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Abstract

Data from portable emissions measurement systems (PEMS) and other sources have allowed the discrepancy

between type approval and real-world fuel economy and nitrogen oxides (NOx) emissions to be both identified

and quantified. However, a gap in the knowledge persists because identifying this discrepancy does not allow

us to predict real-world fuel economy and emissions accurately. We address this gap in the knowledge using

a bottom-up approach: a PEMS is used across a range of Euro 6 petrol and diesel vehicles, from which

internally-consistent powertrain models are derived. These training vehicles are simulated over 20 real-

world and regulated driving cycles. 26 metrics representing driving, vehicle and ambient characteristics are

used to develop quantile regression (QR) models for three vehicle groups: direct-injection petrol vehicles

with three way catalysts; diesel vehicles with selective catalytic reduction; and diesel vehicles with lean

NOx traps. 95% prediction intervals are used to assess the predictive accuracy of the QR models from a

set of validation vehicles. Across the vehicle groups, QR models for both fuel economy and NOx emissions

depended on the dynamics of the driving cycles more than the engine characteristics or ambient conditions.

The 95% prediction interval for fuel economy enclosed most of the observed values from the PEMS test, with

similar prediction error to COPERT in most cases. The benefits of the QR approach were more pronounced

for NOx emissions, where the majority of PEMS observed data was enclosed in the 95% PI and median

prediction error was up to two times lower than COPERT.
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1. Introduction

The objective of this paper is to derive new, closed-form equations for fuel economy and nitrogen oxides

(NOx) emissions from Euro 6 passenger vehicles. Currently, the literature has focused on the discrepancy

between type approval tests and real-world driving for fuel economy and emissions. Both identifying and

quantifying this gap has helped to expand the type approval procedure in Europe to include a Real Driving

Emissions (RDE) test [1]. However, knowing the size of the discrepancy does not allow us to make more

accurate predictions of real-world fuel economy and emissions. We address this gap in the knowledge using

data from Euro 6 passenger vehicles equipped with portable emissions measurement systems (PEMS) tested

in the UK.

Type approval test results suggest new car average carbon dioxide (CO2) emissions in the European Union

was 126.7 g CO2/km in 2013, meeting the 2015 target of 130 g CO2/km [2] two years early. Provisional

data suggests new car average CO2 emissions were 118.1 g/km at the end of 2016 [3]. However, real-world

testing shows CO2 emissions from new vehicles in were 39% higher than their type approval values in 2017

[4], down from a peak of 42% in 2015 [5] and 2016 [6]. In 2017, the market share of diesel vehicles fell to

45% across Europe, while petrol vehicle market share rose to 49%. This is the first time that petrol vehicles

outsold diesels since 2009 [7]. The combination of a shift to petrol vehicles and low penetration (1.5%) of

zero tailpipe emissions vehicles led to average new car CO2 emissions increasing by 0.4% to 118.5 g/km in

2017 [8].

Likewise, since 2014, passenger vehicles entering service should meet the latest Euro 6 standards of

0.06 g NOx/km for petrols and 0.08 g NOx/km for diesels [9]. However, real-world NOx emissions from

Euro 6 diesel vehicles were on average 4.5 times higher than the regulatory limits, ranging from those which

meet the emissions standard to those which exceed it by 12 times [10]. At this level, the average modern

diesel vehicles fail even to meet the Euro 4 standards introduced in January 2005, implying average real-

world emissions have not improved in the decade to 2017. Indeed, emissions arising from driving behaviour

similar to that used for type approval showed little overlap with emissions achieved under a controlled

lab setting, even after accounting for ambient conditions. This discrepancy has been attributed to the

modification of emissions control strategies during certification testing and implies the use of defeat devices

[11]. Consequently, progress towards lower emissions of both CO2 and local air pollutants envisioned by

European legislation has not been realised fully.

Emissions are influenced by the characteristics of a vehicle, how it is driven and external environmental

conditions. Currently, emissions factors within the Computer Programme to calculate Emissions from

Road Transport (COPERT) v5 are used to generate emissions inventories in Europe. COPERT is based

on the efforts described in the Handbook Emissions Factors for Road Transport (HBEFA). Here, 20 first

generation (1 petrol, 19 diesel) Euro 6 vehicles were tested on a dynamometer over the New European
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Driving Cycle (NEDC) and the Common Artemis Driving Cycle (CADC) representing the regulated test

cycle and real-world driving, respectively [12]. A recent update of HBEFA includes data from 25 model

year 2014-2015 Euro 6 diesel vehicles equipped with PEMS operating under real-world conditions [13]. The

HBEFA approach does not produce vehicle specific engine maps for fuel use: instead, a generic CO2 engine

map and a correction factor are used to account for the technological improvements in modern engines.

Measured engine speed and CO2 emissions from the PEMS tests are used to estimate instantaneous engine

power. Maps of other emissions are created using the estimated engine power and observed speed. Whereas

HBEFA use expected technological progress to predict fuel economy and emissions of later Euro 6 vehicles,

we use PEMS data to develop engine maps specific to vehicle. Therefore, our maps and subsequent emissions

factors internalise actual technological progress because they are based on vehicles in service from model

year 2014 onwards. Finally, HBEFA compresses the engine maps of individual vehicles into a sales-weighted,

normalised equivalent to simulate the vehicles across a range of other driving cycles to derive the closed form

emissions factors for COPERT. These COPERT Euro 6 emissions factors are average-speed based, defined

only above 5 km/h for petrol and 10 km/h for diesel and classified only by fuel type.

Recent investigations suggest additional vehicle parameters and driving style metrics influence real-world

fuel economy and emissions. Positive kinetic energy, relative positive acceleration (RPA) and root mean

squared (RMS) acceleration influenced emissions from four petrol Euro 4 passenger cars with similar engine

sizes tested in India [14]. RPA is given by
∑n
i=1

ai·vi
3.6 /dist for all accelerations ai > 0 and is one measure

used to represent the dynamics of a driving cycle [15]. RPA, the 95th percentile of the product of velocity

and acceleration and mean positive acceleration were used to evaluate a Euro 5 and a Euro 6 vehicle, both

equipped with diesel oxidation catalysts (DOC) on routes meeting the RDE specifications [16]. RPA and

the number of accelerations and decelerations influenced NOx emissions most for a Euro 6 diesel passenger

car equipped with a PEMS in Spain [17]. A simple regression of observed fuel economy as a function of

type approval fuel economy, mass and engine capacity [18] was extended to include model year [19]. Six

Euro 6 diesel passenger cars with lean NOx traps were tested over two routes in Korea using a PEMS

[20]. Here, ambient temperature was found to be important in trip-level NOx emissions because exhaust

gas recirculation (EGR) was stopped to prevent damage to the filter from moist particulate matter in the

exhaust stream. A separate study of 39 passenger cars (17 Euro 6) found ambient temperature influenced

selective catalytic reduction (SCR) technologies also [21]. Engine-out NOx content, storage capacity of the

LNT, vehicle driving patterns and ambient temperature were found to influence NOx control schemes on a

2016 2.2 litre diesel engine [22].

A number of works have applied an approach similar to MOVES (activity-weighted, vehicle specific

power (VSP)) to assess emissions from European vehicles. Often, ‘typical’ values of drag coefficient (Cd)

and frontal area are used to describe the full range of vehicle sizes, from mini to sport utility and multi-

purpose vehicles. The MOVES documentation admits to maintaining constant road load parameters in their
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methodology, even if they are not representative in the real-world [23]. A VSP-approach with 14 bins was

used for 16 Euro 5 vehicles equipped with PEMS [24] and 25 bins were used in the multivariate analysis

on 14 petrol passenger cars with PEMS [25]. In this latter work, the low correlation coefficients (R2 ≤

0.78) for the multivariate analysis imply NOx production is influenced by metrics other than VSP. Higher

correlation coefficients (R2 > 0.90) were achieved when using VSP bins to predict CO2 emissions in 78

diesel and petrol vehicles equipped with a PEMS [26]. However, those authors assumed all passenger cars

and light-duty trucks were driven in third gear most of the time and had the same physical characteristics:

Cd = 0.3; frontal area of 2 m2; and mass of 1200 kg. VSP bins were populated with the results of Monte

Carlo simulations to yield average emissions per bin. Fuel economy and emissions were calculated for 82

vehicles and 23 bins, assuming typical MOVES VSP coefficients [27]. Large differences in fuel economy and

emissions were observed with changes in driving style. In contrast, the method used in this work calculates

the likely physical characteristics for each vehicle. Moreover, our VSP metric incorporates the instantaneous

road grade which is not included in MOVES [28].

Another activity-weighted approach is the moving average window (MAW) with RPA for 12 Euro 5 vehi-

cles in Korea [29]. NOx emissions were different under comparable operating conditions if the driving cycles

were different, implying cycle-specific emissions control. In many cases, emissions factors were provided for

individual vehicles, but not a closed-form, general type to be used for predicting emissions more generally.

Other efforts to determine emissions factors rely on black box methods, such as artificial neural networks

(ANN). An ANN was developed to predict real-time exhaust from emissions recorded using six diesel vehicles

[30]. MOVES’ typical VSP coefficients were used with 11 bins. Input neurons were vehicle speed, accelera-

tion, engine speed and VSP. Including oil temperature and throttle position yielded marginal improvement

in model predictive accuracy.

Finally, roadside measurement campaigns have been used to investigate the impact of driving style on

vehicle emissions. VSP accounted well for the effect of driving on emissions [31]. For diesel vehicles, engine

size and manufacturer were found to influence emissions of both NOx and nitrogen dioxide.

This paper adopts a bottom-up approach to determine emissions factors based on 76 pre-RDE Euro

6 vehicles (32 petrol, 49 diesels) equipped with PEMS and tested by Emissions Analytics (EA). Vehicle

road load characteristics and maps of fuel use and NOx emissions were extracted for each vehicle [32].

The vehicles were simulated over a range of regulated and real-world driving cycles. Driving cycle metrics,

vehicle characteristics and ambient conditions were used to train quantile regression (QR) models of emissions

factors. A separate validation set of PEMS data was used to test the accuracy of the new emissions factors

which is discussed as part of the results.
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2. Method

A schematic of the method is given in Figure 1 and comprises three parts: the first extracts vehicle

characteristics and engine maps of fuel use and NOx emissions (hot); the second identifies a training set of

vehicles and simulates them across 20 regulated and real-world driving cycles; and the third applies QR to

a set of vehicle characteristics, driving behaviour and ambient conditions to establish closed-form emissions

factors. The predictive accuracy of the new emissions factors is demonstrated using a validation set of PEMS

data. This work was executed in Matlab R2018b.

Each vehicle was instrumented with a Semtech DS PEMS and driven once on a non RDE-compliant

40 km circuit west of London which comprised urban, rural and motorway driving. Tests occurred across a

range of ambient conditions. Therefore, we consider average air temperature and relative humidity explicitly

as predictors of fuel economy and NOx emissions.

The engine mapper technique developed in [32] was employed in this work. In summary, the engine

mapper uses data recorded from vehicles under real-world driving conditions to inform a powertrain model:

First, engine speed and wheel speed data is used to determine the effective gear ratio, which internalises

tyre diameter, final drive and individual transmission ratios in the gearbox. Second, a range of values of

CdA, Crr and vehicle mass – initial estimates and each varying ±20% – are tested over the observed driving

cycle to determine the combination of road load factors which yields the smallest sum of absolute deviations

(SAD) per second between observed and simulated engine speed. Finally, the engine map of outputs – fuel

use and emissions (where reported) – is created by classifying the distribution of output values into 2x2

boxes, 3x3 boxes and so on up to 10x10 boxes. The mean of the output values in each box is assigned to

that area of the engine torque-speed map. The vehicle is simulated over the driving cycle and the number

of boxes chosen which returns the smallest SAD per second between observed and simulated output.

2.1. Identify training and validation vehicles

2.1.1. Training vehicles

Vehicles with hybridised powertrains were excluded from training as the engine mapping procedure

applies to conventional powertrains only [32]. Vehicles were used in the training set if simulated trip-level

fuel economy and NOx emissions were within 6% of the values observed in the PEMS test. In this work, 22

vehicles were used for training. There is a broad range of engine and exhaust after-treatment technologies

used in vehicles currently. For this work, vehicles were grouped by Euro standard, fuel-air delivery method

and exhaust after-treatment technology, with details in Table 1. Specifications of training vehicles can be

found in Table 2. Table 3 lists the regulated and real-world driving cycles which training vehicles were

simulated over. Vehicles were simulated using ADVISOR version 2003-00-r0116. The EA driving cycle

which the original PEMS data was collected over is in the group of 20 cycles. However, the outputs from

that cycle were not used to train the QR.

5



F
ig

u
re

1
:

S
ch

em
a
tic

o
f

m
eth

o
d

to
d

ev
elo

p
a
n

d
v
a
lid

a
te

em
issio

n
s

fa
cto

rs
fro

m
E

u
ro

6
p

a
ssen

g
er

v
eh

icles
eq

u
ip

p
ed

w
ith

P
E

M
S

.

6



Table 1: Codes for groups of vehicles by Euro standard, fuel-air delivery method and exhaust after-treatment technology.

Number of turbochargers and after-treatment technology was determined from the automobile catalog (available at https:

//www.automobile-catalog.com/).

Fuel Code Fuel-air delivery method

Petrol 1 Port injected, spark ignition (PISI), natural aspiration

2 PISI, turbocharged

3 PISI, multiple turbochargers

4 Direct injected, spark ignition (DISI), natural aspiration

5 DISI, turbocharged

6 DISI, multiple turbochargers

Exhaust after-treatment technology

6 Three way catalyst (TWC)

Diesel 7 Direct injected, compression ignition (DICI), turbocharged

8 DICI, multiple turbochargers

Exhaust after-treatment technology

1 Lean NOx trap (LNT)

2 Exhaust gas recirculation (EGR)

3 Selective catalytic reduction (SCR)

4 Diesel oxidation catalyst (DOC)

5 SCR, DOC

7 DeNOx, DOC

8 LNT, DOC

10 EGR, DOC

7
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Table 3: Regulated and real-world driving cycles. The country where the driving cycle applies is given in brackets.

Driving cycle

Regulated Real-world

NEDC (Europe) EA PEMS* (Europe)

HWFET (US) Artemis (Europe)

INRETS (Europe) Artemis urban (Europe)

LA92 (US) TRL urban (UK)

IM240 (US) TRL congested (UK)

UDDS (US) HBEFA R1 (Europe)

US06 (US) HBEFA R2 (Europe)

WLTP (World) HBEFA R3 (Europe)

NYCC (US) HBEFA R4 (Europe)

JC08 (Japan) Passing (US)

26 metrics (predictors) were extracted from these driving cycles to avoid pre-supposing which may

influence fuel economy and NOx emissions significantly. The metrics were taken from the TRL handbook

[15] and 11 additional parameters from the literature reviewed earlier, recognising the importance of the

vehicle itself (nine metrics) and ambient conditions (two metrics) on the the quantity of emissions generated

(Table 4). An inspection of the variation in fuel economy and NOx emissions with metrics in Appendix

Appendix B suggested the existence of non-linear relationships. Therefore, the base predictors, xi, were

expanded to include: 1
xi

, ln(xi) and exi .

2.1.2. Validation vehicles

There were two classes of validation vehicles. The first set comprised the 54 vehicles for which engine

maps could either not be created due to missing data, such as engine speed, or were not accurate enough to

reproduce trip-level fuel economy and NOx emissions to within 6% of observed. The second validation set

used the PEMS data from the 22 training vehicles, rather than the outputs of the vehicle model development

and driving cycle simulations.

2.2. Develop and validate emissions factors

Achieving closed form emissions factors requires a relationship between the dependent variable (y) – fuel

economy or NOx emissions – and one or more predictors, xi, describing the vehicle and how it is driven. QR

is used in this work because it is non-parametric: the distribution of y and x can change and no assumption

9



T
a
b

le
4
:

D
riv

in
g

cy
cle

m
etrics,

v
eh

icle
ch

a
ra

cteristics
a
n

d
a
m

b
ien

t
co

n
d

itio
n

s
u

sed
fo

r
tra

in
in

g
em

issio
n

s
fa

cto
rs.

R
M

S
=

ro
o
t

m
ea

n
sq

u
a
red

;
IQ

R
=

in
terq

u
a
rtile

ra
n

g
e

D
riv

in
g

cy
cle

m
etrics

V
elo

city,
m

/
s

(ru
n

n
in

g
,

m
ed

ian
,

rela
tiv

e
p

o
sitive

sq
u

a
red

,
rela

tive
p

o
sitive

cu
b

ed
,

aero
d

y
n

am
ic,

IQ
R

,
m

ax
im

u
m

)

N
u

m
b

er
o
f

a
ccelera

tion
s-d

eceleratio
n

s,
p

er
k
m

A
cceleratio

n
,

m
/s

2
(m

ed
ian

,
m

a
x
im

u
m

,
R

M
S

,
rela

tive
p

o
sitiv

e,
ch

a
ra

cteristic,
IQ

R
)

D
ecelera

tion
,

m
/
s
2

(m
ed

ian
,

m
a
x
im

u
m

,
rela

tive
n

eg
a
tiv

e)

V
eh

icle
sp

ecifi
c

p
ow

er,
k
W

/k
g

(m
ed

ia
n

,
IQ

R
,

m
a
x
im

u
m

)

S
to

p
s,

p
er

k
m

M
o
d

es,
(p

rop
o
rtion

o
f

tim
e

id
lin

g
,

a
ccelera

tin
g
,

cru
isin

g
a
n
d

d
ecelera

tin
g
)

K
in

em
atic

in
ten

sity,
p

er
k
m

9
5t
th

p
ercen

tile
of

th
e

p
ro

d
u

ct
of

v
elo

city
a
n

d
a
ccelera

tio
n

,
m

2/
s
3

J
o
lt,

m
/
s
3

(m
ed

ia
n

,
IQ

R
)

V
eh

icle
ch

aracteristics

T
o
rq

u
e,

N
m

(p
ea

k
,

sp
ecifi

c
(N

m
/k

g
))

P
ow

er,
k
W

(p
eak

,
sp

ecifi
c

(k
W

/k
g
))

V
o
lu

m
e

(en
gin

e),
(ab

solu
te,

sp
ecifi

c
(cc/

k
g
))

M
a
ss,

k
g

B
ra

ke
m

ea
n

eff
ective

p
ressu

re
(B

M
E

P
)

k
P

a
,

(p
ea

k
,

sp
ecifi

c
(k

P
a
/
k
g
))

T
u

rb
o

co
d

e

M
o
d

el
year

C
y
lin

d
er

n
u

m
b

er

C
o
m

p
ressio

n
ratio

(m
ed

ian
)

E
x
tern

a
l

va
ria

b
les

A
m

b
ien

t
tem

p
era

tu
re,℃

(m
ed

ian
)

R
ela

tive
h
u

m
id

ity,
%

(m
ed

ian
)

10



is made of the distribution of errors [33]:

y = βi · xi + ε ∀i = 1, ..., n; (1)

where: n = number of predictors, x; and ε = the prediction error, the difference between the observed value

(y) and the model.

The aim was to produce closed form emissions factors which predicted the test and validation data

accurately, but were not over-fitted to the training data. To achieve this, the number of predictors was

reduced in two steps using the Least Absolute Shrinkage and Selection Operator (lasso), with and without

elastic net [33].

The lasso penalty, λ1, is based on the absolute value of the coefficients (β) of the predictors and increases

with model complexity (number of predictors):

L1 = L(β) + λ1

n∑
i=1

|βi|; (2)

where: L(β) is the empirical loss function of y; and λ1 is the lasso penalty applied to the coefficient of each

predictor, xi.

Small values of lambda yield β = 0 for all predictors (constant model). As λ1 increases, more coefficients

become non-zero until all predictors are represented in the regression for sufficiently large λ1 (unpenalised).

Therefore, the lasso approach returns a set of model candidates, with number of predictors increasing with

λ1.

However, the lasso can be suboptimal for correlated predictors. A second penalty, λ2 was introduced to

form the elastic net, allowing correlated predictors to achieve non-zero β for small λ1. The aim of the elastic

net is to minimise L2:

L2 = L(β) + λ1

n∑
i=1

|βi|+ λ2

n∑
i=1

β2
i ; (3)

where: λ2 is the elastic net penalty applied to the coefficient of each predictor, xi.

The lasso (with k=5 cross-validation) was applied to all predictors within the set of training vehicles for

a chosen QR quantile (τ) of y. The model candidate was chosen with the smallest number of predictors

(greater than one). The lasso (with k=5 cross-validation) and elastic net (λ2 = 0.1) was applied to the

original, full set of predictors and a new model candidate chosen as before. The QR model used the union

of predictors from the lasso, with and without the elastic net across all quantiles.

This work considered the 95% prediction interval (PI) which is a region where 95% of the true study

effects are expected to be found [34]. Therefore, the quantiles, τ = [0.025 0.5 0.975] were used as it was

expected that predictors would have different influences depending on the quantile chosen. QR models can
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cross when the predicted value of a low percentile exceeds that of a higher percentile. In this work, crossing

is not explicitly controlled because of the breadth of the PI. However, non-crossing was verified in the results.

The output of the QR was the βi for each predictor xi in the reduced model. The training, testing and

validation data were evaluated on this model at each τ quantile for different groups of vehicles from Table

1:

• all petrol vehicles with turbocharged, direct injection engines;

• all diesel vehicles using a LNT alone, or paired with a DOC; and

• all diesel vehicles using a SCR alone, or paired with other technology.

The resulting QR models adopted the form y =
∑n
i=1 β · xi for all predictors, xi. The outputs were

compared to the training data and predictions using COPERT v5 where Emissions Factor (EF) takes the

form [35]:

EF =
α · v2 + β · v + γ + δ

v

ε · v2 + ζ · v + η
· (1−RF ) (4)

Euro 6 vehicles are differentiated by year of introduction: Euro 6 1 in 2015-2016; Euro 6 2 for 2017-2019;

and Euro 6 3 for 2020 onwards. In this work, we used Euro 6 1 and Euro 6 2 emissions factors for our

pre-RDE vehicles because they were first registered in 2015-2017.

The coefficients of the polynomial to predict fuel economy in COPERT v5 were specific to vehicle size

segment, fuel type (petrol, diesel), but not year of introduction. Within the same fuel type, the coefficients

of the polynomial depended upon the vehicle size segment. In this work, we use the average value of the

polynomial coefficient across vehicle size segments.

The result was two sets of polynomial coefficients: one representing all Euro 6 1 and Euro 6 2 petrol

vehicles; and the other for all Euro 6 1 and Euro 6 2 diesel vehicles. For NOx emissions, polynomial

coefficients were the same across vehicle size segment, but different for fuel type and year of introduction.

Therefore, four sets of polynomials were required: one for each of Euro 6 1 and 6 2 petrol; and one for each

of Euro 6 1 and 6 2 diesel.

There are two main differences between the COPERT model and that proposed in this paper. First,

COPERT is based on average velocity and engine size to represent the dynamics of driving and vehicle

characteristics, respectively. Our QR model uses 26 predictors, with 15 representing driving dynamics,

nine for the vehicle characteristics and two for external ambient conditions. Secondly, COPERT uses the

polynomial form given above for fuel use and all pollutants, while the form of each of our emissions factors

is derived from the QR model based on the interaction of predictors for each vehicle group.
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3. Results and discussion

3.1. PEMS results by vehicle group

Figure 2 illustrates the trip-level NOx emissions from the training and validation set of petrol and diesel

vehicles. The three way catalyst (TWC) was effective at maintaining emissions within the Euro 6 limit,

save for two vehicles (Figure 2a): one PISI turbo vehicle at 0.065 g/km; and one DISI turbo vehicle at

0.067 g/km.

Figure 2: Bar graphs of trip-level NOx emissions for the training and validation set of a) petrol and b) diesel vehicles. Horizontal

lines indicate the NOx limits at various Euro standards.

In contrast, most diesels exceeded both the Euro 6 emissions standards of 0.08 g/km and the 2019

conformity factor of 2.1 times the Euro standard (red broken line in Figure 2b), save five (all single turbos):

two vehicles with LNT at 0.037 g/km, 0.052 g/km; one with a DOC at 0.054 g/km; one with a SCR at
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0.073 g/km; and one with SCR and DOC at 0.067 g/km. Notably, three of these vehicles also met the

Euro 6 petrol standard, demonstrating that modern diesel vehicles can be as clean as petrols from a NOx

emissions perspective.

Figure 3 illustrates the range of fuel economy and NOx emissions for the petrol and diesels when grouped

by fuel-air delivery method and exhaust after-treatment technology. In general, fuel economy of the petrol

vehicles using port injection decreased a median 46% from 6.8 l/100 km to 9.9 l/100 km for vehicles with

direct injection and multiple turbochargers. Median fuel economy for diesel vehicles was 5.7-5.8 l/100 km,

except for three groups (all with multiple turbochargers): one with a SCR and DOC at 6.8 l/100 km; one

with a LNT at 6.2 l/100 km; and one with a DOC only at 6.4 l/100 km.

Table 5: Median and range of fuel economy and NOx emissions for groups of vehicles by Euro standard, fuel-air delivery

method and exhaust after-treatment technology, with number of vehicles per group.

Group Fuel economy (l/100km) NOx emissions (g/km) n

PISI TWC 6.8 (6.3-7.4) 0.01 (0.0042-0.017) 2

PISI-T TWC 6.8 (6.6-7.1) 0.037 (0.0082-0.065) 2

DISI-T TWC 7.4 (5.4-16) 0.014 (0.0034-0.067) 24

DISI-MT TWC 9.9 (8.2-15) 0.026 (0.009-0.052) 4

DICI-T LNT 5.7 (5.1-9.7) 0.43 (0.036-1.1) 9

DICI-T SCR 5.8 (4.9-6.2) 0.27 (0.073-0.38) 5

DICI-T DOC 5.6 (5.3-8) 0.25 (0.054-0.82) 14

DICI-T SCR-DOC 5.5 (5.3-7.7) 0.26 (0.067-0.39) 6

DICI-T LNT-DOC 5.5 (5.3-5.6) 0.64 (0.32-0.96) 2

DICI-MT LNT 6.2 (5.7-7.7) 0.41 (0.29-0.62) 3

DICI-MT DOC 6.4 (5-7.5) 0.25 (0.17-0.79) 4

DICI-MT SCR-DOC 6.8 (6.8-6.8) 0.36 (0.36-0.36) 1

The range of NOx emissions in each diesel vehicle group implied significant variation in the effectiveness

of the same control technology (Table 5). Diesels using LNT only, regardless of number of turbochargers,

returned median trip-level NOx emissions of 0.41-0.43 g/km. Median trip-level emissions for diesels not

using LNT were 0.25-0.36 g/km. At the extremes, the lowest and highest median emissions were 0.25 g/km

and 0.64 g/km: the lower bound corresponded to a diesel with a single turbo and LNT; and the upper bound

to a diesel with single turbo, LNT and DOC.
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Figure 3: Boxplots of fuel economy (l/100 km) and NOx emissions (g/km) for Euro 6 petrol (left column) and Euro 6 diesel

vehicles (right column). Vehicle classification follows the definitions used in Table 1. Horizontal lines indicate the NOx limits

at various Euro standards.
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3.2. Emissions factors by vehicle group

The vehicles used for model training and validation cover a broad range of engine performance (peak

torque and power) and mass. Figure 4 illustrates the distribution of fuel economy and NOx emissions

based on engine performance and mass for training (orange circles) and test (blue crosses) vehicles across all

groups. Fuel economy decreased (increasing values) with increasing vehicle mass and engine performance.

Similarly, NOx emissions fell (decreasing values) slightly with vehicle mass, but more prominently with

engine performance. The training and validation vehicle data are mixed, with vehicles at the extremes of

power, torque and mass used for training. This minimises the need for the QR models to extrapolate when

estimating fuel use and NOx emissions.

0 500 1000

Peak torque (Nm)

0

5

10

15

F
u
e
l 
e
c
o
n
o
m

y
 (

l/
1
0
0
 k

m
)

0 500 1000

Peak torque (Nm)

0

1

2

3

N
O

x
 e

m
is

s
io

n
s
 (

g
/k

m
)

0 500 1000

Peak torque (Nm)

0

5

10

15

F
u
e
l 
e
c
o
n
o
m

y
 (

l/
1
0
0
 k

m
)

0 200 400

Peak power (kW)

0

1

2

3

N
O

x
 e

m
is

s
io

n
s
 (

g
/k

m
)

1000 1500 2000 2500

Mass (kg)

0

5

10

15

F
u
e
l 
e
c
o
n
o
m

y
 (

l/
1
0
0
 k

m
)

1000 1500 2000 2500

Mass (kg)

0

1

2

3

N
O

x
 e

m
is

s
io

n
s
 (

g
/k

m
)

Figure 4: Distribution of fuel economy and NOx emissions by engine performance (peak torque and peak power) and vehicle

mass for training (orange circles) and test (blue crosses) vehicles across all groups.

For each vehicle group, the PEMS data from the test vehicles on the EA driving cycle is illustrated

using orange, the validation set in blue, training data (based on simulations of the test vehicles) across 20

driving cycles in yellow and per second simulation of test vehicles using engine maps in purple. Figures

B.8-B.25 illustrate the variation of fuel economy and NOx emissions with each of the predictors across the

three vehicle groups.
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3.2.1. DISI with TWC

Seven vehicles were used for training and 23 for validation. Figure 5 gives the observed (purple) and

predicted (green) fuel economy and NOx emissions for the test vehicles (orange) and validation set (blue).

The error bars indicate the 95% PI for each of the datasets from the QR model. The data is ordered from

smallest PI to largest. Green circles exist for those vehicles where the QR model predicted fuel economy

or NOx to within 5% of observed. In this case, 20 vehicles lay within the 95% PI (four to within 5% of

observed values, green circles) and three fell outside (red circles). For this latter group, values ranged from

1.2 l/100 km to 0.54 l/100 km below the lower bound of the 95% PI. The 95% PI enclosed the observed

NOx emissions for nine vehicles, with 14 lying outside (red circles). For these vehicles, observed NOx ranged

from 0.0031 g/km lower to 0.05 g/km higher.

Figure 5c and d compare the ability of COPERT and the QR model to predict fuel economy and NOx

emissions. The median predictive error of the QR model at 19% (0.5-71%) was better than that of COPERT

at 23% (5-44%). The error in predicting NOx emissions halved from 111% (8.7-920%) for COPERT to 53%

(9.2-198%) for the QR model.

3.2.2. DICI with SCR

Three DICI vehicles with SCR were used for training and nine for validation. The 95% PI of the QR

model enclosed fuel economy for three of the nine vehicles. The predicted fuel economy of the remaining

six vehicles lay from 1.4 l/100 km below to 1.7 l/100 km above the bounds of the 95% PI. The 95% PI

of the QR model for NOx emissions enclosed all observed values. The predictive error for fuel economy

using COPERT was 12% (0.7-34%) which was three times lower than the QR model at 34% (14-54%). The

advantage of the QR model was more clear in predicting trip-level NOx emissions with a median error of

49% (13-174%) which was half that of COPERT at 87% (37-705%).

3.2.3. DICI with LNT

There were 12 DICI vehicles with LNT in the training group and 20 for validation. The 95% PI of the

QR model enclosed the fuel economy of 19 vehicles, four of them to within 5% of observed. One vehicle’s

fuel economy lay 1.6 l/100 km below the lower bound of the 95% PI. Likewise, the 95% PI of the QR

model enclosed 19 of 20 NOx observations, with one of them predicted to within 5% observed. One vehicle’s

NOx emissions was 0.022 g/km below the lower bound of the 95% PI. Overall, predictive error of the QR

model was 19% (1.5-48%) for fuel economy and 50% (2-728%) for NOx emissions. COPERT was better at

predicting fuel economy (median 14%, 95% PI = 0.32-31%), but worse for NOx emissions (median 64%,

95% PI = 12-899%) as shown in Figure 7c and d. The results for the three vehicle groups are summarised

in Table 6.

The large predictive error of 34% for the fuel economy QR model for DICI vehicles with SCR is due
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Figure 5: 95% prediction intervals for fuel economy (a) and NOx emissions (b) of the test data (red) and validation data (blue)

based on QR models trained on the training data (yellow) for DISI vehicles with TWC. Green circles indicate predictions (green

dots) within 5% of observed (black dots). Red circles illustrate observations which fall outside of the 95% prediction interval.

Boxplots comparing predictive accuracy using COPERT and QR over three percentiles to simulate the (c) fuel economy and

(d) NOx emissions of DISI vehicles. The lower and upper bounds of the boxes represent 2.5% and 97.5%.
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Figure 6: 95% prediction intervals for fuel economy (a) and NOx emissions (b) of the test data (red) and validation data (blue)

based on QR models trained on the training data (yellow) for DICI vehicles with SCR. Green circles indicate predictions (green

dots) within 5% of observed (black dots). Red circles illustrate observations which fall outside of the 95% prediction interval.

Boxplots comparing predictive accuracy using COPERT and the QR over three percentiles to simulate the (c) fuel economy

and (d) NOx emissions of DICI vehicles with SCR. The lower and upper bounds of the boxes represent 2.5% and 97.5%.
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Figure 7: 95% prediction intervals for fuel economy (a) and NOx emissions (b) of the test data (red) and validation data (blue)

based on QR models trained on the training data (yellow) for DICI vehicles with LNT. Green circles indicate predictions (green

dots) within 5% of observed (black dots). Red circles illustrate observations which fall outside of the 95% prediction interval.

Boxplots comparing predictive accuracy using COPERT and the QR over three percentiles to simulate the (c) fuel economy

and (d) NOx emissions of DICI vehicles with LNT. The lower and upper bounds of the boxes represent 2.5% and 97.5%.
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Table 6: Summary of factors in QR models using predictors xi,
1
xi

, ln(xi) and exi with the lasso and elastic net, predictive

accuracy with comparisons to the training set and COPERT for fuel economy and NOx emissions

Fuel economy DISI with TWC DICI with SCR DICI with LNT

5% accuracy (green circles) 4 0 4

Inside 95% PI 20 3 19

Outside 95% PI (red circles) 3 6 1

Total vehicles 23 9 20

Predictive accuracy - Training 19% (0.6-75%) 33% (14-49%) 14% (1.2-53%)

QR 19% (0.5-71%) 34% (14-54%) 19% (1.5-48%)

COPERT 23% (4.99-44%) 12% (0.7-34%) 14% (0.32-31%)

NOx emissions

5% accuracy (green circles) 0 0 1

Inside 95% PI 9 9 19

Outside 95% PI (red circles) 14 0 1

Total vehicles 23 9 20

Predictive accuracy - Training 74% (10.7-211%) 53% (13-144%) 47% (2-546%)

QR 53% (9.2-198%) 49% (13-174%) 50% (2-728%)

COPERT 111% (8.7-919%) 87% (37-705%) 64% (12-899%)
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to only three training vehicles and nine test vehicles. In contrast, QR models for DISI vehicles with TWC

and DICI vehicles with LNT used seven and 12 training vehicle respectively and returned similar predictive

error of 19%. Notably, NOx predictive error for the three vehicle groups was similar at 49-53%. This

may be due the ability of exhaust treatment technologies to decouple engine out from tailpipe emissions,

compressing the range of emissions within each vehicle class. However, fuel economy remains dependent on

the characteristics of the vehicle and the way in which the are driven. Therefore, a broader set of training

vehicles may be required to capture fuel economy more accurately.

3.3. Role of driving, vehicle and ambient characteristics in QR models

Employing the lasso and elastic net reduced the number of predictors in the QR models across the vehicle

groups: the most sparse QR model with lasso used two variables; with up to nine added under the elastic

net. The models for fuel economy and NOx emissions depended on how the vehicle was driven and did not

incorporate predictors of engine characteristics or the environmental conditions (Table 7). Across all groups

and quantiles, QR models of fuel economy and NOx emissions comprised four common predictors: number

of stops per km, the KI of the driving and the inverse of RPSS and RPSC which all capture aspects of

the dynamics of driving [15]. Additionally, the QR models of fuel economy for all vehicle groups used the

exponential of median velocity and the inverse of each of median velocity, running velocity and aerodynamic

velocity. The closed form equations for fuel economy are given in the following equations where coefficients

are presented in the top to bottom order of the 2.5th, 50th and 97.5th percentiles.
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The QR models for NOx emissions used a similar number of predictors: two predictors with the lasso,

increasing to 10 with the elastic net. Models for DISI vehicle used only the four common predictors described

earlier, while both groups of DICI vehicles used the inverse of aerodynamic velocity. DICI vehicles with

SCR incorporated median VSP and additional dynamic predictors, such as median jolt and the exponential

of median jolt. The closed form equations for fuel economy and NOx emissions are given in the following

equations where coefficients are presented in the top to bottom order of the 2.5th, 50th and 97.5th percentiles.
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3.4. QR model sensitivity

The lasso and elastic net penalties were designed to reduce the full set of predictors to those with the

greatest influence. The sensitivity of the QR models to the number of variables was determined in two ways:

first, using the lasso only to exclude correlated predictors from the final QR model; and second, using the

smallest mean sum of errors under lasso and elastic net to return more full QR models.

Using the lasso only returned QR models which used up to two predictors for fuel economy and three

predictors for NOx emissions. The QR models predicted the fuel economy of ten DISI vehicles to within

5% of observed compared to four when the elastic net was considered. The NOx emissions of two DICI

vehicles with LNT were predicted to within 5% of observed with the lasso only, compared with one using

the elastic net. Predictions to 5% accuracy were equal, with and without the elastic net, for fuel economy

and NOx emissions across the other cases. In general, removing correlated variables associated with the

elastic net reduced the median predictive error up to 2.4 times across fuel use and NOx emissions. The error

in predicting fuel use of DICI vehicles with LNT was similar with and without the elastic net at 14.2-14.4%,

while the error in predicting fuel use of DICI vehicles using SCR with elastic net was 2.8 times lower (12%)

than with the lasso only (32%). The main advantage of incorporating correlated variables via the elastic net

was the QR models returned narrower 95% PI than with the lasso only in all but one case (fuel economy

for DISI vehicles): the smallest improvement in range was from 9.9% for NOx emissions from DISI vehicles

(9.2-198% with elastic net compared with 7.1-206% without) to 137% for NOx emissions for DICI vehicles

with LNT (1.6-728% with elastic net compared with 4.2-867% without elastic net). Including the elastic net

for DICI vehicles with SCR reduced the PI range by 2.6 times for fuel economy, from 10-115% to 14-54%.

The narrower PI implied the QR model was capturing real behaviour more accurately.

In the second analysis, QR models for fuel economy and NOx emissions used up to 110 predictors and

46 predictors, respectively. The results in Table 9 show the QR models were less accurate in predicting fuel

economy and NOx emissions compared to the base case: the median prediction error was higher; the 95% PI

were wider; and the QR model predicted the outputs of fewer vehicles to within 5% of observed. Therefore,

the approach used in this work trades broader model accuracy through narrower PI for small decreases in

median predictive accuracy.
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Table 8: Summary of factors in QR models using predictors xi,
1
xi

, ln(xi) and exi with the lasso only, predictive accuracy with

comparisons to the training set and COPERT for fuel economy and NOx emissions.

Fuel economy DISI with TWC DICI with SCR DICI with LNT

5% accuracy (green circles) 10 0 4

Inside 95% PI 23 6 19

Outside 95% PI (red circles) 0 3 1

Total vehicles 23 9 20

Predictive accuracy - Training 9% (0.3-42%) 30% (10-115%) 23% (0.5-75%)

QR 14% (0.5-46%) 32% (10-115%) 14% (0.8-69%)

COPERT 23% (4.99-44%) 12% (0.7-34%) 14% (0.32-31%)

NOx emissions

5% accuracy (green circles) 0 0 2

Inside 95% PI 9 8 19

Outside 95% PI (red circles) 14 1 1

Total vehicles 23 9 20

Predictive accuracy - Training 73% (13.1-219%) 35% (8-202%) 51% (4-1003%)

QR 54% (7.1-206%) 37% (8-209%) 57% (4-867%)

COPERT 111% (8.7-919%) 87% (37-705%) 64% (12-899%)
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Table 9: Summary of factors in QR models using the expanded predictor set of xi,
1
xi

, ln(xi) and exi , x2 and 1
x2 which returned

smallest mean squared error with the lasso and elastic net, predictive accuracy with comparisons to the training set, COPERT

and simulations for fuel economy and NOx emissions

Fuel economy DISI with TWC DICI with SCR DICI with LNT

5% accuracy (green circles) 0 0 0

Inside 95% PI 0 0 1

Outside 95% PI (red circles) 23 9 19

Total vehicles 23 9 20

Predictive accuracy - Training 114171% (982-483605%) 12973% (2999-18393%) 3211% (37-12011%)

QR 54475% (1.7-456751%) 10708% (56-18393%) 791% (4.6-11294%)

COPERT 23% (5-44%) 12% (0.7-34%) 14% (0.32-31%)

NOx emissions

5% accuracy (green circles) 0 0 1

Inside 95% PI 0 1 13

Outside 95% PI (red circles) 23 8 7

Total vehicles 23 9 20

Predictive accuracy - Training 3154% (5.2-1978431%) 1283% (36-128509%) 101% (4-3720%)

QR 539% (5.9-1627831%) 421% (24-128509%) 55% (4-2780%)

COPERT 111% (8.7-919%) 87% (37-705%) 64% (12-899%)
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4. Benefits to the approach and future improvements

There has been considerable research effort into both identifying and quantifying the increasing discrep-

ancy between type approval and real-world fuel economy and emissions. However, knowing the size of this

mismatch does not give us the tools to predict fuel economy and NOx emissions accurately.

In this work, Euro 6 vehicles were grouped by fuel-air system and exhaust gas after-treatment technology.

A QR model for each of fuel economy and NOx emissions by vehicle group was trained using a subset of

driving cycle, vehicle and ambient predictors. The performance of the QR was assessed using a 95% PI

around the observed value from a validation PEMS dataset. Metrics representing the dynamics of the

driving cycles (stops per km, KI, RPSS and RPSC) contributed most to the QR models of fuel economy

and NOx emissions, rather than engine characteristics or ambient conditions.

Our previous work on engine mapping is aimed at vehicle level accuracy. This work complements that

research by providing a bottom-up, transparent method for deriving emissions factors. However, there is

a trade-off between the effort in collecting all available data from a vehicle and predicting the fuel use

and NOx emissions from a class of vehicles. Emissions factors which can be applied to traffic flows and

composition along a road link should be derivable from readily observable data, such as driving cycles and

ambient conditions. Some vehicle specific data, such as air-fuel ratio or catalyst temperature would aid the

prediction of fuel use and emissions. However, they cannot be collected remotely at the fleet level. The

boxes in Figure 3 illustrate the broad range of fuel use and NOx emissions both between and within the

groups of vehicles used in this work. Our approach internalises the analytical difficulties of deriving models

over such ranges by focusing on the PI which enclose the observed data at the expense of some median

prediction accuracy.

QR models returned accuracy comparable with COPERT for fuel economy across the vehicle groups.

The exception was for DICI vehicles with SCR for which the median COPERT prediction error of 12%

was almost three times lower than the QR model at 34%. This relatively large predictive error may be

attributed to only three training vehicles available. The advantages of the approach manifest in improved

predictions of NOx emissions, with median error falling by 28% for DICI vehicles with LNT and by half

for both DISI vehicles and DICI vehicles with SCR. Moreover, all observed values for DICI vehicles with

SCR and 19 of 20 for DICI with LNT fell within the QR model’s 95% PI. This is encouraging as modern

exhaust after-treatment technologies decouple effectively engine out from tailpipe emissions, making it more

difficult to use physics-based, vehicle dynamic approaches to estimate emissions accurately. Using the lasso

with elastic net to produce a reduced predictor set returned QR models with optimum predictive accuracy.

The approach described in this work has a number of advantages. First, it uses internally-consistent

powertrain models of vehicles in service which incorporate explicitly the range of technologies deployed.

Repeating this analysis on Euro 5 through to RDE-compliant Euro 6 vehicles would offer insight into how
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fuel economy and NOx emissions have changed with engine and exhaust after-treatment technology. Second,

the method for developing the QR models allows new training cycles, training vehicles, metrics and modelling

approaches to be added over time to maintain and improve the QR predictive accuracy. This flexibility and

future proofing is important because the width of the 95% PI and the number of vehicles falling outside of

it implies important predictors are missing from the models.

There are areas where this work can be expanded. Namely, the vehicles were driven conservatively

(gears shifted up at lower engine speeds) during the PEMS test. Consequently, the full torque-speed range

of engine operation was not available to create the engine maps. Additionally, the gear shift regime observed

on the PEMS test was maintained during the training cycle simulations. Therefore, the fuel economy and

NOx emissions across the training cycles implicitly assume the same driver (and driving approach) as on

the original PEMS test. Future PEMS testing could be longer in duration and conducted under varied

ambient and driving behaviour conditions to characterise the vehicles more fully. For example, more testing

of aggressive driving (gears shifted up at higher engine speeds) under different ambient conditions might

return fuel economy and NOx emissions with stronger dependence on engine characteristics and ambient

conditions. Finally, expanding the PEMS regime to include engine out emissions would isolate the effect of

exhaust after-treatment technologies.
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Appendix A. Engine Mapper improvements

Appendix A.1. Extract vehicle characteristics and engine maps

A modified version of the engine mapper approach[32] was employed in this paper. The modifications

include a more robust gear ratio identification method, incorporation of RMS error for outliers of the fuel

use and emissions time series and introduction of the interquartile range (IQR) to capture the distribution

of fuel use and emissions in each area of the engine map.

A logistic curve (Qpre) was fit to the engine coolant time series. Hot running was considered to begin

when engine coolant temperature stabilised which occurred when the first order difference of Qpre became

less than 0.01 for the first time:

thot = (Qprei+1 −Qprei) < 0.01 (A.1)

where i is the ith value of the Qpre logistic fit to the engine coolant time series. A binary variable, hot ind,

was set to 1 for instances where either this condition was not met or no engine coolant temperature was

reported. The driving cycle representing hot running began at the first index with zero wheel speed after

thot.

Appendix A.1.1. New gear ratios

Initially, the highest wheel speed was assumed to correspond to the highest engine speed [32]. However,

this assumption is not robust to the range of driving behaviours observed in the population. Instead, this

work uses the 5th to the 95th percentile of wheel speed v, denoted v5−95, and corresponding engine speed

to identify the top gear and bottom gear. The engine speed at top gear was the median of engine speeds

around the maximum wheel speed (that is, vmax±1 m/s). This range ensured multiple data points existed

in the region of vmax to return a median. The maximum of v5−95 (and the corresponding engine speed)

accounted for situations where the highest engine speed did not correspond to the top gear. The minimum

of v5−95 and corresponding engine speed were assigned to operation in first gear.
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Appendix A.1.2. Incorporation of outliers

The original engine mapping work used the sum of absolute deviations (SAD) between simulated and

observed values, recognising that RMS error prioritises outliers over values closer to the median [32]. In this

work, a logical AND is applied to the SAD and RMS error values to incorporate outliers while not sacrificing

the accuracy around the median. The logical AND was applied on a per second basis in two places: first, to

determine the most likely vehicle configuration based on the deviation in engine speed between observed and

simulated; and second, to determine the optimum bin for developing the engine map based on the deviation

between observed and simulated fuel use and emissions.

Appendix A.1.3. Uncertainty in engine maps

Initially, engine maps were based on the mean value of each bin to determine that which reproduced best

the observed values [32]. The challenge of developing engine maps of fuel use and emissions from on-the-go

driving occurs because a distribution of values exists for a given engine torque-speed point, rather than

a constant value which would be obtained from a steady-state test. The mean was used because its low

breakdown threshold internalises outliers. The bin number corresponding to the smallest product of SAD

and RMSE was chosen for the map.

Appendix B. Fuel economy and emissions simulation outputs

Figures B.8-B.25 illustrate the results of the simulations of training vehicles (orange circles) across the

driving cycles (yellow dots). Validation vehicles are shown as blue crosses in each pane.

Appendix B.1. DISI with TWC
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Figure B.8: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.9: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.10: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.11: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.12: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.13: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Appendix B.2. DICI with SCR
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Figure B.14: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.15: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.16: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.17: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.18: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.19: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Appendix B.3. DICI with LNT
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Figure B.20: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.21: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).

51



0 10 20

Stops (/km)

0

5

10

0 5 10

KI (/km)

0

5

10

0 0.5

v
run

 (m/s)
-1

0

5

10

0 0.1 0.2

RPSS (m/s)
-1

0

5

10

0 0.02 0.04

RPSC (m
2
/s

2
)
-1

0

5

10

0 0.1 0.2

v
aero

 (m/s)
-1

0

5

10

0 0.1 0.2

v
aero

 (m/s)
-1

0

20

40

60

0 0.2 0.4

VSP
95

 (kW/kg)
-1

0

20

40

60

0 0.2

exp(Median v (m/s))

0

20

40

60

0.9 0.95 1

exp(Median Jolt (m/s
3
))

0

1

2

0 0.2

exp(Median v (m/s))

0

20

40

Figure B.22: Scatter plots of fuel economy (l/100 km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.23: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).

53



0 500 1000

RPSC (m
2
/s

2
)

0

5

10

0 5 10

KI (/km)

0

5

10

0 20

v
aero

 (m/s)

0

5

10

0 0.2 0.4

acc
char

 (m/s
2
)

0

5

10

0 1 2

acc
95

 (m/s
2
)

0

5

10

-2 -1 0

dec
95

 (m/s
2
)

0

5

10

20 30 40

v
max

 (m/s)

0

5

10

0 1 2

acc
iqr

 (m/s
2
)

0

5

10

0 10 20

v
iqr

 (m/s)

0

5

10

0 50

v*a
95

 (m
2
/s

3
)

0

5

10

0 50

VSP
95

 (kW/kg)

0

5

10

0 0.05 0.1

Median Jolt (m/s
3
)

0

5

10

0 2 4

Jolt
iqr

 (m/s
3
)

0

5

10

0 5

Jolt
95

 (m/s
3
)

0

5

10

0 500

T
peak

 (Nm)

0

5

10

100 150 200

P
peak

 (kW)

0

5

10

Figure B.24: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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Figure B.25: Scatter plots of NOx emissions (g/km) against QR predictors for simulated data (yellow dots), training vehicles

on the EA PEMS cycle (orange circles) and validation vehicles (blue crosses).
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