond : stondt and stont are not correct Dutch words). These are
retained from the test sets because replacing them would result in context-independent errors.

5.5 Statistics

Statistics about the distribution of suffixes in the resulting train, development and test sets are
shown in Table 2.

9. Note that when someone is distracted he/she can still use the correct spelling.
10. https://www.standaard.be/cnt/dmf20141103_01356248

11. http://www.hbotaaltoets.nl/spelling-werkwoordsvormen

12. http://www.nederlandsetaaltest.nl/spellingtest-werkwoorden



Table 2: Label distribution of the train, development, and test sets. -'' denotes that the verb only
consists of the stem.

dataset -'' -t -d -e -de -te -en -den -ten #verbs #errors

europarl-train 314k 762k 464k 27k 102k 24k 1,097k 22k 2,428 2,814k n/a

europarl-dev 931 6,754 3,796 65 0 3 308 0 0 12k 1,726

europarl-test 888 6,814 3,861 69 1 6 284 3 0 12k 1,665
de Standaard 1 10 9 0 0 0 0 0 0 20 20
hbo taaltoets 2 5 2 2 0 1 1 1 2 16 16
nl taaltest 2 8 1 2 0 1 1 1 1 17 17

6. Experimental setup

We used 100-dimensional word embeddings, pre-trained with continuous Skip-gram using the word2vec
toolkit with default hyper-parameters. The LSTMs consist of two layers and 128 memory cells for
each layer. We use dropout regularization (Srivastava et al. 2014) with dropout probability 0.1. For
the LSTMs we use variational recurrent dropout (Gal and Ghahramani 2016).

We use the Adam optimizer with the recommended hyper-parameters (Kingma and Ba 2015)
and train for a maximum of 500,000 iterations with a mini-batch size of 100, saving checkpoints
every 1,000 iterations and selecting the checkpoint with the best F1-score on the development set
for evaluation on the test sets.

In preliminary experiments, we found that training on plural verb forms (ending with -en, -den,
-ten) significantly elongates the training time without having a beneficial impact on dt-correction
performance due to the large imbalance between the label frequencies of -en, -den and -ten in the
training set (see Table 2). We therefore did not train on the plural forms in the experiments reported
below. During prediction, the system will not check the spelling of plural forms.

We use the following evaluation metrics (Reynaert 2008): accuracy (acc), precision (prec), recall
(rec), and F1 (F1). In this context we define true positives (tp) as the instances where the system
correctly changes the input spelling; false positives (fp) are the cases where the system introduces an
error; false negatives (fn) are wrongly spelled verbs which the system did not correct; true negatives
(tn) are correctly spelled which the system left untouched.

acc =
tp+ tn

tp+ tn+ fp+ fn
(17)

prec =
tp

tp+ fp
(18)

rec =
tp

tp+ fn
(19)

F1 =
2 prec · rec
prec+ rec

(20)

7. Experiments

7.1 Influence of spelling errors on PoS-tagger

In this experiment, we verify the robustness of the PoS-tagger w.r.t. dt-spelling errors. Using the
development set with annotated dt-mistakes, we verified if TreeTagger could still assign the same
PoS tag when a dt-verb was replaced by its homophone. We found that 98.5 % of the wrongly-spelled



verbs are still identified as verbs. However, for only 19.5 % of the wrongly-spelled verbs, the correct
tense was preserved. In the majority of the cases the tagger will assign the tense that is compatible
with the wrongly-spelled verb. This is unsurprising as PoS-taggers are typically trained on high-
quality corpora, with a low amount of spelling errors. Hence, taggers trained on such corpora will
have learned that the verb form is a strong predictor for its tense. From this result it is clear that
the accuracy of the tenses for wrongly-spelled verbs as recognized by TreeTagger is far too low to
be useful in a dt-correction system.

7.2 Context-agnostic baselines

In this experiment, we investigate the performance of models that do not use context. We compare
four models: majority class uses the input verb to decide which homophone suffixes it should
consider (see Subsection 4.4) and then picks the suffix that is most frequent in the training data;
the other three models use the different verb representations introduced in Subsection 4.1: chars,
last char+word, and chars+word. The results are reported in Table 3. We see that the best context-
agnostic models (chars and suffix+word) obtain an F1-score 55.59 on the test set. There is not a lot
of difference between verb representations. When comparing majority class with the other models,
we find support for the hypothesis that using verb representations can help to improve the precision
of the system (see Subsection 4.1).

Table 3: Results of baseline models that do not use context, evaluated on the Europarl development
(dev) and test (test) sets.

F1 acc prec rec
model/dataset dev test dev test dev test dev test

majority class 26.98 25.81 60.06 60.05 18.38 17.42 50.72 49.79
chars 56.13 55.59 88.78 88.95 65.11 63.32 49.33 49.55
last char+word 56.02 55.59 88.81 89.04 65.4 64.01 48.99 49.13
chars+word 55.84 55.5 88.77 89.02 65.22 63.88 48.81 49.07

7.3 Context and stem encodings

In this experiment, we explore the different combinations of verb and context representations intro-
duced in Subsections 4.1 and 4.2. The results are displayed in Table 4. We find that models that use
attention to encode the context outperform the other models for all verb representations. The verb
representation does not seem to have a large impact on the results. With attention, chars+word
obtains the best results on the development set, but on the test set there are no significant differences
between the three encodings. All six architectures’ results exhibit large performance gains over the
baselines that do not use context (Table 3). This shows that models are successfully leveraging the
context information.

The fact that these neural networks only use the stem of the verb that is being checked makes
these results particularly impressive. It means that the system output is largely independent of the
number of mistakes in the input spelling.13 We can hence expect nearly identical accuracy scores in
test sets with a higher or lower ratio of mistakes.

13. With exception of the plural forms (-en, -ten, -den) for which we always leave the input spelling unchanged.



Table 4: Comparison of combinations of verb and context encodings on Europarl-dev (dev) and
Europarl-test (test).

F1 acc prec rec
model/dataset dev test dev test dev test dev test

BiLSTM+chars 97.98 97.44 99.42 99.29 98.88 97.88 97.1 97
BiLSTM+last char+word 97.77 97.43 99.36 99.29 98.99 98.17 96.58 96.7
BiLSTM+chars+word 97.75 97.61 99.35 99.34 98.64 98.35 96.87 96.88

BiLSTM+Attn+chars 98.07 97.85 99.44 99.4 98.77 98.6 97.39 97.12
BiLSTM+Attn+last char+word 98.19 97.82 99.48 99.4 99.11 98.48 97.28 97.18
BiLSTM+Attn+chars+word 98.33 97.85 99.52 99.4 99.29 98.48 97.39 97.24

7.4 Extending the training data

In this experiment, we analyzed the effect of omitting non-dt verbs from the training data (all other
experiments include regular, non-dt verbs in the training set, see Subsection 5.2). We find F1-
scores of 97.75 and 97.52 on the Europarl development and test sets respectively. This is a decrease
compared to when the model is also trained on non-dt verbs, which obtained F1-scores of 98.33 and
97.85 (see Table 4). This confirms the hypothesis that a model that is also trained on non-dt verbs
generalizes better.

7.5 Comparison with existing systems

In this experiment, we compare our system with existing grammar and spell checking systems on the
out-of-domain test sets: de Standaard (dS), HBO taaltoets (hbo) , and Nederlandse taaltest (nltt).
We compare with the following systems:

– Microsoft Office Word, we experimented with three versions: Office Professional Plus 2013; Office
365, desktop version; and Office 365, Word online14. We report the results for Office 365, Word
online which demonstrated the best performance.

– Schrijfassistent (D’Hertefelt et al. 2014, Houthuys 2016, VRT lanceert online schrijfhulp 2016)15,
a tool for checking grammar, writing style, and spelling in Dutch developed by a collaboration
of het Instituut Levende Talen, KU Leuven; de Standaard (a Flemish newspaper); and VRT (the
Flemish public broadcasting organization).

– languatool.org 16, an open-source grammar, writing style, and spelling checker for several languages
including Dutch. For dt-correction it relies on a rule-based system (OpenTaal 2014).

– valkuil.net, an online spell checker for Dutch which relies on a data-driven approach for dt-rules.
This system uses a statistical, context-based system which uses a fixed context window of four
words to identify the correct verb form (Stehouwer and Van den Bosch 2009).

Table 5 reports the results. We find that BiLSTM+Attn+chars+word outperforms all the other
grammar and spelling checkers by a significant margin on all test sets. It is particularly effective on
the de Standaard test set, where it obtains a perfect score. For the other two test sets the system

14. Office 365 was tested in April 2018.
15. http://schrijfassistent.standaard.be/index.php

16. https://languagetool.org/nl



has perfect precision17, though the recall is significantly lower than for de Standaard. This is due to
the fact that these test sets query all verb forms (i.e., verbs ending with -en, -e, -d, or -t), whereas
the de Standaard test set focuses on verbs that end with -d or -t. Homophones that end with -ten,
-den, -te, -de, -e occur much less frequently and thus are more difficult for our system to predict
correctly.18 Furthermore, some of the input verb forms did not occur at all in the Europarl corpus,
and will therefore not be recognized as a dt-verb.

The performance improvement with respect to the existing spell checkers comes from a higher
recall. We found that the spell checkers were unable to find any of the errors where the misspelled
verb and the relevant context words (e.g., auxiliary verb or subject) were not adjacent to each
other. It is striking that valkuil.net did not detect any of the mistakes in the test sets. This
is probably related to the fact that the system was tuned to have high precision.19 The higher
recall scores obtained by BiLSTM+Attn+chars+word support the intuition that learning distributed
representations of the whole context yield better generalization than sparse one-hot representations
of fixed context windows. A straightforward way to further improve the recall of our system is to
extend our training corpus with other high quality Dutch texts such as news articles. Furthermore,
it could be beneficial to consider a strategy to subsample the frequent suffix classes to boost the
recall for the infrequent suffixes.

Table 5: Comparison with other grammar and spelling checkers.

F1 prec rec

model/dataset dS hbo nltt dS hbo nltt dS hbo nltt

language tool 0.00 0.00 11.11 0.00 0.00 100.00 0.00 0.00 5.88
Schrijfassistent 33.33 30.00 38.10 100.00 75.00 100.00 20.00 18.75 23.53
valkuil.net 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MS Word 26.09 11.76 21.05 100.00 100.00 100.00 15.00 6.25 11.76

BiLSTM+Attn
+chars+word

100.00 57.14 66.67 100.00 100.00 100.00 100.00 40.00 50.00

7.6 Acquiring insight in the model predictions

From previous experiments it is clear that the models have learned to successfully leverage context
for making accurate dt-corrections. The aim of this experiment is to uncover how the models are
using the context. In particular, we are interested in measuring the impact of each word in the
sentence on the prediction. We experimented with two alternative word saliency metrics:

– The weight αj that the attention mechanism assigns to the state corresponding to the word xj .

– The difference in the probability of the predicted class when we dropout the word embedding
E(xj) of xj (i.e., replacing E(xj) with a vector with all zeros) compared to normal prediction,
where we use all words.

We validated the effectiveness of these word saliency metrics by visualizing their output and
manually inspecting if it provides a plausible explanation for the model’s prediction. We found
that the dropout-based probability model yields intuitive results. Figure 3 shows heatmaps for the

17. It should be noted that due to the large number of errors in the test sets, high precision scores are not surprising
as there is little opportunity to introduce errors in correctly written words.

18. Recall from the experiment setup that the system was in fact not trained on plural forms because verbs that end
with -ten and -den are too infrequent.

19. http://valkuil.net/info



Figure 3: Heatmaps of the impact of each word on the prediction of the neural network for wrongly
spelled dt-verbs from the De Standaard test set. Impact of a word is measured by the
decrease in probability mass of the predicted class when we mask the word in the context
encoding (i.e., replace its word embedding by a vector of zeros).

dropout-based word saliency metric for sentences of the de Standaard test dataset. For finite verbs
in present tense the word with the largest impact is the subject, for past participles this is the
auxiliary verb. For the attention-based metric the results were not intuitive. The fact that attention
weights have so little explanatory value is surprising, it indicates that the states to which the neural
network attends still encode much relevant information from previous and/or subsequent states.

8. Conclusion

In this work, we introduced a new approach to automatic correction of context-dependent dt-
mistakes, one of the most frequent spelling errors in the Dutch language. By learning a neural
network to estimate the probability distribution of a verb’s suffix conditioned on its stem and the
context in which it occurs, we were able to build a spelling correction system that achieves state-
of-the-art performance on three different benchmarking datasets. The method does not require
annotated training examples and only relies on basic preprocessing tools to tokenize the text and
identify verbs, which enables training on millions of examples. Furthermore, we proposed a method
to determine which words in a sentence cause the system to make corrections, which can be a valu-
able way of providing feedback to the user. We still see room for further improvement for verb
suffixes that occur less frequently (-den, -ten, -de, -te, -e). A strategy where the more frequent suffix
classes are subsampled, may help dealing with these cases.
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