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ABSTRACT 

How do we lose and regain consciousness? The space between healthy wakefulness and 

unconsciousness encompasses a series of gradual and rapid changes in brain activity. In this 

thesis, I investigate computational measures applicable to the electroencephalogram to 

quantify the loss and recovery of consciousness from the perspective of modern theoretical 

frameworks. I examine three different transitions of consciousness caused by natural, 

pharmacological and pathological factors: sleep, sedation and coma. 

First, I investigate the neural dynamics of falling asleep. By combining the established 

methods of phase-lag brain connectivity and EEG microstates in a group of healthy subjects, 

a unique microstate is identified, whose increased duration predicts behavioural 

unresponsiveness to auditory stimuli during drowsiness. This microstate also uniquely 

captures an increase in frontoparietal theta connectivity, a putative marker of the loss of 

consciousness prior to sleep onset. 

I next examine the loss of behavioural responsiveness in healthy subjects undergoing mild 

and moderate sedation. The Lempel-Ziv compression algorithm is employed to compute 

signal complexity and symbolic mutual information to assess information integration. An 

intriguing dissociation between responsiveness and drug level in blood during sedation is 

revealed: responsiveness is best predicted by the temporal complexity of the signal at single-

channel and low-frequency integration, whereas drug level is best predicted by the 

complexity of spatial patterns and high-frequency integration.  

Finally, I investigate brain connectivity in the overnight EEG recordings of a group of 

patients in acute coma. Graph theory is applied on alpha, theta and delta networks to find 

that increased variability in delta network integration early after injury predicts the eventual 

coma recovery score. A case study is also described where the re-emergence of frontoparietal 

connectivity predicted a full recovery long before behavioural improvement. 

The findings of this thesis inform prospective clinical applications for tracking states of 

consciousness and advance our understanding of the slow and fast brain dynamics 

underlying its transitions. Collating these findings under a common theoretical framework, I 

argue that the diversity of dynamical states, in particular in temporal domain, and 

information integration across brain networks are fundamental in sustaining consciousness. 
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“This message is for whatever entities will come to be after this world is gone. It 

might not be necessary. You might know everything that exists in my mind. I 

know that to you, with access to information I can only dream of, my theories 

must appear ridiculous. I barely understand anything of the world I inhabit. I 

want you to know that I understood that, but tried anyway. It matters that an 

objective truth exists and that we struggle to understand it.”  

                                                                                   - The Talos Principle 
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CHAPTER 1 

1 
 

CONSCIOUSNESS 

This chapter introduces the main theme of this thesis: consciousness. For millennia, consciousness has 

belonged to the domain of philosophy. Over the last century, inheriting ideas and question from great 

thinkers of the past, scientists have also begun to study this topic. This chapter starts by telling the 

story of why consciousness is one of the most fascinating topics among all of those ever known to 

humankind. Nonetheless, defining the concept of consciousness is a great challenge; the chapter 

continues by presenting several ideas and thought experiments that have been historically proposed 

in relation to consciousness. Then, the chapter focuses on the experimental topic of this thesis and 

describes why sleep, anaesthesia, sedation, and disorders of consciousness are of uttermost interest 

within this field, while also clarifying the theoretical limits of what current neuroscientific approaches 

can achieve. Finally, several theories of consciousness that have recently emerged as valuable, both 

conceptually and due to their practical applications, are presented with their advantages and 

disadvantages, concluding with a clear theoretical framework for the neurocomputational 

investigations in the rest of this thesis.  

1.1. THE RIDDLE 

Somewhere in the unimaginable vastness of the universe (Sokolov and Shvartsman, 1975), on a planet 

orbiting a star located in a minor spiral arm of the Milky Way galaxy (Hawking, 2001), life emerged 

and evolved (Darwin, 1859; Oro et al., 1990) into elegant mesoscale beings that could perceive the 

world through multiple senses, adapt to and change their own environment, feel emotions, 

communicate, and even entertain complicated internal monologues about their own existence 

(Descartes, 1641). Once these creatures evolved enough that fighting for survival was no longer a daily 

concern, they pursued more abstract ideas and goals, creating arts, religions, literature, philosophy 

and sciences, and continuously pushing the boundaries of their knowledge (Bryson, 2003). They even 

created artificial computational entities, which one day, endowed with finely-engineered intelligence 

(Bachman et al., 2016), might be able to read and summarise this very chapter. 

If such an artificially intelligent reader were to read this account, it might be puzzled to find out that 

many humans came to the conclusion that there was something seemingly ineffable about their own 
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existence: they had a first-person, subjective perspective of the world (Nagel, 1974). They tried, for 

example, to explain everything about the colour they called ‘red’, and although they knew precisely 

how to describe in nanometres the exact wavelength of light that caused this percept and the exact 

pathway in their brains that eventually led to the uttering of the word ‘red’, many felt like something 

was missing from this comprehensive, functionally perfect description (Chalmers, 1995). These people 

claimed that the experience of seeing this colour, despite being at the heart of this question, was 

simply left aside from its otherwise wholesome answer, and wondered why.  

Over the years, this abstract problem took many forms. For a long time, many humans thought that 

perceptual, emotional, or cognitive capacities resided in immortal souls, while their bodies were only 

perishable vessels; most cultures around the world held a variation of such beliefs (Eliade, 1985, 1982, 

1981). Throughout history, some philosophers identified the soul with the mind (Descartes, 1641), 

some considered the soul and the spirit as separate entities (Aristotle, 350BC), and some simply 

discarded any separation between the two and the body (Dennett, 1993). Dualism has been the most 

withstanding position in philosophy of mind, and has continued to persist among the general and 

educated public (Demertzi et al., 2009), as well as scientists (Larson and Witham, 1997). 

Consciousness seemed to be intimately linked with other cognitive functions, such as attention (Koch 

and Tsuchiya, 2007), memory (Clark and Squire, 1998), emotion (Damasio, 1999) and intelligence 

(Århem and Liljenström, 1997). These cognitive functions were more straightforward to study with 

typical approaches in psychology and neuroscience. It took a while until consciousness became 

accepted as a valid topic of investigation by science (Crick and Koch, 1990). When this happened, the 

focus of the quest became the reconciliation of the phenomenological first-person view, most 

commonly judged through behavioural events or verbal reports, with markers of brain activity at 

microscopic and macroscopic levels (Crick and Koch, 2003). Many dimensions arose in the landscape 

of questions about consciousness: sleep versus wakefulness, wakefulness versus awareness, 

reportability versus phenomenology. A rich body of evidence accumulated to support certain 

hypotheses, as will be detailed in the next sections, and lively academic debate ensued. 

Whether this is only the beginning of the story or an outcome is imminent, research on the topic of 

consciousness is currently more dynamic and fast-paced than it has ever been, largely because of 

recent developments in brain imaging techniques, but also due to conceptual advances. In this 

context, this thesis aims to contribute to the story of consciousness by examining the behavioural loss 

of consciousness during the transitions to sleep and sedation, and the restoration of consciousness 

after coma. 
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Despite a number of radically different views throughout history, as well as recent debate sparkled by 

the development of artificial intelligence, a human brain currently seems the only entity in the 

universe that we can be reasonably certain sustains consciousness. Therefore, in the next section, for 

the benefit of those interested in consciousness who might not possess a background in biology, a 

summary of what we know about the brain will be given, emphasising the relationship between its 

anatomy and its functions, as well as the challenge that this relationship poses to the quest of 

understanding consciousness. 

1.2. THE HUMAN BRAIN 

It has been known since ancient times that the brain is where all emotion, cognition, movement and 

mental wellbeing or disease originate (Hippocrates, 400BC). The human brain is the centre of the 

nervous system and consists of neurons and glial cells. Neurons are believed to be the main units in 

the nervous system, which respond to sensory input, command motor responses, and carry out 

various information by processing tasks at lower and higher levels. Glia is thought to be mainly 

responsible for providing a nourishing environment for neurons to carry their tasks, although evidence 

has been building up that they also participate in neurotransmission (Allen and Barres, 2009). Human 

brains have around 1011 neurons and around 10 times more glial cells (Bear et al., 1996). 

Neurons are cells with a diameter of 0.01 to 0.05 mm typically consisting of a main body called soma, 

an axon which can extend for as long as a meter which transmits information to other potentially long-

distance neurons, and several dendrites which form a tree-like structure with branches gathering 

information transmitted by axons belonging to other neurons. Communication between neurons is 

achieved through action potentials, impulses transmitted as electrical charges along the membrane 

of the axon. The point of information exchange between axons and dendrites, called a synapse, 

involves the release of neurotransmitters with either excitatory or inhibitory effect. A typical neuron 

has on order of 103 synapses, although some types of neurons may have around 105  synapses 

(Gazzaniga et al., 2014). Computationally, a neuron can hence be described as a nonlinear (Larkum 

and Nevian, 2008) processing unit with inputs and outputs. The frequency of action potentials of 

individual neurons, as well as the distribution of action potentials within a population of neurons, 

generates information (Bear et al., 1996).  

While understanding the cellular fundamentals of how the brain works is important, higher brain 

functions like cognition need to be ultimately explored by looking at the higher level of neural 

organisation, circuits, systems and brain areas, which work together anatomically and functionally. 

The functions performed by the human brain are to some extent reflected in its anatomical 
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organisation (Gazzaniga et al., 2014). Many life-supporting functions that do not require 

consciousness are performed by the structures of the brainstem: the medulla, which supports 

respiration, heart rate and arousal; the pons, which modulates both arousal and rapid eye movement 

(REM) sleep; the cerebellum, which, astonishingly, houses the majority of neurons in the central 

nervous system, and which integrates information about the body and motor commands, in order to 

modulate fine motor coordination and other higher cognitive functions; and the midbrain, which plays 

a role in gaze and motor coordination. Above the brainstem sits the thalamus, which acts as a gateway 

to the cortex, as it receives and passes on information received from all sensory modalities, except for 

olfaction, through specialised nuclei. The hypothalamus is responsible for homeostasis; it initiates 

feelings such as hunger or thirst through the endocrine system, and controls circadian cycles. The basal 

ganglia consist of several structures that are thought to be essential in goal-oriented and reward-

based behaviour and learning, with dopamine possibly signalling the prediction error of the reward.  

As we begin to investigate higher cognitive functions, it becomes more challenging to unify neural 

anatomy and function. The evolutionarily newest part of the central nervous system is the cerebral 

cortex, which consists of layers of cells densely packed and folded within the space constraints of the 

skull. Although it has been tentatively partitioned into several anatomical configurations using 

histological analyses to detect similar and dissimilar areas, the specific functions of each particular 

area can be difficult to pin down. Visual information is processed, in a hierarchical manner, in the 

visual cortex. Auditory information is processed in the temporal lobe, although this lobe mediates 

other functions as well, such as memory, emotion and language comprehension. The parietal lobe is 

responsible, among other things, for attention and spatial reasoning. The somatosensory and motor 

cortices are organised into a topographical map of the body, that receive inputs and send commands 

respectively from and to the body. Finally, the prefrontal cortex is involved in higher cognitive 

functions like planning, organising and executing actions.  

To summarise, our conscious experience seems to emerge from an intricate interplay of cognitive 

functions associated with multiple brain areas, as opposed to a single location in the brain. To 

understand consciousness, we need to look at emergent characteristics of brain function. Moreover, 

we should consider that information processing in the brain might be performed beyond 

algorithmically operating with local representations of environmental inputs (Williams, 2018). One 

alternative account is that of the brain as a prediction machine that continuously makes guesses and 

updates its model of the world, which might offer a better conceptual framework for understanding 

consciousness (Seth, 2016).  



CHAPTER 1: CONSCIOUSNESS 

5 
 

1.3. DEFINING CONSCIOUSNESS 

Although questions about consciousness have evolved and persisted in the fields of philosophy and 

science for a long time, one of the greatest of its challenges is to provide a proper definition of this 

concept. The term ‘consciousness’ is often used in literature with different meanings, which often 

impedes communication between and even within different areas of study (Rosenthal, 2009). The next 

section will give an overview of the most important perspectives on what consciousness is, starting 

from the philosophical tradition and ending with clinical aspects of relevance to this thesis. 

1.3.1. QUALIA 

One term intimately related to consciousness is qualia. It refers to subjective experiences such as 

seeing red, smelling a rose or tasting chocolate. It does not refer to a technical account of how these 

experiences arise with the mediation of sensory pathways, but to the phenomenal character of things 

in the world as we experience them introspectively (Jackson, 1982).  

A thought experiment that can clarify this concept is given by the argument of inverted qualia (John 

Locke, 1689). Assume that when one person sees the colour red, another person sees what the former 

person would classify as the colour blue (and vice versa). Both persons will identify the colour as ‘red’ 

and the neural pathways starting from the retina, passing through the visual cortex and ending in the 

system that controls the reporting of the colour red will be precisely the same in both. Still, the 

experience accompanying the same pattern of neuron firing will be different in the two persons. The 

inverted qualia will also not be detectable, since it is not possible to directly convey the experience of 

a person to another, and the reports they produce will match.  

Daniel Dennett summarises four essential properties of qualia (Dennett, 1988): they are ineffable, 

intrinsic, private, and directly or immediately apprehensible in consciousness. In the same work, 

Dennett dismisses qualia as introspective illusions. He is not the only philosopher who does so (James, 

1904). Still, many others endorse the existence of qualia as valid phenomena (Block, 1995; Chalmers, 

1995; Jackson, 1982; Searle, 1997). The latter view seems to be prevalent in the neuroscientific 

community, although, as will be explained below, there are certain limits to what the scientific method 

can do with regards to this concept (Tsuchiya, 2017). 

1.3.2. WHAT-IT-IS-LIKENESS 

One of the most widely-used definitions of consciousness comes from Thomas Nagel, who wondered 

‘what is it like to be a bat’ (Nagel, 1974). There are several difficulties we encounter if we try to grasp 

the subjective experience of being a bat. Although we might be able to contemplate the notion of 
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having webbed wings and perceiving the world through echolocation, we do so by using our 

imagination, which is rooted in data we have from our own human senses only; we hence can only 

imagine what it would be like for a human to behave like a bat, not for a bat to be a bat. This highlights 

a key aspect of conscious experience: its first-person, subjective, private character.  

The idea of what-it-is-likeness has often been used by prominent neuroscientists and philosophers to 

define consciousness (Block, 1995; Chalmers, 1996; Tononi, 2008; Tye, 1992). Although intuitively 

useful, this definition is currently problematic in terms of providing a rigorous scientific explanandum. 

Empirical science would instead require a third-person object susceptible to some kind of 

measurement, while what-it-is-likeness describes a reflexive relationship that we can only know 

introspectively. One way to better inspect the semantic meaning of the expression ‘what it is like’ is 

to translate it into other languages. One observes that in multiple languages it translates to a ‘how’-

question (Stoljar, 2016), which suggests a reference to a property of an object, as opposed to an object 

itself. In this sense, what-it-is-likeness is reflexive or self-referential because it seems to describe 

consciousness as a property of consciousness. Furthermore, what-it-is-likeness might require a 

‘homunculus’ that experiences the state of ‘what it is like’ to be something, potentially causing a 

recursive self-referential problem. Therefore, Nagel’s definition is intuitively useful, but less so 

scientifically, as it does not provide us with a measurable entity. 

1.3.3. MARY THE NEUROSCIENTIST 

In the same publication, Nagel also argues that mental properties cannot be reduced to physical 

properties, or at least we do not yet have an understanding of how this could happen. Although the 

aim of this section is not to provide arguments for or against certain philosophical positions on 

consciousness, some of such arguments are useful when trying to pin down what the concept of 

consciousness refers to and what our questions are. Another persuasive argument against physicalism 

comes from Frank Jackson, who introduces a fictional neuroscientist called Mary (Jackson, 1982). 

Mary studies human vision, for whatever reason, through a black-and-white television screen, from a 

black-and-white room. In other words, she has never seen colour. Nonetheless, being a brilliant 

scientist, she has managed to learn everything there is to know about colour. For example, she can 

describe in detail the exact properties of light that need to be fulfilled and the precise pathway through 

the retina, visual cortex and so on, leading to a person verbally reporting that they see the colour red. 

Jackson asks what happens when Mary gets out of the room and sees the colour red in reality for the 

first time. Does she learn something new? Jackson believes that she does, which justifies the existence 

of a mental property that is not explicable by a physical account only. Still, others have argued she 
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does not (Dennett, 2007) or that what she learns can be accounted for by a physical explanation 

(Lewis, 1999).  

Regardless of one’s position in this debate, this thought experiment brings up once again two 

fundamental topics of consciousness: on the one hand, the quest for understanding the physical 

mechanisms that underlie consciousness from an objective, third-person point of view; on the other 

hand, the subjective, first-person mental experience.  

1.3.4. THE EXPLANATORY GAP 

In the scientific quest to understand consciousness, the difference between the subjective and the 

objective aspects of consciousness is easily overlooked. For example, some papers start by invoking 

the ineffable aspect of consciousness and continue by proposing a solution to it, but this solution 

refers in fact to a related but different problem, such as that of reportability or introspective access 

(Chalmers, 1995). This is understandable: scientific progress requires measurable properties (Maxwell, 

2004) – even when this only consists of subjects reporting their experiences. In the case of 

consciousness as we currently conceive of it, scientific approach has no choice but to avoid the 

unmeasurable aspect. Conscious experience must be equated with behaviour or with the content of 

linguistic reports. It is indeed imperative to continue using this approach in order to keep making 

progress of practical importance. Medicine is one major field that greatly benefits from this approach, 

as will be emphasised in more detail throughout this thesis. 

Still, if only for the sake of epistemological honesty, it must always be acknowledged that the scientific 

method does leave unsolved the mystery of conscious experience, as it has propagated through ages, 

from Aristotle through to Descartes. Joseph Levine, despite expressively declaring his materialist 

stance, argues for what he calls the ‘explanatory gap’ (Levine, 1983). In his work, he examines the 

contingency of the statements ‘pain is the firing of C-fibers’ and ‘heat is the motion of molecules’. It is 

conceivable that both propositions could, under certain conditions, be false. However, upon further 

inspection, the contingency of the proposition about heat can be explained away by providing a proper 

definition for heat. On the other hand, in the proposition about pain, an explanatory gap persists due 

to the reference to a qualitative, subjective property. In his work, Levine concludes by arguing that the 

only way to eliminate the mind-body problem, which he deems unsolvable within the framework of 

materialism, is to simply reject our intuitions about the existence of qualia. 

1.3.5. THE HARD PROBLEM  

Not all philosophers embrace an ideology as gloomy as Levine. David Chalmers (Chalmers, 1995, 1996) 

designates the problem on the subjective side of Levine’s explanatory gap as the hard problem of 
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consciousness: the question of why the firing of cells in our neural systems, for example the firing of 

C-fibres, should be accompanied by any experience, in this case that of pain. This holds for any other 

modality, such as vision: if we could dissect a brain reporting that it is experiencing the colour blue, 

we would only find neural machinery, but not the colour blue. Where is the experience of colour then, 

and how does it arise from our colourless brain?  

Ned Block uses the term phenomenal consciousness (P-consciousness) to refer to experience (Block, 

1995). His definition partially overlaps with the concept of experience as used by Chalmers. However, 

at the same time, Block assumes that P-consciousness is just another concept of consciousness 

implemented by the brain. The implementation of P-consciousness in the brain might or might not 

overlap that of access-consciousness (A-consciousness), which covers the aspects of consciousness 

which are reportable. On the other hand, the hard problem of consciousness refers strictly to the 

aspect of consciousness which is not captured by any functional description of the neural system. 

This problem is ‘hard’ because we do not currently know how to approach it and what an answer 

might look like. Some, such as Colin McGinn, argue that it will always remain a mystery, by virtue of 

our very cognitive structure and limitations (McGinn, 1989). Others, however, consider that in absence 

of a direct way to tackle the hard problem, we should for now concentrate on the so-called easy 

problem of consciousness, presented below. Eventually, progress on it might shed some light on the 

hard problem (Crick and Koch, 1998). 

1.3.6. THE EASY PROBLEM  

The easy problem of consciousness is not easy, but at least we know how to approach it using the 

empirical method. The ultimate goal is the provision of a full account of how the human neural 

machinery supports and gives rise to any processes we classify as conscious (Block, 1996; Chalmers, 

2000; Rees et al., 2002). The hard problem implies that there is a leap of faith that needs to be taken 

to link true experience – the topic of the hard problem – to its report. There is no direct evidence of 

the fact that what seems to us to be awareness in another human being based on behaviour or reports 

is indeed true experience; however, it is sensible to assume so, and this assumption will be made 

henceforth in most of this thesis. 

Neuroimaging tools, such as electroencephalography (EEG) and functional magnetic resonance 

imaging (fMRI), can be used to identify neural correlates of consciousness. By experimentally varying 

an element of consciousness, we can compare and contrast brain activity in different conditions, 

thereby revealing specific mechanisms that are required for consciousness. Moreover, using 

neurostimulation techniques such as transcranial magnetic stimulation (TMS) to briefly induce a 
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change in brain activity, we can investigate the causal relationship between neurodynamics and 

consciousness. Chapter 2 is devoted to a review of how such techniques have been advancing our 

knowledge related to consciousness and have subserved valuable clinical applications. 

1.3.7. DIMENSIONS OF CONSCIOUSNESS 

In investigating the relation between brain activity and consciousness as described above, researchers 

commonly distinguish between two complementary dimensions that are especially relevant in the 

clinical assessment of disorders of consciousness: level (or state) and content (Laureys, 2005; Rees et 

al., 2002). The level of consciousness refers to the degree of wakefulness, whereas the content refers 

to the extent that someone is aware of specific stimuli. The level of consciousness represents an 

intransitive formulation: being conscious, as opposed to being asleep, anaesthetised, or comatose. 

The content of consciousness refers to a transitive usage: being conscious of something, either of a 

perception or of a higher-order thought. Qualia refers most commonly to the content of consciousness 

(Tye, 1992).  

The content and the level of consciousness are conceptually distinct, but not fully orthogonal 

dimensions (Hohwy, 2009; Overgaard and Overgaard, 2010). A high level of consciousness, i.e. being 

awake, is normally required in order to entertain any content of consciousness. Dreaming, however, 

– rich content in the absence of wakefulness (Siclari et al., 2013) – occurs in the absence of 

wakefulness. Conversely, being awake usually implies some content of consciousness, even during 

boredom (Eastwood et al., 2012), but patients with disorders of consciousness seem to have sleep-

wake cycles without showing any signs of awareness (Bekinschtein et al., 2009). 

1.3.8. FROM PHENOMENOLOGY TO BEHAVIOUR 

Can we bridge the gap between the hard and the easy problems of consciousness in the study of either 

of these dimensions? It has been argued (Seth, 2016) that we should adopt a balanced perspective 

and attempt to solve what is currently the real problem of consciousness: accounting for the 

phenomenological properties of consciousness, as discovered through both introspection and 

objective measurement, by mapping them onto biological mechanisms. This perspective allows us to 

construct a comprehensive picture of first-person consciousness, while leaving aside the worry 

regarding why consciousness exists in the first place. Such an empirical approach can thus give us a 

key to solve the introspective mysteries of conscious experience. In following this approach to probe 

the content of consciousness, we may correlate neural activity with verbal or behavioural reports of 

experiences such as whether a stimulus was seen or not, or the orientation of a Gabor patch briefly 
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flashing on the screen. However, some concerns related to these approaches exist and solutions to 

them have gradually began to be proposed. 

First, laboratory experiments usually employ minimalistic stimuli, which do not approximate well the 

richness of conscious experience (Naci et al., 2014). In an attempt to solve this problem, a renewed 

focus on incorporating full phenomenological reports into empirical science has been suggested 

(Zahavi, 2004). For example, neurophenomenology (Varela, 1996) proposes that a systematic 

exploration of the structure of human experience using both subjective reports and objective evidence 

can provide a remedy for the hard problem. Other frameworks have also been proposed; for example, 

under the view of predictive coding (Clark, 2013; Friston and Kiebel, 2009), the brain continuously 

predicts the world, while sensory inputs only provide the data for correcting the predictions and 

adjusting priors about the world. Under this view, conscious experience is an ongoing, controlled 

hallucination, with minimal stimuli required to study how perception is affected by disrupting 

predictions at different levels in the cortical hierarchy (Seth, 2016). 

Secondly, when a subject is asked to make a report, he has to perform an act of introspection that also 

requires other cognitive functions, such as attention (Lamme, 2003), or working memory (Soto and 

Silvanto, 2014). It is therefore challenging to subsequently disentangle the neural correlate of the 

reported phenomenon and that of the cognitive acts required for reporting. To address this, a recent 

key development has been the introduction of no-report paradigms (Tsuchiya et al., 2015). These 

paradigms are designed to allow bypassing reports when inferring whether a subject is perceiving a 

certain stimulus. For example, in binocular rivalry, perceptual switches can be inferred from eye 

movements (Frassle et al., 2014). When carefully used, such developments of experimental design 

allow researchers to get closer to what subjects are truly aware of at a given moment. 

These approaches are useful particularly in assessing the content of consciousness in the presence of 

wakefulness. In contrast, to investigate the level of consciousness, it is more difficult to obtain 

subjective reports, especially in pathological cases like disorders of consciousness. Furthermore, in 

cases of natural loss of consciousness, such as the onset of sleep, providing the reports interferes with 

the process of losing wakefulness. To circumvent this problem, passive methods of approximating 

wakefulness are sometimes used. For example, the onset of sleep is accompanied by a variety of 

physiological markers: changes in electrical brain activity and connectivity measured at rest (Scammell 

et al., 2017) or in response to external stimuli (Chennu and Bekinschtein, 2012), but also body 

measures such as muscle relaxation or the slowing down of breathing (Goupil and Bekinschtein, 2012; 

Ogilvie, 2001). On the other hand, for healthy subjects, careful active methods can also be used with 

minimal interference into the transition into unconsciousness. For instance, subjects may be 
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repeatedly woken up and asked whether they had been awake immediately prior to the awakening 

(Hori et al., 1994), or they might perform a task requiring simple button presses during anaesthetic 

induction or in a setting that encourages them to fall asleep (Kouider et al., 2014). Such simple reports 

provide a minimal window into first-person experience, but they allow us to understand the 

neurodynamics underlying a dramatic aspect of our mental world and a fundamental behaviour: the 

loss and recovery of consciousness. 

1.4. TRANSITIONS OF CONSCIOUSNESS 

How can it be that from one moment to another, as we fall into deep sleep or ingest an anaesthetic 

drug, we temporarily drift into the realm of unconsciousness, where are no longer able to access our 

vivid mental world? Unconsciousness is a fascinating territory that, unlike consciousness, cannot be 

scrutinised through introspection. As consciousness is interrupted, brain activity is still ongoing, but it 

produces distinct signatures compared to wakefulness (Schwartz et al., 2010). Some neural markers 

are similar across different conditions of unconsciousness, like sleep and anaesthesia (Murphy et al., 

2011). Can we pinpoint the neural boundary where consciousness disappears by studying the 

transitions between levels of consciousness?  

The idea of levels of consciousness does not necessarily imply a theoretical ordering of various states 

of consciousness along an axis representing the ‘intensity’ of consciousness (Bayne et al., 2016). 

Historically, the level of consciousness has been introduced in conjunction with disorders of 

consciousness (Laureys, 2005) to emphasise a gradation between comatose, vegetative, minimally 

conscious and healthy subjects. In that context, the term referred to the trajectory of clinical recovery 

starting from the most severe form of impaired consciousness and ending with full recovery (Laureys 

and Tononi, 2011). However, within each of these pathological states, a direct comparison between 

individuals is not theoretically sound, as individual pathologies lead to different palettes of preserved 

cognitive functions (Fernández-Espejo and Owen, 2013). Similarly, there is no ranking implied by the 

concept of consciousness levels between sleep, anaesthesia or other forms of altered consciousness. 

By contrast, each of these states defines a unique transition between consciousness and 

unconsciousness, thereby providing a framework for determining what is lost and regained between 

these two states.  

This thesis explores the delicate boundary between consciousness and unconsciousness by 

contrasting wakefulness with three conditions of impaired consciousness: sleep, sedation and coma. 

In the following section, a brief introduction to each of these states of consciousness will be made. It 

will be argued that advancing our understanding of these fields is not only essential in clarifying the 
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mystery of consciousness, but also in the advancement of medical tools that can assess and monitor 

the evolution of a wide range of clinical conditions, such as diagnosing and treating insomnia and 

disorders of consciousness, or optimally maintaining anaesthesia during surgery. Ultimately, the 

mystery of first-person consciousness might, by definition, not be solvable using the empirical 

method; however, elucidating the neural substrate underlying different levels of consciousness is a 

real, solvable problem that will bring immediate benefits to society. 

1.4.1. WAKEFULNESS AND SLEEP 

Along with the rising and setting of the sun, sleep fragments the introspective film of our lives into 

days. Every day, for around seven hours – if appropriate guidelines are followed (Watson et al., 2015) 

– we lose the rich experience of our surroundings, knowing with certainty that we will, with no effort, 

regain it in the morning. Sleep is, however, not fully devoid of experience. As we enter sleep or wake 

up, we may perceive glimpses of mesmerising or puzzling hypnagogic imagery or intrusions (Noreika 

et al., 2015). As we go into more profound sleep, we dream (Siclari et al., 2013). What are the neural 

dynamics that underlie the familiar descent into the alien territory of unconsciousness? 

Sleep provides a hallmark reference for the definition of consciousness. As science still struggles for a 

rigorous definition, it is common to refer to consciousness as the familiar, sentient state in-between 

awaking from dreamless sleep and falling asleep (or becoming otherwise ‘unconscious’) (Searle, 1993). 

In a sense, the loss of consciousness that sleep provides on a daily basis is a privilege: if we were fully 

conscious in every moment of our lives, we might take consciousness for granted and assume it is a 

natural by-product of any healthy human brain. Sleep proves to us that this is not the case: a fully-

functioning human brain can indeed be unconscious. 

Fundamentally, sleep is a reversible behaviour marked by quiescence and an elevated arousal 

threshold (Vassalli and Dijk, 2009) only found in higher evolved organisms (Hobson, 1995). Sleep is 

necessary: deprivation causes a range of metabolic (Knutson et al., 2007) and cognitive (Harrison and 

Horne, 2000; Pilcher and Huffcutt, 1996; Tsai et al., 2005) impairments, as well as an increased need 

for sleep (Berger and Oswald, 1962). While recent literature has been exploring the functions of 

(access-) consciousness (Samaha, 2015), sleep shows that unconsciousness is associated with essential 

functions in humans too, such as learning and memory consolidation (Hobson and Pace-Schott, 2002; 

Stickgold and Walker, 2007), potentially by downscaling the synaptic gain that occurs during 

wakefulness (de Vivo et al., 2017; Tononi and Cirelli, 2006). 

Sleep occurs as an alteration, rather than a cessation, of brain activity (Tononi and Massimini, 2008). 

The EEG has been extensively used to monitor neural activity during sleep for nearly a century 
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(Dement and Kleitman, 1957; Loomis et al., 1935) and a general architecture of human sleep patterns 

has emerged. Currently, the most widely-used scheme is provided by the American Academy of Sleep 

Medicine (AASM) (Iber et al., 2007), according to which the EEG recording is divided into 30-second 

epochs that are then manually (Silber et al., 2007) or automatically (Ronzhina et al., 2012) classified 

into five categories: wakefulness, NREM (N) stages 1 to 3, and REM sleep. Specific EEG markers include 

the presence of more than 50% alpha (8-13 Hz) waves for wakefulness, theta (4-7 Hz) and sharp vertex 

waves for N1, k-complexes and spindles for N2, slow waves (0.5-2 Hz) for N3, and rapid eye 

movements with mixed wave activity for REM (these EEG patterns are described in more detail in 

Chapter 2). But how can we capture the moment when we actually lose consciousness? Most 

researchers establish that the true onset of sleep occurs when N1 ends and N2 starts (Ogilvie, 2001), 

although some studies report that less than half of subjects perceive themselves as being asleep at 

the beginning of stage 2 (Hori et al., 1994; Sewitch, 1984). To explore the electrical dynamics of the 

process of falling asleep, the Hori scoring scheme provides nine finer-grained levels of scoring, with 

the last level corresponding to the beginning of N2, applicable to periods of a few seconds (Hori et al., 

1994). 

But are even a few seconds enough to capture the intricate subjective and objective changes in 

consciousness as we fall asleep? It has been shown that the electrical field of the brain exhibits periods 

of quasi-stability, that last as little as tens of milliseconds (Khanna et al., 2015; Koenig et al., 2002), 

whose dynamics are altered during sleep (Brodbeck et al., 2012). Networks of the brain fluctuate at 

millisecond level during a resting state (Baker et al., 2014). This suggests that understanding the 

millisecond-level fluctuations in neural activity may give us an even better view of how consciousness 

is lost at the onset of sleep, as will be further explored in Chapter 3. 

In addition to the EEG markers of sleep stages, there are other typical changes that happen as we lose 

consciousness. For example, in spectral domain, alpha power and connectivity disappear, as lower and 

higher power and connectivity emerge (De Gennaro et al., 2016; Hudetz et al., 2015). Similar changes 

are also observed in the pathological loss of consciousness (Chennu et al., 2017, 2016a, 2014). But 

what are the dynamics of fast-changing microstates and brain networks as we fall asleep? Chapter 3 

will combine the method of microstates and that of spectral power and connectivity to reveal the swift 

changes occurring in the EEG during the process of falling asleep, and suggest that fine-grained 

dynamics provide a valuable window into the transition to unconsciousness. 

1.4.2. SEDATION AND ANAESTHESIA 

The idea of unconsciousness can be frightening. Still, at rare occasions, we might want to be 

temporarily unconscious. For example, we want to avoid the intense pain of surgical procedures. 
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Humankind has known about natural hallucinogenic agents that alter the state of consciousness for 

thousands of years (Garcia-Romeu et al., 2016), but it was only in the 19th century that drugs producing 

temporary unconsciousness were discovered (Bigelow, 1846). Since then, drugs like propofol, 

ketamine or halothane have provided a reliable clinical solution for general and local anaesthesia 

(Brown et al., 2011), with undesired awareness during anaesthesia estimated to occur in as few as 

0.13% of the cases (Sebel et al., 2004). In the case of milder procedures such as dental extractions, a 

state of sedation, where the central nervous system is depressed but the patient is still responsive, 

can be preferred (Lyratzopoulos (Liratsopulos) and Blain, 2003). 

How do these drugs act on the nervous system to extinguish consciousness? A common mechanism 

for anaesthesia is still under debate (Alkire et al., 2008; Mashour, 2004). To an extent, anaesthesia 

and sleep display common neural signatures (Franks and Zecharia, 2011; Murphy et al., 2011; Schwartz 

et al., 2010). At molecular level, different anaesthetics have a variety of effects. For example, propofol 

binds to the GABAA receptors, thereby acting as an inhibitor on the nervous system, including on the 

connections between the thalamus and the cortex. This might be the mechanism that causes 

unconsciousness (Bai et al., 1999; Brown et al., 2011). Other drugs affect different receptors, such as 

NMDA (ketamine), dopamine (droperidol, morphine), or opioids (morphine). Furthermore, different 

drugs affect various brain regions differently. For example, at similar level of behavioural effect, 

propofol decreases blood flow in the frontal brain areas, whereas thiopental decreases blood flow in 

posterior and cerebellar areas (Veselis et al., 2004). With a variety of local changes that are associated 

with unconsciousness for each drug, a better explanation might arise from the higher-level dynamics 

of neural activity. 

One potential answer lies in the observation that all anaesthetics seem to disrupt global integration 

of neural activity (Alkire et al., 2008). To some extent, anaesthetics also disrupt local neural activity 

differentiation (Schartner et al., 2015). Intriguingly, at sedative doses of anaesthetic, the point where 

responsiveness is lost does not only depend on the level of drug, but also on other individual factors, 

such as the strength of global alpha brain networks (Chennu et al., 2016a). This agrees with several 

theories of consciousness, as will be detailed in Section 1.6. In particular, information-theoretic 

measures of integration (King et al., 2013) and differentiation (Schartner et al., 2015) in the EEG might 

be promising candidates for better understanding the global neural effects that explain the loss of 

consciousness. Therefore, Chapter 4 of this thesis will investigate information-theoretical measures of 

integration and differentiation during moderate sedation with propofol, at the point where 

responsiveness is lost in some (but not all) patients. It will be shown that responsiveness and drug 

exposure have overlapping but distinct neural signatures, which suggests that the loss of 
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consciousness might indeed be explained by the dynamics occurring at high-level organisation of the 

neural system.  

1.4.3. DISORDERS OF CONSCIOUSNESS 

Severe brain injury can rob us of consciousness, temporarily or forever. All that is required for this 

grim prospect is damaging any part of the evolutionarily older neural infrastructure that supports basic 

biological and cognitive functions, as detailed in Section 1.2. This can be caused by trauma to the head 

or by non-traumatic causes, such as haemorrhage or ischaemia (Bagnato et al., 2010). 

Patients surviving brain injury typically go through a sequence of progressive stages towards recovery 

(Laureys et al., 2005). Coma is closest to brain death: the absence of awareness and wakefulness. 

Patients in a coma typically only exhibit reflex activities mediated by the brainstem, but not by the 

cortex, and they cannot be aroused even by strong and obnoxious stimuli (Laureys and Tononi, 2011). 

A sign of recovery from coma and entering a vegetative state is the reappearance of wake and sleep 

cycles. At this stage, the patient can be aroused, despite no signs of awareness of the external world. 

If the vegetative state persists for more than a month, recovery becomes unlikely; for example, only 

around 20% of persistent anoxic vegetative patients will regain responsiveness within two years 

(Estraneo et al., 2013). Finally, a minimally conscious state is diagnosed when there are limited or 

inconsistent signs of awareness, from which the patient might progress to a recovery of consciousness. 

Clinical diagnosis in disorders of consciousness is not straightforward. Assessment methods like the 

Glasgow Coma Scale (Jones, 1979), the Coma Recovery Scale (CRS) (Giacino et al., 1991), or the Coma 

Recovery Scale Revised (CRS-R) (Giacino et al., 2004) measure behavioural responsiveness to account 

for the degree of processing of different types, such as visual, auditory, motor, communication or 

arousal. A score is given on each of these subscales, reflecting how elaborate the responses of the 

patient are, and the final score places the patient on a scale used for clinical evaluation in conjunction 

with other biological measurements. However, based on such scales, more than 40% of vegetative 

state patients have reportedly been misdiagnosed, as they show signs of minimal consciousness when 

evaluated by expert teams (Schnakers et al., 2009). In acute coma, patient outcome at individual level 

can still not be accurately predicted (Stevens and Sutter, 2013).  

Further underlining the need to improve behavioural assessment in these patients, it was recently 

discovered that patients classified as vegetative may in fact have preserved, but covert, cognitive 

functions. They might activate particular brain areas in response to command, despite their inability 

to make overt responses (Fernández-Espejo and Owen, 2013). In a pioneering study by Adrian Owen 

and colleagues, it was reported that a vegetative patient scanned using fMRI produced brain activity 
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in the same areas as healthy subjects when asked to play tennis and to imagine walking around her 

house (Owen et al., 2006). This finding has been replicated in a number of vegetative patients using 

fMRI (Monti et al., 2010) and bedside EEG (Cruse et al., 2011; Gibson et al., 2014). A most likely 

explanation would be that these patients are at least partially conscious, but unable to make overt 

responses. An alternative explanation would be that these are complex but automatic responses, that 

demonstrate a preservation of cognitive functions, which can be, however, independent of conscious 

experience (Overgaard and Overgaard, 2011). Indeed, complex responses, such as conflict resolution 

and response inhibition, have been shown to occur in the absence of first-person awareness (Van Gaal 

and Lamme, 2012). Nevertheless, the discovery that vegetative patients are able to activate brain 

areas similarly to healthy subjects in response to command shows that such patients have in place at 

least the potential architecture for supporting a subjective inner experience, in absence of the ability 

to respond. 

To address this, a number of electrophysiological signatures have recently been proposed for aiding 

clinical diagnosis in disorders of consciousness (Sitt et al., 2014). One promising such tool is probing 

the strength of spectral brain networks, which have been shown to undergo characteristic changes in 

both disorders of consciousness (Chennu et al., 2017, 2014) and sedation (Chennu et al., 2016a). By 

examining the topology of EEG brain networks at frequencies of interest and evaluating the efficiency 

of local and long-range neural activity and connectivity, an informative index could be obtained in 

order to assess the clinical state of a patient. Can this approach be useful for prognostication in the 

acute phase of coma? In Chapter 5, graph-theoretical measures will be employed on the EEG networks 

of comatose patients with recent traumatic brain injury in an attempt to find key signatures that might 

predict their eventual outcome. Although this approach provides only limited insight into the 

philosophical concept of first-person consciousness, it demonstrates how the neuroscientific study of 

particular elements of consciousness can provide a clinical methodology that can make a life-saving 

difference to patients fighting to regain consciousness in the intensive care unit. 

1.5. RESPONSIVENESS AS A PROXY FOR CONSCIOUSNESS 

In the search for neural signatures that indicate a state of consciousness or its absence, this thesis 

uses measures of behavioural responsiveness in order to zoom into the space that encompasses the 

transition between states of consciousness. Chapter 3 employs the responsiveness to a semantic 

categorisation task as a covariate of the conscious state during the process of falling asleep. Chapter 

4 uses the responsiveness to a perceptual discrimination task during propofol-induced 

unresponsiveness. In both cases, as will be shown later, there is a gradual increase, as the experiment 
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progresses, in the number of misses and sometimes in reaction times, validating a pattern of transition 

towards unconsciousness. Finally, Chapter 5 employs the CRS-R behavioural score to measure the 

degree of recovery in comatose patients two months after traumatic brain injury. In all these 

experiments, behaviour is a proxy for measuring consciousness. 

This proxy is, however, not perfect. Indeed, responsiveness does not imply consciousness. First, in 

healthy adults, classical conditioning is a simple example of responsiveness that does not require 

awareness (Clark and Squire, 1998). Secondly, some patients with lesions in their primary visual cortex 

exhibit blindsight, where they are able to respond to stimuli they deny being aware of (Zucco et al., 

2014). Finally, it has been argued that split brain patients respond to stimuli presented to their right 

hemisphere, and later may create an alternative explanation that justifies the response, 

demonstrating that the stimulus was not consciously perceived (Gazzaniga et al., 2014). This example 

should, however, be interpreted with caution, due to the isolated character of such case studies. More 

recently, it has been argued that such results could be better explained by a unified consciousness 

experiencing two unintegrated perceptual streams that are difficult to integrate (Pinto et al., 2017).  

Conversely, unresponsiveness does not imply unconsciousness. First, some subjects undergoing 

general anaesthesia are able to communicate using one forearm isolated from the anaesthetic, 

despite not having ulterior recollection of this (Sanders et al., 2012). Secondly, patients classified as 

vegetative might produce neural responses similar to healthy adults, as discussed in the previous 

section (Cruse et al., 2011; Monti et al., 2010). This allows the possibility that consciousness can occur 

in disorders of consciousness without any overt responsiveness (Alkire et al., 2008; Boly et al., 2013a; 

Sanders et al., 2012).   

Keeping this in mind, responsiveness uncontroversially provides a window into a segment of the whole 

space between consciousness and unconsciousness. In the case of falling asleep and entering 

sedation, responses are objective, momentary measures of the ability of the neural system to fully 

engage with a stimulus and produce a response. Introspectively, the loss of consciousness does not 

seem to be a binary event, but rather a gradual process with intermediate states between full 

wakefulness and sleep (Sewitch, 1984). The responsiveness approach probes the particular part of this 

intermediate state where responsiveness is lost. Moreover, this may have valuable applications, such 

as preventing driving accidents related to falling asleep at the wheel (Horne and Reyner, 1999) or 

improved individual dosage in anaesthesia (Alkire et al., 2008). In the case of coma, the CRS-R score 

provides an estimated level on the behavioural scale that a patient needs to climb in order to achieve 

the cognitive functions that support healthy consciousness. In this latter case, subjective 

consciousness matters less, while the clinical signs of improvement are essential in assessing recovery. 
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Hence, while not perfect, responsiveness provides a unique and valuable marker in the investigation 

of healthy and clinical transitions between levels of consciousness. 

1.6. THEORIES OF CONSCIOUSNESS 

What could a theory of consciousness look like? A practical alternative to the dualist proposition that 

consciousness is ontologically separate from physical matter (Chalmers, 1995) or to deeming the 

problem unsolvable (McGinn, 1989) are identity theories that equate neural events with 

phenomenology. While an explanatory gap remains in this case, such theories provide a way to 

approach this topic and enhance our understanding of mental and neural processes related to 

consciousness. Moreover, in clinical settings, these approaches can also provide helpful frameworks 

to assess patients with disorders of consciousness or to monitor healthy subjects undergoing 

anaesthesia. Importantly, most modern such theories have stepped beyond being biological theories 

(Block, 2009), which straightforwardly claim that activity in certain fixed brain areas might give rise to 

consciousness. Instead, they propose specific global patterns of neural activity that are responsible 

for conscious experience. Three theories of this type that have led to valuable advances will be 

presented below. The purpose of this section is not to provide a comprehensive review of theories of 

consciousness, but to focus on theories of interest for the further chapters of this thesis. 

1.6.1. GLOBAL WORKSPACE THEORY 

The global workspace theory (Baars, 1988) builds upon the observation that consciousness 

encompasses a momentarily unified collection of information processed by specialised mental 

modules. The theory hence frames consciousness as a broadcasting signal that is globally accessible 

in the brain. As highly-specialised modules perform different computations, which are intrinsically 

unconscious, they may momentarily become part of the global workspace and thereby share 

information with other submodules of the brain. When this happens, the theory posits that we are 

conscious of the globally shared content. A key remark is that there is a considerable amount of neural 

processing occurring at any given time in the brain, which we are not aware of. This theory has been 

further extended into the global neuronal workspace theory (Dehaene and Naccache, 2001), which 

emphasises the role of top-down attention in mobilising the relevant neuronal modules that become 

available in the global workspace. Key brain regions whose global implication in neural activity is 

consistent with this theory include frontoparietal and medial temporal areas (Baars, 2005). The global 

workspace framework has made useful predictions that can be used in both clinical and research 

contexts, such as the relevance of long-distance information sharing in consciously processed 

information (Dehaene and Changeux, 2011). One disadvantage of this theory is that it does not offer 



CHAPTER 1: CONSCIOUSNESS 

19 
 

an explanation of the phenomenological structure of subjective experience, but simply suggests how 

information sharing in an interconnected system might be implemented.  

1.6.2. DYNAMIC CORE HYPOTHESIS 

The dynamic core hypothesis (Tononi and Edelman, 1998) makes a further conceptual step by 

identifying two fundamental aspects of conscious experience: integration and differentiation. 

Integration signifies that every single scene of our stream of consciousness is perceived as a whole 

and is not separable into a sum of components or into multiple points of view. Differentiation refers 

to the complexity of every scene we experience, which is unique among an unimaginably vast number 

of other possible experiences. These two phenomenal properties are hypothesised to map to 

integration and differentiation of measured brain activity arising from different neural modules with 

specialised functions. In particular, re-entrant thalamo-cortical connections might be essential for 

integration (Seth and Baars, 2005), creating the concept of consciousness as a ‘remembered present’ 

(Edelman, 2001). The theory underlines that there is no need for a specific subset of brain areas where 

integration and differentiation are implemented, but suggests a ‘dynamic core’ of neural modules that 

may vary across time and across people, which, in the right configuration, gives rise to consciousness.  

By suggesting two specific properties of phenomenal experience that may directly map to 

characteristics of brain activity, this approach is useful for designing neurophysiological measures that 

can be applied in order to track the state of consciousness of patients under anaesthesia or with 

disorders of consciousness. Several such measures will be presented in Chapter 2. 

1.6.3. CONSCIOUSNESS AS INTEGRATED INFORMATION 

In contrast with other neuroscientific theories that start from neural events in an attempt to describe 

their effect on conscious experience, the integrated information theory (IIT) (Oizumi et al., 2014; 

Tononi, 2004; Tononi et al., 2016), attempts to build an explanatory bridge between subjective 

experience and brain activity by starting from phenomenology itself. It first proposes a set of axioms 

– self-evident truths that describe conscious experience. The most recent version of IIT (Oizumi et al., 

2014) proposes that first-person perspective is described axiomatically by the facts that consciousness 

exists, that it consists of a composition of multiple elements that are experienced at the same time, 

that it is informative due to its distinctiveness from any other possible experience, is integrated and 

irreducible to the sum of its components, and exclusive of other simultaneous conscious experiences. 

The theory then proposes a set of postulates that specify the laws that a physical system must satisfy 

to give rise to consciousness as described by these axioms. The postulates parallel the axioms. As a 

starting point, the existence axiom is translated into the postulate that a mechanism can contribute 
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to consciousness only if it generates cause and effect within a system. Further, these mechanisms can 

be composed and integrated in a way that is not reducible to the repertoire of cause and effect of its 

independent components. Moreover, the theory proposes that consciousness excludes other 

experiences by emerging only at the mechanistic level where the integration between components, 

φ, is maximal.  

Several definitions of φ exist, which vary with specific assumptions made regarding the system for 

which integrated information is computed. For example, early measures were applicable only discrete 

Markovian dynamics, but more recent measures are applicable to any stochastic continuous dynamics 

(Barrett and Seth, 2011; Kim et al., 2018; Mediano et al., 2018). However, these are challenging to 

compute due to the explosive computational complexity required for a system proportional with the 

neural system. Instead, measures that approximate the constraints required by the postulates can be 

used. One of the predictions of the theory is that sleep, anaesthesia and disorders of consciousness 

are characterised by low or absent consciousness due to the loss of neural information integration 

and differentiation. Measures inspired by information integration theory, which will be described in 

the next chapter, have been found to comply with this prediction (Casali et al., 2013; Massimini et al., 

2005; Seth et al., 2008). Conceptually, the theory predicts that feedforward systems that achieve the 

same functionality as a complex integrated system, but do not generate cause and effect as a whole, 

are not conscious. On the other hand, the mathematics of the theory, which do not distinguish 

between biological and other systems, mean that IIT, by itself, is compatible with a philosophical 

framework of panpsychism (Tononi and Koch, 2015). Any system composed of interacting units that 

generates a degree of cause-and-effect properties can be described using the measure of 

consciousness φ. Would that mean that some of our computers are conscious? Creative speculation 

may be entertaining, but we do not know how such predictions could be testable.  

Nevertheless, the information integration theory currently offers perhaps the most promising 

perspective of bridging the gap between phenomenology and neuroscience (Tsuchiya, 2017). This 

theory is still in its early days and more work is needed to further develop it into applicable forms for 

providing a solid foundation for the progress of consciousness research.  

1.7. NEXT CHAPTERS 

In the quest of investigating the boundaries of consciousness levels, this thesis will experimentally 

explore the three transitions presented in section 1.4: sleep, sedation, and coma. Considering the 

specificities of each of these transitions and the developments in pre-existing literature, a distinct 

question will be asked in each case and different analysis methods will be applied, as appropriate. 
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First, for the sleep analysis in Chapter 3. , the investigation concerns the fast-paced dynamics of the 

transition to unconsciousness. One motivation for this analysis is the need for finer-grained measures 

for assessing the transition to sleep. As will be detailed below, standard sleep scoring systems use 30-

second epochs to classify EEG data during the process of falling asleep (Iber et al., 2007). However, 

the transition to unconsciousness can be further broken down into the 4-second Hori system, which 

is consistent across subjects, but is still not fully congruent with respect to subjective reports (Hori et 

al., 1994). The key to understanding the transition to sleep might lie in the millisecond-level dynamics 

of the neural system. Therefore, this chapter focuses on the rapid changes present in the 

electroencephalogram before and after the loss of responsiveness during drowsiness, as captured by 

electric microstates of the brain, and complemented by an analysis of spectral power and connectivity 

changes at the same rapid temporal scale. 

Secondly, in Chapter 4. , the dynamics of brain activity during sedation are analysed using measures 

inspired by information integration theory. The dataset used in this chapter was previously analysed 

using spectral measures (Chennu et al., 2016a), hence the information-theoretical analysis aims to 

bring a complementary perspective at the same temporal scale as the previous analysis. The Lempel-

Ziv complexity (Lempel and Ziv, 1976) of the electroencephalogram is measured to quantify local 

dynamics, while the weighted symbolic mutual information index (King et al., 2013) is used to assess 

connectivity. An analysis of electric microstates would also be interesting to apply to this dataset; 

however, at the time of this study,  we were aware of studies already in progress directly investigating 

the same question (Britz, 2015), so we decided to focus on a novel analysis inspired by the theory of 

information integration. 

Finally, the analysis of comatose patients in Chapter 5.  focuses on the restoration of brain networks 

in the acute phase of traumatic brain injury. This analysis is more clinically-oriented compared to the 

sleep and sedation studies. In comatose patients, the disruption of brain activity is reflected in a 

slowing-down of informative EEG frequencies, hence an analysis of delta, theta and alpha frequency 

networks is performed. Moreover, due to the alteration of brain geometry, a topographical analysis 

as performed by the method of electric microstates would not be appropriate in these patients. 

Markers of spectral power have been extensively already described in coma literature (Kaplan, 2004; 

Lehembre et al., 2012a, 2012b; Thatcher et al., 1991). This chapter proposes a new methodological 

approach – that of graph theory applied to connectivity networks – that could to aid diagnosis and 

prognosis after traumatic brain injury. 

By applying a specific set of analyses as appropriate for the question explored within each of these 

transitions, this thesis also demonstrates the diversity of measures that can be used to investigate 
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transitions of consciousness, and emphasises that it is important to choose the right tools to answer 

the appropriate questions in every case. 

1.8. CONCLUSIONS 

This chapter started by surveying the problem of consciousness as it has existed for centuries, and 

framed it using perspectives from both neuroscience and philosophy. It then focused on transitions of 

consciousness and introduced the specific topics that will be addressed in this thesis – sleep, sedation 

and coma. Finally, several recent theories of consciousness were presented, which offer practical 

predictions regarding the relationships between neural activity and consciousness. This chapter 

provides a conceptual framework for the following studies presented in this thesis. 
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COMPUTATIONAL METHODS 

Given the theoretical framework discussed in Chapter 1, how can we measure consciousness in 

practice? This chapter critically surveys computational methods that can be applied to brain activity 

recordings to advance our understanding of neural processes related to consciousness. The measures 

described here are further used in the following chapters of this thesis. The focus is in particular on 

measures of spontaneous electroencephalographic (EEG) activity, but relevant findings are also drawn 

from other imaging techniques, such as fMRI. In line with the topic of this thesis, the main focus is on 

transitions between states, as opposed to contents, of consciousness. Three complementary 

approaches to quantifying brain activity are described: spectral measures, information-theoretical 

measures, and electric microstates of the brain.  

2.1. THE ELECTROENCEPHALOGRAM  

What can give us a clue about the fleeting events that occur in the minuscule cells tightly locked 

beneath our protective skulls? We currently have no tools that can measure non-invasively, in real 

time, the activity of individual neurons. Intracranial activity is occasionally studied in conjunction with 

brain surgery performed for reasons such as epilepsy (Téllez-Zenteno et al., 2005), but for research on 

large subject samples, an alternative window into brain functioning is needed.  

A critical discovery in neuroscience has been that the electrical activity generated as neurons 

communicate produces a measurable electric field above the skull (Buzsáki et al., 2012). Taking 

advantage of this, the electroencephalogram (EEG) records the fluctuations of the electric field of the 

brain using electrodes placed on the scalp. In humans, this technique was pioneered and named by 

Hans Berger in 1924 (Haas, 2003). Models suggest that the EEG records postsynaptic potentials 

generated synchronously in cell assemblies (Niedermeyer and Lopes Da Silva, 2005). Source 

reconstruction algorithms can be used to estimate the location of brain sources underlying the EEG 

signal. In practice, however, source reconstruction is not always reliable (Hassan et al., 2014; 

Schoffelen and Gross, 2009). Markers computed directly on the signals recoded by individual scalp 

electrodes, termed the sensor space, can reliably provide signatures of cognitive states, including 

transitions between states of consciousness.  
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The EEG is not the only tool that can be used to measure brain activity. Alternative methods include 

magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and positron 

emission tomography (PET). Although these techniques have their own advantages, including 

potentially better spatial brain source resolution, they involve greater practical difficulties, such as 

lying still for a long time in the case of fMRI and MEG, and are considerably costlier. The EEG provides 

an easy and efficient solution that can be used at the bedside in clinical settings even with patients 

with impaired consciousness (Bagnato et al., 2010; Chennu et al., 2017; Chennu and Bekinschtein, 

2012; Cruse et al., 2011; Fellinger et al., 2011; Harrison and Connolly, 2013). Moreover, along with 

MEG, the EEG provides a temporal resolution superior to other brain imaging methods, allowing the 

exploration of millisecond-level neural activity. 

This thesis is focused on states of impaired consciousness. The EEG provides the best currently-

available solution for investigating brain function during the process of falling asleep, entering 

sedation and, in particular, emerging from coma (Harrison and Connolly, 2013). These states will be 

investigated in the following chapters, with the aim to discover EEG signatures that can reliably 

distinguish, in real-time, between states of consciousness. This chapter continues by presenting the 

types of measurements performed on the EEG signal to reveal properties of neural activity, with a 

focus on changes already established to occur in sleep, sedation and coma, as relevant for the next 

chapters. The aim is to emphasise both the advantages and disadvantages of each individual tool in 

the greater picture of methodologies applicable to EEG data in the quest to understand the 

relationship between brain activity and consciousness. 

2.2. SPECTRAL MEASURES 

One of the most prominent characteristics of the human scalp EEG is the presence of oscillations with 

peaks at specific frequencies, which vary with the state of consciousness. The canonical frequency 

bands historically used to describe the EEG are denoted by Greek letters: alpha (8-13 Hz), beta (13-30 

Hz), gamma (above 30 Hz), delta (below 4 Hz), theta (4-7 Hz). There are also other oscillations of 

interest in more specific contexts, such as sigma band for sleep spindles (12-15 Hz) or the mu rhythm 

(8-13 Hz) in the context of motor action. These intervals are only guidelines and can vary, particularly 

in experiments where altered or pathological states of consciousness are involved, such as sleep or 

disorders of consciousness. Each of these rhythms seems to bear a different cognitive meaning, 

although the exact source of each rhythm is not always fully clear and, sometimes, multiple unrelated 

sources produce rhythms of similar frequency which are difficult to untangle.  Under several 
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consciousness frameworks, integration of information across the neural system plays an important 

role in the emergence of conscious states.  

2.2.1. SPECTRAL POWER  

During wakefulness, the alpha rhythm is a marker of relaxed wakefulness observed most prominently 

over the posterior, especially occipital, areas of the scalp. In healthy adults, eye closing results in bursts 

of alpha waves easily visible with the naked eye in the EEG (Barry et al., 2007). There is some debate 

on the physiology of the alpha rhythm, but its origin is often thought to be cortical (Niedermeyer, 

2005a). As the subject becomes drowsy and approaches sleep, the alpha rhythm fades, while lower 

oscillations in theta and delta band appear in the EEG (Niedermeyer, 2005b; Ogilvie, 2001). Light sleep 

is characterized by spindles in the sigma frequency (12-15 Hz), along with other markers such as K-

complexes. In deep sleep, slower frequency oscillations are present, including large-amplitude slow 

waves below 1 Hz, which reflect a cyclical hyperpolarisation and depolarisation of the membrane 

potential in cortical neurons (Steriade et al., 1993a, 1993c, 1993b), also referred to as up and down 

states (Wilson, 2008). Similarly to sleep, anaesthesia is characterised by the loss of alpha oscillations 

(Purdon et al., 2013) and the emergence of slower waves with similar cortical origins (Murphy et al., 

2011). However, unlike sleep, anaesthesia is also often accompanied by the emergence of higher-

frequency beta band oscillations (Purdon et al., 2013). By contrast, in pathological coma, spectral 

activity is disrupted depending on the aetiology of the damage of neural tissue (Kane et al., 1998; 

Lechinger et al., 2013). Therefore, different patterns of oscillatory activity in the EEG can provide 

useful indications for diagnostics and prognostication in a clinical setting, in conjunction with other 

biological and behavioural tests (Kaplan, 2004). 

Some of the well-known oscillations are visible in the EEG with the naked eye. However, algorithms 

that produce a frequency decomposition of a time series can be used to obtain a comprehensive 

picture of the spectral architecture of the EEG. In this thesis, the Fourier transform and the Hilbert 

transform are employed to compute the spectral content of the data.  

The discrete Fourier transform produces the representation of a signal from time domain to frequency 

domain by expressing it as a sum of sinusoids, thereby providing the power at N frequencies of 

interest:  

𝑆(𝑓𝑘) = ∑ 𝑠(𝑡𝑖)𝑒−𝑗2𝜋𝑓𝑘𝑡𝑖(𝑡𝑖+1 − 𝑡𝑖), 𝑘 ∈ {0, 1, … , 𝑁 − 1},

𝑁−1

𝑖=0

 

where s(t) is the waveform to be decomposed into a sum of sinusoids and S(f) is the Fourier transform 

of s(t). The fast Fourier transform provides a computationally efficient algorithm for this purpose 
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(Brigham, 1988). A downside of the Fourier transform is that it requires a window of data, assumed to 

be generated by a stationary and linear system, to compute the power spectrum, thereby producing 

a temporal resolution inferior to that of the original signal.  

Alternatively, it is possible to use the Hilbert transform for better temporal resolution (Bendat and 

Piersol, 1986; Huang et al., 1998). The Hilbert transform of a real-valued function 𝑥(𝑡) (𝑤ℎ𝑒𝑟𝑒 − ∞ <

𝑡 <∞) is defined as the real-valued function: 

𝐻(𝑥)(𝑡) =  
1

𝜋
∫

𝑥(𝑢)

𝑡 − 𝑢
𝑑𝑢

∞

−∞

 

The Hilbert transform is the imaginary component of the analytic signal: 

𝑥𝑎 =  𝑥(𝑡) + 𝑗 𝐻(𝑥)(𝑡) 

The analytic signal thus defines the instantaneous amplitude and phase of the original signal. By 

filtering the signal in the frequency band of interest, the instantaneous envelope obtained using the 

Hilbert transform can provide a useful spectral decomposition of the signal.  

Historically, spectral power is the most well-established method of analysing the EEG and extensive 

literature exists on its relationship with a wide range of cognitive processes and states. Although some 

aspects are still debated, such as the origin of each individual rhythm, analysing the power spectrum 

is one of the most widely and reliable methods in the investigation conscious states. Different spectral 

configurations undoubtedly affect conscious processing (Hanslmayr et al., 2011; Klimesch, 2012) or 

necessarily accompany different conscious states (Massimini et al., 2007). But does this have any 

explanatory power for the emergence of consciousness? Given that consciousness and its loss involve 

coordinated changes across the whole brain network, it seems that the power spectrum by itself is 

not satisfactory in the quest for understanding consciousness. To understand how conscious states 

are sustained, a more global approach is needed, where the relationships between neuronal 

populations are considered. 

2.2.2. SPECTRAL CONNECTIVITY 

How can we quantify the relationships that form in a network consisting of 1011 neurons and around 

10 times more glial cells (Bear et al., 1996)? To understand the processes that govern consciousness, 

which seems to encompass numerous cognitive functions implemented in different cortical locations, 

we ultimately need to understand the brain at both local and global level and how information flows 

and is integrated between different brain areas (Sporns et al., 2002). While anatomical connectivity is 

informative with regards to the infrastructure supporting neurophysiological dynamics, of more 

interest is functional connectivity, defined as the correlation between events occurring in remote 
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areas of the brain, as can be observed in live brain recordings (Fingelkurts et al., 2005). In particular, 

synchronisation of phase between signals originating from different brain sources is widely regarded 

as an indication of functional connectivity (Chennu et al., 2014) under the hypothesis that the 

synchronised firing of cell assemblies is fundamental in large-scale integration across neural systems 

in order to sustain coherent behaviour (Fell and Axmacher, 2011; Sauseng and Klimesch, 2008; Varela 

et al., 2001).  

Brain connectivity can be investigated using the EEG by revealing mathematical relationships that 

suggest non-randomly synchronous activity between signals at different pairs of channels. In this 

investigation, we can use the same frequency bands as those described above for the power spectrum. 

At each point in time, an oscillation at a particular frequency can be described by its amplitude and its 

phase.  A simple method of assessing linear correlations between signals is to use the coherence, 

computed as the cross-spectral density of two signals, which uses the Fourier transform of their cross-

correlation (Sakkalis, 2011). However, coherence measures simultaneous changes in both amplitude 

and phase of two signals, whereas functional connectivity is manifested as a synchronisation of phase, 

but not necessarily of amplitude. To correct for this, indices based on signal phase only have been 

developed. For example, the phase locking value (PLV) (Lachaux et al., 1999) produces a value 

between 0 and 1 indicating the phase synchronisation between two signals. However, this measure 

has several disadvantages, one of which is volume conduction: the same source activity picked up by 

different electrodes is interpreted as true connectivity between different brain areas. The phase lag 

index (PLI) (Stam et al., 2007) was introduced to address the limitation of existing measures, such as 

the PLV, and to prevent the interpretation of volume conduction as true connectivity. Under the 

assumption that volume conduction results in either identical (0o) or opposite (180o) phases and a 

steady phase difference indicates connectivity, the PLI eliminates the former combination by 

averaging the signs of phase differences of the two signals. The PLI is computed using the imaginary 

part of the cross-spectrum 𝑋: 𝛹 =  |〈𝑠𝑖𝑔𝑛(𝐼(𝑋)〉|, where 〈𝑦〉 denotes the expected value of y. Finally, 

the weighted phase lag index (WPLI) (Vinck et al., 2011) improves the PLI by weighting the signs of the 

phases by their absolute magnitudes, which corrects for the discontinuity of the measure and 

improves its sensitivity to noise: 

Φ =  
|〈𝐼(𝑋)〉|

〈|𝐼(𝑋)|〉
 

Considering the overall advantages of the WPLI over other methods, including the avoidance of 

volume conduction and the robustness to small sample sizes, the WPLI is employed in this thesis as a 

measure of connectivity. It should, however, be mentioned that the WPLI also has certain limitations. 

By down-weighting identical and opposite phases, it may discard true connectivity patterns. One study 
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has reported that the WPLI was successful in preventing the classification of volume conduction as 

true connectivity, but it underestimated connectivity in simulated data (Cohen, 2014). The WPLI can 

therefore be said to represent a conservative connectivity measure. Furthermore, the WPLI is not able 

to inform on the directionality of neural information flow; for this purpose, measures of directed 

functional connectivity should be used, such as transfer entropy (Schreiber, 2000) and Granger 

causality (Seth et al., 2015). Another family of methods that could be employed to measure effective 

connectivity is dynamic causal modelling (Friston et al., 2003). 

The WPLI produces a list of numerical connectivity strengths between all pairs of nodes in the network. 

How can these connections be summarised to allow comparisons? A simple method is obtaining the 

mean of the median WPLI over regions of interest (Chennu et al., 2014). More elaborate metrics can 

be obtained using graph theory, which will be presented in section 2.4.  

Particular resting-state connectivity patterns have been linked to different states of consciousness. A 

prominent marker consistently found in studies of impaired consciousness is long-range connectivity 

between frontal and parietal areas (Boly et al., 2013b). In healthy individuals, wakeful rest is 

characterised by frontoparietal connectivity at alpha frequencies (Chennu et al., 2016a, 2014), which 

is reduced in coma (Lehembre et al., 2012a), chronic disorders of consciousness (Chennu et al., 2014), 

sleep (De Gennaro et al., 2004) and anaesthesia (Ku et al., 2011). Other imaging methods, such as 

fMRI, have also confirmed that frontoparietal connectivity is altered across changing states of 

consciousness (Bor and Seth, 2012; Boveroux et al., 2010a; Heine et al., 2012). A recent study on 

patients with disorders of consciousness has confirmed that alpha connectivity was associated with 

metabolic activity in frontal and parietal brain areas in healthy adults (Chennu et al., 2017). 

It is, however, still debated whether frontoparietal connectivity is a true signature of conscious 

processing (Bor and Seth, 2012; Naghavi and Nyberg, 2005) or merely a marker of a process which is 

difficult to disentangle from consciousness, such as goal-oriented tasks (Farooqui and Manly, 2017). 

In addition, there is currently lively debate regarding the content of consciousness and the location 

and nature of its neural correlates. Recent discussions have focused on the role of the posterior high-

level sensory brain areas, including a hot zone comprising occipital, parietal and temporal areas, as a 

key region in generating conscious content (Boly et al., 2017; Koch et al., 2016). A proposed alternative 

is that the frontal cortex is necessary to support higher-level cognitive functions and consciousness 

(Odegaard et al., 2017). While these questions pertain to the content rather than the state of 

consciousness, they can nevertheless help us define better frameworks for studying its transitions, 

which include the subjective experience of falling asleep and that of emerging from traumatic brain 

injury. 
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Overall, spectral measures have been long-established in literature and are unquestionably valuable 

in practice for investigating cognition and conscious states. However, one disadvantage is that there 

exists no widely-accepted theoretical framework for consciousness that explains in a causal manner 

the relationship between different spectral components and consciousness. Although it has been 

observed, mainly through correlations, that distinct spectral profiles characterise different states of 

consciousness, no accepted explanation beyond association exists to provide insight into why 

particular frequency components should be linked to different states of consciousness. The next 

section described a set of alternative measures that can be more easily interpreted in the framework 

of modern theories of consciousness. 

2.3. INFORMATION-THEORETICAL MEASURES 

The concept of information integration as posited by consciousness frameworks, such as IIT, do not 

generally refer to the spectral content of the EEG. Instead, they refer to Shannon’s definition of 

information (Shannon, 2001): the reduction of uncertainty caused by a specific outcome occurring 

from a set of possible outcomes. However, the difficulty in estimating states and outcomes in the 

neural system prevents a direct computation of measures of consciousness, such as the value of φ in 

IIT, the amount of information that the system can integrate to generate consciousness (Tononi et al., 

2016). Instead, measures based on information theory can estimate the number of outcomes available 

to the system by examining the diversity of the signal within a time interval. Information exchange 

between different brain areas can also be estimated by quantifying the common patterns found in 

their respective signals.  

The information-theoretical framework provides a window into a dimension of the EEG distinct from 

spectral measurements. Although communication between neural modules at specific biologically 

predefined frequencies means that information exchange will depend on these frequencies, the two 

approaches are conceptually separate and potentially orthogonal. Compared to spectral measures, 

the information-theoretical approach has a more direct foundation in theories of consciousness in 

complex systems. Such theories make qualitative predictions regarding the organisation and 

information flow in a system, but not necessarily on the specific frequency spectrum that should be 

fundamentally important in the emergence of consciousness. 

2.3.1. SIGNAL COMPLEXITY 

Current theories propose that, as we lose consciousness, the number of possible states in the neural 

system decreases (Tononi et al., 2016). In a system with a smaller number of possible states, 

uncertainty reduction in instantiating a conscious experience also becomes smaller. This also 
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potentially reduces the amount of information available for exchange across the brain. According to 

theories of consciousness, sleep, anaesthesia and coma should all have in common a quantifiable 

reduction in possible states (Seth et al., 2008; Tononi and Edelman, 1998), despite occurring due to 

different biochemical or mechanical causes. How can we quantify this loss of neural diversity from an 

information-theoretical point of view? 

One method of assessing signal diversity makes use of the algorithmic complexity of a signal, as 

developed in computer science for file compression. The Lempel-Ziv algorithm and its variations 

(Lempel and Ziv, 1976; Welch, 1984) work by extracting a dictionary of unique patterns that appear in 

the input sequence and replacing these patterns in the sequence by their dictionary indices, thereby 

reducing the original size of the sequence. If the same patterns often repeat in the original sequence, 

the dictionary will contain a small number of items. On the other hand, if the sequence is composed 

of unpredictable, novel patterns, the dictionary will contain proportionately more items. Hence, the 

size of the dictionary quantifies the diversity of information contained in the sequence. By applying 

the same algorithm to a sequence of concatenated EEG data, the size of the dictionary can be 

interpreted as an approximation of the repertoire of states that the neural system displays. It has been 

shown that, in a sufficiently long signal produced by an ergodic process, the Lempel-Ziv complexity 

reflects the entropy of the process generating the signal (Schartner et al., 2017a).  

Following early studies showing that the Lempel-Ziv complexity of the EEG tracks the depth of 

anaesthesia (Ferenets et al., 2007, 2006; Zhang et al., 2001), an influential application of this idea was 

the introduction of the perturbational complexity index (PCI) (Casali et al., 2013). To compute the PCI, 

transcranial magnetic stimulation (TMS) is applied to the resting-state EEG and source modelling is 

performed to obtain a binary matrix of significant and non-significant cortical sources. The temporal 

span of this matrix is on the order of hundreds of milliseconds. The Lempel-Ziv algorithm is then 

applied on this matrix to estimate its complexity. The PCI is defined as the Lempel-Ziv complexity 𝑐𝐿 

normalised using the length 𝐿 of the matrix and its source entropy 𝐻(𝐿): 𝑃𝐶𝐼 = 𝑐𝐿
log2 𝐿

𝐿𝐻(𝐿)
. The PCI was 

able to discriminate, in single individuals, between wakefulness and unconsciousness due to sleep or 

anaesthesia, and between levels of consciousness impairment in disorders of consciousness. In line 

with theories like IIT, this indicates that the neural response is significantly richer when subjects are 

conscious.  

More recently, Lempel-Ziv complexity has been also applied to spontaneous EEG data. Although it is 

still designed to quantify the complexity of neural activity, the LZN measure is computed somewhat 

differently from the PCI. First, it is applied on non-perturbed EEG data. This data can be the raw EEG 

signal itself or its analytic signal. Secondly, the LZN is typically applied on data spanning a few seconds. 
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Finally, the normalisation process is different and will be detailed below. The Lempel-Ziv complexity 

of spontaneous EEG has been found to decrease in sleep (Schartner et al., 2017b), sedation and 

anaesthesia (Schartner et al., 2015), and disorders of consciousness (Wu et al., 2011). Interestingly, 

psychedelic drugs seem to enhance the complexity of the EEG (Schartner et al., 2017a), as also 

demonstrated in fMRI (Tagliazucchi et al., 2014).  

To compute the Lempel-Ziv complexity of EEG data, the concatenation of a signal consisting of channel 

values over time can be performed either channel-by-channel or observation-by-observation, where 

an observation consists of the values of all channels at a single point in time. The interpretation of the 

two complexity flavours is slightly different: the former case reflects the local, temporal signal diversity 

in individual channel values over time, whereas the latter captures the spatial diversity of the global 

landscape of neural activity. In some of the above studies, a different flavour appears to have worked 

best in different contexts: for example, the spatial variant in anaesthesia (Schartner et al., 2015), and 

the temporal variant in psychedelic states (Schartner et al., 2017a). These different interpretations 

have not been thoroughly explored so far and it is not clear which variant best fits with the original 

theoretical framework that indicates neural information diversity as a key element for the emergence 

of consciousness. Bringing this investigation a step further, Chapter 4 presents evidence gathered 

from a sedation study on healthy adults that the two types of complexity track different aspects of 

sedation: spatial complexity tracks drug level, whereas temporal complexity tracks responsiveness. 

Although currently not as well-established as the power spectrum, Lempel-Ziv complexity is a valuable 

alternative tool that is easy to compute and to deploy in clinical settings. It has the advantage of being 

more meaningful as a measure for the level of consciousness within theoretical frameworks that 

consider information diversity a key aspect of consciousness. Similar measures have confirmed that 

the loss of consciousness is characterised by lower complexity of neural activity (Bai et al., 2015; 

Hudetz et al., 2016). However, there are still questions to solve regarding the Lempel-Ziv complexity.  

One ongoing debate regarding the Lempel-Ziv complexity is its relationship with spectral power. It is 

important to know whether changes in complexity can be explained, fully or partially, by changes in 

spectral power during different levels of consciousness. One way to address this question is to 

normalise the original complexity value by the maximal complexity of a sequence with the same power 

spectrum. This surrogate data for normalisation can be obtained by randomising the phases of the 

Fourier spectrum (Theiler et al., 1992). This normalisation was used to compute the LZN measure in 

other works (Schartner et al., 2017a). Alternatively, one very conservative approach is to apply a notch 

filter in order to remove a particular frequency from the signal completely, thereby ensuring that 
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frequency band has no effect on the result. Chapter 4 of this thesis uses both phase normalisation and 

notch filters to confirm that Lempel-Ziv complexity is not explained away by changes in power.   

2.3.2. INFORMATION SHARING 

In addition to quantifying the repertoire of states available to the neural system, we can attempt, 

under the same consciousness frameworks, to measure how information is integrated, or shared, 

across the system. Similarly to spectral analysis, by observing patterns originating from different brain 

areas that occur synchronously, a pairwise connectivity map can be created. Just like in the case of 

phase relationships, identical patterns can be regarded as volume conduction instead of indicators of 

connectivity. 

One measure that has been introduced for this purpose is the weighted symbolic mutual information 

(wSMI) index (King et al., 2013). The wSMI is computed by transforming the EEG signal into symbols 

and computes their joint probability of occurrence between each pair of channels. The transformation 

is performed as follows. First, a temporal separation parameter τ is chosen, that defines the distance 

between the selected EEG samples. Then, k values (e.g. k = 3) are selected given this distance. This 

sequence of length k is labelled with a unique symbol that depends only on the relative ordering of 

the values in the sequence. The joint probability for each pair of symbols is then computed. 

Importantly, symbols with identical or opposite shapes are considered to be generated by the same 

sources and ignored, hence correcting for volume conduction. The symbols are thus able to capture 

nonlinear coupling between signals. The sensitivity to particular frequency bands can be tuned by 

adjusting the temporal separation τ between the samples that contribute to a symbol. The wSMI has 

been shown to decrease in disorders of consciousness in comparison to healthy wakefulness (King et 

al., 2013; Sitt et al., 2014), particularly at theta frequencies, although the differences do not always 

reach significance (Claassen et al., 2016). A recently introduced alternative to the wSMI is the phase 

lag entropy (PLE) (Lee et al., 2017), which analyses the patterns present in phase relationships 

between two signals to provide a diversity of temporal patterns of functional connectivity. The PLE 

reliably distinguished between consciousness and its loss in anaesthesia (Lee et al., 2017).  

The wSMI is currently less established in literature compared to many other methods of assessing 

connectivity. However, it has the advantage of being a measure directly inspired from theories of 

consciousness, as opposed to being constructed in a data-driven manner. Existing studies offer 

moderate evidence that the wSMI could potentially be useful in measuring integration in the neural 

system and hence this measure is used in Chapter 4 as a complement to signal complexity.  
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After obtaining a full matrix of connectivity values employing the wSMI, the same question applies as 

in the case of spectral connectivity: how to best make sense of the large number of connectivity values 

describing the network of information-sharing? In the next section, graph theory will be presented as 

one method of delving into the topographical details of connectivity networks. 

2.4. GRAPH-THEORETICAL MEASURES  

Modern theories of consciousness support the view that global patterns of information exchange, 

rather than activity in specific biological locations, account for the emergence of consciousness 

(Tononi et al., 2016). Integration across large scales in systems consisting of a large number of states 

is hypothesised to play an important role in this process. While exact connections between large 

numbers of cells in the neural system are currently impossible to compute in vivo, brain imaging and 

recording techniques such as the EEG can be used to investigate the activity of populations of neurons. 

As described in sections 2.2.2 and 2.3.2, connectivity methods applied to the EEG provide us with a 

manageable network up to the order of a hundred nodes, where emerging patterns can be easily 

discovered. 

A mathematical tool that can be applied to such networks is graph theory (Bullmore and Sporns, 2009). 

Given a network consisting of nodes connected by edges of different values, which define a graph, its 

structure can be summarised using properties at local or global scales. In particular, it has been 

proposed that human brain connectivity has a small-world architecture: dense short-range and few 

long-range connections, which result in a very low path between any two nodes in the network, 

whether topologically close or far from each other (Bassett and Bullmore, 2006, 2016; Sporns, 2010). 

This architecture allows both segregated and integrated information processing in the brain to occur 

with high efficiency (Achard and Bullmore, 2007). In fact, small-world architectures are encountered 

in many other natural and artificial complex systems, from human social circles (Milgram, 1967) to 

protein structures (Taylor, 2013).  

The two essential properties which define a small-world architecture – segregation and integration – 

are measured with different metrics (Watts and Strogatz, 1998), most of which can be applied on both 

directed and undirected graphs. To quantify the potential for segregated processing, it is useful to 

analyse local, direct connections between nodes, and assess the density of local connections using 

measures such as the node degree or the degree of clustering. On the other hand, the integration 

potential of the network is best given by global measures of distance, such as the average path length, 

between pairs of nodes, which includes node pairs that are topographically far and not necessarily 

linked by direct connections. Small-world-ness can be calculated as a ratio between segregation and 
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integration properties of the network (Humphries and Gurney, 2008). In addition, certain nodes, 

corresponding to highly connected biological areas, play a special role within the network and act as 

hubs: they form a higher number of long-range connections, like railway stations and airports that 

connect distant regions. Moreover, networks can be separated into modules: separate groups of 

densely-interconnected nodes which can be assumed work together to process information (Guimera 

et al., 2004; Newman and Girvan, 2004). The distance covered by such modules can inform on the 

long-distance processing occurring in the network, as measured, for example, by the modular span 

(Chennu et al., 2014).  

In the study of conscious states, graph theory builds on connectivity methods to allow a more detailed 

survey of functional network architecture. Several studies have made use of this technique. In chronic 

disorders of consciousness, the EEG shows that alpha networks have a smaller number of hubs, less 

efficiency and cover smaller brain areas in chronic disorders of consciousness compared to healthy 

adults, whereas lower-frequency theta and delta networks show the reverse modifications (Chennu 

et al., 2014). In comatose patients, BOLD networks show a number of preserved properties, but hub 

structure is disrupted (Achard et al., 2012). In propofol anaesthesia, hubs are also reorganised (H. Lee 

et al., 2013) and the average path length is increased, suggesting that loss of global integration is 

associated with unconsciousness (Monti et al., 2013). Chapter 5 will show how graph-theoretical 

measures that quantify the early changes in connectivity network properties weeks after traumatic 

brain injury can assist in prognosticating the eventual outcome of acute comatose patients. 

A downside of applying graph theory to brain networks is that multiple levels of abstraction and 

indirection are involved. First, EEG records activity over surfaces of the scalp, which approximates 

activity in a particular brain region. Secondly, connectivity is inferred using methods which are reliable, 

but have limitations, as emphasised in the previous sections. Finally, to apply graph theory, 

connectivity networks are usually further modified in order to allow well-defined computations. For 

example, where the graph is defined by edges of strengths between 0 and 1, a common option is 

applying a threshold to retain only the strongest connections (Reijneveld et al., 2007). The remaining 

connections can then be set to 1 to obtain an unweighted graph, which simplifies the computation of 

graph-theoretical properties that operate with binary edges, such as the clustering coefficient or 

modularity measures. However, this discards information present in the weights, which other 

measures can take advantage of. But what is an optimal threshold that best delimits strong from weak 

connections? There is no current consensus on this: one option is to perform the same computation 

on a range of thresholds and average the results (Achard et al., 2012; Chennu et al., 2014; Lynall et al., 

2010). However, this might have a smoothing effect on the results. Moreover, the values of the 

selected thresholds are not consistent across literature.  



CHAPTER 2: COMPUTATIONAL METHODS 

35 
 

To sum up, graph theory supplements connectivity measures by providing tools for more detailed 

analyses of network architecture, thereby revealing global and local properties which characterise the 

integration and processing of information in the brain. These patterns are both informative as 

signatures of clinical alterations of states of consciousness and as pointers in current theories of 

consciousness. However, a high degree of abstraction is involved in this process, so any findings should 

be taken with caution. 

2.5. ELECTRIC MICROSTATES 

The above measures seek to quantify local neural activity, as well as the relationships between activity 

in different brain regions. In contrast, the concept of electric microstates of the brain starts from a 

different perspective. It refers to the momentary global state of the brain at a specific point in time 

and the parameters of the sequence produced by the rapid succession of these global states. One 

commonly-used method to establish a global state is the topography of the electric field of the brain 

(Michel et al., 2009). A finite number of such quasi-stable global states with a duration in the range of 

tens of milliseconds – hence termed microstates  – have been consistently found to occur in healthy 

humans (Koenig et al., 2002) and psychiatric disorders (Strelets et al., 2003; Tomescu et al., 2014), 

across different cognitive states (Milz et al., 2015). Crucially, four canonical states denoted by letters 

from A to D typically occur in the classic EEG microstates paradigm (Figure 2.1). It is not the states that 

change across conditions, but their dynamics, such as the duration or the relative frequency of 

particular microstates. 

 

Figure 2.1 Illustration of the four typical microstate topographies consistently found in literature. 

The classic algorithm for finding microstates in EEG data involves an unsupervised clustering process 

(Michel et al., 2009; Murray et al., 2008; Pasqual-Marqui et al., 1995). A sample consists of the map 

of electric voltage values from all selected EEG channels at a single point in time, which define a static 

topography on the scalp. The algorithm clusters the given EEG samples heuristically and produces a 

fixed number of topographies (maps) that best approximate the most frequently occurring 

microstates in the given set of samples. Usually, the input set consists of the samples with local 

maximum variance, which provide the best-defined topographies across the data. Then, the resulting 

topographies are back-fitted to the original data by assigning to each sample the microstate map with 
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the highest spatial correlation. Hence, the original sequence of EEG samples will become a sequence 

of microstate topography labels. Contiguous periods with a common label represent a quasi-stable 

microstate. The average duration (number of contiguous samples) of each microstate can be used as 

a parameter that characterises the sequence of global brain changes, along with other parameters 

such as the frequency of each microstate occurring in a period of time, the goodness-of-fit of the 

samples to the fixed microstate maps, or the transition matrix between microstates. 

Although by now well-established and widely used in literature, the methodology has several 

implementation details which vary across studies. First, the clustering algorithm produces a 

predefined number of microstate maps. How to decide on the number of microstates that best explain 

the data? More microstate maps will always explain more, but a balance between their number and 

the variance explained needs to be found. A cross-validation criterion has been proposed for this 

purpose (Pasqual-Marqui et al., 1995). However, this criterion has been reported to be too easily 

influenced by the number of electrodes used in the algorithm(Murray et al., 2008), a finding confirmed 

in Chapter 3. Using this criterion (Brodbeck et al., 2012; Kuhn et al., 2015; Van de Ville et al., 2010) or 

other variance-related criteria (Koenig et al., 1999) some studies have found four microstate maps to 

be optimal in most (although not all) cases. However, many more other studies use an a priori number 

of four microstates based on previous studies, e.g. (Khanna et al., 2014; Kikuchi et al., 2011; Koenig et 

al., 2002; Milz et al., 2015; Schlegel et al., 2012; Tomescu et al., 2014). While this allows a comparison 

between the functional roles of individual microstates, it also restricts the study to a predefined set 

of microstates which still do not have a clear meaning. Furthermore, different methods of segmenting 

the EEG into microstates may result in a different optimal number of maps (Yuan et al., 2012). 

Secondly, there are two ways of performing the back-fitting procedure. The first method (Milz et al., 

2015) makes the assumption that topographies change in between local peaks of variance (global field 

power local maxima) and hence labels only these peaks based on their spatial correlation with the 

maps obtained through clustering. The labels of the EEG samples in between peaks are interpolated. 

While this avoids noisy assignments, it also potentially discards shorter microstates occurring between 

peaks and causes a longer erroneous assignment if a single peak is assigned to the wrong microstate. 

In contrast, the second method (Tomescu et al., 2014) uses more computational power to label every 

single EEG sample using the microstate maps obtained by clustering. This generates a more detailed 

impression of the sequence of microstates occurring throughout the recording, but it is more prone 

to noise. For this reason, a smoothing algorithm can be applied to correct isolated labels different 

from their neighbours (Pasqual-Marqui et al., 1995). However, even after smoothing, noise can still be 

present in the final result, especially given that samples situated between peaks of global field power 

may not have well-defined topographies.  
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Finally, the neuroanatomical and functional interpretation of microstates is not straightforward, and 

the relationship between microstates and other brain measures, such as spectral power and 

connectivity, is currently unclear. A combined fMRI-EEG study suggested that each microstate 

corresponds to four resting-state networks linked to auditory, visual, attention and interoceptive 

processing, but none to the default mode network (Britz et al., 2014). It also found no correlation 

between microstates and the power spectrum. On the other hand, a source localisation study 

identified individual microstates as parts of the default mode network, proposing that the default 

mode network is in fact the sum of fast-paced individual components whose separation is smoothed 

by the low temporal resolution of fMRI (Pascual-Marqui et al., 2014). A further study reported that 

different alpha oscillation sources are correlated with each microstate, indicating an inhibitory 

sequence in the default mode network (Milz et al., 2017). More work is needed to clarify the 

significance of these results. Moreover, the relationship between microstates and brain connectivity 

or complexity is also an open question. Current evidence suggests that neural activity can indeed 

adapt at sub-second scales to produce distinct stable spectral power and connectivity patterns 

(Vidaurre et al., 2016), so the relationship between these and EEG microstates is an interesting 

exploration avenue. Chapter 3 investigates this question to reveal a previously unknown relationship 

between a particular microstate and fast connectivity patterns at the onset of sleep. 

Overall, EEG microstates have revealed interesting properties of brain activity. When the microstates 

were first described, they were proposed to be the building blocks of cognitive processes (Lehmann, 

1971). A range of healthy and pathologically altered cognitive states have been described using EEG 

microstates. An example is mental disorders: in schizophrenia, a shortening of microstate D has 

consistently been found (Kikuchi et al., 2007; Lehmann et al., 2005; Nishida et al., 2013), while 

microstate C has been found to be altered in dementia (Grieder et al., 2016; Nishida et al., 2013). 

Other microstate alterations have been linked to different cognitive modalities and processes (Milz et 

al., 2015; Seitzman et al., 2016). During transitions of consciousness such as sleep (Brodbeck et al., 

2012) and hypnosis (Katayama et al., 2007), the parameters of the EEG microstates appear to change, 

but the microstate topographies do not. 

How can microstates improve our current understanding of consciousness? While most theories of 

consciousness address the spatial aspect of neural activity strength, connectivity and diversity, 

microstates provide a fine-grained lens into the temporal dynamics of conscious states. One transition 

of consciousness where EEG microstates can provide insight is the process of falling asleep. As we 

become drowsy, how do the rapid microstate dynamics change as a function of being conscious or 

unconscious? In Chapter 3 of this thesis, this question is addressed by investigating the microstate 

dynamics that accompany the loss of responsiveness during the onset of sleep. In answering this 
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question, a previously unknown link will be presented between EEG microstates and the changes 

already established to occur in sleep using the complementary methods of spectral power and 

connectivity. 

2.6. CONCLUSIONS 

This chapter introduced three complementary methods of analysing brain activity using EEG data: 

spectral analysis, information-theoretical analysis, and electric microstates. Spectral and information-

theoretical analyses can be useful for investigating two complementary aspects of brain function: 

activity recorded from individual neuronal populations, and the pairwise connectivity between these 

populations. While spectral analysis investigates the distribution of power into the oscillatory 

components of the signal and their phase relationships, information-theoretical approaches transform 

the signal into symbols and quantify their diversity and co-occurrence. These approaches are suitable 

for testing predictions of current theories of consciousness regarding a reduced amount of diversity 

and integration of information in the neural system during natural, pharmacological and pathological 

unconsciousness, as opposed to healthy wakefulness. On the other hand, electric microstates describe 

a sequence of momentary, global states of the brain. This sequence has been shown to slow down as 

people fall asleep and particular topographies have been associated with altered cognitive states. The 

microstate sequence can offer insight into the temporal diversity of the repertoire of brain states. 

Overall, these methods all provide promising avenues for ascertaining the neural correlates of 

consciousness and its loss. Importantly, no single method can be identified as superior to the others. 

They can all be used in a complementary manner, taking into consideration their respective 

advantages, weaknesses and meaningfulness in the context provided by relevant theories of 

consciousness. 
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SLEEP 

How do we lose consciousness as we fall asleep? This chapter investigates this question under the 

theoretical and methodological frameworks developed in the previous chapters. For this study, 

responsiveness to a simple auditory categorisation task is used as a proxy to zoom into the gradual 

loss of consciousness between wakefulness and sleep, keeping in mind the limitations of this method 

as discussed in section 1.5. This chapter analyses the neural information integration supported by 

long-range frontoparietal connectivity observed during wakefulness in alpha band and shows that it 

breaks down during unresponsiveness, while connectivity at theta frequencies emerges between the 

same regions. Further, it is shown that the temporal dynamics of rapidly-changing EEG microstates 

slow down as participants stop responding. A specific microstate (D) is identified whose increased 

duration predicts unresponsiveness at single trial level. Finally, combining for the first time these two 

methods, a novel relationship between microstates and brain networks is exposed, as it is found that 

microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. 

These findings suggest that the transition to unconsciousness is not linear, but rather consists of an 

interplay between transient brain networks reflecting different degrees of sleep depth.  

Parts of this chapter have been presented as a poster at the International Conference for Cognitive 

Neuroscience (ICON) 2017 in Amsterdam. This chapter forms the basis for the article published in the 

journal Brain Topography (Comsa et al., 2018), available online at http://dx.doi.org/10.1007/s10548-

018-0689-9. The code used in the analyses described in this chapter can be found at 

https://github.com/iulia-m-comsa/EEG/tree/master/Microstates. The data is available at 

https://doi.org/10.17863/CAM.33597.  

3.1. INTRODUCTION 

As we fall asleep, our brain traverses a series of changes which accompany the loss of sensory 

awareness and responsiveness to the external world. Despite the subjective ability to classify 

retrospectively one's own state as ‘awake’ or ‘asleep’ (Hori et al., 1994), research continues to unravel 

the gradual transitions happening at behavioural (Ogilvie and Wilkinson, 1984), cellular (Steriade et 

al., 1993a), physiological (Prerau et al., 2014) and cognitive (Goupil and Bekinschtein, 2012) level, 

http://dx.doi.org/10.1007/s10548-018-0689-9
http://dx.doi.org/10.1007/s10548-018-0689-9
https://github.com/iulia-m-comsa/EEG/tree/master/Microstates
https://doi.org/10.17863/CAM.33597
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starting with early drowsiness and continuing into the deep stages of sleep (Ogilvie, 2001). 

Characterising these transitions and linking across physiological levels is an important step in the 

modern attempt to understand access-consciousness (Block, 1996; Koch et al., 2016) and its 

fluctuations in natural, pathological and pharmacological alterations: sleep (Hobson and Pace-Schott, 

2002), disorders of consciousness (Giacino et al., 2014), sedation and anaesthesia (Alkire et al., 2008).  

The transition from wakefulness to sleep involves a progressive and sometimes nonlinear loss of 

responsiveness to external stimuli (Ogilvie and Wilkinson, 1984). Behavioural unresponsiveness does 

not immediately imply unconsciousness (Overgaard and Overgaard, 2011; Sanders et al., 2012). 

However, from the perspective of levels of consciousness (Laureys, 2005), the capacity to respond to 

external stimuli offers an objective measurement in the process of transition between full wakefulness 

and sleep-induced unconsciousness. The question of how we stop responding to stimuli during 

drowsiness is related to, but distinct from an investigation of the stages of sleep conventionally 

defined by specific electrophysiological grapho-elements such as K-complexes and sharp waves, or the 

variation in spectral power at slow frequencies (Iber et al., 2007; Ogilvie, 2001). Indeed, the loss of 

responsiveness is distributed across sleep stages: one study found a rate of unresponsiveness of 28% 

in stage 1, 76% in stage 2, and 95% in stage 3 of sleep (Ogilvie and Wilkinson, 1984). Here, we are 

specifically interested in the neural markers that predict our inability to respond as we drift to sleep. 

A traditional approach for investigating this question is to look at the changes in EEG spectral power 

and connectivity, which have been shown to vary across levels of consciousness. During relaxed 

wakefulness, the EEG of most human subjects is characterised by trains of alpha waves, at around  

10 Hz, originating from central-posterior cortical areas (Barry et al., 2007; De Gennaro et al., 2016; 

Niedermeyer, 2005a). During the early onset of sleep, these alpha oscillations disappear and an alpha 

rhythm with a different cortical origin (Broughton and Hasan, 1995) emerges in anterior regions 

(Tanaka et al., 1997), while theta power increases, particularly in central regions (Badia et al., 1994; 

Niedermeyer, 2005b; Ogilvie, 2001; Wright et al., 1995). Similarly, long-range alpha connectivity 

disintegrates at the onset of sleep, while lower-frequency theta and delta connectivity increases 

(Tanaka et al., 2000, 1998; Wright et al., 1995). Several power and connectivity patterns have been 

associated with the loss of consciousness, sometimes specifically with the loss of responsiveness, such 

as the anteriorisation of alpha power and connectivity in EEG, which has been described in drug-

induced loss of responsiveness (Chennu et al., 2016a), and frontoparietal connectivity, which has been 

proposed as a key signature of consciousness (Bor and Seth, 2012; Laureys and Schiff, 2012) and linked 

to external awareness (Vanhaudenhuyse et al., 2011). The disruption of frontoparietal connectivity at 

alpha (8-12 Hz) frequencies has been shown to occur in disorders of consciousness (Chennu et al., 

2014) and sedation (Chennu et al., 2016a). Although it is still debated whether these are signatures of 
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conscious processing or of processes that almost invariably accompany it (Farooqui and Manly, 2017), 

brain connectivity patterns currently provide, in practice, useful measures in the context of transitions 

between levels of consciousness.  

Another method that can be employed to investigate the rapidly changing global state of the brain is 

that of EEG microstates. A microstate represents a quasi-stable spatial topography of electric field on 

the scalp (Lehmann, 1990, 1971; Lehmann et al., 1987). The conventional method of analysing 

microstates in a dataset involves running an unsupervised clustering algorithm on a set of EEG 

topographies of highest variance, followed by labelling of all EEG samples based on the similarity with 

the four obtained topographies (Murray et al., 2008; Pasqual-Marqui et al., 1995). Four consistent 

(Khanna et al., 2014) EEG microstate topographies have been identified in a large population of 

healthy subjects of all ages during resting-state wakefulness (Koenig et al., 2002) and different 

microstates have been correlated with different cognitive modalities (Lehmann et al., 2010; Milz et 

al., 2015; Seitzman et al., 2016), but also with mental disorders, such as narcolepsy (Kuhn et al., 2015). 

A resting-state study of sleep (Brodbeck et al., 2012) identified four EEG microstate topographies in 

all stages of sleep nearly identical to those of wakefulness, but occurring with altered temporal 

parameters. Notably, increased microstate duration was associated with deeper sleep. On the 

contrary, a different study (Cantero et al., 1999) reported a shorter duration of microstates and 

suggested a larger repertoire of brain states during the hypnagogic period. Microstates are thought 

to reflect momentary, global, synchronised (Koenig et al., 2005) networks of the brain, reflecting 

building blocks of large-scale cognitive processing required for the continuous stream of 

consciousness (Lehmann, 1990). The neural sources underlying microstates are still being explored 

(Britz et al., 2010; Milz et al., 2017; Pascual-Marqui et al., 2014). Still, the dynamics of the sequence of 

microstates itself can be seen as a ‘syntax’ of neural activity that is in and of itself an informative tool 

for modelling and understanding the rapidly-fluctuating global dynamics of the brain. 

Brain connectivity and microstates hence provide complementary perspectives on the neurodynamics 

underlying the loss of responsiveness as we fall asleep. But what is the relationship between brain 

networks and microstates? There is evidence that transient brain networks can be resolved in 

electrophysiological data (Baker et al., 2014; Pascual-Marqui et al., 2014; Vidaurre et al., 2016), but it 

is an open question whether these networks co-occur with the lifetime of individual microstates. We 

investigate for the first time how spectral connectivity and EEG microstate dynamics interact as we 

lose responsiveness during drowsiness. We hypothesise that the spectral changes occurring with the 

loss of responsiveness mirror those observed in the transition to sleep (Ogilvie, 2001), anaesthesia 

(Chennu et al., 2016a; Purdon et al., 2013) and in disorders of consciousness (Chennu et al., 2014): 

namely, the disintegration of alpha networks, the loss of posterior alpha power, and the emergence 
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of lower-frequency connectivity and power. Alongside, building on previous research on EEG 

microstate dynamics during sleep (Brodbeck et al., 2012), we hypothesise similar changes in 

microstate dynamics accompanying the loss of responsiveness during drowsiness. Finally, given that 

resting-state network activity is known to fluctuate at millisecond level, we hypothesise that the 

neural changes that occur during drowsiness underlie the dynamics of both brain networks and the 

microstates sequence. Specifically, we investigate the possibility that individual microstates co-occur 

with distinct transient brain networks, reflecting fleeting changes in the global state of the brain during 

drowsiness. 

To address these questions, we use a subset of data from a previously reported auditory 

discrimination task where subjects became drowsy and unresponsive (Kouider et al., 2014). The task 

involved pressing a button corresponding to the classification of the auditory stimulus into one of two 

categories (object or animal). We obtain five minutes of data as subjects performed this task, before 

and after the loss of responsiveness due to drowsiness. We first characterise the responsive and 

unresponsive periods by analysing microstate-blind spectral power and connectivity changes in our 

dataset. Next, we describe the temporal parameters of EEG microstates during responsiveness and 

unresponsiveness. To test whether these parameters can reliably predict responsiveness to individual 

stimuli, we apply machine learning to predict responses and misses to stimuli in our task, based only 

on pre-stimulus microstate parameters. Finally, we investigate the brain connectivity underlying each 

of the four canonical microstates after the loss of responsiveness and highlight a previously unknown 

relationship between spectral connectivity and EEG microstates. 

3.2. METHODS 

3.2.1. SUBJECTS 

Sixteen healthy, native English-speaking, right-handed young adults (mean age = 24, S.D. = 2.75; 6 

females) were selected for this experiment out of the eighteen subjects from Experiment 1 in a 

previous study (Kouider et al., 2014). Two subjects from this dataset were excluded by visual 

inspection due to a failure to remain asleep for a period longer than five minutes, as assessed using 

responsiveness to stimuli. The participants were directed to not consume stimulants like coffee and 

to sleep 1-2 hours less than normally before the experiment. All of the subjects were assessed as easy 

sleepers on the Epworth Sleepiness Scale (scores 7-14). The participants signed a consent form and 

were reimbursed for their participation. The experiment was approved by the Cambridge Psychology 

Research Ethics Committee. 
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3.2.2. EXPERIMENTAL PROCEDURE 

The stimuli consisted of 96 spoken English words chosen from the CELEX lexical database (Linguistic 

Data Consortium, University of Pennsylvania). Half of the words denoted animals and the other half 

denoted objects. The subjects were asked to classify each stimulus in its respective category (animal 

or object) by pressing a button. The stimuli were presented through headphones, with an average 

distance of 8.4 seconds (minimum 6.2 seconds) between consecutive stimuli, as the subjects were 

lying with their eyes closed in a reclining chair. To facilitate drowsiness, the task was performed in a 

dark, acoustically and electrically shielded EEG room, and the participants were told that they could 

fall asleep at any point during the experiment, although they were asked not to stop responding 

deliberately while still awake. 

3.2.3. EEG DATA ACQUISITION  

The electroencephalogram was continuously recorded at 500 samples per second from 64 Ag/AgCl 

electrodes (NeuroScan Labs system) positioned and labelled according to the extended 10/20 system, 

with Cz as a reference and including vertical and horizontal electrooculography channels. 

3.2.4. EEG PRE-PROCESSING 

All analyses that follow were performed using custom MATLAB scripts (The MathWorks, Inc., Natick, 

Massachusetts, US). The EEGLAB toolbox (Delorme and Makeig, 2004) was used to facilitate data pre-

processing.  

The data was filtered between 1 and 40 Hz and the full channel mean was subtracted from each 

channel for baseline correction. The HEOG and VEOG channels were removed. An Independent 

Component Analysis (ICA) decomposition was performed using the infomax ICA algorithm (Bell and 

Sejnowski, 1995). Components capturing ocular or single-channel artefacts were removed from the 

data by visual inspection and considering the correlation with the HEOG and VEOG channels. An 

average of 11.6 (S.D. = 8.6) out of 63 components were removed per subject. Channel FT8 was 

interpolated using spherical interpolation in all subjects due to being noisy in most recordings. Finally, 

channels were re-referenced offline to the common average. 

3.2.5. DATA SEGMENTATION 

We classified responsive and unresponsive periods by inspecting the sequence of hits and misses to 

individual stimuli. We used a liberal window of 6 seconds to allow for a response to a stimulus, 

regardless of its correctness. A lack of response within 6 seconds was marked as a miss. The choice of 

a 6-second window for responsiveness was based on our own pilot studies, where we investigated the 
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longest interval that subjects would make a response during drowsiness in a go task. However, note 

that most reaction times were below 3 seconds (Figure 3.1) and the reaction times increased gradually 

and later in the task, indicating an increase in drowsiness. This was also established in a previous study 

on the same data (Kouider et al., 2014). 

For balance across participants and the two behavioural states, a total of five minutes of 

responsiveness and five minutes of unresponsiveness were extracted from each recording (150000 

samples per state, per recording), as shown in Figure 3.1. The responsiveness period was taken as the 

first 0.5 to 5.5 minutes of data in each recording, acquired immediately after the experiment began 

and the participants were still alert and wakeful. This was confirmed by checking that the large 

majority of the stimuli were followed by responses during this period; a very small number of 

occasional misses occurred in more than half of the participants during this period (e.g. to the 

unfamiliarity with the task), but they were not contiguous. Then, a period of unresponsiveness was 

selected by visual inspection of the hits and misses after the end of the responsiveness period, with 

the aim to find a five-minute interval consisting of as many misses as possible. If a response was 

present during the period labelled as unresponsiveness, the 10 seconds preceding and following the 

corresponding stimulus were excluded.  

3.2.6. MICROSTATE TOPOGRAPHIES 

The computation of the sequence of EEG microstates is based on the observation that the topography 

of the electric field recorded by EEG over the scalp does not fluctuate randomly, but rather comprises 

short periods of stability (Lehmann, 1971). To compute the microstate topographies, the global field 

power (GFP), representing the standard deviation of the electrode values (Lehmann and Skrandies, 

1980), was first computed at each time point. As the number of GFP peaks varied across subjects and 

condition, we rounded down the minimum number of peaks available and retained the first 5000 

peaks in each condition (responsiveness and unresponsiveness) from each recording.  

The clustering algorithm was implemented in MATLAB and is presented in Box 3.1. The algorithm is 

based on a variant of the method first introduced by (Lehmann et al., 1987), as described in (Murray 

et al., 2008), and involves an unsupervised clustering of EEG samples into the specified number of 

classes that best explain the input samples. Note that topographical similarity is computed using the 

absolute value of the spatial correlation and the polarity of the map is ignored, as topographies with 

inverted polarities are considered to be produced by the same neural generators (Michel et al., 2009). 

The maximum number of iterations was set to 1000 and the GEV delta was set to 1e-9. 
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We initially employed a cross-validation criterion (Pasqual-Marqui et al., 1995) to determine the 

optimal number of microstates fitting the data, as performed in several previous studies (Brodbeck et 

al., 2012; Koenig et al., 1999). However, we found that the cross-validation criterion produced 

different results for when the number of electrodes was down-sampled from 63 to 30 (7 and 4 maps, 

respectively). This sensitivity of the cross-validation criterion to the number of electrodes has been 

documented in previous literature (Murray et al., 2008). Hence, we decided to fix the number of 

microstates to four, similarly to previous studies that also fix this number a priori (Khanna et al., 2014; 

Kikuchi et al., 2007; Koenig et al., 2002; Milz et al., 2015; Schlegel et al., 2012; Strelets et al., 2003; 

Tomescu et al., 2014).  

The scripts used for generating the microstate maps and computing the parameters of their sequence, 

as described in the following sections, are available online at https://github.com/iulia-m-comsa/EEG.  

 

3.2.7. MICROSTATE LABELLING 

To obtain the sequence of EEG microstates present during a recording, each EEG sample was 

individually assigned to the microstate with the highest corresponding spatial correlation. To correct 

for noisy assignments during polarity reversals (Koenig and Brandeis, 2016), we applied a previously-

described temporal smoothing algorithm for the microstate sequence (Pasqual-Marqui et al., 1995) 

with the half-width of the smoothing window (parameter b in Pasqual-Marqui’s algorithm) set to 5 

Microstate clustering algorithm 

Input: n average-referenced EEG samples (n x number_of_channels) from GFP peaks. 

Output: k maps that best characterise the data. 

1. Normalise each input sample to a vector of length 1. 

2. Pick k random samples as the initial maps. 

3. Label each sample as i ∈ {1, …k}, where i is the index of the map with the highest absolute 

spatial correlation. 

4. Re-compute each map i as the first principal component of each cluster of samples labelled i. 

5. Compute the Global Explained Variance (GEV). 

6. If GEV delta is small enough or maximum number of iterations has been reached, end.  

Else, go to 3. 

Box 3.1 Microstate clustering algorithm. 

https://github.com/iulia-m-comsa/EEG


CHAPTER 3: SLEEP 

46 
 

samples, corresponding to a smoothing neighbourhood of 20ms. This parameter was chosen to be in 

the range of mean microstate durations found by (Gärtner et al., 2015) using a model of microstate 

transition processes based on Markov chains (10 ms during wake, 34 ms during deep sleep). 

3.2.8. MICROSTATE PARAMETERS 

Following the full labelling of each recording, three parameters were computed for each microstate 

per state (responsiveness and unresponsiveness) and per recording:  

• The microstate temporal coverage, also called the fractional occupancy, indicating the percentage 

of time spent in one microstate; 

• The microstate duration, indicating the average length of continuous sequences labelled as one 

microstate; 

• The global explained variance (GEV), representing the amount of spatial correlation of the samples 

with their corresponding microstate topography, normalised by the GFP.  

3.2.9. STATISTICS 

Interactions between microstate parameters and behavioural state (responsiveness and 

unresponsiveness) were performed using a two-way repeated measures ANOVA (Hogg and Ledolter, 

1987) with the microstate label and the behavioural state as factors. Sphericity was tested using 

Mauchly’s test (Mauchly, 1940) and, where violated, was corrected using the Greenhouse-Geisser 

procedure (Greenhouse and Geisser, 1959). The Tukey-Kramer method (Tukey, 1949) was used to 

correct for multiple comparisons. After correction, a conventional threshold of p=0.05 was used to 

assess significance. Unless otherwise specified, similar statistical tests were also performed for the 

measures that follow. 

3.2.10. RESPONSIVENESS PREDICTION 

We applied machine learning classification to explore whether microstate properties identified in the 

ongoing brain dynamics immediately preceding each auditory stimulus in the experimental trials could 

predict the presence or absence of a response to that stimulus. Importantly, all trials were considered 

for classification, both within and outside the periods labelled as responsive or unresponsive for the 

above microstate analysis.  

Five seconds of EEG data immediately preceding a stimulus were used to generate the features for 

classification. We also investigated using shorter pre-stimulus time periods, down to 1 second of pre-

stimulus data, but we found that classification accuracy increased with a larger amount of pre-stimulus 

data over which microstate dynamics could be more accurately estimated. At the same time, the 
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amount of pre-stimulus data was restricted by the overlap with the previous trial. Trials overlapping 

with a response corresponding to the previous stimulus were excluded. By setting the pre-stimulus 

window to five seconds, less than 10% of the trials were rejected due to overlap with the previous 

trial. 

The input features generated for classification consisted of either individual microstate parameters 

computed during the five-second pre-stimulus period in each trial, or a combination of these 

parameters. The parameters were those we previously characterised at the group level: namely the 

mean duration, mean coverage, and mean GEV for each microstate separately. The classifier was 

trained separately with the above individual and combined features. As a baseline, the theta-alpha 

ratio was also computed for each trial as the ratio between the total power spectral density at 5-6 and 

9.5-10.5 Hz respectively, and used as an input feature for the classifier. The classification label for each 

trial was generated by labelling it as either as a timely response (1) or a miss (0). 

We employed leave-one-subject-out cross-validation to test for the generalisability of the classifier’s 

performance. For this, the data was split into 16 folds, with one fold corresponding to a single 

participant’s trials. A support vector machine (SVM) (Christianini and Shawe-Taylor, 2000) with a radial 

basis function kernel (Vert et al., 2004) was trained repeatedly by excluding one fold at the time from 

the training set and using it as a test set. The SVM was optimised by exhaustive search to use the 

optimal value for two parameters: the box constraint, which restricts the number of support vectors, 

and the kernel scale, both in the range [0.001, 1000] in logarithmic steps of 10. 

Platt’s method (Platt, 1999) was used to generate class affiliation probabilities from the trained 

classifier. These continuously varying probabilities were then used to discriminate between responses 

and misses using both the Receiver Operator Characteristic (ROC) area under the curve (AUC) (Davis 

and Goadrich, 2006) and the classification accuracy as the percentage of correct predictions out of the 

total number of predictions. The classification accuracy was also computed by setting the class 

discrimination threshold as the optimal operating point of the ROC curve and calculating the 

percentage of correct predictions, using the threshold as a boundary between the two target classes. 

We used Wilcoxon signed rank tests (Gibbons and Chakraborti, 2011) to probe for significant 

differences between classification performances. 

3.2.11. SPECTRAL POWER AND CONNECTIVITY ANALYSES 

Spectral power and connectivity during responsiveness and unresponsiveness were investigated in 

both microstate-blind (pooling all samples, regardless of the labelled microstate) and microstate-wise 

(grouping samples by microstate label) analyses. Before microstate-wise segmentation, the power 
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spectral density was computed at each EEG sample between 1 and 20 Hz as the absolute value of the 

Hilbert transform (Marple, 1999) of the bandpass filtered data within windows of 0.25 Hz. We 

performed most of the analysis on 1 to 20 Hz and focused on theta and alpha power, whose ratio has 

been shown to track the onset of sleep (Šušmáková and Krakovská, 2007) and has been employed in 

other studies of drowsiness (Bareham et al., 2014) or impaired consciousness (Lechinger et al., 2013). 

For each channel in each recording, the spectral power at each frequency bin was averaged and 

normalised by the sum of spectral power within 1 to 20 Hz, thereby obtaining percentages of power 

contribution at every channel.  

The connectivity within each pair of channels was analysed using the Weighted Phase Lag Index (WPLI) 

(Vinck et al., 2011), a connectivity measure based on the distribution of phase differences between 

signals. This measure is designed to correct for volume conduction by weighting the sign of the 

imaginary part of the cross-spectrum by the magnitude of the imaginary part itself, which is largest at 

90o (where there is a delay between the signals) and minimal at 0o/180o (no delay, implying volume 

conduction). The WPLI been previously used to investigate brain connectivity during loss of 

consciousness (Chennu et al., 2016a, 2014; H. Lee et al., 2013). The WPLI was obtained by pooling over 

the Hilbert phase of each sample labelled as belonging to a particular microstate. 

For both spectral power and connectivity, the median across channels was computed to obtain one 

value per microstate and frequency of interest. 

To further assess topographical changes in connectivity, two sets representing anterior (AFz, Fz, FCz, 

AF7, AF3, F1, FC1, F3, FC3, F5, F7, AF8, AF4, F2, FC2, F4, FC4, F6, F8) and posterior (CPz, Pz, POz, Oz, 

P1, P2, PO3, PO4, O1, O2, P3, P5, P7, P4, P6, P8, CP3, CP1, CP2, CP4) electrodes were selected for 

analysis. Median WPLI connectivity was computed within the anterior and posterior groups separately 

for each participant. 

3.3. RESULTS 

3.3.1. BEHAVIOURAL FINDINGS 

The distribution of responsiveness and reaction times over time confirmed that all the subjects were 

responsive for a minimum of six minutes in the beginning of the experimental session and became 

unresponsive at a later point. During the unresponsiveness period, participants predominantly 

reached sleep stage N1, and rarely N2, as detailed in (Kouider et al., 2014). Figure 3.1 shows the 

response reaction times and the misses in each participant, in addition to the selection of data for the 

subsequent microstate analysis. During responsive periods, most subjects had no more than one miss, 
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with a mean of 2.125% of all responses during this period being misses. The grand average of reaction 

times during the responsive period was 1.5s (S.D. = 0.7). 

 

Figure 3.1 Reaction times and data segmentation into responsiveness and unresponsiveness for individual 
participants. The horizontal axis represents recording time and the vertical axis represents reaction time in 
seconds. Blue markers indicate responses, while orange markers indicate misses. The blue area corresponds to 
the five-minute period of responsiveness, while the orange area corresponds to the five-minute period of 
unresponsiveness. 
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3.3.2. SPECTRAL POWER AND CONNECTIVITY DYNAMICS  

Before delving into microstate analyses, we characterised the spectral power and connectivity 

patterns during responsive and unresponsive periods. We performed a microstate-blind analysis 

focusing on previously reported changes related to early sleep, but also anaesthesia and disorders of 

consciousness, including the alteration of posterior, frontal and frontoparietal connectivity within and 

between frontal and parietal electrodes. We focused on alpha and theta frequencies, as the theta-

alpha ratio has been shown to be a very good discriminator between wake and sleep stage 1 

(Šušmáková and Krakovská, 2007), however we also confirmed that there were no significant 

differences in the means of power and median connectivity in beta (12-30 Hz) or gamma (30-40 Hz) 

between the responsive and unresponsive periods. 

Based on the peaks present in alpha and theta bands in our data at 5.5 and 10 Hz (also see Figure 3.9 

below) and in keeping with canonical definitions of EEG frequency bands, we defined the spectral 

frequencies of interest in alpha range at 9.5 to 10.5 Hz and the theta frequencies of interest at 5 to 6 

Hz, for both power contributions and connectivity. Similarly narrow cut-offs have been defined in 

other studies involving a transition to sleep (Bareham et al., 2014) in order to avoid the smearing of 

the spectral peak. 

Figure 3.2 Spectral power topography and WPLI frontoparietal connectivity at alpha (9.5-10.5 Hz) and theta 
(5-6 Hz) peaks before and after the loss of responsiveness. Values are averaged across participants. 

We observed a decrease in mean alpha power contribution (t(1,15) = 3.34, p = 0.0044, Cohen’s d = 

0.83) and an increase in mean theta power contribution (t(1,15) = 7.1, p = 3.5e-6, Cohen’s d = 1.77) 

going from responsiveness to unresponsiveness. As shown in Figure 3.3A, we noted an alpha peak in 

spectral power present around 10 Hz in the large majority of the participants during the responsive 
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period, which faded during the unresponsive period. Lower-frequency power in the theta frequency 

range increased during unresponsiveness.  

 

Figure 3.3 Individual subject spectral power contributions before and after loss of responsiveness. For each 
subject, values are averaged over posterior channels. 

 

A single notable exception was Subject 12, whose alpha peak did not shift into theta range during the 

unresponsive period. This subject was not excluded from the analysis, as there was no evidence that 

the experiment instructions were not followed.  

A grand average topographic plot of power at alpha and theta frequencies (Figure 3.2A) revealed that 

the highest alpha power was located in the posterior area during responsiveness. During 

unresponsiveness, theta power was highest in posterior channels. 
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Investigating frontoparietal connectivity in alpha and theta frequencies (Figure 3.2B) using the WPLI, 

we observed the disintegration of long-range alpha band connections between frontal and parietal 

electrodes going from responsiveness to unresponsiveness. A paired t-test confirmed that the median 

alpha connectivity between the anterior and posterior channels was significantly higher during 

responsiveness (t(1, 15) = 3.4, p = 0.003, Cohen’s d = 0.85). At the same time, an overall increase in 

median frontoparietal connectivity was observed in theta frequencies during unresponsiveness, but 

this was not significant (t(1, 15) = 0.4, p = 0.69, Cohen’s d = 0.1). The change in median connectivity is 

visible in most subjects, as shown in Figure 3.4. 

 

 

Figure 3.4 Median WPLI before and after loss of responsiveness due to drowsiness in individual subjects. 
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3.3.3. MICROSTATE TOPOGRAPHIES  

 

Figure 3.5 Microstate topographies computed across all subjects. 

It has previously been shown that microstate topographies are highly similar in wakefulness and sleep 

(Brodbeck et al., 2012). Hence, we applied the microstate clustering algorithm on the set of combined 

samples from the responsive and unresponsive periods from each subject, in order to obtain four 

microstate topographies. The resulting maps matched the four canonical microstate topographies 

commonly described in literature, denoted by letters A to D (Koenig et al., 2002) (Figure 3.5). A 

breakdown of microstate topographies obtained for individual participants is also shown in Figure 3.6. 

 

Figure 3.6 Microstate topographies in each subject, computed over the responsive and unresponsive periods.  
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3.3.4. MICROSTATE PARAMETERS  

Having established the topography of the canonical microstates, we next investigated whether the 

dynamics of the rapid succession of microstates in the EEG remains the same before and after the loss 

of responsiveness. We computed the duration, the temporal coverage and the global explained 

variance (GEV) of each microstate during responsiveness and during unresponsiveness (Figure 3.7).  

Figure 3.7 Microstate parameters before and after the loss of responsiveness in drowsiness. Within each group, 
inner boxes represent the standard error of the mean, outer boxes represent the standard deviation, the mean 
is shown by a continuous line, the median is shown by a dotted line, and individual participant values are shown 
as dots. Asterisks show a significant main effect of state within a microstate. 

A repeated measures ANOVA with the microstate and the behavioural state (responsiveness and 

unresponsiveness) as factors found significant interactions between microstate and behavioural state 
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in all of the three microstate parameters investigated: duration (Finteraction = 16.73, Pinteraction = 2e-7, 

Cohen’s d = 2.11), temporal coverage (Finteraction = 13.08, Pinteraction = 3e-6, Cohen’s d = 1.86) and GEV 

(Finteraction = 17.95, Pinteraction = 8e-8, Cohen’s d = 2.18). Further exploring the simple effect of state on the 

parameters within each microstate, the ANOVA revealed that the duration of all microstates was 

significantly increased during unresponsiveness (Pstate, A = 0.0001, Pstate, B = 0.003, Pstate, C = 0.0001, Pstate, 

D = 3e-6), in agreement with previous literature (Brodbeck et al., 2012). Notably, microstate D had a 

striking increase in duration. At the same time, the temporal coverage of class D was significantly 

higher during unresponsiveness, whereas the coverage of microstate B was significantly lower during 

the same period (Pstate, A = 0.056, Pstate, B = 0.001, Pstate, C = 0.26, Pstate, D = 1e-5). Similarly, the GEV of 

microstate D was increased during unresponsiveness, while the GEV of microstates A and B were 

decreased (Pstate, A = 0.0002, Pstate, B = 0.0002, Pstate, C = 0.17, Pstate, D = 2e-5). 

3.3.5. SINGLE-TRIAL RESPONSIVENESS PREDICTION 

Having characterised the temporal changes in microstate dynamics before and after the loss of 

responsiveness, we proceeded to verify whether microstate parameters in the pre-stimulus window 

are able to dissociate responsiveness from unresponsiveness at individual trial level during the full 

recordings, and whether these properties could be generalised across subjects. 

Out of all trials, 8% contained a button press event during the five seconds preceding each stimulus 

and were excluded from further analysis. The remaining data had a balanced distribution of 1078 

responses and 1117 misses out of a total of 2195 trials.  

Training a radial basis function kernel support-vector machine repeatedly on the combined-microstate 

and microstate-wise features to predict the binary outcome of a trial, as a response or a miss, using 

one-subject-out cross-validation, confirmed that microstate dynamics were able to predict 

responsiveness at individual trial level and across subjects, with a performance similar to that of the 

established theta-alpha ratio of spectral power (Figure 3.8).  

Combining the duration, temporal coverage, and GEV of each microstate to obtain a 4 x 5 input feature 

vector or each trial achieved a mean AUC of 0.8552 (mean classification accuracy of 75.2%). In 

comparison, the theta-alpha ratio achieved a mean AUC of 0.8519 (mean classification accuracy of 

74.24%). A Wilcoxon signed rank test did not find significant differences between these performance 

distributions. When combined, the microstate features and the theta-alpha ratio obtained a mean 

AUC 0.8622 (mean classification accuracy of 77.1%).  

When used individually as input features for the classification, mean microstate duration performed 

remarkably well, achieving a mean AUC 0.8484 (mean classification accuracy of 76.1%). According to 
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Wilcoxon test, this was not significantly different from the classification performance of the combined 

microstate parameters. The duration of microstate D was significantly better at predicting 

responsiveness than microstates A-C (pD-{A,B,C}={0.0005, 0.0006, 0.002). 

It is worth noting that the one subject for whom the prediction performance was lower in the group 

was Subject 12, who was also the only participant whose alpha peak remained nearly unshifted after 

the loss of responsiveness (Figure 3.3, Figure 3.4). 

Figure 3.8 Classification performance, computed as the area under the ROC curve, for a support-vector 
machine (SVM) trained using 5 seconds of pre-stimulus data to classify responses and misses. Input features 
are microstate parameters or the theta-alpha ratio, individually or combined. Within each group, inner boxes 
represent the standard error of the mean, outer boxes represent the standard deviation, the mean is shown by 
a yellow line, the median is shown by a green line, and individual participant values are shown as dots. 

Taken together, these results indicate that spatiotemporal microstate parameters characterising the 

pre-stimulus period are indeed informative of the ability of a subject to make a response, similar to 

the established theta-alpha ratio of the power spectral density. Confirming the initial findings of a 

more prominent presence of microstate D before the loss of responsiveness due to drowsiness, this 

microstate also appears to be particularly informative of the capacity of a subject to react to a 

stimulus. Crucially, these results are generalizable across subjects and valid at single trial level. 
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3.3.6. CONNECTIVITY DIFFERENCES BETWEEN MICROSTATES 

Having established the characteristic temporal patterns exhibited by microstate sequences before and 

after drowsiness-induced loss of responsiveness, we next proceeded to investigate their relationship 

with the underlying spectral content of the EEG, and the modulation of this relationship as subjects 

become unresponsive. To this end, we investigated the power contributions and the WPLI connectivity 

computed across samples belonging to each microstate before and after the loss of responsiveness. 

While we do not assume a direct relation between neural sources of EEG microstates and EEG spectral 

power and connectivity, our aim is to assess whether the neural sources of microstates and sources 

of spectral measures covary at a fine temporal scale. 

The spectral power contribution (Figure 3.9A) displayed the characteristic alpha peak around 10 Hz 

during the responsive period, which faded during the unresponsive period into high power at low 

frequencies. This pattern was similar during all microstates. 

Figure 3.9. Spectral power contribution (panel A) and WPLI connectivity (panel B) captured during individual 
microstates before and after loss of responsiveness due to drowsiness. Within each subject, for both power 
and connectivity, the median across channels was calculated. The figures show the grand average over all 
subjects. Panel C shows the main effect size, computed as Cohen’s d, of the interaction between behavioural 
state and microstate at each frequency bin for power contributions and for connectivity. 
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Likewise, spectral connectivity (Figure 3.9B) showed a peak at 10 Hz during responsiveness during all 

microstates, which faded during unresponsiveness. The only pattern dissociating between microstates 

during responsiveness was a decreased 10 Hz peak during microstate A. On the other hand, there was 

a noticeable difference in the level of connectivity during unresponsiveness between all microstate 

periods, with microstates D and A exhibiting the highest and the lowest connectivity, respectively. 

The effect size of the interaction between microstate and behavioural state (responsiveness and 

unresponsiveness) computed individually at each frequency was indeed generally higher in 

connectivity than in power (Figure 3.9C). The effect size was largest in connectivity at 5.5 Hz and 10 

Hz, corresponding to the theta and alpha peaks displayed during all microstates during the 

unresponsive and responsive periods, respectively. A peak in power contribution was also found at 

13.5 Hz, potentially due to the emergence of sleep spindles at the onset of sleep.  

We also attempted to use pre-stimulus WPLI connectivity levels at alpha and theta frequencies in 

order to train a classifier to predict responsiveness, using the same procedure as for the microstate 

spatiotemporal parameters. No classifiers could be obtained that exceeded a 60% mean accuracy, 

either microstate-wise or on the full set of pre-stimulus samples.  

3.3.7. CONNECTIVITY DURING MICROSTATE D AFTER LOSS OF RESPONSIVENESS 

Gathering from the evidence of increased temporal presence of microstate D after the loss of 

responsiveness, as well as the higher connectivity displayed during this microstate during 

unresponsiveness in comparison with the microstates A-C, we next sought to understand the spectral 

connectivity patterns captured during microstate D in the selected alpha and theta ranges during the 

unresponsiveness period. 

Preliminary assessments of connectivity patterns during the four microstates during unresponsiveness 

revealed visual differences in anterior and posterior connectivity during microstate D as compared to 

microstates A-C. Considering previous literature (Morikawa et al., 1997; Tanaka et al., 2000, 1998; 

Wright et al., 1995) suggesting that key changes in connectivity related to the onset of sleep occur 

topographically in anterior and posterior scalp regions of interest (ROI), as well as frontoparietal 

networks having been proposed as a key signature of consciousness (Bor and Seth, 2012; Laureys and 

Schiff, 2012), we decided to investigate the within-anterior, within-posterior and between anterior-

posterior connectivity during microstate D in comparison with microstates A-C. For this purpose, we 

performed three repeated measures ANOVA tests to compare the median connectivity during 

microstate D and that during each of the microstates A-C in each of the six conditions (two frequency 

bands X three scalp ROIs) during the unresponsive period. Within each condition, we corrected for the 
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false discovery rate across the three tests (D vs A, D vs B and D vs C) using Storey’s procedure (Storey, 

2002).  

Figure 3.10 exemplifies the most prominent differences we found in connectivity between samples 

covered by microstate D and microstates A-C respectively, during unresponsiveness. 

 

Figure 3.10 Frontal and frontoparietal WPLI connectivity at theta peak (5-6 Hz). Microstate D captures 
significantly higher connectivity in these examples compared to microstates A-C. 

At the selected theta peak, the t-test results showed significantly higher median connectivity within 

the anterior region during microstate D compared to each of the other microstates (PD-{A,B,C} = {0.001, 

0.008, 0.001}, tD-{A,B,C} = {3.958, 3.069, 4.088}, Cohen’s dD-{A,B,C}={0.990, 0.767, 1.022}). Median 

connectivity between the anterior and posterior regions was also significantly higher during 

microstate D than in microstates A and C (PD-{A,B,C} = {0.003, 0.297, 0.003}, tD-{A,B,C} = {3.578, 1.081, 

3.392}, Cohen’s dD-{A,B,C}={0.894, 0.27, 0.848}). No significant differences were found in median 

connectivity within the posterior area. 

Conversely, at the selected alpha peak, the repeated measures ANOVA showed significantly lower 

median connectivity within the posterior area during microstate D compared to microstates A-C 

(PD-{A,B,C} = {0.033, 0.037, 0.033}, tD-{A,B,C} = {2.686, 2.294, 2.559}, Cohen’s dD-{A,B,C}={0.672, 0.573, 0.67}). 

At the same time, microstate D captured significantly higher within-anterior median connectivity than 

microstate A (PD-{A,B,C} = {0.043, 0.617, 0.055}, tD-{A,B,C} = {2.769, 0.511, 2.297}, Cohen’s dD-{A,B,C}={0.692, 

0.128, 0.574}). No significant difference in median connectivity between anterior and posterior 

regions was found during microstate D compared to microstates A-C.  
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These results confirmed that the timecourse of microstate D uniquely capture a simultaneous 

disintegration of posterior alpha connectivity and emergence of frontal theta connectivity, which is 

associated with the suppression of responsiveness at the onset of sleep. 

3.4. DISCUSSION 

3.4.1. SUMMARY 

In this study, we used high-density EEG to explore the transient spatiotemporal and spectral dynamics 

of electrical brain activity before and after the loss of behavioural responsiveness due to drowsiness. 

Importantly, we examined the loss of responsiveness as participants became drowsy while performing 

a discrimination task. Hence, by design, our study is in contrast to and complements studies of resting-

state brain activity in the absence of any task, which have often focused on investigating canonical 

sleep stages. Here, unresponsiveness – the failure to respond to the auditory cues elicited by increased 

drowsiness – provided an objective and non-invasive behavioural criterion in the transitional stage in 

between full wakefulness and early sleep.  

We began by showing differences in spectral power and connectivity after the loss of responsiveness 

that have been previously shown to differentiate between healthy wakefulness and sleep, sedation 

and disorders of consciousness: a decrease in posterior alpha power and the emergence of theta 

power, as well as the disintegration of frontoparietal connectivity in alpha band. We then 

characterised the spatiotemporal parameters of the four canonical EEG microstates before and after 

the loss of responsiveness. We showed that microstate parameters not only correlate with behaviour 

at the group level, but also predict behaviour at the level of individual experimental trials. The ongoing 

microstate dynamics, particularly the properties of microstate D, before the onset of an auditory 

stimulus in an experimental trial significantly predicted the likelihood of a response to that auditory 

stimulus as participants transitioned towards sleep. Specifically, when microstate D occurred more 

often during the pre-stimulus period, participants were less likely to generate a response to the 

subsequent stimulus. This relationship highlights a possible functional role of this microstate in 

modulating behaviour, and the predictive power of this signature to define the capacity to consciously 

respond to abstract/semantic stimuli. Finally, we examined the spectral power and connectivity 

characteristics captured during the lifetimes of the four canonical EEG microstates. We discovered 

that while the distribution of spectral power remains the same across the temporal microstates, 

spectral connectivity has distinct profiles. We showed that this non-uniform pattern of connectivity 

across microstates is modulated specifically after the loss of responsiveness: the timecourse of 

microstate D captured significantly increased connectivity in the theta band after the loss of 
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responsiveness, underpinning a novel profile of interaction between the temporal sequence of 

microstates and spectral brain connectivity. 

3.4.2. ALPHA POWER AND CONNECTIVITY CHARACTERISE RESPONSIVE 

WAKEFULNESS 

Our analysis of EEG connectivity before microstate segmentation strengthens the evidence for the 

fundamental role of the frontoparietal alpha networks in sustaining a state of responsive wakefulness 

(Bor and Seth, 2012; Laureys and Schiff, 2012). Alpha band frontoparietal connections have also been 

shown to disintegrate in disorders of consciousness (Chennu et al., 2014) and sedation (Chennu et al., 

2016a). Importantly, it is not the full disappearance of all frontoparietal connectivity that drives the 

loss of responsiveness, but specifically connectivity at alpha frequency. Indeed, literature shows that 

connectivity shifts from alpha into lower-frequency theta and delta frequencies as consciousness 

fades (Chennu et al., 2016a, 2014; Ogilvie, 2001; Tanaka et al., 2000, 1998; Wright et al., 1995). In the 

larger picture of states and levels of consciousness, our findings confirm long-range alpha networks as 

a common marker of consciousness, whether this impairment is natural (sleep), pathological 

(disorders of consciousness) or pharmacological (sedation). 

3.4.3. MICROSTATE D PARAMETERS PREDICT RESPONSIVENESS  

Upon examining the spatiotemporal parameters of the canonical EEG microstates, we found an 

increase in temporal coverage after the loss of responsiveness uniquely specific to microstate D, along 

with an increase in its global explained variance, as compared to responsive periods. While the 

duration of all microstates was longer during unresponsiveness, the duration of microstate D had a 

prominent relative increase. In contrast, the temporal coverage of microstate B decreased in the 

unresponsive period, as did the global explained variance of microstates A and B. Further, we 

demonstrated that the general state of awareness, as reflected in the ongoing dynamics of pre-

stimulus EEG microstates, are indeed informative of the capacity of a subject to respond to a stimulus 

during drowsiness at an individual trial level. Again, the special significance of microstate D during 

unresponsiveness was visible from its increased ability to predict the likelihood of a response, in 

comparison with microstates A-C. In addition, we showed that the increase in duration of this 

microstate is the best predictor of responsiveness among all the microstate parameters. 

Our usage of machine learning allows us to quantify the performance of the model using its 

discrimination accuracy, which speaks for the real-world applicability of the method (Breiman, 2001). 

Moreover, one-subject-out cross-validation allows us to infer that these results are generalizable 

across people. At the same time, as expected, individual variability caps the maximum possible 



CHAPTER 3: SLEEP 

62 
 

accuracy when predicting responsiveness. Our results suggest that this cap is around an accuracy of 

75% (mean AUC around 0.85). Interestingly, the theta-alpha ratio, which we used as a baseline given 

its sensitivity as a sleep index (Šušmáková and Krakovská, 2007), achieved a similar classification 

accuracy as the microstate-based input features. Intriguingly, we were not able to use frontoparietal 

connectivity as a feature to train a suitable classifier for responsiveness during drowsiness, either 

considering or ignoring the microstate sequence, despite strong evidence of major connectivity 

changes occurring before and after the loss of responsiveness. This suggests that connectivity better 

predicts the level of consciousness estimated over longer time scales, whereas spatiotemporal 

microstate dynamics capture short-term changes in brain state that predict responsiveness. 

3.4.4. MICROSTATE D CAPTURES A DISTINCT CONNECTIVITY PROFILE DURING 

UNRESPONSIVENESS 

Alongside the distinctive increase in temporal coverage and duration of microstate D, we found a 

singular spectral connectivity pattern during this microstate after loss of responsiveness, indicating 

increased median connectivity in theta band, particularly in connections within frontal and between 

frontal and parietal electrodes. At the same time, median posterior connectivity during microstate D 

was reduced during unresponsiveness. Hence, the timecourse of microstate D appears to uniquely 

capture a connectivity pattern specific to deeper stages of sleep, in comparison with other microstates 

present during the same sleep stage. (Britz et al., 2010) have previously reported the lack of any 

interaction between temporal microstates of the brain and the spectral power of its oscillations, i.e, 

the spectral power profiles of EEG microstates do not differ from each other, a finding which we 

replicated. In contrast, we have shown that spectral connectivity presents a significant interaction 

with temporal microstate dynamics, underpinned by the connectivity captured by microstate D. 

There currently exists no consensus on the meaning of individual microstates in terms of their neural 

generators. However, microstate D has occasionally been linked to attentional networks. In a study of 

fMRI resting-state networks, (Britz et al., 2010) showed a higher correlation of microstate D with 

ventral and dorsal frontal-parietal networks, functionally associated with attention switching and 

directing attention towards external salient stimuli. A decreased duration of this microstate has been 

reported in schizophrenia (Koenig et al., 1999; Lehmann et al., 2005; Nishida et al., 2013; Tomescu et 

al., 2014) and hallucination (Kindler et al., 2011) – two conditions involving impairments in task 

switching and attention (Collerton et al., 2005; Cornblatt and Keilp, 1994). An investigation of 

modalities of thinking found an increased microstate D duration in resting-state compared to visual 

and verbal task periods (Milz et al., 2015); this was also interpreted as a confirmation of the previously-

mentioned study by (Britz et al., 2010) due to a higher probability of attention switching during rest 
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(high microstate D duration), as opposed to performing a single goal-oriented task (lower microstate 

D duration). On the other hand, (Seitzman et al., 2016) have found an increased duration of microstate 

D during a cognitive task as compared to wakeful rest.  

Given the weak evidence in the literature associating microstate D with task-related attention 

networks, we are cautious in interpreting our findings on this basis. A previous study on the same data 

(Kouider et al., 2014) found that a correct response to stimuli is still prepared during 

unresponsiveness, suggesting preserved attention. It is possible that our findings indicate more 

demand from attention networks as drowsiness increases and subjects become unable to respond to 

the task. In study of microstates during sleep in the absence of any task, (Brodbeck et al., 2012) did 

not observe an increase in this microstate during sleep. This suggests that microstate D might indeed 

be specifically related to the experimental task. Further, this interpretation is compatible with a study 

by Katayama et al. (Katayama et al., 2007), which found that the duration of microstate D was 

increased in light (but not deep) hypnosis, a state which produces similar EEG patterns to sleep-

induced unresponsiveness (Barker and Burgwin, 1949). 

Nonetheless, the spatiotemporal and spectral connectivity dynamics observed in microstate D after 

the loss of responsiveness yield an important insight into the dynamics of the transition to sleep. While 

connectivity averaged during all microstates reflects typical changes commonly found in the loss of 

consciousness in the onset of sleep, anaesthesia or disorders of consciousness – weaker alpha and 

stronger theta long-range networks – the individual timecourse of microstate D captures this change 

in connectivity to a significantly larger extent than microstates A-C. In other words, during microstate 

D, alpha connectivity is weaker, while frontoparietal theta connectivity is stronger. This happens 

despite microstate D having a duration no longer than 40ms. This suggests that, after the loss of 

responsiveness, the process of falling asleep is not necessarily linear, but rather consists of an interplay 

between distinct networks, captured by different microstates, which are at different points along the 

transition between wakeful and asleep modes of operation. This finding might lend itself to explaining 

one of the current riddles of sleep research: why is it that, despite the establishment of a series of 

clear EEG markers delimiting wake and several stages of sleep, finding an EEG-based threshold to 

separate between the subjective intuition of being awake or asleep has not yet been achieved? 

Indeed, it has been reported by Hori et al. (1994) that 26% of all subjects stated that they had been 

awake at times when their EEG was classified as stage 2 sleep, which is commonly used to define ‘true 

sleep’ (Ogilvie, 2001). The rapid fluctuation of brain networks, some of which are closer to wakefulness 

(during microstates A-C) and others closer to sleep (during microstate D) could be the reason why our 

momentary introspective state of being ‘awake’ and ‘asleep’ might not concur with a coarse-grained 

assessment of EEG over many seconds of data, as usually done during the identification of sleep 
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stages. Instead, our findings here highlight that further research should focus on the rapidly changing 

dynamics of brain networks that appear to capture key dynamics relevant to our behavioural and 

perhaps even introspective state, as we drift into unconsciousness. 
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SEDATION 

The previous chapter explored spectral and topographical markers of the loss of responsiveness during 

the transition to unconsciousness while falling asleep. The onset of sleep is a natural process where 

consciousness is lost and regained in response to environmental and internal cues. But how is 

consciousness lost as a consequence of an external pharmacological agent? This chapter investigates 

this question in a group of healthy adults who were administered sedative doses of propofol. As a 

proxy to assess their level of consciousness, responsiveness to simple auditory stimuli is employed 

once again. On the same dataset, a previous study (Chennu et al., 2016a) found that spectral power 

and connectivity showed highly similar changes to those found during the onset of sleep in the 

previous chapter: a decrease in alpha connectivity and power, accompanied by a corresponding 

increase at lower frequencies. This chapter focuses on predictions originating in recent theories of 

consciousness and investigates information-theoretical measures of integration and differentiation of 

EEG signals in order to find signatures of drug level and responsiveness. Previous findings from other 

studies (Schartner et al., 2015) regarding the decrease of EEG signal diversity with unconsciousness 

induced by sedation are confirmed. Further, it is discovered that drug level and responsiveness are 

best explained by distinct neural signatures combining differentiation and integration, adding to 

evidence of a similar dissociation previously found using fMRI (Barttfeld et al., 2015).  

4.1. INTRODUCTION 

Recent theories that seek to uncover the neurodynamics of consciousness have gained practical 

interest in both theoretical and clinical neuroscience (Dehaene et al., 2014; Koch et al., 2016; Tsuchiya, 

2017). Several such theories, such as the integration information theory (IIT) (Oizumi et al., 2014; 

Tononi, 2004), the dynamic core hypothesis (Tononi and Edelman, 1998) or the metastable brain 

theory (Tognoli and Kelso, 2014), stipulate that full consciousness requires an optimal balance of 

information integration and differentiation within the neural system. Due to limitations of theoretical 

and computational nature, no exact measures directly derived from theory can currently be computed 

for the whole human brain (Oizumi et al., 2014). However, practical measures inspired by these 

theories of consciousness have been developed to explore the dynamics of neural activity 
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differentiation and integration in healthy and impaired states of consciousness (Barrett and Seth, 

2011; Seth et al., 2011). 

Pharmacologically-induced loss of consciousness is one condition where recent theories of 

consciousness can provide a valuable framework (MacDonald et al., 2015; Marchant et al., 2014). 

Understanding the micro- and macroscopic level changes in neural activity that underlie anaesthesia 

(the complete loss of consciousness) and sedation (an impaired state of consciousness) is still a 

challenge for neuroscience, for both theoretical and clinical purposes. Current electrophysiological 

markers of anaesthesia depth, such as the bispectral index, do not always prevent intraoperative 

awareness (Russell, 2013), with 0.13% cases of accidental awareness estimated to occur (Sebel et al., 

2004), although this varies with surgery type and anaesthetic (Pandit et al., 2014). The development 

of better methods to track anaesthesia is hence desirable.  

The above theories predict that consciousness impairment is accompanied by decreased neural 

information differentiation and integration. This can help us design better measures for tracking 

anaesthesia and sedation. In line with this, it has been shown that the capacity of long-range 

interaction across the neural system decreases during sedation (Alkire et al., 2008; Boveroux et al., 

2010b; Koch et al., 2016; Lee et al., 2009b; U. Lee et al., 2013; Mashour, 2004; Monti et al., 2013), 

although local activity may be preserved (Lewis et al., 2012), particularly in sensory networks 

(Bonhomme et al., 2012; Boveroux et al., 2010b). EEG studies have also suggested that anaesthesia 

reduces the complexity of the neural signal (Wang et al., 2017) by decreasing the repertoire of 

discriminable states available to the neural system (Hudetz et al., 2015; Lee et al., 2017). This idea is 

also supported by connectivity changes observed in the fMRI during sedation (Stamatakis et al., 2010). 

Overall, quantifying information differentiation and integration in neural activity seems to be a fruitful 

approach in elucidating the brain changes underlying sedation and anaesthesia (Alkire et al., 2008).  

While anaesthesia has been studied extensively, there is currently limited work that addresses the 

neural changes occurring during the loss of responsiveness during sedation, which also marks the 

beginning of the transition to full unconsciousness. At similar sedative doses of anaesthetic, 

individuals respond differently, with some remaining fully awake and others losing responsiveness 

(Chennu et al., 2016a). Although unresponsiveness does not imply a complete lack of awareness (Boly 

et al., 2013a; Sanders et al., 2012), understanding the neural dynamics underlying the loss of 

responsiveness in the early stages of anaesthesia can give us important insight into fine-grained 

changes that underlie the loss of consciousness. In practice, the degree of behavioural responsiveness 

of the patient (Boly et al., 2013a) is widely used as a clinical marker of the level of consciousness 

(Laureys, 2005). Following the same behavioural criterium, here we investigate a level of sedation 
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where only a proportion of the subjects (37.5%) lose responsiveness. For this purpose, we employ two 

information-theoretical measures to quantify information differentiation and integration in neural 

dynamics. 

Lempel-Ziv (LZ) complexity (Lempel and Ziv, 1976) is a promising information-theoretical method for 

assessing information differentiation in the EEG signal. LZ complexity quantifies the diversity of a 

binary string by counting the number of different patterns it contains. Interest in LZ complexity has 

been recently revived by the introduction of the perturbational complexity index (Casali et al., 2013), 

which can reliably distinguish between states of consciousness, including anaesthesia (Sarasso et al., 

2015), by computing the complexity of the response elicited by TMS. LZ complexity has also been 

shown to track consciousness state when applied on spontaneous electrophysiological activity in 

anaesthesia (Bai et al., 2015; Hudetz et al., 2016; Schartner et al., 2015; Zhang et al., 2001), sleep 

(Abásolo et al., 2015; Andrillon et al., 2016; Schartner et al., 2017b), disorders of consciousness (Sitt 

et al., 2014) and psychedelic experience (Schartner et al., 2017a). Hence, it has proven to be a simple 

and efficient index for monitoring sedation and anaesthesia. Two different variants of LZ complexity 

have been described: one that quantifies local, channel-wise complexity (LZS/LZSUM) and one that 

quantifies the complexity of the global topography of the scalp over time (LZC). These two variants 

appear to occasionally track different aspects of consciousness (Schartner et al., 2017a).  

The weighted Symbolic Mutual Information (wSMI) index (King et al., 2013) is a recently-introduced 

information-theoretical method for assessing information integration in the EEG. It measures 

information sharing between two signals by looking at their joint, nonlinear fluctuations, and corrects 

for volume conduction by discarding identical or opposite symbols. This measure has been shown to 

discriminate patients with disorders of consciousness (Claassen et al., 2016; King et al., 2013; Sitt et 

al., 2014) and therefore seems to be a promising information-theoretical measure for tracking 

consciousness levels. To our knowledge, this measure has not yet been applied to sedation and 

anaesthesia.  

In this context, we employ these two information-theoretical measures on high-density EEG data in 

order to characterise the differentiation and integration of neural information during the 

administration of propofol at doses that impair motor responsiveness to a simple auditory perceptual 

discrimination task. Starting with an awake baseline, as sedation progressed to mild and then to 

moderate levels, the subjects became gradually less responsive during the infusion, allowing us to 

study two groups of subjects: those that stay responsive and those that become unresponsive during 

sedation. Alongside, the concentration of drug in blood plasma was measured at each level of 

sedation. We applied the LZ complexity and the wSMI on the EEG as measures of neural information 
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differentiation and integration. In line with previous findings, we hypothesised that neural information 

integration and differentiation would track the level of drug and the participants’ responsiveness. We 

start by performing a group level analysis to find an interaction between responsiveness and sedation 

depth, and follow up with a more fine-grained regression analysis to find the best subset of predictors 

for drug concentration, response rate and median reaction times. Interestingly, we find a non-

overlapping subset of predictors for drug level and responsiveness, with both predictors requiring a 

simultaneous combination of both complexity and integration measurement. We conclude that drug 

concentration and responsiveness have distinct neural correlates, with drug level best predicted by 

spatial complexity and high frequency mutual information sharing, whereas responsiveness is best 

predicted by temporal complexity and low-frequency mutual information sharing. Further, we find 

that the group that remains responsive during sedation displays increased anterior single-channel LZ 

complexity compared to the group that became unresponsive, whereas the latter shows a loss of 

complexity in the anterior area, emphasising the importance of frontal complexity in the preservation 

of responsiveness despite the influence of the sedative.  

4.2. METHODS 

4.2.1. EXPERIMENTAL PROCEDURE 

A sample of 25 neurologically healthy subjects participated in the sedation experiment. Nine subjects 

were excluded due to incomplete or corrupted data. The remaining 16 subjects (9 female) had a mean 

age of 30.9 (S.D. = 10.9). All participants gave written consent prior to participating in the experiment. 

The experiment was approved by the Cambridge Psychology Research Ethics Committee. 

Following a wakefulness baseline period lasting 25-30 minutes, a computerised syringe driver (Alaris 

Asena PK, Carefusion, Berkshire, UK) was used to induce sedation by specifying the target plasma level 

concentration of propofol. The target concentrations were 0.6 mg/L for mild sedation and 1.2 mg/L 

for moderate sedation. The aim of the mild sedation stage was to induce a relaxed but responsive 

state, whereas moderate sedation was aimed at a threshold where a proportion of the participants 

would become unresponsive. A recovery time of 20 minutes was allowed after the end of sedation, 

based on pharmacokinetic software simulations to estimate the time necessary to reach a plasma 

concentration level of zero. 

At each of the target levels (baseline, mild sedation, moderate sedation and recovery), a resting-state 

period of approximately 7 minutes was recorded, followed by an auditory discrimination task. The 

participants performed a perceptual discrimination task where they were asked to classify the 

stimulus as a noise or a buzz by pressing a button with their left or right hand. From the presentation 
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of the stimulus, a window of 5 seconds was allowed for making a response. The lack of a response in 

this interval was considered a miss. The task consisted of 40 stimuli in total at each sedation level.  

4.2.2. EEG DATA RECORDING  

EEG data was recorded during the experiment from a high-density 128-channel net using a Net Amps 

300 amplifier (ElectricalGeodesics Inc., Eugene, Oregon, USA). The data was referenced at the vertex 

and sampled at 250 Hz. Channels situated on the cheeks, forehead and neck were excluded in order 

to minimise muscle-related artefacts. A total of 90 channels over the scalp were retained for further 

analysis.  

4.2.3. EEG PRE-PROCESSING 

EEG data processing was performed in MATLAB (The MathWorks, Inc., Natick, Massachusetts, US) with 

custom scripts using functions provided by the EEGLAB toolbox (Delorme and Makeig, 2004). 

The resting-state sessions at baseline, mild sedation, moderate sedation and recovery were retained 

for EEG analysis, whereas the task periods were used to extract behavioural data. For each session, 

the data was filtered between 0.5 and 40 Hz. All sessions were concatenated in order and Independent 

Component Analysis (ICA) was performed. ICA components indicating muscular artefacts were 

removed. Finally, the data was visually inspected for channel artefacts and noisy channels were 

interpolated across all sessions. 

4.2.4. MEASURING COMPLEXITY 

To quantify the diversity of patterns present in the electric signal, an adapted version of the Lempel-

Ziv-Welch (Welch, 1984) (LZW) algorithm was used (Box 4.1). The algorithm assigns a complexity 

number to a binary string by counting the number of unique patterns it contains. For this study, the 

algorithm, as developed by (Schartner et al., 2015), was implemented in C++ and used with custom 

MATLAB scripts. These scripts are available online at https://github.com/iulia-m-comsa/EEG.  

The data was divided into 10-second epochs and baseline-corrected by subtracting individual channel 

means. This epoch size is similar to that used in other studies computing the LZ complexity on human 

EEG (Schartner et al., 2017b, 2015) and provides a good balance between smaller epochs that result 

in noisier values and larger epochs that result in less temporal accuracy. Epochs with variance higher 

than 200 uV were rejected. This threshold was established by visual inspection of the EEG data, with 

the aim to remove artefacts while also preserving as much data as possible. A mean (S.D.) of 39.4 (1.5), 

39.5 (1.4), 37 (4.7), 39.5 (2.7) epochs were retained for the baseline, mild sedation, moderate sedation 

and recovery sessions respectively. The Hilbert transform was used to obtain the instantaneous 

https://github.com/iulia-m-comsa/EEG
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amplitude of the signal. In every subject, complexity was computed for every epoch and then averaged 

per state. 

To apply the LZW algorithm on a data epoch, each channel was converted into a binary string using 

the channel mean as threshold. On the resulting binary matrix of channel values over time, we 

investigated two types of complexity, as explained below. 

• Spatial complexity (LZC). This measure was computed by concatenating the data in a spatial 

manner (observation by observation), with an observation consisting of all ordered channel values 

at a single time frame. The LZW algorithm was applied on the concatenated string. This measure 

is termed LZC in (Schartner et al., 2015). This measure represents the diversity over time in the 

spatial patterns of the EEG, hence representing a global measure of diversity.  

• Temporal complexity (LZS). This measure was computed by concatenating the data in a temporal 

manner (timeseries by timeseries), therefore preserving the temporal structure at each individual 

channel. This measure was called LZS in (Schartner et al., 2015). An alternative measure, called 

LZSUM in (Schartner et al., 2015), is obtained as the mean of the LZW complexity computed on 

single channels. The individual LZW value at each channel can also provide a topographical map 

of complexity. Temporal complexity measures the diversity of patterns found in individual 

channels, hence providing a measure of local diversity. 

 

Lempel-Ziv-Welch (LZW) complexity algorithm 

Input: a sequence S of binarised EEG data (k samples x c channels) 

Output: a number representing the raw LZW complexity of the sequence 

1. Flatten S column-by-column (for LZC) or row-by-row (for LZT) 

2. Initialise the dictionary of patterns D = {{0} and {1}} 

3. Initialise current_sequence = S[0] 

4. Initialise i = 0 

5. while i < length(S) do: 

     6. Append S[i] to current_sequence. 

     7. if current_sequence ∉ D then add it to D 

     8. i = i + 1 

9. Return length(D) 

 
Box 4.1 Lempel-Ziv-Welch algorithm. Returns the number of unique patterns found in the input data. 
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To obtain a normalised complexity value for every epoch, two types of normalisations were used 

sequentially. The first method consists dividing the complexity of the given string by that of a shuffled 

version of the same string. The shuffled version represents the maximal diversity of a string composed 

of the same characters. To obtain a representative maximal complexity for normalisation, the original 

string was randomly shuffled 10 times and the mean complexity of the obtained strings was used to 

divide the complexity value of the original string. We consider 10 random shuffles to give an 

appropriate estimation of maximal complexity. It has been previously shown that even a single 

random shuffling is sufficient to approximate the complexity of a random sequence for 10-second 

epochs at the same sampling rate (Schartner et al., 2015). A string of maximal diversity would hence 

have a complexity value of 1. 

The second normalisation seeks to ensure that any changes in complexity cannot be explained by 

changes in the power spectrum. For this purpose, phase-randomised surrogate data with the same 

Fourier spectrum as the original data is obtained as explained in (Theiler et al., 1992). The Fourier 

transform of the data is computed and the phase of each complex frequency component is 

randomised by multiplying it with a uniformly random phase between 0 and 2π, while the amplitude 

of the component is preserved. The inverse Fourier transform is then applied to obtain the surrogate 

data, on which complexity is computed. Thus, we obtain the maximal complexity of a string with the 

same spectral profile. As before, the mean complexity of 10 such randomisations were used for 

normalising the complexity of the original signal. This method aims to ensure that any changes in 

complexity that can be explained by the power spectrum only are removed from the result. Our 

measures hence correspond to the LZN  measures in (Schartner et al., 2017a).  

As an alternative and conservative measure to check that complexity is not influenced by the power 

spectrum, notch filters in theta, alpha and beta bands, which have been shown to be altered during 

propofol sedation, were applied in turn to the data before recomputing the LZ complexity and 

verifying the effects obtained in the original results. 

4.2.5. MEASURING INFORMATION SHARING 

In order to measure the dynamics of information integration during sedation, we calculated the 

weighted symbolic mutual information (wSMI) as introduced by (King et al., 2013). The wSMI assigns 

a proportional value representing the co-occurrence of similar, nontrivial patterns between pairs of 

channels, thereby providing a measure of information sharing. To ensure the measure captures a true 

reflection of underlying neural information exchange, signal patterns that might result from common 

sources are discarded. 
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The data was split into 1-second epochs and baseline-corrected by subtracting individual channel 

means. Epochs with variance higher than 200 uV were rejected. A mean (S.D.) of 393 (13.5), 396.2 

(11.6), 371.6 (28.5), 390.7 (32.1) epochs were retained for the baseline, mild sedation, moderate 

sedation and recovery sessions respectively. The wSMI was computed for every pair of channels at 

every epoch. Due to the high variance of this measure (as shown in the Results), a trimmed mean 

wSMI per epoch was obtained by averaging across all pair values after excluding the 10% highest and 

10% lowest values. This procedure has been used in other recent studies involving the wSMI 

(Engemann et al., 2018). However, we also confirmed the results were very similar and statistically 

equivalent if the median of the wSMI was used instead of the trimmed mean. 

We investigated four temporal separation parameters (τ = 4, 8, 16 and 32 samples) corresponding to 

maximal frequencies of 20.8 Hz, 10.41 Hz, 5.2 Hz, and 2.6 Hz respectively. These upper limits 

correspond approximately to the beta, alpha, theta and delta frequency bands, all of which have been 

shown to capture electrophysiological changes induced by propofol sedation (Chennu et al., 2016a; 

Murphy et al., 2011; Purdon et al., 2013; Seifert et al., 1993). 

4.2.6. GROUP DIFFERENCES ANALYSIS 

For the initial analysis, participants were classified as responsive or unresponsive based on their ability 

to respond to the noise/buzz stimuli during moderate sedation compared to the baseline period. The 

number of hits and misses in the perceptual discrimination task was counted during each of the four 

sedation levels. A binomial distribution was fitted to each state and the 95% confidence intervals of 

each distribution were obtained. Each participant was classified as unresponsive if the confidence 

interval of responses was lower and non-overlapping with the confidence interval at baseline, and 

responsive otherwise. 

A repeated measures ANOVA (Hogg and Ledolter, 1987) was used to assess the interaction between 

level of sedation (baseline, mild, moderate and recovery) and group (responsive and unresponsive) 

for each measure of interest. To test for differences between the two groups at the same sedation 

level, and between sedation levels within the same group, comparisons of marginal means were 

performed and corrected for multiple comparisons using the Tukey-Kramer method (Tukey, 1949). 

Where Mauchly’s test of sphericity (Mauchly, 1940) was violated, the p-value was corrected using the 

Greenhouse-Geisser procedure (Greenhouse and Geisser, 1959). A conventional threshold of 0.05 was 

applied to the p-value to assess significance. 
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4.2.7. OPTIMAL PREDICTORS 

A regression analysis was performed to assess the predictability of drug concentration, responsiveness 

and RT using signal complexity and information integration. Complexity and WSMI values at mild 

sedation, moderate sedation and recovery were normalised by the value at baseline. To minimise 

individual differences in drug uptake and increase sample independence at mild and moderate 

sedation, drug level was normalised by the value at recovery. Responsiveness was computed as the 

number of responses out of a maximum of 40. As we noted that subjects were still adjusting to the 

task during the baseline period (the number of misses was in some cases larger at baseline than in all 

other stages), responsiveness was also normalised by the value at recovery. Likewise, reaction time 

(RT) was computed as the mean of response times normalised by the mean response time at recovery 

level. Points classified as unresponsive using the procedure described in the previous section were 

excluded from RT analysis. 

The performance of LZW (LZC, LZS, LZSUM) and wSMI (τ = 4, 8, 16, 32) in predicting drug level, 

responsiveness and RT was assessed using a generalised linear model. Drug concentration and RT were 

modelled as normal distributions. Responsiveness was modelled as a binomial distribution specifying 

the number of responses recorded out of the maximum of 40 and using the logit linking function. The 

measures were entered individually as predictors and the coefficient of determination (R2) was used 

to compare the variance explained by each predictor.  

To select the best predictors for each dependent variable, we performed a generalised linear 

regression with Lasso regularisation (Tibshirani, 2011). In Lasso regularisation, a penalty parameter 

(lambda) restricts the size of the estimated coefficients, thereby encouraging zero coefficients leading 

to the exclusion of redundant predictors. The non-constant model with highest lambda within one 

standard error of the model with minimum deviance was chosen to determine the best subset of 

predictors. As the algorithm is stochastic and may return different results at different runs, it was run 

100 times and the result with the smallest deviance was selected. 

4.2.8. COMPLEXITY TOPOGRAPHY 

To investigate topographical areas of interest in discriminating responsiveness at moderate sedation, 

single-channel complexities (as computed before averaging to obtain LZSUM) were obtained. This is 

similar to K-complexity estimated by Sitt and colleagues (Sitt et al., 2014), but applied to the binarized 

time series. We employed a repeated measures ANOVA with level of sedation and responsiveness 

group as factors to probe for two-way interactions at individual channels. The resulting p-values were 
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controlled using the Benjamini-Hochberg procedure for false discovery rate (Benjamini and Hochberg, 

1995). A significance threshold of 0.01 was used. 

4.3. RESULTS 

4.3.1. MEASURES OVERVIEW 

Behavioural responsiveness and plasma drug concentration. Out of the 16 subjects, one became 

unresponsive during mild sedation and five more became unresponsive at moderate sedation. All 

subjects became again responsive during recovery. Plasma drug concentration had a high variance 

within levels: compared to the target levels of 0.6, 1.2 and 0 mg/L plasma drug concentrations, mean 

values were 0.47 (S.D.=0.2) mg/L during mild sedation, 0.93 (S.D.=0.25) mg/L during moderate 

sedation, and 0.3 (S.D.=0.09) mg/L during recovery (Figure 4.1A). Unresponsive periods had a mean 

plasma drug concentration of 0.99 (S.D.=0.35) mg/L, while responsive periods had a mean 

concentration of 0.5 (S.D.=0.26). There was considerable overlap in plasma drug concentration in the 

responsive and unresponsive groups (Figure 4.1A, B). 

The number of responses and misses varied as expected with sedation level (Figure 4.1C, D). The mean 

reaction times (RTs), excluding misses, were 1.03s (S.D.=0.46) at baseline, 0.94 (S.D.=0.45) at mild 

sedation, 1.15 (S.D.=0.65) at moderate sedation and 0.87 (S.D.=0.36) at recovery. As expected, RTs 

were highest at moderate sedation (Figure 4.1E). Interestingly, baseline RTs were on average higher 

than RTs at mild sedation, and the overall lowest RTs occurred during recovery (Figure 4.1F), which 

likely reflected task habituation. This justifies the normalisation of RTs by the value at recovery later 

in the analysis. A Kolmogorov-Smirnov test (Massey, 1951) did not reject the hypothesis that the drug 

concentration and the RTs did not come from normal distributions (pdrug = 0.6, pRT=0.35).  

EEG measures. Two variants of temporal complexity were computed: LZSUM, which consists of the 

mean complexity of individual channels, and LZS, which operated on temporally concatenated values 

of single channels. The two versions of temporal complexity had a correlation of 0.99. Due to the very 

similar behaviour of these two measures, we henceforth only report temporal complexity as obtained 

from the LZS variant. The correlation between LZS and LZC was 0.6. A Kolmogorov-Smirnov test did 

not reject the null hypothesis that any of the complexity and integration measures were normally 

distributed, except for WSMI δ (pLZT=0.14, pLZC=0.4, pWSMI δ=0.03, pWSMI θ=0.23, pWSMI α=0.15, pWSMI 

β=0.54). 
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Figure 4.1 Behavioural and plasma drug concentration measures. A: Individual plasma drug concentration at 
each sedation level. Values are jittered on the abscissa for visual clarity. B: Individual plasma drug concentration 
and responsiveness computed as the proportion of responses not missed during all sedation levels. C: Individual 
number of misses at each sedation levels. D: Cumulative number of misses per sedation levels. E: Individual 
plasma drug concentration and reaction time during all sedation levels. F: Cumulative distributions of reaction 
times at each of the four sedation levels. 
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4.3.2. LEVEL ANALYSIS 

 

Figure 4.2 Temporal (A) and spatial (B) complexity of individual subjects at each sedation level. Values are 
jittered on the abscissa for visual clarity. The subjects are classified as responsive or unresponsive based on the 
number of misses during the task at moderate sedation compared to the baseline period.  

Complexity. Although there was a high correlation between temporal and spatial complexity 

(Pearson’s coefficient = 0.65), we found that the two measures tracked different aspects of sedation 

(Figure 4.2). A repeated measures ANOVA test with sedation level and responsiveness group as factors 

(see section 4.2.6 for details, including p-value correction) showed an interaction between 

responsiveness and sedation level for temporal complexity (F=5.82, p=0.002), but not in spatial 

complexity (F=1.65, p=0.2). Further, we used marginal means to explore group differences at 

moderate sedation, as well as the simple effect of state. For spatial complexity (Figure 4.2B), there 

was no difference between the responsive and unresponsive groups at moderate sedation (p=0.08), 

but there was a significant difference between baseline and moderate sedation across both groups 

(p=0.01). This suggests that spatial complexity is correlated with the increase in drug concentration, 

irrespective of responsiveness. Conversely, for temporal complexity (Figure 4.2A), there was a 

difference at moderate sedation between responsive and unresponsive groups (p=0.0001), driven by 

significantly increased temporal complexity in responsive (p=0.002) but not unresponsive (p=0.2) 

subjects. In contrast with spatial complexity, there was no significant difference between baseline and 

moderate sedation across both groups in temporal complexity values (p=0.7). This indicates that 

temporal complexity is able to track responsiveness, but not plasma drug concentration. 

The above results were obtained after controlling for interference of spectral changes using phase 

randomisation as described in the Methods (section 4.2.4). In summary, the complexity values 

reported here are normalised first by the complexity of the shuffled initial string, and then by phase-

randomised surrogate data. These measures hence correspond to the LZN  measures in (Schartner et 
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al., 2017a). Importantly, we separately also confirmed that these effects were preserved when 

applying a notch filter to remove theta, alpha and beta oscillations. The effect sizes were smaller, but 

remained significant. Hence, we argue that this pattern of findings is driven by changes in signal 

complexity that cannot be fully explained away by changes in the oscillatory content of the EEG signal. 

Information sharing. A repeated measures ANOVA test with sedation level and wSMI as factors 

showed no interaction for any of the four wSMI variants (Figure 4.3). However, there was a group 

difference between baseline and moderate sedation in wSMI δ (p=0.001) and wSMI θ (p=0.017). This 

was driven by a significantly lower information sharing in the unresponsive compared to the 

responsive group in both wSMI δ (p=0.023) and wSMI θ (p=0.02). This suggests that information 

sharing at these response frequencies potentially tracks responsiveness. 

 

Figure 4.3 Trimmed-mean wSMI of individual subjects at four maximal response frequencies at each sedation 
level. A: Beta. B: Alpha. C: Theta. D: Delta. Values are jittered on the abscissa for visual clarity. One outlier is 
excluded from the alpha and delta wSMI plots. Two outliers are excluded from the beta and theta plots. The 
subjects are classified as responsive or unresponsive based on the number of misses during the task  at moderate 
sedation compared to the baseline period. 
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4.3.3. OPTIMAL PREDICTORS 

To assess the individual performance of each predictor, an individual GLM was first trained on each 

pair consisting of a predictor (complexity and wSMI values) and response (drug level, responsiveness 

and reaction time). Figure 4.4 shows the variance explained by each predictor, computed as the 

adjusted coefficient of determination. Drug concentration is best explained by spatial complexity and 

beta band information sharing. Responsiveness is best explained by temporal complexity and low-

frequency (theta and delta) information sharing. No measures do particularly well in explaining 

reaction times. 

 

      

       

Table 4.1 Abbreviations of variables used in the 
sedation analysis. 

To confirm the optimal subset of predictors for each outcome, we also performed Lasso GLM 

regularisation by predicting each of the three response variables using the full set of predictors. The 

following predictors, also shown in Figure 4.5, were selected as optimal: 

• For drug concentration: spatial complexity (LZC), wSMI β and wSMI α; 

• For responsiveness: temporal complexity (LZS), wSMI θ and wSMI δ; 

• For RT: wSMI α and wSMI δ. 

Abbreviation Measure 

LZC Lempel-Ziv spatial complexity, 
obtained by concatenating data 

observation by observation. 

LZS Lempel-Ziv temporal complexity, 
obtained by concatenating data 

channel by channel. 

LZSUM Lempel-Ziv temporal complexity, 
obtained by averaging the 

complexity of individual channels. 

WSMI β WSMI with upper limit at beta 
frequency (tau=4 samples). 

WSMI α WSMI with upper limit at alpha 
frequency (tau=8 samples). 

WSMI θ WSMI with upper limit at theta 
frequency (tau=16 samples). 

WSMI δ WSMI with upper limit at delta 
frequency (tau=32 samples). 

DRUG Drug concentration level in blood. 

RESP Responsiveness, computed as the 
fraction of responses out of the total 

number of trials during a run. 

RT Reaction time, computed as the 
median per session in responsive 

sessions only. 

Figure 4.4 Variance of plasma drug concentration, 
responsiveness proportion and reaction time 
explained by complexity and information sharing 
predictors. Variance explained is computed as the 
adjusted R2 of the individually fitted regression model. 
Abbreviations are explained in Table 4.1. 
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We therefore conclude that a combination of spatial complexity and higher-frequency information 

sharing best predict drug concentration, whereas a combination of temporal complexity and lower-

frequency information sharing best predict responsiveness. RT is best predicted by alpha and delta 

information sharing.  

 

Figure 4.5 Best set of predictors selected using LASSO regularisation for plasma drug concentration (row A), 
responsiveness proportion (row B) and RT (row C). Each subject contributes two points to each graph (from 
mild and moderate sedation). To increase point independence, individual values are normalised as described in 
the text. The dashed line shows the regression line fitted to each model (A, C: linear model; B: binomial model). 

 

4.3.4. COMPLEXITY TOPOGRAPHY 

To understand what drives the difference in temporal complexity at moderate sedation in the case of 

responsive and unresponsive subjects, we investigated the topography of LZ complexity computed at 

single channels. In the baseline state, we found that complexity is highest in central areas and lower 

in posterior areas (Figure 4.6A). At moderate sedation, increased temporal complexity values are 

observed in the responsive group with pronounced anteriorisation (Figure 4.6B), whereas the 
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Figure 4.6 Averaged topography of single channel LZ 
complexity at baseline (panel A), moderate sedation in 
responsive subjects (panel B), moderate sedation in 
unresponsive subjects (panel C) and the difference 
between individual topography changes in responsive 
and unresponsive subjects (panel D). Channels with a 
significant interaction between level of sedation and 
drowsiness level after controlling the false discovery rate 
using Benjamini-Hochberg procedure and applying a 
significance threshold of 0.01 are highlighted in panel D. 

unresponsive group shows overall lower temporal complexity, except for a narrow central area (Figure 

4.6C). 

Figure 4.6D shows the difference between the change from baseline to moderate sedation in 

responsive and unresponsive participants. Highlighted channels show a significant interaction 

between level of sedation and responsiveness group after controlling the false discovery rate using 

Benjamini-Hochberg procedure and applying a significance threshold of 0.01. Single-channel 

complexity is significantly lower in frontal areas at moderate sedation in unresponsive subjects. 

Overall, this suggests that a gain in anterior complexity characterises preserved responsiveness during 

sedation, whereas the loss of anterior complexity is linked to unresponsiveness. This pattern was not 

observed in wSMI networks. 
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4.4. DISCUSSION 

4.4.1. SUMMARY 

We investigated the change in information-theoretical measures of integration and differentiation 

during propofol sedation, motivated by the prediction of recent theories of consciousness that a 

decrease in information sharing and diversity of neural activity patterns leads to consciousness 

impairment. A perceptual discrimination task was used to assess responsiveness at baseline, mild 

sedation (target drug concentration 0.6 mg/L), moderate sedation (target drug concentration 1.2 

mg/L) and recovery. Crucially, only 37.5% of the subjects lost responsiveness during moderate 

sedation, allowing us to discriminate responsiveness at similar drug levels. Plasma concentration of 

propofol and EEG measures of LZ complexity (temporal and spatial) and wSMI (at beta, alpha, theta 

and delta maximal response frequencies) were obtained at each sedation level. At light sedation 

doses, drug concentration is not sufficient to engender a loss of responsiveness. An analysis of the 

four sedation levels revealed that two types of LZ complexity tracked different aspects of sedation. 

Spatial complexity tracked sedation level indiscriminately of responsiveness, whereas temporal 

complexity differentiated between responsive and unresponsive subjects. We confirmed that these 

effects could not be fully explained by changes in spectral power. We also found that low-frequency 

information sharing discriminated between responsive subjects at moderate sedation. To further 

explore these findings, we applied regression analyses to find the best set of predictors for drug 

concentration, number of responses and median reaction time. We found that drug concentration 

was best predicted by spatial complexity and high frequency information sharing, whereas the number 

of responses was best predicted by temporal complexity and low-frequency information sharing. The 

best predictors for reaction times were alpha and delta wSMI, although they did not perform 

comparatively well. Finally, we found that complexity in anterior regions differentiated between 

responsive and unresponsive subjects during moderate sedation, with increased single-channel 

complexity in responsive subjects and suppressed single-channel complexity in unresponsive subjects. 

4.4.2. UNRESPONSIVENESS AND CONSCIOUSNESS 

It is important to clarify the relationship between the predictors employed in this study and the 

concept of consciousness. Here, we used two indices of alertness: reaction times, as a measure of 

efficiency in information processing, and the number of successful responses, as a measure of the 

capacity to fully process a stimulus. We acknowledge that the lack of responsiveness is not equivalent 

to a lack of consciousness (Boly et al., 2013a; Sanders et al., 2012). Propofol anaesthesia can involve 

conscious content in the form of unintentional awareness (Rampersad and Mulroy, 2005) or dreaming 
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(Brandner et al., 1997; Leslie et al., 2009). The dissociation of consciousness from responsiveness is a 

known issue for other states of impaired consciousness: for example, in disorders of consciousness, a 

minority of patients are able to produce brain activation similar to that of healthy individuals in 

response to task requirements despite the lack of an overt response, potentially suggesting the 

presence of covert conscious content (Cruse et al., 2011; Fernández-Espejo and Owen, 2013; Monti et 

al., 2010). Defining the level of consciousness based on a behavioural measure is therefore a limitation 

of the study. Nonetheless, the gradual loss of responsiveness, as well as the increased reaction times 

preceding unresponsiveness that we described here, indicate that responsiveness provides a good 

coverage of the early transition from consciousness to unconsciousness. In clinical practice, the 

absence of responsiveness is used routinely to assess the depth of anaesthesia as an acceptable proxy 

for consciousness (Callahan et al., 2017). 

As expected, reaction times had a higher mean and variance during moderate sedation. On the other 

hand, reaction times (excluding misses) were faster at mild sedation than at baseline, and even faster 

at recovery. This can be explained as a combination of two factors: becoming more familiar with the 

task, as well as the effect of the drug at low doses being all-or-none, rather than gradual. It could be 

possible that the mild doses of sedative impaired the motor act of response itself, rather than the 

cognitive stage of the stimulus processing. The latter could have resulted in slower reaction times. The 

possibility of the motor response itself being impaired sooner than cognitive processing in early stages 

of losing consciousness is also supported by a study discussed in the previous chapter (Kouider et al., 

2014), where it was shown that the lateralized readiness potential corresponding to the correct 

response can be detected in early stages of sleep despite the lack of responsiveness.  

4.4.3. TEMPORAL AND SPATIAL COMPLEXITY AS DISTINCT NEURAL SIGNATURES 

OF RESPONSIVENESS AND PLASMA DRUG CONCENTRATION 

Conceptually, how can there be a dissociation between the neural signature of responsiveness and 

that of plasma drug concentration? The individual response to estimated anaesthetic doses is variable 

across people (Araújo et al., 2017). Although plasma concentration level correlates well with changes 

in brain activity, not all of these changes are necessarily related to the ability to respond to external 

stimuli. By searching for the neural correlates of responsiveness, we focus specifically on a function 

normally required in full conscious states (Bor and Seth, 2012; Laureys, 2005; Laureys and Schiff, 

2012). Indeed, a previous study from on fMRI data has confirmed that plasma drug level and 

responsiveness have a distinct set of optimal predictors obtained from BOLD functional connectivity 

networks (Barttfeld et al., 2015). 
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Here we report for the first time a dissociation between the spatial and temporal complexity of EEG 

data in predicting these two distinct aspects of sedation. Spatial complexity best tracks the plasma 

drug concentration, while temporal complexity performs better in predicting responsiveness. 

Importantly, it was ensured that these changes are not explained away by changes in power spectrum 

by using normalisation based on phase randomisation. It was also verified that the observed changes 

in these complexity measures remained even after applying notch filters on theta, alpha and beta 

bands. 

By design, temporal and spatial complexity measure different aspects of the EEG signal: the former 

captures local diversity over time present in individual channels, while the latter captures global 

patterns across the whole topography, as well as the momentary relationship between channel values 

at individual timepoints. Our results suggest that the spatial diversity of scalp topography is reduced, 

i.e., it changes more slowly, as drug concentration increases. In contrast, the complexity of temporal 

dynamics in individual channels is reduced as responsiveness decreases. Interestingly, in the sedation 

level group analysis, we found that temporal complexity is in fact increased at moderate sedation in 

subjects who do not become unresponsive.  

A similar dissociation between temporal and spatial complexity also exists in a previous study of 

propofol anaesthesia (Schartner et al., 2015). Here, Schartner and colleagues calculate LZ complexity 

using the same algorithm employed in this paper and on the same time window of 10 seconds. They 

administered a higher amount of propofol to their subjects and measured the level of anaesthesia 

using the Ramsay scale. The authors report obtaining similar results using the spatial and temporal 

versions of the LZ complexity, namely a decrease in this measure with the depth of sedation. However, 

a closer look at the values of temporal complexity they obtained (Figure S3 in their study) suggests 

that temporal complexity is in fact higher in mild sedation (propofol blood concentration 1.91±0.52 

mg/L) than in wakefulness in 5 out of 7 subjects. This mirrors the increase in temporal complexity 

amongst the participants who remained responsive at moderate sedation in the current study. 

However, we report a smaller propofol blood concentration in the participants who remained 

responsive at this stage of our task (0.85±0.17 mg/L). In the remaining subjects, who became 

unresponsive, the concentration value was 1.06 mg/L. The study by Schartner et al. was performed on 

resting-state EEG data, therefore responsiveness cannot be compared. These results invite further 

investigation into the continuous complexity changes during mild sedation, in presence and in absence 

of a task. The same study (Schartner et al., 2015) also found that spatial complexity decreased linearly 

from wakefulness to mild sedation and into the loss of consciousness. In agreement with this, we also 

found that spatial complexity decreased with higher drug concentration.  
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In a different study on altered states of consciousness (Schartner et al., 2017a), it has been reported 

that temporal, but not spatial, complexity tracks the subjective experience during the administration 

of psychedelics. We did not collect subjective reports from out subjects, which is a limitation of our 

study. However, propofol has been previously reported to cause altered mental states in some 

patients (Balasubramaniam and Park, 2003; Brandner et al., 1997), suggesting that it might cause an 

altered state of consciousness at light doses where responsiveness is preserved. Temporal complexity 

is therefore a candidate neural signature for tracking neural processes related to altered states of 

consciousness, whereas spatial complexity is a better predictor for plasma drug concentration. 

4.4.4. DECREASED FRONTAL COMPLEXITY IN UNRESPONSIVENESS 

To understand what drives the change in temporal complexity at moderate sedation between 

responsive and unresponsive subjects, we examined the topography of single-channel LZ complexity. 

This is equivalent to the K-complexity used in other studies (Sitt et al., 2014). We described the 

baseline topography of complexity as anteriorised, with a peak in the central and anterior areas and 

lower values in the posterior area – an inverse map of typical spectral alpha power (Chennu et al., 

2016a). At moderate sedation, the responsive group generally displays increased complexity, whilst 

preserving an anteriorised topography. In contrast, the unresponsive group shows a general drop in 

complexity and a loss of frontal complexity. The loss of frontal complexity in the unresponsive group 

could be related to the deactivation of the prefrontal cortex by propofol at moderate doses (Veselis 

et al., 2004). These results suggest that frontal complexity is essential in maintaining responsiveness 

during sedation.  

4.4.5. LOW- AND HIGH-FREQUENCY INFORMATION SHARING AS NEURAL 

SIGNATURES OF RESPONSIVENESS AND DRUG LEVEL 

To assess the dynamics of information integration during sedation, we calculated the wSMI with four 

distinct values for the temporal resolution parameter, which corresponded to maximal frequency 

responses at beta, alpha, theta and delta frequencies. The calculation of the wSMI includes a low-pass 

filtering at the calculated maximal frequency to prevent anti-aliasing artefacts. It has been shown that 

the wSMI generally peaks at a frequency close to the maximal frequency (King et al., 2013) (Fig. S2.h 

in their study), although there is a small degree of overlap with lower frequencies, especially as the 

temporal separation between considered samples becomes smaller. In this study, the results 

produced by the wSMI were overall noisy, so the findings should be interpreted with caution. Our 

results show that plasma drug concentration is best predicted by high frequency information sharing 

(alpha and theta), while responsiveness is best predicted by lower-frequency information sharing 
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(theta and delta). An interesting finding here is the increase in beta wSMI with deeper sedation, in 

contrast with delta, theta, alpha wSMI values, which show a simultaneous decrease. This emphasises 

the distinct functional roles of brain oscillations occurring at specific frequencies in the brain. This 

finding also mirrors the so-called beta-buzz phenomenon caused by propofol, where power at beta 

frequency increases at sedative doses (Gugino et al., 2001; Hashemi et al., 2017; Murphy et al., 2011; 

Purdon et al., 2013; Seifert et al., 1993). Whether there is a link between the increase in beta power 

and the increase in wSMI connectivity remains to be investigated further. Our results suggest that a 

higher drug concentration leads to increased information sharing at beta frequencies and decreased 

information sharing at frequencies below the beta band. 

4.4.6. CONCLUSIONS 

Our study supports the hypothesis that transitions of consciousness, such as sedation, can be tracked 

by the dynamics of neural activity differentiation and integration as measured using LZ complexity and 

wSMI. Intriguingly, we observed a dissociation between the neural correlates of two distinct aspects 

of sedation: drug level and responsiveness. For these two variables, we found two disjoint optimal 

sets of predictors: drug concentration was predicted by spatial complexity and high-frequency mutual 

information sharing, while responsiveness was predicted by temporal complexity and low-frequency 

information sharing. Most measure values decreased with deeper sedation, with two exceptions. 

Group-level temporal complexity increased in the responsive group at moderate sedation, and beta 

mutual information sharing increased with higher level of drug. Interestingly, the optimal subset of 

predictors for drug level and responsiveness included a simultaneous combination of both neural 

information integration and differentiation measures, indicating their complementary value in 

predicting the depth of sedation. Finally, we underlined the importance of frontal complexity in 

maintaining responsiveness during sedation. 

Future work should seek to clarify several further questions related to these results. First, the 

relationship between temporal and spatial complexity should be better clarified conceptually, perhaps 

using simulated data to elucidate in detail the conditions in which a dissociation between the two 

might arise in a healthy or altered neural system. Secondly, it should be investigated whether spatial 

complexity, being a global measure, mirrors in practice any connectivity relationships between neural 

signals, thereby capturing, to some extent, the degree of integration occurring within the system. 

Secondly, the relevance of the frontal complexity module should be further explored, as part of 

ongoing debates about key areas of the brain whose functional alteration causes unresponsiveness, 

(Boly et al., 2017; Mashour and Avidan, 2017; Odegaard et al., 2017; Vijayan et al., 2013).  
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Overall, our study has both theoretical and clinical relevance. On the one hand, it provides evidence 

that supports and informs recent theories of consciousness, such as IIT.  On the other hand, it is also 

of interest for clinical applications, with the prospect of enhancing patient monitoring during 

anaesthesia and sedation. The measures proposed here are easy to implement, computationally 

undemanding, and can be employed to track levels of sedation at a fine-grained scale during the loss 

of consciousness.  
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COMA 

Having investigated the loss of consciousness in healthy adults due to natural and pharmacological 

causes – sleep and sedation –, we now move into the clinical realm. Here, theories of consciousness 

provide inspiration for the development of computational tools that can be used in the hospital to 

facilitate diagnosis and prognosis of patients with brain injury. This is particularly important 

considering the very high usual rate of misclassification in patients with disorders of consciousness 

(Schnakers et al., 2009). This chapter studies a cohort of acute comatose patients whose overnight 

EEG was recorded at the bedside in the intensive care unit during the first weeks after traumatic brain 

injury. Employing graph theory to measure the degree of integration and differentiation re-emerging 

in EEG networks early after injury, we find that increased variability in the characteristic path length 

of low-frequency networks predicts an eventual positive outcome. We also present the case study of 

a patient who, despite no behavioural improvement early after injury, showed remarkable early 

progress in the reconstruction of alpha connectivity and eventually fully recovered. This demonstrates 

how EEG tools inspired by theories of consciousness can be deployed at the bedside of patients with 

critical injuries to assist with clinical diagnosis and prognosis, and how such tools can inform on 

essential network configurations required for the re-emergence of consciousness. 

Parts of this chapter have been presented as posters at the Association for the Scientific Study of 

Consciousness (ASSC) conference 2015 in Paris and at the Connectome Workbench 2015 in 

Cambridge. 

5.1. INTRODUCTION 

Consciousness is clinically defined as a state comprising both wakefulness and awareness (Baars, 1988; 

Laureys, 2005). Coma is a sign of brain injury so severe that no behavioural sign of consciousness is 

observable. It is usually caused by traumatic injury to the brain regions that sustain arousal in humans, 

notably the ascending reticular activating system (Edlow et al., 2013b; Laureys and Tononi, 2011). In 

coma, the brain does not sustain either wakefulness cycles or any observable awareness of the outside 

world (Laureys and Tononi, 2011). In contrast, in chronic disorders of consciousness (DoC), which 

include vegetative and minimally conscious states, patients show evidence of behavioural signs of 



CHAPTER 5: COMA 

88 
 

arousal and sleep-wake cycles. Vegetative patients are defined by a lack of awareness of the external 

world, whereas minimally conscious patients show transient signs of awareness. Patients who survive 

acute coma may either show progressive improvement in the degree of consciousness impairment up 

to full recovery, or reach a persistent vegetative or minimally conscious state (Laureys and Schiff, 

2012).  

Early prognosis of the potential outcome is of great importance to both clinicians and patient families 

in the decision-making process following injury, but this is particularly difficult in acute coma (Stevens 

and Sutter, 2013). Tools that are accurate and convenient to use at the bedside to diagnose and track 

the state of comatose patients would be highly valuable in intensive care units (Chennu et al., 2016b). 

The development of better behavioural (Arbour et al., 2016; Kalmar and Giacino, 2007; Schnakers et 

al., 2008; Stevens and Hannawi, 2016), biochemical (Herrmann, 2001; Vos et al., 2010, 2004) and 

neural (Bagnato et al., 2010; Chiappa and Hill, 1998; Edlow et al., 2013a) markers for coma 

prognostication is an active area of clinical research. Amongst these, the electroencephalogram (EEG) 

is a tool convenient to use in the bedside assessment of comatose patients. EEG methods proposed 

as predictors in coma prognosis include standard EEG visual inspection (Bagnato et al., 2010; Kaplan, 

2004; Rumpl et al., 1983), spectral power (Bricolo et al., 1978), entropy (Gosseries et al., 2011) and 

evoked potentials, in particular the mismatch negativity (Amantini et al., 2005; Daltrozzo et al., 2007; 

Kane et al., 1996; Kotchoubey et al., 2001; Naccache et al., 2005). 

Currently, behavioural measures that can be easily obtained at the bedside are commonly used for 

coma diagnosis. Standardised scales include the Glasgow Coma Score (GCS) (Jones, 1979) or the Coma 

Recovery Scale-Revised (CRS-R) (Giacino et al., 2004). However, behavioural scales are not always 

accurate. In DoC, misclassification rates as high as 43% have been reported when using standard 

clinical examination (Schnakers et al., 2009). By contrast, it has been established that neuroimaging 

can provide more insight into covert brain activity that can signal potential recovery. Vegetative 

patients who appear unaware of their surroundings may show patterns of brain activation surprisingly 

similar to healthy adults in response to verbal instructions, suggesting covert awareness of the outside 

world (Chatelle et al., 2012; Fernández-Espejo and Owen, 2013; Owen et al., 2006; Owen and 

Coleman, 2008). This suggests that brain activity could be a better and earlier predictor of recovery in 

coma compared to behavioural measurements. 

Neuroscientific theories of consciousness (Oizumi et al., 2014; Tononi and Edelman, 1998) predict that 

a balance of functional integration and segregation across brain networks is essential for the brain in 

sustaining consciousness. EEG markers inspired by this prediction have been successfully used to 

characterise alterations of brain connectivity in coma (Achard et al., 2012), as well as in other DoC 
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(Chennu et al., 2017, 2014; King et al., 2013), anaesthesia (Chennu et al., 2016a) and sleep (Ferri et al., 

2007; Larson-Prior et al., 2009). Brain connectivity patterns can be easily obtained from EEG 

recordings by applying measures of correlation or synchronicity (for example, consistent phase delays) 

on pairs of electrode signals (Sakkalis, 2011).  

Graph theory can be used to quantify key properties of brain networks (Bullmore and Sporns, 2009; 

Sporns, 2010). Measures applied on neural connectivity networks can reveal the balance of 

segregation and integration across brain regions, as well as the overall small-worldness of the 

network, measured as the ratio between the two. It has been shown that the human brain has a small-

world organisation (Bassett and Bullmore, 2006, 2016; Uehara et al., 2014). A study of graph-

theoretical measures in a large cohort of DoC patients has shown that alpha connectivity and network 

centrality are useful predictors in clinical diagnostics (Chennu et al., 2017). Furthermore, graph theory 

applied to fMRI connectivity data of comatose patients has shown radically reorganized neural hubs 

of inter-modular information exchange compared to healthy adults, although other small-worldness 

properties were preserved (Achard et al., 2012). However, no study has yet characterised the early 

evolution of brain networks in acute comatose patients in relation to their eventual outcome. This 

could be a useful pursuit, given that acute comatose patients may display considerable changes in 

brain network reorganisation during the early post-injury period. 

In this exploratory study, we set to investigate whether the temporal dynamics of connectivity 

networks constructed from high-density EEG data collected at bedside in acute stages of coma, 

following traumatic brain injury, can predict eventual clinical outcome in a small group of patients. In 

order to track the progression of the patient in this early stage, two recordings were obtained around 

one week and two weeks after injury, accompanied by the CRS-R score, followed by the CRS-R score 

outcome at two months after the traumatic event. The evolution of individual measures of brain 

connectivity from the first to the second recording was used as a predictor for the eventual outcome. 

One challenge for the data collection in this study is the distorted architecture of the brain following 

the traumatic damage. This constrains the data collection as correct channel placement can be more 

difficult or even impossible, and will not necessarily correspond to the standard electrode locations 

on the scalp as described in healthy adults. Moreover, the spatial orientation of neural elements is 

important in the signal generation; for example, the apical dendrites of pyramidal neurons situated 

perpendicularly to the cortical surface are thought to contribute significantly to the EEG signal 

(Kirschstein and Köhling, 2009). Hence, brain geometry distortions may affect signal propagation itself. 

For this reason, in this study, we make no assumptions or analyses concerning specific brain locations 

that have been associated with various cognitive functions in healthy adults, but rather investigate 
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the configuration of function networks in a geometric sense. We mention, however, long- in contrast 

with short-range connectivity, as we expect the former to be informative of the ability of neural 

populations to communicate across brain areas in spite of the architectural changes caused by trauma, 

and thus to be a positive marker with respect to the prognosis. 

We acknowledge that traumatic brain injury leads to a highly disrupted neural configuration that is 

particular to each individual case. For the scope of this small-sample study, we did not focus on the 

clinical aspects of the individual injuries or on the structural brain damage, as there was not sufficient 

statistical power available to incorporate these factors into our analysis. Instead, by tracking in detail 

the dynamical change in brain network measures over time within each patient, we obtain individual 

metrics that can predict eventual improvement. This generalised approach allows us to focus on 

creating a general computational pipeline that could be easily deployed at the bedside for real-time 

monitoring of a patient, an important goal in the clinical care of DoC patients (Chennu et al., 2016b). 

Moreover, this pipeline aims to deal efficiently with the relatively high level of artefacts inevitable in 

the patient EEG recordings, so we aimed for a limited computational cost and no manual intervention, 

with conservative thresholds for data quality control.  In this sense, another contribution of this work 

is methodologically motivated. 

5.2. METHODS 

5.2.1. SUBJECTS AND DATA COLLECTION 

Of 17 patients included in the study, two overnight EEG recordings obtained at the bedside were 

available for 11 non-sedated patients (5 female; mean age 37.8, S.D. = 15.5) in acute coma after 

traumatic brain injury. Table 5.1 shows a description of individual patient information (Numbering 

discontinuities are due to other patients initially recruited in the study, but where a second recording 

session was not possible due to clinical reasons.). The first recording session took place for all patients 

after a mean of 8.5 days (S.D. = 1.8) following the injury and a second recording was obtained after a 

mean of 15.6 days (S.D. = 2.3) following the injury. At the time of both recordings, the patients had 

not been sedated for at least 48 hours. CRS-R scores, as measured by a clinician, were stored for each 

recording session, as well as the outcome at two months after injury. The CRS-R has been validated as 

a reliable measure across tests performed in post-comatose patients (Bodien et al., 2016; Schnakers 

et al., 2008). 

Where possible, we aimed to obtain continuous recordings during the whole night starting around 

18:00 hours. The mean length of the raw recordings was 10.9 hours (SD 4.4 h; see also Figure 5.3). 

Recording length varied across patients for clinical reasons, but no recording was shorter than 1 hour. 
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The EEG data was acquired continuously using EGI’s Geodesic EEG Net Amps 300 system (Electrical 

Geodesic Inc., Oregon, USA) with a gel-based sensor net of 128 electrodes, referenced to the vertex, 

at a sampling rate of 250 or 500 Hz.  

The recordings were performed at the Addenbrooke’s Hospital in Cambridge, UK. Ethical approval was 

provided by the National Research Ethics Service (National Health Service, UK; REC number: 974/290). 

All patients were recruited and managed according to Addenbrooke’s Neurosciences Critical Care Unit 

cerebral perfusion management algorithm (Menon, 1999) and informed consent was acquired from 

the families of all patients and their medical teams before recording.  

Patient 

number 
Age Gender 

Final 

CRS-R 
Lesion site 

2 55 M 20 Right frontoparietal hematoma + intraventricular haemorrhage 

3 37 F 5 Diffuse white matter intensities 

5 19 F 17 
Left temporofrontal extradural hematoma + left hemispheric 

subdural hematoma 

6 31 F 7 Bilateral frontoparietal SDH + Diffuse white matter intensities 

7 53 F 6 
Right frontoparietal subdural hematoma + Left temporal 

extradural hematoma 

10 21 F 7 Bilateral frontoparietal subdural hematoma 

11 24 M 11 
Bilateral frontoparietal hematoma + intraventricular 

haemorrhage 

13 54 M 5 Diffuse white matter intensities 

15 29 M 9 
Left temporofrontal extradural hematoma + left hemispheric 

subdural hematoma 

16 42 M 16 Diffuse white matter intensities 

17 28 M 6 
Right convexity subdural hematoma + bilateral haemorrhagic 

cortical contusions 

Table 5.1. Age, gender, outcome and lesion details of individual comatose patients. 

 

5.2.2. DATA PRE-PROCESSING 

In addition to an investigational analysis of the dataset, a central aim of this research was to develop 

an analysis pipeline that could eventually be deployed to tracking the state of the patient in real-time. 

Pre-processing scripts were facilitated by the EEGLAB toolbox (Delorme and Makeig, 2004) for 

MATLAB. First, EEG channels located on the neck, cheeks and forehead were discarded in order to 

minimize muscular artefacts, leaving 92 channels for further processing. All data was resampled at 
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250 Hz if recorded with higher sampling, and filtered between 0.5 and 25 Hz using a finite impulse 

response filter with a Hamming window (Blackman and Tukey, 1958). The data was then divided 

sequentially into 10-second epochs and channel means were subtracted from each epoch for baseline 

correction. For data cleaning, the standard deviation of every channel at every epoch was computed. 

A channel was considered too noisy if its standard deviation exceeded 250 microvolts, a threshold 

established by visual inspection with the aim to remove artefacts while keeping as much data as 

possible. With the same reasoning, an epoch was rejected if more than 10% (9) of the channels were 

too noisy; otherwise, noisy channels were interpolated. Finally, the data was re-referenced to the 

common average of all electrodes at each time point, resulting in 91 channels in each dataset. With a 

large enough number of electrodes (in practice, more than 64), the common average reference closely 

approximates the underlying signal (Nunez and Srinivasan, 2006). 

Figure 5.1 illustrates the processing pipeline for one subject, as described in the following sections. 

5.2.1. POWER SPECTRA 

Power spectra were computed for each epoch, at frequencies between 1 and 13 Hz in steps of 0.1 Hz, 

using Hann windows (Blackman and Tukey, 1958). Computations were performed using the Fieldtrip 

toolbox (Oostenveld et al., 2011). Power spectra analyses are reported at channel Pz (E62), which has 

been previously used in other EEG studies on comatose patients (e.g. Kane et al., 1996) and is a 

suitable location for detecting frequency rhythms originating in several regions across the scalp, 

including occipital alpha. It was checked that the results remained qualitatively the same for an 

average over all electrodes, as well as for predefined regions of interest when analysing occipital 

channels for alpha power, central channels for theta power, and frontal channels for delta power, as 

used in similar studies (Chennu et al., 2014). For every epoch, the total power at channels of interest 

in the delta (1-4 Hz), theta (4-8 Hz) and alpha (8-13 Hz) frequency bands was summed and their relative 

contribution to the total power between 1 and 13 Hz was stored. Previous literature has shown these 

to be the most informative frequencies in disorders of consciousness, as the EEG is slowed down 

before full recovery (Chennu et al., 2014; Schiff et al., 2014; Sitt et al., 2014).  To summarise the results, 

the overall median and standard deviation of the relative contributions of the three bands over time 

was used in subsequent analyses, as described below. 
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Figure 5.1. Illustration of the analysis pipeline. 

 

5.2.2. CONNECTIVITY NETWORKS 

To build connectivity networks, we employed the weighted phase lag index (WPLI) (Vinck et al., 2011), 

a measure based on the observation that long-distance synchronization of oscillatory activity in the 

human brain, in particular its phase coupling, is fundamental to information processing (Sauseng and 

Klimesch, 2008). However, a number of connectivity measures are prone to overestimating 

connectivity due to volume conduction, which results in spurious correlations between signals 
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affected by the same source (Nunez and Srinivasan, 2006). The WPLI is based on the phase lag index 

(PLI) (Stam et al., 2007), which is designed to ameliorate the problem of volume conduction by 

ignoring zero phase differences, as these are likely caused by volume conduction. The PLI is computed 

as an average over the signs of nonzero phase differences between two signals. The weighted phase 

lag index (WPLI), has been introduced as an improvement to the PLI (Vinck et al., 2011). In the 

calculation of the WPLI, the signs of the phase differences are weighted by their absolute magnitude, 

such that they are ignored at 0 and 180o and maximally weighted at 90 and 270o. It has been verified 

that the WPLI, though conservative in its estimation, avoids misidentifying volume conduction as true 

connectivity (Cohen, 2014) and, furthermore, that it is a robust measure for network analyses when 

applied at different recording times in the same subject (Bassett et al., 2011). 

The calculations were performed using a debiased estimator of the squared WPLI that corrects for 

bias in small sample sizes, as implemented by the Fieldtrip toolbox. Debiased WPLI was estimated at 

frequencies between 1 and 13 Hz in steps of 0.1 Hz, for each pair of channels. We employed a sliding-

window analysis, where WPLI connectivity matrices of size 91 x 91 were computed on windows of 60 

10-second epochs, with an overlap of 10 epochs between windows. As in the previous cleaning step, 

a conservative threshold of 10% (6) epochs was set for all subjects. The WPLI was only computed over 

the non-rejected epochs of a window if the number of rejected epochs was less than or equal to the 

threshold. Finally, to select the highest observed connectivity value in each time 10-minute window, 

the maximum WPLI value was selected at each pair of channels within each of the three predefined 

frequency bands: alpha (8-13 Hz), theta (4-8 Hz) and delta (1-4 Hz). 

5.2.3. CONNECTIVITY TIMECOURSES 

The above calculation generated a timecourse of connectivity matrices over each of the two recording 

sessions for each patient. As a first-order approach to assess the overall strength and variability of 

overnight connectivity in individual recordings, four measures were computed for each recording, at 

each frequency band of interest. Median connectivity over all channel pairs was computed at each 10-

minute window. Then, to summarise the overnight timecourses, the overall median and the standard 

deviation of these medians was computed. Further, to assess variability in connectivity levels, the 

standard deviation over WPLI values was computed in each window, and the overall median of these 

standard deviation values was stored. Finally, to assess the variability within individual connections, 

the standard deviation of every channel pair was computed over all windows and the median of these 

standard deviations was recorded. Similar timecourses were also obtained for the graph-theoretical 

measures, as described below. 
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5.2.4. GRAPH THEORETICAL MEASURES 

A matrix of WPLI values obtained as described above can be seen as the adjacency matrix of a 

weighted undirected graph spanning over the scalp, composed of electrodes located in sensor space 

as nodes and connectivity values as weighted edges. As a higher-order approach to assess network 

characteristics, graph-theoretical measures were computed on WPLI matrices at each frequency band 

for a range of thresholds keeping between 10 and 50% (step size 2.5%) of the strongest connections. 

For each measure described below, its median across all thresholds was used in further calculations. 

This approach has commonly been used in other brain connectivity studies at various scales (Achard 

and Bullmore, 2007; Chennu et al., 2014; Lynall et al., 2010), as it provides a balance between a too 

high connection density, which would result in random network characteristics by including weak 

(possibly spurious) connections, and a too low density, which might lead to a disconnected network. 

Above the threshold, graph weights were unchanged, in order to better preserve the original 

architecture of the network, avoiding potential false shortcuts that could be created in the graphs by 

binarising them (Monti et al., 2013; Rubinov et al., 2009).  

Computations were performed using the Brain Connectivity Toolbox by Rubinov and Sporns  (2010) 

(also see this reference for more computational details on each measure). The measures are chosen 

to reflect segregation, integration and centrality properties of the networks. 

To assess the degree of segregation into functional modules in each network, the clustering coefficient 

of each node and the network modularity were calculated at each time window. The clustering 

coefficient (Watts and Strogatz, 1998), measures the number of triangles formed around a node 

through connections between its neighbours, thus describing local connectivity. In its adaptation for 

weighted graphs, the geometric mean of each triangle is used to compute an average clustering 

coefficient (Onnela et al., 2005). The median clustering coefficient and its standard deviation over all 

nodes was computed for each time window.  

Modularity (Newman and Girvan, 2004) was also computed as a mesoscale property showing how 

well the network can be partitioned into non-overlapping communities (modules). The Louvain 

heuristic (Blondel et al., 2008) uses a greedy optimization technique to minimize the modularity of the 

network by gradually selecting nodes to include into modules. Modularity has been shown to be 

significantly elevated in the human connectivity map compared to surrogates with realistic topological 

constraints (Samu et al., 2014). 

Macroscale integration across the network was assessed using the characteristic path length (Watts 

and Strogatz, 1998), which is the average shortest distance between all pairs of nodes in the network. 
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The distance between two nodes is given by the minimum sum of weights describing a sequence of 

connected nodes starting and ending at the two given nodes. As higher values in the WPLI matrix 

represent shorter distances, the inverse of the weighted connectivity matrix was used for to compute 

the path length. 

Centrality (Freeman, 1978) of the nodes in the networks was measured using the betweenness and 

the participation coefficient of all nodes at each time step, thus quantifying the evolution of nodes 

acting as hubs that facilitate information exchange across modules in the network. The betweenness 

of a node (Brandes, 2001) represents the proportion of shortest paths in the network which contain 

it, whereas the participation coefficient (Guimerà and Amaral, 2005) measures the diversity of 

connections from a node to different modules. The median and standard deviation of these measures 

were computed across all nodes at each time window. 

As graph measures are unaware of the spatial embedding of the network, the modular span (Chennu 

et al., 2014) was also computed for the purpose of measuring the median topographical distance 

spanned by a module relative to its number of nodes. Modular span was introduced as a successful 

method of discriminating EEG network topographies of DoC patients compared to healthy adults. 

Graph analyses were concluded by computing the small-worldness of the network, calculated as the 

ratio between the median clustering coefficient over all nodes in a network and the characteristic path 

length of the network. The original measure of small-worldness of a network (Humphries and Gurney, 

2008) is computed by normalizing the above ratio by the same ratio computed in a matching random 

network (a network with the same number of nodes and edges, but randomly distributed). As, in this 

study, we compared the evolution of network properties from the first to the second session by taking 

a ratio (as described below), the denominator produced by the random network would cancel out in 

the final computation, so the small-worldness measure did not require normalisation. 

5.2.5. OUTCOME CORRELATIONS  

To correlate these measures with the patient outcomes, every measure was first summarised as a 

single value representing a median or a standard deviation during one recording session. The median 

was used instead of the mean in order to minimize the effect of outliers, in particular for sessions with 

a smaller number of time windows. Therefore, for each patient, two values were available for each 

measure, corresponding to two recording sessions in the acute stage of the injury, taken around a 

week apart. These two values were used to compute the proportional change of a measure from the 

first to the second recording session, as an indicator of early progress. The proportion change was 

used as a predictor for the outcome at two months, as assessed by the CRS-R score.  This approach 
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effectively tested whether changes in EEG parameters over two recording sessions a week apart 

shortly after injury could predict longer term outcome. 

Assuming a linear relationship between the proportion change in a measure and the patient outcome, 

the p-value and R2 coefficient of determination were calculated for the linear regression fit of the 

proportion change for each measure as predictors of the CRS-R score at two months of each patient. 

Due to the small sample size, no outliers were removed before performing the correlations. The 

statistics were corrected for multiple comparisons using the Bonferroni-Holm method (Holm, 1979) 

at an alpha level of 0.05, to correct for all tests performed. For added robustness, the results were 

also checked using Spearman’s rank correlation. 

5.3. RESULTS 

5.3.1. OVERVIEW 

The behavioural analysis showed that there was no correlation between the change in the CRS-R score 

from the first to the second session and the CRS-R outcome after two months, as shown in Figure 5.2. 

At the time of the EEG recordings, which were obtained one to three weeks after injury, all CRS-R 

scores were below 5, while the scores at two months were distributed from 5 to 20. 

The EEG data displayed a high level of noise in many of the subjects. Figure 5.3 depicts the amount of 

EEG data available for each patient, detailing the number of channels interpolated for each subject 

and the amount of data rejected.  

 

Figure 5.2. CRS-R scores of the comatose patients at the three time points measured post-injury. 
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Figure 5.3. Data availability for individual subjects and nights. Dark grey denotes data rejected due to more 
than 10% of the channels being classified as noisy. The data cleaning procedure is described in section 5.2.2. 

 

An overview of the correlation between individual measures and behavioural outcome is given in 

Table 5.2 for all measures that were tested. The measures that performed best are highlighted. In this 

patient cohort, it was found that the change in variability in characteristic path length in delta 

networks in the acute phase of the injury was a significant predictor of eventual behavioural outcome, 

which remained significant after correction for multiple comparisons (p = 0.004).  However, the 

sample size was too small to allow sufficient statistical power for generalisable results, so these 

findings should be interpreted with caution. In the next sections, an exploratory account of individual 

measures that performed best is presented.  

Notably, in this cohort, the patient with the best outcome (CRS-R = 20) was often found to be an outlier 

among the group of comatose patients. This patient (referred to below as patient P2) displayed unique 

brain network changes from one to two weeks after injury, despite no behavioural signs of 

improvement. As this patient was the most interesting in this cohort, P2 is depicted below as a case 

study for measure dynamics indicating an evolution towards recovery. To demonstrate the dynamics 

of connectivity networks in this patient, a video comparing the modular decompositions of theta 

networks during the first and second recording session is available online at 

https://vimeo.com/124935436. 
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Measure 
Linear model  

p-value 
Linear model 

R2 
Spearman’s 

p-value 
Spearman’s 

Rho 
SD Characteristic path length - delta 0.00006 0.84594 0.00568 0.7689 

Median betweenness - alpha 0.02072 0.4655 0.04687 0.60871 

SD betweenness - delta 0.03556 0.40404 0.02889 0.65448 

SD betweenness - alpha 0.04357 0.37952 0.0233 -0.67278 

SD Median clustering - delta 0.07273 0.31443 0.00129 0.83755 

Median participation - delta 0.0844 0.29473 0.09973 0.52175 

Modular span - theta 0.09444 0.27962 0.12627 0.48971 

Modularity - delta 0.09504 0.27877 0.2194 -0.40276 

SD Small-world-ness - delta 0.10411 0.26638 0.01039 0.73228 

SD Modular span - theta 0.10416 0.26631 0.1346 0.48056 

Small-world-ness - theta 0.10491 0.26533 0.14773 0.46683 

Median participation - alpha 0.10953 0.25943 0.38987 -0.28834 

SD clustering - theta 0.12255 0.24396 0.1346 0.48056 

Characteristic path length - theta 0.12365 0.24272 0.11061 -0.50802 

SD participation - theta 0.13428 0.23127 0.22518 0.39818 

Modularity - theta 0.14022 0.22523 0.24305 -0.38445 

Median clustering - theta 0.14239 0.22309 0.1346 0.48056 

SD Modular span - alpha 0.14317 0.22232 0.24305 0.38445 

Modular span - alpha 0.18507 0.18623 0.44681 0.2563 

SD participation - alpha 0.19279 0.18046 0.32954 0.32495 

Median betweenness - delta 0.22251 0.16023 0.16646 -0.44852 

SD Median betweenness - alpha 0.25372 0.14177 0.5163 0.21968 

SD Modular span - delta 0.29102 0.12266 0.43845 0.26088 

Median betweenness - theta 0.38807 0.08374 0.35155 -0.31122 

Characteristic path length - alpha 0.40294 0.07884 0.35905 -0.30664 

SD Modularity - delta 0.44581 0.06597 0.91489 0.03661 

SD Median participation - alpha 0.44965 0.0649 0.68726 0.1373 

Median participation - theta 0.45151 0.06439 0.07138 -0.56294 

Small-world-ness - alpha 0.56658 0.03783 0.6283 0.16476 

SD Median clustering - alpha 0.56977 0.03723 0.65756 -0.15103 

Modularity - alpha 0.58514 0.03439 0.97869 -0.00915 

SD Median betweenness - theta 0.58939 0.03363 0.86205 0.0595 

SD betweenness - theta 0.60116 0.03158 0.481 0.23799 

SD Characteristic path length - theta 0.62904 0.02703 0.66742 -0.14646 

SD Median participation - theta 0.63394 0.02628 0.9255 0.03204 

Median clustering - alpha 0.63625 0.02592 0.79932 0.08696 

SD clustering - alpha 0.64805 0.02417 0.84104 0.06865 

SD Small-world-ness - theta 0.67131 0.02092 0.70729 0.12815 

SD clustering - delta 0.68392 0.01928 0.90429 -0.04119 

SD Small-world-ness - alpha 0.68858 0.01869 0.53436 -0.21053 

SD Median betweenness - delta 0.69426 0.01798 0.64776 -0.15561 

Characteristic path length - delta 0.74784 0.01206 0.88313 -0.05034 

SD Characteristic path length - alpha 0.76306 0.01062 0.35905 -0.30664 

Median clustering - delta 0.76469 0.01047 0.94675 -0.02288 

Small-world-ness - delta 0.76846 0.01013 0.93612 -0.02746 

SD Modularity - theta 0.79004 0.00829 0.28781 0.35241 

SD Modularity - alpha 0.83026 0.00538 0.91489 -0.03661 

Modular span - delta 0.89293 0.00213 0.53436 -0.21053 

SD Median participation - delta 0.89742 0.00195 0.80971 -0.08238 

SD participation - delta 0.96036 0.00029 0.481 -0.23799 

SD Median clustering - theta 0.9894 0.00002 0.85153 -0.06407 

Table 5.2. Linear regression and Spearman correlation p-values and coefficients (uncorrected). Rows are 
ordered by p-value in the linear model. ‘SD’ refers to the standard deviation of a measure. Measures where a p-
value is below 0.05 are highlighted. 
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5.3.2. ALPHA NETWORKS 

Alpha networks are fundamental in healthy brain functioning (Chennu et al., 2014; Klimesch, 2012). 

We found a uniquely strong increase in alpha band power from the first to the second night in P2, the 

only patient who progressed to a full recovery after two months (Figure 5.4). Graph theory analysis 

also revealed an interesting evolution of nodes acting as central connectivity hubs in P2’s alpha 

network: the standard deviation of betweenness at each time window is much higher during the first 

session, indicating a high functional diversity of individual nodes; it evolves to a higher median and a 

smaller standard deviation in the second night, indicating that more nodes have the same degree of 

participation in shortest paths in the graph (Figure 5.5). Here the decision to use the median as a 

summary measure is crucial, as the nodes with higher variability would disproportionately influence 

the mean during the first session. Overall, P2 is an outstanding subject considering the dynamics of 

his alpha networks before any behavioural sign of improvement was shown, suggesting that early 

alpha network reconstruction is highly beneficial for recovery.  

 

 

Figure 5.4. Alpha power changes. (Left) Proportion change in alpha contribution to total power at channel Pz 
(E62) from the first to the second session in all patients. The dashed line represents the linear fit. (Right) Power 
spectra over the whole recording sessions (top: first session; bottom: second session) for P2, averaged across 
all channels. Black vertical lines are due to rejected data epochs.   
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Figure 5.5. Node betweenness of alpha networks. (Top row) Proportion change from first to second session in 
median node betweenness (left) and the variability of median node betweenness (right) across time in alpha 
networks in all patients. Dashed lines represent linear fits. (Bottom row) Overnight dynamics of node 
betweenness in alpha networks during the two sessions in two selected patients. All nodes are shown. P2 shows 
an interesting evolution: although the extreme betweenness values from the first session are attenuated, the 
median during the second session is in fact higher and there is less variability in the second session (right). On 
the other hand, more variability is observed in a patient with a poor outcome (left). Discontinuities are due to 
rejected data epochs. 

 

5.3.3. THETA NETWORKS 

In patients with poor outcome, there was a decrease from the first to the second recording in median 

connection strength in the theta band. This was also the case for the median standard deviation of 

individual connections (Figure 5.6). In patient P2, frontoparietal theta connections had the highest 

variability. Furthermore, graph theory measures in theta band show that, in this patient, functional 

modules of synchronised activity comprise longer range neural modules in the second session 

compared to the first (Figure 5.7). Overall, this is also reflected in the median standard deviation of 

clustering in theta networks, with a poor outcome observed in patients with lower standard deviation.  
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Figure 5.6. Theta connectivity variability. (Top left) Proportion change in momentary WPLI variability of theta 
networks from first to second session, computed as the median over the standard deviation of the WPLI 
matrices across time. The dashed line represents a linear fit. (Top right) Illustrations of connectivity variability 
during the first and second session in two patients, showing the evolution to more variability in P2 (top) and 
less variability in a patient with poor outcome (bottom). The images represent 91x91 connectivity matrices. 
(Bottom left) Proportion change in individual connection variability across time from first to second session, 
computed as the median over the standard deviation of individual connections across time. The dashed line 
represents a linear fit. (Bottom right) Topographic plots of the strongest 10% values in the matrix of connection 
variability at each channel pair across time in two patients; the networks in P2 (top) evolve to display most 
variability in frontoparietal connections during the second session, unlike those of a patient with poor outcome. 
Node sizes depict its relative number of connections compared to the other nodes in the same network.  
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Figure 5.7. Theta network modules. Proportion change in theta network median modular span (top left) and 
median variability of clustering coefficients (top right) over time from first to second session, in all patients. 
Dashed lines represent linear fits in both panels. The bottom row shows topographical illustrations at a time 
point where modular span was equal to the median across time. The networks are thresholded at 15%. Different 
colours show different modules as given by the Louvain algorithm. Only intra-modular connections are plotted. 
P2 (right) evolves clearly defined modules with long range connections in the second session, while the patient 
with a poor outcome does not. Node sizes depict the relative number of connections of the node compared to 
the other nodes in the same network.  

 

5.3.4. DELTA NETWORKS 

The characteristic path length is a proxy for macroscale integration of information across long-range 

regions in brain networks. Using this measure, we found that increased variability in delta network 

integration from the first to the second recording after injury was a very good predictor for the 

outcome of coma across this group of patients, also after correction for multiple comparisons (p = 

0.004). Node clustering was observed, in particular in patient P2, to vary with the characteristic path 

length, with a higher path length observed simultaneously with lower clustering (Figure 5.8). Increased 

variability in node clustering was associated with a better outcome. To some extent, this was also 

reflected in the standard deviation of small-worldness, where a change towards less variability 

predicts a poor outcome.  
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Figure 5.8. Delta network characteristic path length variability. (Top left) Proportion change in characteristic 
path length variability across time in delta networks from first to second session, in all patients. The dashed line 
represents a linear fit. (Top right and bottom left) Illustrations of timecourses of the characteristic path length 
in both sessions for P2 and a patient with poor outcome. P2 shows a regular pattern of variation in the second 
session, whereas the patient with poor outcome does not. Discontinuities in the plots are due to rejected data 
epochs. (Bottom left) Variability in delta band node clustering in P2. This mirrors the variability in path length, 
with lower clustering when the path length is higher. 

5.4. DISCUSSION 

We proposed a set of computational methods for monitoring and assisting in the diagnosis of 

comatose patients in the intensive care unit. These methods are inspired by predictions of recent 

theories of consciousness that a balance between information integration and differentiation in brain 

networks is essential in maintaining consciousness (Oizumi et al., 2014; Tononi, 2008; Tononi and 

Edelman, 1998). To achieve this, the WPLI, a measure of connectivity based on the phase lag between 

two signals (Vinck et al., 2011), was employed to build connectivity networks. This allowed the 

assessment of the general level of connectivity and its variability in each recording. As a second-order 

approach, we then used graph theory on the connectivity networks to calculate local and global 

information processing characteristics, as a proxy for the concepts of differentiation and integration 

of information.  
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The crucial observation motivating this study is that covert patterns of reorganised neural activity can 

reveal a transition towards a higher state of consciousness long before behavioural scores are able to 

do so. This has been previously observed in chronic disorders of consciousness, where neuroimaging 

techniques have been successfully applied to find signs of potential covert consciousness in patients 

displaying no behavioural signs of awareness (Cruse et al., 2011; Fernández-Espejo and Owen, 2013). 

To assess early neural network changes in comatose patients, we performed two separate overnight 

recordings in the acute phase, around one and two weeks after the injury, when no behavioural signs 

of recovery were present in any of the subjects. The change in brain network properties was quantified 

from the first to the second recording to measure the early progress in the restoration of healthy brain 

networks. The proportional changes in individual network properties were used as predictors for the 

eventual outcome of the patients, as assessed behaviourally after two months using the CRS-R score.  

We studied the properties of brain networks within three canonical bands: alpha (8-13 Hz), theta (4-8 

Hz) and delta (1-4 Hz). The same partitioning has been successfully used in other studies of brain 

networks in disorders of consciousness (Chennu et al., 2017, 2014). We acknowledge that brain 

rhythms are severely disrupted in comatose patients with traumatic brain injury; as means to correct 

for this, the analysis pipeline extracted the maximal connectivity points within the above frequency 

bands across time windows. Further, to avoid the influence of weak, potentially spurious connections 

between nodes, the analyses were performed repeatedly over a set of thresholded networks, thus 

ignoring weak connections. The results across different thresholds were averaged. This approach has 

been used in other studies (Achard and Bullmore, 2007; Chennu et al., 2014; Lynall et al., 2010). After 

applying each threshold, graph properties were computed by preserving the weight information in 

the remaining edges (as opposed to binarizing them), as also advised in previous literature (Monti et 

al., 2013; Rubinov et al., 2009). 

In DoC, key processes that discriminate between vegetative and minimally conscious patients are 

often found in theta and alpha network activity (Chennu et al., 2017, 2014; Lehembre et al., 2012a; 

Sitt et al., 2014). Alpha is the dominant rhythm recorded in the human EEG in healthy adults (Klimesch, 

2012), therefore an early re-emergence of integrated alpha networks could be a key aspect of a good 

eventual outcome. Restored alpha network metrics have been recently correlated with good 

behavioural scores in a large group of DoC patients (Chennu et al., 2017). Indeed, in our study group, 

patient P2 – the only patient who made a full eventual recovery, despite showing no behavioural signs 

of improvement at the time of the EEG recordings – showed a unique increase in alpha power from 

the first to the second recording. This patient also showed an evolution towards a healthy 

topographical structure in theta and alpha networks akin to those shown by minimally conscious 

patients at alpha frequencies, with long-range, inter-hemispheric functional modules (Chennu et al., 



CHAPTER 5: COMA 

106 
 

2014). Highly restored frontoparietal connectivity was observed in the second recording. 

Frontoparietal connectivity is known to support a wide range of cognitive abilities that are 

fundamental to awareness (Bor and Seth, 2012; Laureys and Schiff, 2012; Naghavi and Nyberg, 2005) 

and is disrupted in impaired states of consciousness (Baars, 2005; De Gennaro et al., 2004; U. Lee et 

al., 2013). This shows, in agreement with previous studies (Achard et al., 2012; Chennu et al., 2017), 

that general information integration is not sufficient to produce a good outcome, but the spatial 

architecture of the recovering functional networks is a key aspect required for the re-emergence of 

consciousness. 

Lower-frequency network properties have also been shown to provide useful markers for diagnostics 

in impaired consciousness. Stable and increased delta power has been linked to a poor outcome and 

lack of awareness (Lehembre et al., 2012a; Sitt et al., 2014). On the other hand, an association 

between variability in delta power and good outcome after coma has also been reported in individual 

patient cases (Karnaze et al., 1982). A recent study has shown that delta network centrality is a good 

predictor of outcome in chronic disorders of consciousness (Chennu et al., 2017). Adding to previous 

results concerning the importance of delta network properties, this chapter provides evidence that 

increased variability in delta network characteristic path length is a significant predictor of good 

eventual behavioural outcome. This metric suggests dynamic changes occurring in delta networks 

during the recovery process. In P2, this was observed as regular periods of stable and variable path 

length over the course of the night, which might resemble variations that would be expected during 

sleep (Gross and Gotman, 1999). Importantly, it was not the absolute value of the network metric that 

was better in P2 compared to other patients (indeed, some patients with poor outcome have a shorter 

characteristic path length), but the amount of change from the first to second recording, underlining 

that progress occurring in the acute stage of the injury is crucial for recovery. 

Finally, this finding also highlights that variability in network activity is an important predictor of good 

outcome. The variability of power spectra has been positively associated with better coma outcome 

(Chiappa and Hill, 1998). In our study, we also found that patients who showed less variability in theta 

connectivity had a poorer eventual score. Overall, this indicates that the ability of brain networks to 

change dynamically their regime of long-distance communication is crucial in restoring conscious 

processes. 

The EEG has been used for a long time to assess comatose patients at the bedside. For example, 

abnormal patterns in the raw EEG (Bagnato et al., 2010; Synek, 1988), evoked potentials (Chiappa and 

Hill, 1998; Kane et al., 1996) and spectral markers (Kaplan, 2004; Lehembre et al., 2012a, 2012b; 

Thatcher et al., 1991) have all been shown to be informative in coma prognosis. In comparison to 
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these approaches, the current study offers a set of EEG tools based on graph theory that are more 

advanced, but also more indirect. The pipeline involves three levels of approximation: first, the EEG 

itself is an indirect measure of brain activity, that is able to selectively capture the electric activity of 

neuronal populations where the neural signal is transmitted perpendicularly to the cortical surface; 

this orientation may be disrupted due to traumatic injury to the brain. Secondly, the WPLI is a reliable, 

but still approximate measure of brain connectivity, and a threshold (or a family of thresholds) has to 

be established to discard edges where it can be assumed there is no significant connection. Finally, 

graph-theoretical measures may only approximate the real architecture of the brain, at both local and 

long-range scale. By performing this analysis, one may uncover hidden network patterns that are not 

visible in the simpler EEG measures mentioned above, but there is also a risk of inaccuracy considering 

the levels of approximation involved in the computation. 

This study provides useful insight into the dynamics of brain networks in acute comatose patients in 

the early stage after brain injury. However, its limitations should be underlined. Although all patients 

were diagnosed with traumatic brain injury, the lesion of each individual patient was unique, leading 

to different structural networks. Within the scope of studying impaired consciousness in a wide range 

of conditions, we chose to not focus on the clinical details of individual patients, but rather explore 

whether patterns could be observed despite this heterogeneity. As an advantage of restricting the 

focus of the study, we created a generalised pipeline that could be rapidly applied at the bedside on 

any patient in the intensive care unit. This is, of course, complementary to an individual understanding 

of the structural injury of each patient, which would be crucial in such situations and should be done 

by clinically-trained personnel. In the context of impaired consciousness, this was an exploratory study 

that demonstrates how predictions based on theories of consciousness can be applied to EEG 

recordings in order to help with diagnosis and prognostication in clinical settings.  
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DISCUSSION 

This chapter concludes the thesis by recapitulating the main theoretical considerations, 

methodologies and experimental results presented in the previous chapters, and linking them 

together in a consistent perspective on the dynamic neural changes that characterise the transitions 

between states of consciousness. This thesis started by presenting a theoretical perspective on 

consciousness, followed by an exposition of computational methods suitable for its neuroscientific 

investigation. This was followed by an experimental investigation of three major transitions of 

consciousness: sleep, sedation and coma. The results of these investigations are examined in this 

chapter from the perspective of modern theories of consciousness, which posit that the integration 

of information across the neural system and the diversity of its neural states are reduced during 

unconsciousness. This is indeed demonstrated, within certain limitations, across all the three 

experimental chapters. Nevertheless, more mysteries await for a resolution in this exciting time for 

the neuroscience and the philosophy of consciousness. 

6.1. THEORETICAL OVERVIEW 

The thesis began by telling the story of why consciousness is one of the most fascinating topics known 

to humankind since ancient times. Questions about the subjective perception of the world have 

appeared pervasively in stories, metaphors, old religions and myths for millennia. The relationship 

between the mind and the body, famously brought into the spotlight by the writings of René 

Descartes, has been a long-standing line of enquiry in philosophy. It is only recently that consciousness 

has become a valid topic for scientific research, as psychology and neuroscience began to understand 

how brain activity supports cognitive processes that underlie conscious awareness. Conscious 

experience seems to be built on the foundation provided by the most important cognitive functions 

of the human brain, such as emotions, memory and attention, but it appears to be more than a sum 

of these functions. As an independent concept in cognitive research, consciousness deserves a proper 

definition – which it does not yet have across all disciplines. 

Section 1.3 highlighted several theoretical milestones that have helped with crystallising the notion of 

consciousness from the perspective of both philosophy and neuroscience. There are two 
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complementary aspects of consciousness that are apparent in such works. One is the first-person, 

subjective experience of being conscious, either as a state (being awake) or in the sense of being 

conscious of something. The latter, in particular, is closely linked with the concept of qualia: the 

ineffable properties of reality that we introspectively have conscious access to, such as the redness of 

an apple or the sweetness of chocolate. In simple terms, it is what causes Mary the neuroscientist, 

who learned everything about colour vision while living in a black-and-white room all of her life, to 

learn something new when she actually sees the colour red for the first time. The hard problem of 

consciousness asks why this experience exists in the first place as a companion to neuronal firing. 

While intuitively useful, there is a problem with defining consciousness in this manner: the first-

person, subjective conscious experience is not directly measurable and hence cannot, by itself, form 

the object of scientific investigation.  

The second approach is the third-person, objective method of studying consciousness. We can take a 

small leap of faith to believe that verbal reports and behavioural responses from other people are a 

good enough indicator of conscious experience, as opposed to being traits of so-called philosophical 

zombies. They are not perfect measures, as emphasised in section 1.5: it is possible to be conscious 

without the possibility to respond, and unconscious while producing valid responses. However, 

reports and responsiveness provide an acceptable objective proxy for the first-person subjective 

experience. In this way, we can focus on unravelling the architecture of our conscious space without 

worrying about why it exists, while also not ignoring its highly subjective dimension. A full 

consideration of such neurophenomenology is currently the real problem that awaits to be gradually 

resolved by neuroscience. 

The idea of neural correlates of consciousness is relatively recent (Chalmers, 2000; Crick and Koch, 

1990; Metzinger, 2000). The neural correlates of the contents of consciousness, which refer to the 

qualities of the world that we are aware of, have been studied and debated extensively (Boly et al., 

2017; Odegaard et al., 2017). There is, however, another aspect that deserves attention: the 

transitions between levels (or states) of consciousness. Here, we are not interested in what we are 

aware of at a given moment, but how awake and responsive to the external world we are. In other 

words, the aim is to investigate how consciousness is lost and regained. This not only a fundamental 

question for basic research, but also a critical question in clinical settings involving patients recovering 

from brain injury or monitoring anaesthesia during surgery. As we saw in section 1.4, unconsciousness 

can occur due to natural, pharmacological and pathological causes: sleep, sedation and anaesthesia, 

disorders of consciousness and coma. Each of these three consciousness transitions is devoted a full 

experimental chapter (3, 4 and 5) of the thesis.  
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The first chapter concluded with the introduction in section 1.6 of several theories of consciousness 

that can frame the computational investigations of these topics. In particular, the integrated 

information theory (IIT) is especially attractive, as it aims to bridge the gap between the subjective 

reality of conscious experience and objective reports by creating postulates about physical rules that 

must be implemented by neural systems, inspired by the phenomenological structure of the world. 

Despite the fact that its axioms and the derivation of its postulates can be challenged (Bayne, 2018), 

the advantage of IIT consists of its top-down approach anchored in phenomenology, which is in 

contrast with theories that merely aim to correlate electrophysiological signatures with subjective 

reports. Moreover, IIT and other modern theories of consciousness do not restrict their scope to 

finding neural correlates within individual brain areas, but instead examine high-level patterns of 

connectivity and functioning across the brain as a system.  

The results of this thesis are generally in agreement with the three theories of consciousness 

presented in the introduction: the global workspace theory, the dynamic core hypothesis and the 

integrated information theory. However, the scope of the evidence presented here towards all of 

these theories is limited to levels, as opposed to contents, of consciousness. This is important in 

particular for IIT, whose theoretical development is centred around phenomenal experience. 

Furthermore, the mentioned theories make predictions that qualitatively refer to the existence or 

non-existence of functional connections between brain areas, or to properties of local activity, such 

as complexity (the diversity of possible states); they do not make predictions regarding particular 

frequencies at which information would be generated or exchanged. For this reason, the evidence 

provided by spectral analyses should be interpreted with caution. This being said, we may assume that 

some frequencies, such as alpha, are fundamental in information processing across brain networks in 

healthy, responsive adults, as discussed further in the next section. 

According to the global workspace theory, a lower level of consciousness should be associated with a 

disconnection across the neural system, and thus less ability of information exchange across 

specialised submodules. This agrees with the sleep experiment results, where alpha networks break 

down when the participants are unresponsive. It also agrees with the sedation experiment results, 

where there is less mutual information sharing at moderate sedation at temporal separation 

parameters corresponding to frequency bands up to alpha. Finally, the coma experiment results can 

be interpreted as supportive of this idea, as the variability of the path length can suggest a recovery 

in the dynamics of global information exchange, while the restored long-range alpha and theta 

connectivity of the patient with the best outcome supports the same prediction; however, not all 

measures of information exchange across brain network modules were found to be predictive of 
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eventual outcome, and caution should be used in this interpretation due to the high heterogeneity of 

coma cases present in this group. 

From the perspective of IIT and the dynamic core hypothesis, neural complexity and information 

integration should be decreased in lower levels of consciousness. If we assume alpha networks to be 

fundamental for cognition, the breakdown of alpha connectivity during unresponsiveness is 

supportive of this prediction, along with the decrease in mutual information index during sedation. In 

coma, the same interpretation regarding the variability of delta band path length and alpha long-range 

connectivity that supports the global workspace theory is in agreement with mutual information 

exchange. Furthermore, it is shown that propofol sedation is indeed associated with lower Lempel-Ziv 

complexity of the EEG, as predicted by the two theories. However, a small variation in the 

computation, which affects whether the complexity reflects more prominently the temporal or the 

spatial patterns of neural activity, led to a different result in the group that was still responsive under 

moderate sedation: temporal complexity is higher, whereas spatial complexity is lower. The Lempel-

Ziv complexity of the EEG is an estimative measure, so this difference between the two variants of the 

measure does not directly speak for or against any direct prediction of either IIT or the dynamic core 

hypothesis. Conversely, a possible interpretation that was discussed here is that spatial complexity 

tracks the level of drug, whereas the temporal complexity tracks the level of consciousness. These 

results invite further investigation into complexity measures and their relation to levels of 

consciousness.  

To sum up overall, the results of this thesis are generally in agreement with the three theories 

discussed, but only within the limitations emphasised above. 

6.2. FROM PHENOMENOLOGY TO COMPUTATIONAL TOOLS 

When searching for neural signatures that underlie distinct conscious states, there are two key 

properties predicted by modern theories to be essential in sustaining consciousness: information 

integration and differentiation. Phenomenologically, integration refers to the unity of conscious 

experience: neither can it be decomposed into parts, nor can we have two separate conscious 

experiences at the same time. Differentiation is related to entropy and refers to the highly informative 

character of every single experience: our neural architecture is capable of representing an 

unimaginably vast number of other conscious experiences comprising a combination of different 

colours, sounds, objects, people, spatial environment, emotional state and so on – all at the same 

time.  
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Computationally, measures like φ, which was proposed by IIT to compute the causality generated by 

a system and which would directly address the degree of integration and differentiation at neuronal 

level, are currently computationally intractable to estimate for the human brain. This is because it is 

currently unknown how to describe the brain as a system in the form required for computing this 

measure. Instead, computational tools that quantify these properties using surrogate approaches 

have been proposed (Tegmark, 2016). In practice, to compute such measures of consciousness, 

several established methodologies of analysing brain activity are often used.  

Chapter 2 investigated three such methodologies and their significance in consciousness research 

along with other traditional methods of EEG assessment: spectral measures (power and phase-lag 

connectivity), information-theoretical measures (signal complexity and mutual information sharing) 

and fast-paced global activity dynamics (EEG microstates). The EEG was chosen for the experimental 

investigations of this thesis due to several of its advantages over other neural recording methods. It is 

fast and easy to use in any setting, including a clinical environment, rendering it suitable for monitoring 

anaesthesia during surgery or diagnosing patients with brain injury in intensive care. It also provides 

very high temporal resolution. All experiments in this study employ at least 62 electrode channels, 

which also offers a good resolution in sensor space. For this thesis, it was decided to keep all analyses 

in sensor space, to limit the assumptions and parameters entailed by the analytical approach. 

Furthermore, we were less focused on anatomical localisation than on characterising the functionally 

relevant dynamics observable in the EEG. Moreover, in the clinical cohort of comatose patients with 

traumatic brain injury analysed in Chapter 5, an analysis pipeline for convenient use at the bedside of 

any patient would not have been generalisable in source space, given the unique aetiology of every 

injury.   

As described in section 2.2.1, one of the oldest methods of analysing the EEG is investigating its 

spectral power. This methodology has been developed and validated in a data-driven manner over 

many decades. Several rhythms have been ubiquitously found in the human EEG in association with 

distinct states of consciousness, such as the alpha rhythm observable during relaxed wakefulness. 

During unconsciousness, alpha waves disappear, and lower-frequency power emerges. The frequency 

bands observed to covary with the state of consciousness (alpha, theta and delta) have served as 

canonical bands in all chapters of this thesis. The fixed choice of frequency bands has both advantages 

and disadvantages. In healthy adults, although a high variability in the peak frequency of individual 

rhythms has been reported (Klimesch, 1999), the frequency bands established here have been 

validated across almost a century of studies, and therefore we do not expect individual variability to 

be a particular issue in the sleep and sedation analyses. On the other hand, this is a more delicate 

topic in the group of acute comatose patients. These patients rarely show meaningful power at higher 
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frequencies, and canonical bands may restrict the observability of changes occurring within narrow 

bands at low frequencies (Lehembre et al., 2012a). However, by tracking the peak in power and 

connectivity in each band, it was ensured that the most prominent component within each band was 

tracked. Moreover, in Chapter 5, a patient whose alpha networks re-emerged while no behavioural 

improvement was yet visible, but who had an excellent eventual outcome, demonstrated that it is 

important to monitor canonical frequency bands. This also allowed the development of a general 

pipeline that could find utility in the clinical context if developed further. 

Spectral power measures activity within individual neural modules, but it is widely thought that such 

modules communicate across long-range distances in order to give rise to coherent behaviour, as 

opposed to individual phenomenological entities being coded by single specialised assemblies of cells 

(Singer and Gray, 1995). This is in line with the integrative property of conscious experience as posited 

by theories of consciousness like IIT. The hallmark of long-distance communication between neural 

assemblies is considered to be phase synchronisation (Fell and Axmacher, 2011; Sauseng and 

Klimesch, 2008; Varela et al., 2001). Section 2.2.2 justified why the WPLI represents a good measure 

for scalp-level spectral connectivity, for reasons including its relative robustness to volume 

conduction. The WPLI was then used in Chapters 3 and 5 of this thesis, as well as in a previous study 

on the same dataset employed in Chapter 4 (Chennu et al., 2016a). 

In the landscape of spectral measures, this thesis confirms that alpha power and networks are 

particularly important for sustaining a healthy and responsive state of consciousness. Historically, the 

alpha rhythm was the first prominent feature observed in the EEG (Berger, 1930). Its strongest sources 

appear to be in the occipital-parietal area, but alpha oscillations can be recorded from the whole scalp, 

including frontal areas (Nunez et al., 2001). Because the alpha rhythm is especially prominent during 

relaxation with closed eyes and is suppressed by eye opening, motor movements, challenging mental 

tasks, or unconsciousness, it has been suggested that it indicates an idle state of the wakeful brain 

(Pfurtscheller et al., 1996). More recent findings that visual task performance depends on the phase 

of the alpha rhythm at stimulus presentation suggest that alpha oscillations could represent periodic 

inhibitory waves (Busch et al., 2009; Mathewson et al., 2009). However, there is also evidence that 

alpha networks could play an important role in executive and attentional task-relevant processing 

(Palva and Palva, 2011). While the role of the alpha rhythm is still being uncovered, its importance as 

a marker of healthy wakefulness is established in existing literature and confirmed in this thesis.   

In addition to spectral tools, information-theoretical measures, presented in section 2.3, can be an 

appropriate tool of investigation, particularly within the framework of consciousness theories that 

make predictions about information integration and complexity. These measures follow the idea that 
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information in general (in the entropic sense proposed by Claude Shannon) underlies the conscious 

experience – not necessarily in spectral form. The two measures for information integration and for 

information diversity proposed in Chapter 4 of this thesis are the wSMI and the LZ complexity. The 

former is based on pattern-matching, while the latter is derived from a popular data compression 

algorithm used in computer science. How are these related to their corresponding spectral measures 

used in Chapters 3 and 5 – connectivity and power? The wSMI is known to capture synchronisation 

bounded by specific frequencies, depending on the parameters employed in its calculation (King et al., 

2013). At the same time, as described in Chapter 4, LZ complexity is not fully explained by power 

changes, a finding discussed in other studies employing the same measure (Schartner et al., 2017a, 

2017b, 2015). Overall, there seems to be a partial degree of overlap between spectral and 

information-theoretical measures, but more research is needed to establish an exact relationship. 

Finding new and better metrics for assessing information integration in complex systems constitutes 

an active area of research (Barrett and Seth, 2011; Oizumi et al., 2016; Tegmark, 2016).  

Finally, in section 2.5, one more methodological tool was added to the toolkit for exploring 

consciousness levels. Recent literature has underlined the importance of fast-paced millisecond-level 

dynamics of brain networks (Baker et al., 2014; Vidaurre et al., 2016). According to the theoretical 

framework, the diversity of states that the neural system can express changes with the level of 

consciousness; therefore, we can also expect alterations in the fast temporal dynamics of global brain 

activity. The EEG can be fragmented into a sequence of a consistent set of topographical maps that 

last for tens of milliseconds each. The sequence of microstates has been previously hypothesized to 

be linked to cognitive processing (Lehmann, 1990). As a data-driven method, the method of electric 

microstates was used in conjunction with spectral analysis in Chapter 3, to reveal the transitory 

dynamics of brain networks during the onset of sleep. 

6.3. LESSONS FROM SLEEP, SEDATION AND COMA 

Armed with a theoretical framework on neural integration and differentiation and a set of 

methodological tools to quantify these properties, the next chapters investigated three situations 

where a transition between states of consciousness and unconsciousness occurs: first, the loss of 

responsiveness in the most familiar of all transitions: sleep; secondly, pharmacologically-induced 

unconsciousness: sedation; and finally, the pathological loss of consciousness due to traumatic brain 

injury: coma. The novel findings regarding each of these transitions are summarised in this section. 

Chapter 3 investigated the neural dynamics of falling asleep in a group of healthy subjects performing 

an auditory discrimination task. First, it was found that alpha power and frontoparietal connectivity 
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were significantly higher while they were responsive, whereas theta power was higher when they 

became unresponsive. Next, it was found that microstate dynamics slow down after responsiveness 

is lost due to drowsiness, and a unique microstate (D) was identified whose increased duration 

predicted behavioural unresponsiveness on a trial-by-trial basis. By combining information about 

spectral brain connectivity and electric microstates, it was revealed that microstate D also uniquely 

captures a specific increase in frontoparietal theta connectivity, a putative marker of the loss of 

consciousness prior to sleep onset. This finding also highlights transient and distinct brain networks 

active during the onset of sleep.  

Using a similar paradigm with respect to the loss of responsiveness to auditory stimuli, Chapter 4 

examined a group of healthy subjects undergoing mild and moderate sedation with propofol. The LZ 

complexity was used to assess differentiation in the neural signal and the wSMI was used to assess 

information integration across brain networks. An intriguing dissociation was found between 

responsiveness and drug level in blood during sedation: responsiveness is best predicted by the 

temporal complexity of the signal at single channels and by information integration in theta and delta 

bands, whereas drug level is best predicted by the complexity of spatial electric activity patterns and 

information integration in alpha bands. Distinct signatures of drug level in blood and the level of 

responsiveness in sedation have been previously reported (Barttfeld et al., 2015; Chennu et al., 

2016a). In section 4.4.3, it was emphasised how the same dissociation between temporal and spatial 

complexity found in this thesis (namely, that spatial complexity decreases in monotonically, whereas 

temporal complexity increases in sedated subjects who still respond, before decreasing after they stop 

responding) is also evident in a recent study of LZ complexity in propofol anaesthesia (Schartner et al., 

2015). A similar evolution of the two types of LZ complexity was described in an entirely different 

alteration of consciousness involving psychedelic substances (Schartner et al., 2017a), which suggests 

that moderate doses of propofol could cause an altered state of consciousness while the subject is 

still responsive. Indeed, this agrees with behavioural reports of altered subjective experiences during 

propofol sedation (Balasubramaniam and Park, 2003; Brandner et al., 1997). 

Finally, Chapter 5 investigated brain connectivity in the overnight EEG recordings of a group of acute 

comatose patients, with the aim applying knowledge gained from the underpinning neuroscience 

research employed in the previous chapters to create a computational pipeline for assessing brain 

dynamics that could be feasibly deployed in the clinical context, at the bedside of the patient. This was 

motivated by an existing need for clinical tools that could assist with diagnostics and prognosis after 

brain injury, both in acute and chronic cases. Currently, prognostication in coma is difficult (Stevens 

and Sutter, 2013) and the level of consciousness in patients is prone to misdiagnosis (Schnakers et al., 

2009). Towards building methods to address this problem, graph theory was applied on alpha, theta 
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and delta networks obtained using the WPLI on two nights during the acute phase of recovery in a 

small group of patients in the intensive care unit. The proportional change in network properties from 

the first to the second night served as a measure of early dynamic reorganisation of brain networks in 

the healing process. This change was correlated with behavioural improvement measured after two 

months, representing the long-term outcome of the patient. Amongst other trends, it was found that 

increased variability in the characteristic path length of delta networks early after injury predicted the 

eventual coma recovery score. This suggested that variability in low-frequency network characteristics 

could be important in the early neural reorganisation after injury. A remarkable case study of an 

individual patient was also considered in depth, in whom the early re-emergence of frontoparietal 

alpha connectivity predicted a full recovery long before any behavioural improvement occurred. This 

confirmed that the neural networks supporting cognition and consciousness can re-emerge in 

disorders of consciousness even when the patient is not able to overtly express this, an important 

finding that has reshaped the public and clinical view of such disorders over the last decade since the 

discovery of covert cognition in the vegetative state (Owen et al., 2006). Due to the clinical nature of 

this dataset, the relatively modest sample size and the considerable heterogeneity of each patient’s 

individual injury, the study presented in this chapter had limitations that warranted careful 

interpretation of the results, as discussed in section 5.4. 

6.4. BEHAVIOURAL CONSIDERATIONS 

Chapters 3 and 4 investigated the transition to unconsciousness during drowsiness and sedation using 

similar behavioural measures: responsiveness to simple auditory tasks. In comparing these 

experiments, one concern could be that the difficulty of the two tasks was different. In the semantic 

classification task employed in the sleep study, participants were required to classify the stimulus 

word as an object or an animal. In contrast, in the perceptual task used in the sedation study, 

participants had to discriminate a buzz from a noise sound. Although the latter task can appear to be 

easier, it can be argued that it was not the difficulty of the task that stopped the participants from 

responding, but the transition into the state of unconsciousness itself. A previous study on the same 

sleep dataset employed in this thesis (Kouider et al., 2014) found that participants were still producing 

a lateralised readiness potential corresponding to the correct response even when they failed to 

produce a motor response. This indicates that cognitive processes performing a non-trivial task can 

still be active after the loss of responsiveness, so it must be a different dynamical change in the state 

of the brain that prevents the motor response from occurring. Therefore, the points of loss of 

responsiveness in the two experiments can be considered to be comparable. Finally, it was further 

discussed in section 1.5, but also across Chapters 3 and 4, how responsiveness does not always equate 
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consciousness, but rather provides a proxy to explore an essential part of the transition from 

consciousness to unconsciousness in healthy subjects. 

On the other hand, in Chapter 5, behavioural scores of responsiveness in patients reflect a completely 

different dimension of consciousness. Here, the CRS-R scale is used as an outcome measure for the 

comatose patients. This assesses their sensory awareness and motor ability to produce a combined 

estimation of the level of recovery. The following assumption is therefore made: that behavioural 

responsiveness reflects well enough the true level of impairment after a stabilisation period (two 

months), which is not evident in the acute phase of the injury due to the immediate impact of the 

traumatic event. Indeed, the predictive value of the CRS-R score has been demonstrated after a mean 

of 48 days after injury (Bodien et al., 2016), but prognostication using behavioural or other types of 

markers is still challenging in the acute phase of the injury (Stevens and Sutter, 2013). Here, the EEG 

analyses in the acute phase of the injury seek to uncover patterns of re-emerging neural activity that 

are not yet visible behaviourally. The case study of patient P2 that was discussed in this chapter, as 

well as other notable studies (Cruse et al., 2011; Fellinger et al., 2011; Harrison and Connolly, 2013; 

Owen et al., 2006), demonstrate that behaviour is indeed sometimes preceded by covert changes in 

neural activity in disorders of consciousness. Does that mean patients with covert cognitive function 

are conscious? This is a matter of debate (Overgaard, 2009; Overgaard and Overgaard, 2011), but at 

least it can certainly be argued that the restoration of such processes, even in covert form, is required 

for reaching a healthy state of consciousness again. 

6.5. DYNAMICAL DIVERSITY OF NEURAL STATES 

Theories of consciousness predict a decline in neural activity differentiation in conjunction with the 

loss of consciousness. In agreement with this prediction, all experiments in this thesis have shown that 

a loss in the dynamic range of states of the neural system corresponds to the transition towards 

unconsciousness.  

In Chapter 3, it was shown that the changing rate of electric microstates of the brain significantly slows 

down when subjects stop responding as they fall asleep. In this analysis, there is no loss in the number 

of states, represented by the four microstate topographies, but there is a reduction in the temporal 

variability of their dynamics. Although research on the functional (Milz et al., 2015; Seitzman et al., 

2016) and structural (Britz et al., 2010; Pascual-Marqui et al., 2014) meaning of the four microstates 

currently shows no clear consensus on their neural origin, the EEG microstates nonetheless reflect a 

global state of the brain which, in line with theoretical predictions, becomes less temporally diverse 

during the onset of sleep. 



CHAPTER 6: DISCUSSION 

119 
 

Next, in Chapter 4, a reduction in diversity as measured directly from the complexity of the EEG signal 

was also observed to occur with propofol sedation. Intriguingly, however, two flavours of complexity, 

which measure temporal and spatial complexity, respectively, were found to track different aspects 

of sedation. Temporal complexity tracked the responsiveness of the subjects, whereas spatial 

complexity tracked their blood concentration of propofol. Although there was a high correlation 

between these two measures, their distinct evolution with increasing propofol dosage was statistically 

significant. The functional meaning of these distinct signatures was discussed in section 4.4.3, as well 

as in other studies that found different brain signatures of drug level and responsiveness (Barttfeld et 

al., 2015; Chennu et al., 2016a).  

The reduction in the diversity of network states predicted by IIT during unconsciousness could occur 

both spatially, with reduced integration across the system leading to a smaller amount of 

simultaneous interactions (with distinct states being more similar), and temporally, with decreased 

information exchange leading to a more restricted number of states that the system can be in. In the 

sedation experiment, responsiveness, which is a more faithful indicator of the level of consciousness 

compared to the drug concentration in blood, was found to be best tracked by temporal complexity. 

Further, the slowing down of microstate dynamics also indicates a decline in temporal complexity. 

Therefore, a finding bridging across results in this thesis is that a temporal reduction in neural 

complexity is a valuable marker of the transition towards unconsciousness.  

The findings presented in Chapter 5 about the group of comatose patients can also be interpreted in 

a manner that underlines the importance of temporal diversity of neural states. Amongst all graph-

theoretical measures tested as predictors for the eventual patient outcome, the variability of path 

length in delta networks was the only statistically significant predictor. This indicates that an increased 

number of global configurations over time in the delta networks, as opposed to a change in the 

properties of the states themselves, is beneficial in the restoration of consciousness.  

6.6. LONG-RANGE INTEGRATION IN BRAIN NETWORKS 

It is further predicted by modern theories of consciousness that integration is fundamental in brain 

networks sustaining consciousness. In congruence with this prediction, it was demonstrated across 

this thesis how integration across brain networks supports healthy wakefulness. In particular, scalp-

level frontoparietal connectivity was shown to be an essential signature of consciousness. 

In Chapter 3, it was found that alpha frontoparietal connectivity was significantly higher while 

participants were still responsive compared to the periods when they lost responsiveness as they fell 

asleep. This validates previous results on the loss of alpha connectivity in both sleep and other 
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consciousness transitions, such as anaesthesia (Chennu et al., 2016a, 2014; Ogilvie, 2001; Tanaka et 

al., 2000, 1998; Wright et al., 1995). In contrast, theta connectivity increased during unresponsiveness, 

although not significantly. A reduction in frontoparietal activity during unconsciousness has also been 

reported using other imaging modalities (Kajimura et al., 1999; Larson-Prior et al., 2011; Spoormaker 

et al., 2012).  

Chapter 4 employed a dataset where a previous study (Chennu et al., 2016a) identified that 

frontoparietal connectivity is preserved during sedation only in the subjects who remained responsive 

to the auditory task. In this thesis, connectivity was investigated using the symbolic mutual 

information, a measure originally proposed for classifying the clinical state of patients with disorders 

of consciousness (King et al., 2013). The transition to unconsciousness was accompanied by lower 

wSMI in delta, theta and alpha bands, and higher wSMI in beta band, but no clearly topographical 

patterns of connectivity were associated with the descent to unconsciousness. Overall, a note of 

caution is appropriate here, clarifying that this measure was considerably variable across and within 

subjects. Hence, further validation is required from future studies to assess its efficacy to capture and 

track brain connectivity. 

Finally, in Chapter 5, it was found that increased variability in the characteristic path length of delta 

networks early after traumatic injury predicts a positive outcome in comatose patients. The 

characteristic path length is a measure of long-range integration across brain networks. Interestingly, 

it was not an increased path length in itself that predicted a good outcome, but its variability in 

overnight recordings. This suggests that a dynamic repertoire of global network configurations with 

respect to information integration is required for the recovery of healthy wakefulness after coma. 

Furthermore, a case study was presented where a severely brain-injured patient with a nevertheless 

positive eventual outcome displayed a remarkable early re-emergence of alpha frontoparietal 

connectivity while still being behaviourally unresponsive during the acute phase of coma. 

Connectivity between frontal and parietal brain areas has been linked to a wide range of cognitive 

functions (Babiloni et al., 2004; He et al., 2007; Naghavi and Nyberg, 2005) and its suppression has 

been demonstrated in sleep, anaesthesia and disorders of unconsciousness (Boly et al., 2012; Chennu 

et al., 2016a, 2014; Kajimura et al., 1999; Laureys and Schiff, 2012; Lee et al., 2009a; Spoormaker et 

al., 2012), which is in agreement with the hypotheses and results in this thesis. However, it is debated 

whether frontoparietal connectivity represents, in itself, a true neural correlate of consciousness, or 

it is rather confounded by the recruitment of processes intimately associated with conscious 

processing, such as attention, memory and executive control. For example, recent evidence indicates 

that frontoparietal activity is not directly elicited by consciously attending stimuli of relevance in a 
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detection task, but is instead activated during goal-related tasks (Farooqui and Manly, 2017). 

Moreover, no-report paradigms support the idea that frontal activity is not required for conscious 

perception (Tsuchiya et al., 2015). On the other hand, it can be argued that cognitive subsystems that 

sustain the full conscious experience, as opposed to raw conscious perception, include functions like 

memory, attention and biologically-driven goals, therefore rendering the frontoparietal network a 

necessary part of the comprehensive architecture required for consciousness (Bor and Seth, 2012). 

This topic can further be contextualised in the ongoing search for the location of the neural correlates 

of contents of consciousness. There is currently lively debate on whether the posterior (Boly et al., 

2017) or the frontal (Odegaard et al., 2017) areas of the cortex are required for awareness of specific 

perceptual experiences. 

The results of this work offer a limited degree of evidence towards the hypothesis that frontoparietal 

networks, especially at higher frequencies, are very important in supporting a level of consciousness 

where responsiveness is observed. This does not offer evidence regarding whether the anterior or the 

posterior areas of the brain are required for consciousness, but rather suggests that the 

communication between these areas is essential. More specifically, in sleep, frontoparietal alpha 

connectivity, which is a marker of healthy wakefulness, is significantly weaker when responsiveness is 

lost; however, theta frontoparietal connectivity is stronger. In sedation, mutual information sharing is 

lower at a temporal separation corresponding to delta, theta and alpha frequency bands; however, it 

is higher for gamma band. In acute coma, alpha, theta and delta network reconstruction is associated 

with a better eventual outcome; however, this is reflected in only some of all the graph measures that 

were tested. Although overall these results suggest that changes in frontoparietal connectivity are 

associated with a change in level of consciousness, this relationship is not straightforward. Moreover, 

most electroencephalography measures employed in this thesis cannot answer the question of 

whether there is activation at a particular time in a particular brain region, but rather approximate 

how much activity or synchronicity there is when measured within certain parameters, such as a 

particular frequency band. There is, however, one result presented in his thesis that may speak to this 

debate, which is that complexity is significantly higher in frontal areas in sedated but responsive 

subjects, as compared to unresponsive subjects. This could suggest that frontal areas are indeed 

important in sustaining consciousness. Finally, these results are not directly informative for any debate 

regarding the contents, but only the levels, of consciousness.  

The debates regarding the role of the front of the brain, the back of the brain and their connectivity 

patterns will likely take a long time to be resolved, experimentally and conceptually, but it is important 

to keep an open mind and respect the diversity of perspectives currently co-existing in this research 

field. 
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6.7. CONCLUSIONS  

This thesis has taken the reader through a journey around one of the most fascinating topics ever 

known to humankind: consciousness. It started broadly, from the historical roots of this concept, and 

then focused on a specific goal: understanding transitions between levels of consciousness. Equipped 

with a modern theoretical framework and a set of computational methods appropriate for the 

neuroscientific investigation of consciousness, three distinct such transitions were investigated: sleep, 

sedation and coma. Each of these transitions provides a unique window into the loss of consciousness, 

yet a number of similarities were identified by an examination from a common theoretical 

perspective. Most importantly, this thesis has demonstrated that there is something quantifiable that 

is lost in brain activity as consciousness fades: the dynamical diversity of neural signals, as well as the 

long-range integration across brain networks, especially alpha band connectivity. The value of these 

results is two-fold. On the one hand, such advances can find practical applications in the clinical 

context, where there is a need for better tools to diagnose, evaluate and track patients undergoing 

anaesthesia or recovering from brain injury. On the other hand, these results contribute to the 

theoretical advancement of theories of consciousness by offering a unique perspective on its 

transitions. 
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