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Abstract. We present a neural architecture for cross-lingual mate sentence re-
trieval which encodes sentences in a joint multilingual space and learns to distin-
guish true translation pairs from semantically related sentences across languages.
The proposed model combines a recurrent sequence encoder with a bidirectional
attention layer and an intra-sentence attention mechanism. This way the final
fixed-size sentence representations in each training sentence pair depend on the
selection of contextualized token representations from the other sentence. The
representations of both sentences are then combined using the bilinear product
function to predict the relevance score. We show that, coupled with a shared
multilingual word embedding space, the proposed model strongly outperforms un-
supervised cross-lingual ranking functions, and that further boosts can be achieved
by combining the two approaches. Most importantly, we demonstrate the model’s
effectiveness in zero-shot language transfer settings: our multilingual framework
boosts cross-lingual sentence retrieval performance for unseen language pairs
without any training examples. This enables robust cross-lingual sentence retrieval
also for pairs of resource-lean languages, without any parallel data.

Keywords: Cross-lingual retrieval · Language transfer · Bidirectional attention
model · Sentence retrieval.

1 Introduction

Retrieving relevant content across languages (i.e., cross-lingual information retrieval,
termed CLIR henceforth) requires the ability to bridge the lexical gap between languages.
In general, there are three distinct approaches to CLIR. First, translating queries and/or
documents using dictionaries or full-blown machine translation (MT) to the same
language enables the use of monolingual retrieval models [31, 17, 23]. Second, the lexical
chasm can be crossed by grounding queries and documents in an external multilingual
knowledge source (e.g., Wikipedia or BabelNet) [46, 10]. Finally, other systems induce
shared cross-lingual semantic spaces (e.g., based on bilingual word embeddings) and
represent queries and documents as vectors in the shared space [9, 48, 49].

Each line of work comes with certain drawbacks: 1) robust MT systems require huge
amounts of parallel data, while these resources are still scarce for many language pairs
and domains; 2) concept coverage in multilingual knowledge bases like BabelNet [29] is
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still limited for resource-lean languages, and all content not present in a knowledge base
is effectively ignored by a CLIR system; 3) CLIR models based on bilingual semantic
spaces require parallel or comparable texts to induce such spaces [49, 40].

Due to smaller quantities of text which the ranking functions can exploit, sentence
retrieval is traditionally considered more challenging than standard document-level
retrieval [28, 32, 21, 23]. Cross-lingual sentence retrieval typically equals to identifying
parallel sentences in large text collections: the so-called mate retrieval task [30, 37, 42],
which benefits the construction of high-quality sentence-aligned data for MT model
training [41]. To this end, it is crucial to distinguish exact translation pairs from sentence
pairs that are only semantically related. This is why CLIR models that exploit coarse-
grained representations, e.g., by inducing latent topics [9, 48] or by aggregating word
embeddings [49], are not suitable for modeling such subtle differences in meaning.

In this work, we propose a neural architecture for cross-lingual sentence retrieval
which captures fine-grained semantic dependencies between sentences in different lan-
guages and distinguishes true sentence translations pairs from related sentences. Its
high-level flow is illustrated in Figure 1.

Satz in der zweiten SpracheSentence in the first language

Multilingual Recurrent Encoder

, ...,, , ...,,

Bidirectional cross-sentence attention

Intra-sentence attention

Bilinear product scorer

Fig. 1. High-level overview of the bidirectional cross-lingual attention (BiCLA) model.

First, a joint multilingual word embedding space is coupled with a recurrent encoder
that is shared between the two languages: this enables contextualization of word rep-
resentations for word sequences in both languages. Further, selective cross-sentence
contextualization is achieved by means of a bidirectional attention mechanism stacked on
top of the shared encoder. The attention layer enables the model to assign more weight
to relevant information segments from the other sentence. Cross-sentence informed rep-
resentations are then aggregated into a fixed-size sentence vectors via an intra-sentence
attention mechanism. Finally, the model predicts the ranking score for a sentence pair by
computing a bilinear product between these fixed-size sentence representations.

We evaluate the model in a mate sentence retrieval task on the Europarl data. We
experiment with four languages of varying degrees of similarity, showing that our bidi-
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rectional attention model significantly outperforms state-of-the-art unsupervised CLIR
models, recently proposed in [19]. Most importantly, we demonstrate the effectiveness
of the model in zero-shot language transfer: a model trained on parallel data for one lan-
guage pair (e.g., German and English) successfully performs CLIR for another language
pair (e.g., Czech and Hungarian). Finally, we observe that the proposed bidirectional
attention model complements state-of-the-art unsupervised CLIR baselines: we obtain
further significant performance gains by ensembling the models.

2 Related Work

Cross-Lingual Information Retrieval. Early CLIR methods combined dictionary-based
term-by-term translations of queries to the collection language [4, 34, 17] with monolin-
gual term-based retrieval models [45, 39]. Such models suffer from two main drawbacks:
1) inability to account for in-context meaning of query words and multi-word expressions
and 2) inability to capture semantic similarity between queries and documents.3

One way to mitigate these issues is to represent documents and queries using con-
cepts from external (multilingual) knowledge resources. Sorg and Cimiano [46] exploit
Wikipedia as a multilingual knowledge base and represent documents as vectors where
dimensions denote Wikipedia concepts. Franco-Salvador et al. [10] link the document
text to concepts in BabelNet [29] and then measure document similarity by comparing
BabelNet subgraphs spanned by the linked concepts. These methods, relying on external
structured knowledge, are limited by the coverage of the exploited knowledge bases.
Another limiting factor is their core dependence on the quality of concept linkers [26,
33], required to associate the concepts from text with knowledge base entries: any piece
of text that is not linked to a knowledge base concept is effectively ignored by the model.

Another class of models for cross-lingual text comparison is based on the induction of
shared multilingual semantic spaces in which queries and documents in both languages
are represented as vectors. These are induced using (Probabilistic) Latent Semantic
Analysis (LSA) [9, 35], Latent Dirichlet Allocation [25, 48], or Siamese Neural Networks
[51]. In contrast to directly learning bilingual document representations, Vulić and Moens
[49] obtain bilingual word embeddings and then compose cross-lingual document and
query representations by simply summing the embeddings of their constituent words.

Cross-Lingual Sentence Matching. Approaches to extracting parallel sentences have
ranged from rule-based extraction from comparable documents [30, 38, 42], over classi-
fiers trained on sentence-aligned parallel data [27, 41] to cross-lingual sentence retrieval
[37]. Supervised approaches typically exploit pretrained SMT models or their compo-
nents (e.g., word alignment models) to produce features for classification [27, 41]. These
are often coupled with a rich set of domain-specific features computed from metadata of
the bilingual data at hand [41]: all this limits the portability of such models.

Another related task is cross-lingual semantic similarity of short texts (STS) [1, 7].
The best-performing cross-lingual STS models [6, 14, 47] all employ a similar strategy:
they first translate the sentences from one language to the other (resource-rich) language

3 E.g., a German term “Hund” translated as “dog” still does not match a term “canine” from a
relevant document.
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(i.e., English) and then apply supervised, feature-rich and language-specific (e.g., they
rely on syntactic dependencies and named entity recognizers) regression models. Their
dependence on full-blown MT systems and resource-intensive and language-specific
features limits their portability to arbitrary (resource-lean) language pairs.

3 Bidirectional Attention CLIR Model

First we describe the induction of a multilingual word vector space and then the compo-
nents of our bidirectional cross-lingual attention model (BiCLA).

Multilingual Word Vector Space. Multiple methods have recently been proposed for
inducing bilingual word vector spaces by learning linear projections from one mono-
lingual space to another [24, 2, 43, 8]. A multilingual vector space for N languages is
then induced by simply learning N − 1 bilingual projections with the same target space
(e.g., English). A comparative evaluation by Ruder et al. [40] indicates that all of the
above models produce multilingual spaces of similar quality. Due to its large language
coverage and accessible implementation, we opt for the model of Smith et al. [43]. They
learn the projection by exploiting a set of (10K or less) word translation pairs.

3.1 BiCLA: Cross-Lingual Sentence Retrieval Model

The architecture of the BiCLA model is detailed in Figure 2. We encode the sentences
from both languages with the same bidirectional long short-term memory network (Bi-
LSTM): word vectors from a pre-trained bilingual space are input to the network. The
sentences are then made “aware of each other”: we compute the vector representations
of each sentence’s tokens by attending over Bi-LSTM encodings of other sentence’s
tokens. Next, we use an intra-sentence attention mechanism to aggregate a fixed-size
encoding of each sentence from such cross-sentence contextualized vectors of its tokens.
Finally, we compute the relevance score for the sentence pair as the bilinear product
between fixed-size representations of the two sentences obtained through intra-sentence
attention. In what follows, we describe all components of the BiCLA model.

1. Recurrent Encoder. We encode both sentences using the same shared Bi-LSTM en-
coder [12].4 Given an input sequence of T tokens {ti}Ti=1, the Bi-LSTM layer produces a
sequence of T within-sentence contextualized token representations {hi = [hfi , h

b
i ]}Ti=1,

where hfi ∈ RH is the i-th token vector produced by the forward-pass LSTM and
hbi ∈ RH is the i-th token vector produced by the backward-pass LSTM, with H as
LSTMs hidden state size. Vector hfi contextualizes the i-th token with the meaning of
its left context (i.e., preceding tokens), whereas hbi makes the representation of the i-th
token aware of its right context (following tokens).

2. Bidirectional Cross-Sentence Attention. In neural machine translation [3, 22], the
attention mechanism allows to focus more on parts of the source sentence that are most

4 We also experimented with two different Bi-LSTMs for encoding sentences in two languages,
but this exhibited poorer performance.
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Fig. 2. Schema of the BiCLA model.

relevant for translation generation at a concrete position. In sentence retrieval, the goal is
to semantically align two sentences and determine their semantic compatibility. To this
end, we define a bidirectional attention layer that allows to represent tokens of the first
sentence by focusing on representations of only relevant tokens from the second sentence,
and vice versa. Let {hS1

i }
T1
i=1 and {hS2

j }
T2
j=1 be the sequences of token representations

of the input sentences produced by Bi-LSTM. The cross-sentence representation h
S1

i of
the i-th token of the first sequence is then computed as the weighted average of token
vectors {hS2

j }
T2
j=1 of the second sentence, and vice versa:

h
S1
i =

T2∑
j=1

αi,j · hS2
j ; h

S2
j =

T1∑
i=1

βj,i · hS1
i . (1)



6 G. Glavaš and I. Vulić

Attention weights αi,j and βj,i are obtained by computing the softmax functions over
respective raw matching scores mi,j and nj,i which are, in turn, computed on the basis
of a bilinear product of token vectors hS1

i and hS2
j :

αi,j =
emi,j∑T2

k=1 e
mi,k

; mi,j = tanh
(
hS1
i W 1

cah
S2
j + b1ca

)
; (2)

βj,i =
enj,i∑T1

k=1 e
nj,k

; nj,i = tanh
(
hS2
j W 2

cah
S1
i + b2ca

)
. (3)

W 1
ca ,W

2
ca ∈ R2H×2H and b1ca , b

2
ca ∈ R are attention parameters.5 Using the cross-

attention mechanism we contextualize one sentence in terms of the other in a localized
manner: the vector h

S1

i of a first sentence token aggregates information from the seman-
tically most relevant parts of the other sentence, and vice-versa for h

S2

j .

3. Intra-Sentence Attention. Bi-LSTM contextualizes token representations within
the sentence, whereas the cross-attention contextualizes them with respect to the other
sentence. We finally produce the task-specific fixed-size sentence representations by
aggregating their respective contextualized token vectors. Because not all parts of a
sentence are equally contributing to its meaning, we learn how to aggregate the fixed-
size sentence representation by means of an intra-sentence attention mechanism. Our
intra-sentence attention is a simplified version of the recently introduced self-attention
networks [20, 18]. The sentence embeddings e1 and e2 are computed as weighted sums
of their cross-sentence contextualized token vectors:

e1 =

T1∑
i=1

γih
S1
i ; e2 =

T2∑
j=1

δjh
S2
j . (4)

The weights γi and δj are computed as non-linear transformations of dot products
between token vectors and intra-sentence attention parameter vectors:

γi = tanh
(
h
S1
i · v1ia + b1ia

)
; δj = tanh

(
h
S2
j · v2ia + b2ia

)
.

We learn the parameters v1ia , v
2
ia ∈ R2H and b1ia , b

2
ia ∈ R during training.6

4. Bilinear Scoring. Finally, we can quantify a similarity (i.e., relevance) score for the
cross-lingual pair of sentences from the obtained fixed-size representations e1 and e2. We
combine the vectors e1 and e2 into a relevance score r with a bilinear product function,
which was previously successfully applied to, e.g., relation prediction for knowledge
base completion [44, 50] and predicting semantic matches at a word level [11]:

r(S1, S2) = tanh (e1WBe2 + bB) , (5)

where WB ∈ R2H×2H and bB ∈ R are the bilinear product parameters.

5 Note that by constraining W 1
ca = W 2

ca and b1ca = b2ca we enforce a symmetric bidirectional
cross-attention mechanism. However, the above asymmetric attention gave better performance.

6 Again, we could enforce the symmetric intra-sentence attention for both sentences by setting
v1ia = v2ia and b1ia = b2ia , but doing so resulted in lower performance in our experiments.
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5. Objective and Optimization. The model has to assign higher scores r(S1, S2) to
sentence pairs where S2 is a complete semantic match (i.e., a translation) of S1 than
to semantically related sentence pairs with only a partial semantic overlap. Therefore,
BiCLA relies on a contrastive loss function that maximizes the difference in scores
between positive sentence pairs and corresponding negative pairs. Let {(S(i)

1 , S
(i)
2 )}Ni=1

be the collection of positive pairs in our training set: these are exact translations. For each
source language sentence S(i)

1 we create K negative training pairs {(S(i)
1 , S

(kj)
2 )}Kj=1.

Half of the these K pairs are created by pairing S
(i)
1 with K/2 randomly selected

target language sentences. The remaining pairs are created by coupling S(i)
1 with K/2

semantically most similar sentences in the other language (excluding the target sentence
from the positive example), according to a baseline heuristic function as follows. Let
e(t) retrieve the embedding of the term t from the shared bilingual embedding space.
We then compute the heuristic similarity between sentences S1 and S2 as:

sim(S1, S2) = cos

( ∑
t1∈S1

e(t1),
∑

t2∈S2

e(t2)

)
(6)

By taking the most similar sentences according to the above heuristic, we create – for
each positive sentence pair – K/2 corresponding negative pairs in which there is at least
some semantic overlap between the sentences. The contrastive loss objective for the
given training set of translation pairs {(S(i)

1 , S
(i)
2 )}Ni=1 is finally defined as follows:

J =

N∑
i=1

K∑
j=1

ε−
(
r
(
S

(i)
1 , S

(i)
2

)
− r
(
S

(i)
1 , S

(kj)

2

))
. (7)

The hyper-parameter ε defines the margin between scores of positive and negative pairs.
The final objective function JMIN augments the contrastive loss function J with the L2

regularization of parameters Ω: JMIN = J + λ‖Ω‖2, with λ as regularization factor.

4 Evaluation

We first describe the important aspects of the experimental setup – datasets, baselines,
and details on model training. We then report and discuss BiCLA performance in 1)
standard mate retrieval and 2) zero-shot language-transfer experiments.

4.1 Experimental Setup

Data. We use the parallel Europarl corpus [16]7 in all experiments. Since one of our
goals is to examine retrieval performance for languages of varying degree of similarity,
we experiment with the Europarl data in English (EN), German (DE), Czech (CS), and
Hungarian (HU).8 The Europarl datasets for all six language-pair combinations (see

7 http://opus.nlpl.eu/Europarl.php
8 English, German, and Czech belong to the family of Indo-European languages (EN and DE are

representatives of the Germanic branch, and CS is in the Slavic branch), whereas Hungarian
belongs to the Uralic language family.
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Table 1. Sizes of all datasets used in experiments.

Language pair Train size (# pairs) Test size (# pairs)

CS-DE 506,495 1,000
CS-EN 572,889 1,000
CS-HU 543,959 1,000
DE-EN 1,584,202 1,000
HU-DE 501,128 1,000
HU-EN 556,774 1,000

Table 1) were preprocessed by 1) removing stopwords and 2) retaining only sentence
pairs in which each sentence has at least three tokens represented in the bilingual
embedding space. For each language pair, we use a set of 1000 randomly selected
sentence pairs as test data. All the remaining pairs are used for the BiCLA training. The
datasets’ sizes, in terms of number of sentence pairs, are shown in Table 1.

Multilingual Embedding Space. We use precomputed 300-dimensional monolingual
FASTTEXT word embeddings [5]9 for all four languages. We then induce a shared four-
lingual embedding space using the lexicon-based projection method with pivoting from
[43], outlined in §3.10

Baselines. We compare BiCLA with the standard query likelihood model [36], two
state-of-the-art unsupervised CLIR models [19], and the reduced architecture without
the bidirectional attention:

1) Standard query likelihood retrieval model [36] with Jelinek-Mercer smoothing [13]
(QLM). The model computes the relevance by multiplying source sentence terms’
probabilities under the unigram language model of a target language sentence, smoothed
with the their probabilities under the language model of the whole target collection:

rel(q, d) =
∏
t∈q

µP (t|MS) + (1− µ)P (t|MSC). (8)

P (t|MS) is probability of term t under the local language model of the sentence S,
P (t|MSC) is the probability of t under the global language model of the target collection
SC, and µ = 0.95 is the interpolation coefficient. Designed for monolingual retrieval,
QLM’s CLIR performance crucially depends on the amount of lexical overlap between
languages. We thus employ QLM merely as a “sanity check” baseline.
2) Aggregating word embeddings from the shared embedding space (AGG) [49, 19].
AGG computes sentence embeddings by averaging the embeddings of their tokens,
obtained from the shared multilingual embedding space. The relevance score is the
cosine similarity between aggregated sentence embeddings. We used AGG also as a
heuristic for creating negative instances for the contrastive loss (cf. Eq. (6) in §3.1).
3) Term-by-term translation using shared embedding space (TbT). Each query token is
replaced by the most similar target language token, according to the cosine similarity in

9 https://github.com/facebookresearch/fastText
10 https://tinyurl.com/msrmwee
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the shared space. After the term-by-term translation of the query, we use the monolingual
QLM to rank the target sentences. TbT and AGG have recently exhibited state-of-the-art
performance on several benchmarks for document-level CLIR [19].
4) BiCLA without the bidirectional cross-sentence attention (InAtt). In InAtt, the intra-
sentence attention layer is stacked directly on top of representations produced by the
Bi-LSTM encoder. The comparison between BiCLA and InAtt directly reveals the con-
tribution that bidirectional cross-sentence attention has on sentence CLIR performance.

Ensemble Models. By design, BiCLA aims to capture semantic similarity stemming
from semantic alignments of longer sequences (i.e., phrases, clauses), implicitly cap-
turing semantic compositionality. In contrast, baselines AGG and TbT make simpler
similarity assessments: AGG assumes the sentence meaning to be a linear combination
of word meanings whereas TbT actually measures the lexical overlap, using the multilin-
gual embedding space as the translation dictionary. Given this complementarity between
BiCLA and the baselines, we also evaluate ensemble rankers: they rank target sentences
by interpolating between ranks assigned by individual models.

Model Configuration. We train BiCLA in mini-batches of size Nb = 50 sentence pairs,
each consisting of 10 micro-batches containing one positive sentence pair and K = 4
corresponding negative sentence pairs (two created randomly and two using AGG as
unsupervised similarity heuristic). We optimize the parameters with the Adam algorithm
[15], setting the initial learning rate to 10−4. We tune the hyperparameters on a validation
set in a fixed-split cross-validation. We found the following optimal values: BiLSTM
state size H = 100, regularization factor λ = 10−4, contrastive margin ε = 1. The loss
on the validation set was also used as the criterion for early stopping of the training.

4.2 Results and Discussion

First we show the results for the basic mate CLIR evaluation, with train and test set
involving the same language pair. We then examine BiCLA’s behavior in language
transfer settings – a model trained on one language pair is used to perform CLIR for
another language pair. In both cases, we evaluate the performance of BiCLA alone and
ensembled with the unsupervised CLIR baselines, AGG and TbT.

Task 1: Base Evaluation. We first show the results for the base evaluation task where
the train and test set involve the same language pair. We treat each sentence of the
source language as a query and the 1,000 test sentences in the target language as a target
sentence collection. Performance is reported in terms of the standard mean average
precision (MAP) measure. Table 2 summarizes the MAP scores for six language pairs
(first language is always the query/source language).

BiCLA strongly outperforms all baselines for all six language pairs.11 The baselines
are able to reduce the gap in performance only for two language pairs: DE-EN and
11 We tested the significance over 1000 average precision scores obtained for individual queries

(which are, in our case, equal to reciprocal rank scores, since there is only one relevant sentence
in the other language for each query) using the two-tailed Student’s t-test. BiCLA significantly
outperforms all baselines with p < 0.01.
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Table 2. Cross-lingual mate retrieval performance.

Model DE-EN CS-EN HU-EN CS-DE HU-DE CS-HU

QLM .303 .121 .141 .064 .054 .083
AGG .390 .547 .372 .374 .356 .378
TbT .490 .563 .357 .228 .142 .124

InAtt .506 .597 .462 .495 .422 .404
BiCLA .604 .665 .569 .562 .577 .575

Table 3. Performance of ensemble models.

Weights DE-EN CS-EN HU-EN CS-DE HU-DE CS-HU

BiCLA
+ AGG

.5; .5 .662 .802 .622 .666 .597 .675

.7; .3 .686 .818 .653 .690 .624 .708

.9; .1 .706 .784 .660 .691 .647 .702

BiCLA
+ TbT

.5; .5 .651 .827 .680 .508 .396 .300

.7; .3 .650 .832 .685 .553 .442 .351

.9; .1 .649 .802 .687 .618 .561 .473

BiCLA
+ AGG
+ TbT

.3̇; .3̇; .3̇ .656 .846 .651 .599 .449 .401
.6; .2; .2 .685 .859 .683 .647 .525 .463
.8; .1; .1 .708 .845 .726 .697 .626 .568

CS-EN. The baseline scores generally tend to decrease as the languages in the pair
become more distant. In contrast, BiCLA exhibits fairly stable performance across all
language pairs – the performances for pairs of more distant languages (e.g., HU-DE or
CS-HU) are on par with the performances for pairs of closer languages (e.g., DE-EN and
CS-DE). Full BiCLA outperforms InAtt, a model without the bidirectional attention layer,
by a wide margin, confirming our intuition that fine-grained cross-sentential semantic
awareness is crucial for better recognition of sentence translation pairs.

We next investigate the extent to which the supervised BiCLA model complements
the state-of-the-art unsupervised CLIR baselines, AGG and TbT [19]. To this end, we
ensemble the models at the level of the rankings they produce for the queries. We evaluate
three different ensembles: (1) BiCLA and AGG, (2) BiCLA and TbT, and (3) BiCLA and
both AGG and TbT. For each of the ensembles we show the performance with different
weight configurations, i.e., different weight values wBiCLA, wAGG , and wTbT assigned
to individual models, BiCLA, AGG. and TbT, respectively. The results of ensemble
methods are shown in Table 3. Almost all ensemble models (exception is BiCLA+TbT
with large TbT weight for distant languages), exhibit better performance than BiCLA on
its own. BiCLA+AGG and BiCLA+AGG-TbT ensembles with larger weights for BiCLA
yield performance gains between 10 and 20% MAP with respect to the BiCLA model
alone, suggesting that BiCLA indeed complements the best unsupervised CLIR models.
Note that the ensembles in which BiCLA gets a larger weight than the unsupervised
models exhibit the best performance. For example, a BiCLA+AGG-TbT ensemble with
weights wBiCLA = 0.8, wAGG = 0.1, and wTbT = 0.1 significantly outperforms the
same ensemble with equal weights (i.e., wBiCLA = wAGG = wTbT = 0.3̇), for all
language pairs except CS-EN. Big boosts of ensembles with small contributions from
unsupervised baselines suggest that (1) in most cases, BiCLA does a much better job than
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Table 4. BiCLA performance in language transfer settings (underlined results denote base CLIR
results from Table 2, without language transfer. Bold scores indicate BiCLA transfer scores that
are above all baseline scores, cf. Table 2).

DE-EN CS-EN HU-EN CS-DE HU-DE CS-HU

DE-EN .604 .602 .537 .231 .177 .213
CS-EN .356 .665 .421 .440 .307 .419
HU-EN .440 .484 .569 .371 .414 .369
CS-DE .299 .493 .292 .562 .374 .398
HU-DE .365 .398 .448 .399 .577 .329
CS-HU .360 .604 .432 .524 .459 .575

unsupervised baselines and (2) in cases where BiCLA fails, the unsupervised baselines
perform very well – even their small contribution significantly improves the ranking.

Task 2: Zero-Shot Language Transfer. We next investigate the predictive capability
of BiCLA in transfer learning settings, that is, we test whether a model trained for one
language pair may successfully, both on its own and in ensembles with unsupervised
models, perform sentence CLIR for another language pair. The language transfer results
are shown in Table 4: rows denote the language pair of the train set and columns the
language pair of the test set. We analyze the results in view of three types of language
transfer: 1) source language transfer (SLT) (same collection language in training and
test); 2) target language transfer (TLT) (same query language in training and test), and 3)
full language transfer (FLT) (query and collection language in test are both different than
in training). BiCLA outperforms all baselines in 7/8 SLT settings, 5/8 TLT settings, and
(only) 2/14 FLT experiments. It is not surprising to observe better performance in SLT
and TLT settings than in FLT: BiCLA seems to be able to account for the change of one
language, but not for both simultaneously. Although BiCLA alone does not outperform
the unsupervised baselines in most FLT setting (e.g., DE-EN→CS-HU), we find the SLT
and TLT results significant. Drops in performance in some of the SLT and TLT setups,
compared to respective basic setups (no language transfer), are almost negligible (e.g.,
DE-EN→HU-EN has only a 3-point lower MAP compared to the basic HU-EN setup).
SLT and TLT seem to work even when we switch between distant languages (e.g., when
we replace the query language from DE to HU), which we find encouraging.

Finally, we evaluate the ensemble between BiCLA and AGG (since, on average,
AGG exhibits better performance than TbT) in zero-shot language transfer. We assign
equal weights to both rankers, i.e., wBiCLA = wAGG = 0.5. The results of the zero-shot
language transfer ensembles are shown in Table 5. While on its own BiCLA outperforms
the unsupervised models in half of the language transfer setups, when ensembled with
the AGG baseline, it drastically boosts the CLIR performance on all test collections.
This also holds for all FLT setups – where BiCLA is trained on a completely different
language pair from the language pair of the test collection. For example, a BiCLA model
trained on DE-EN, when ensembled with AGG, boosts the CS-HU retrieval by almost
15 MAP points. We hold this to be the most important finding of our work – it implies
that we can exploit readily available large parallel corpora for major languages in order
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Table 5. Results of language transfer ensembles. Bold scores denote ensembles that surpass the
performance of the unsupervised AGG model alone.

DE-EN CS-EN HU-EN CS-DE HU-DE CS-HU

AGG .390 .547 .372 .374 .356 .378

Ensemble: BiCLA (transfer) + AGG

DE-EN – .818 .634 .520 .447 .518
CS-EN .564 – .550 .630 .520 .624
HU-EN .578 .679 – .556 .562 .537
CS-DE .549 .771 .529 – .569 .594
HU-DE .544 .667 .562 .550 – .499
CS-HU .544 .773 .534 .639 .584 –

to train a model that significantly improves mate retrieval for pairs of under-resourced
languages, for which we have no parallel resources.

5 Conclusion

We have presented a novel neural framework for mate sentence retrieval across languages.
We introduced the bidirectional cross-lingual attention (BiCLA) model, a multi-layer
architecture which learns to encode sentences in a shared cross-lingual space in such a
way to recognize true semantic similarity between sentences: this means that BiCLA is
able to distinguish true translation pairs from only semantically related sentences with
partial semantic overlap. A series of experiments for six language pairs have verified the
usefulness of the model – we have shown that BiCLA outperforms unsupervised retrieval
baselines, and that further gains, due to the complementarity of the two approaches, can
be achieved by combined ensemble methods. Most importantly, we have shown that
the multilingual nature of the BiCLA model allows for a zero-shot language transfer
for CLIR: a model trained on one pair of languages (e.g., German and English) can be
used to improve CLIR for another pair of languages (e.g., Czech and Hungarian). This
indicates that we can perform reliable cross-lingual sentence retrieval even for pairs of
resource-lean languages, for which we have no parallel corpora.

In future work, we plan to experiment with deeper architectures and more sophisti-
cated attention mechanisms. We will also test the usability of the framework in other
related retrieval tasks and evaluate the model on more language pairs. We make the
BiCLA model code along with the datasets used in our experiments publicly available at:
https://github.com/codogogo/bicla-clir.
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