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Abstract10

Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic11

effects are difficult to measure precisely, important information about the overall distribution is captured by the12

mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for13

these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative14

traits. We also explore extensions to the models, including modular pleiotropy, variable effects sizes, mutational15

bias, and maladaptation of the wild-type. We illustrate our approach by reanalysing a large data set of mutant16

effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to17

the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics18

in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape, and19

the distribution of mutations, and so it is expected to vary in consistent ways between new mutations, standing20

variation, and fixed mutations.21
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Introduction25

Fitness epistasis occurs when allelic variation at one locus affects allelic fitness differences at other loci. Epistatic26

interactions can be used to uncover functional interactions [1], but for other questions, the most important quantity27

is the complete distribution of epistatic effects. The shape of this distribution can affect a population’s ability to28

adapt, its genetic load, the outcomes of hybridization, and the evolution of recombination rate, or investment in29

sexual reproduction [2-13].30

To investigate such questions, most research has focussed on the mean level of epistasis. This can be estimated31

from the rate at which mean log fitness declines with the number of mutations carried [7,14-17], which is simple to32

model [2,4,9,18,19]. But variation around this mean can also affect the evolutionary dynamics [6,7,17].33

To understand the complete distribution of effects, one approach is to use Fisher’s geometric model [22], a34

simple model of optimizing selection acting on quantitative traits [10,12,20,21]. Though a toy model, this approach35

is closely related to a broad class of systems biology models, involving metabolic networks [21]. Furthermore, it36

naturally generates fitness epistasis, even when mutations are additive on the phenotype; and the overall level of37

epistasis can be “tuned” by adjusting the curvature of the fitness function, that is, the rate at which fitness declines38

with distance from the optimum [10-12,23-28].39

Because it generates a rich spectrum of effects with few parameters, Fisher’s geometric model is particularly40

suitable for fitting to data [24,29-31], including data on fitness epistasis [32-36]. Perhaps most impressively, Martin41

et al. [32] used the model to successfully predict several properties of the distribution of epistatic effects in the42

microbes Escherichia coli and Vesicular Stomatitis Virus [15,37]. However, these authors did not directly study43

the effects of varying the curvature of the fitness landscape, and neither did they explore other possible variants44

of Fisher’s geometric model [25,38-41]. Here, following [32], we study properties of fitness epistasis under Fisher’s45

geometric model. We extend previous results by examining a wider class of fitness landscapes, and also compare46

the predictions to a recent, large-scale data set of yeast mutants [1].47

Models and analysis48

Basic notation and a null model without epistasis49

Let us denote as lnwd, the log relative fitness of an individual carrying d mutations. Across many individuals, the50

scaled mean and standard deviation of this quantity are51

m(d) ⌘ E (lnwd)

E (lnw1)
(1)

p
v(d) ⌘ sd (lnwd)

sd (lnw1)
(2)

where, by definition, m(0) = v(0) = 0 and m(1) = v(1) = 1. These equations use a log scale, because deviations52

from multiplicativity (i.e. from additivity on a log scale) influence the evolutionary dynamics [7].53

We can immediately give results for a null model with no epistatic effects. In this case, mutations will contribute54

identically to the mean and variance in fitness, regardless of how many other mutations are carried. So a collection55

of individuals carrying two random mutations are expected to have twice the decline in log fitness, and twice the56

variance in log fitness, as a collection of individuals carrying one mutation. This implies that57
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m0(d) = d (3)

v0(d) = m0(d) (4)

where the subscript 0 indicates the non-epistatic null model. These predictions are illustrated by red lines in Figure58

1.59

To measure epistasis directly, we could measure the pairwise interaction between two mutations, denoted a and60

b:61

" ⌘ lnw(ab) � lnw(a) � lnw(b) (5)

Here, w(a) denotes the relative fitness of the genome carrying the mutation “a”, and so on. Though widely used,62

" can be difficult to work with. For example, if the same mutation appears in multiple double mutants, then the63

complete distribution of " will entail using the samefitness measurements multiple times,creating complications64

from pseudoreplication or correlated errors. Furthermore, for a complete picture of epistasis, we would also have65

to consider higher-order interactions between three or four mutations. For these reasons, in the main text, we will66

focus on the simpler quantities of eqs. 1-2, and give some equivalent results for " in Appendix 1. The quantities67

are also closely related. For example, eq. 3 implies that there is no epistasis on average (i.e., that positive effects68

exactly match negative effects, such that E (") = 0), while eq. 4 implies that all epistatic effects are the same, such69

that Var (") = 0 (see Appendix 1). Together, then, eqs. 3-4 imply that there is no epistasis at all.70

Additive phenotypic models71

We now examine results under Fisher’s geometric model. Here, an individual’s fitness depends on its phenotype,72

described as an n-dimensional vector, z = {z1, z2, ..., zn}, whose components, zi, are the value of each trait. Fitness73

depends on the deviation of the phenotype from a single optimal value. A suitable fitness function of this kind uses74

the Euclidean distance of the phenotype from the origin, raised to the k

th power.75

lnW (z) / �kzkk (6)

where kzk ⌘
pPn

i=1 z
2
i [25,26]. An alternative, which does not assume identical selection on all traits, is76

lnW (z) / �
nX

i=1

�i |zi|k (7)

where �i determines the strength of selection on trait i [23,24]. These two fitness functions often give similar results77

(Figures S1-S2), but they are identical only when k = 2, and all �i are equal.78

The simplest versions of the model make three further assumptions: (1) that the wild-type is phenotypically79

optimal; (2) that mutations are additive with respect to the phenotype, and (3) that the mutant effects on each80

trait are drawn, independently, from a standard normal distribution. In this case, the phenotype of an individual81

carrying d mutations can be written as82

z =

8
<

:

dX

j=1

xj1,

dX

j=1

xj2, . . . ,

dX

j=1

xjn

9
=

; (8)
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where83

xji ⇠ N(0, 1). (9)

In Appendix 1, we show that, for both fitness functions, these assumptions yield the following results, as84

illustrated by the black lines in Figure 1:85

m(d) = d

k/2 (10)

v(d) = m

2
(d) (11)

Eqs. 10-11 show how k affects the level of fitness epistasis [23,26]. When k = 2, we have no epistasis on average, as86

with eq. 3 (solid black in lines in Fig. 1a-b). Setting k > 2 leads to negative epistasis on average (dashed black in87

lines in Fig. 1a-b), and k < 2 leads to positive epistasis on average (dotted black in lines in Fig. 1a-b). Note also,88

that eq. 11 will never agree with eq. 4, because these simple phenotypic models always generate fitness epistasis.89

Extensions to the phenotypic model90

Confronted with data from real quantitative traits [42], many aspects of the model above appear grossly unrealistic.91

For example, unless the number of traits is very small, the i.i.d. normal model suppresses mutations of overall small92

effect, and yet there is good reason to think that such mutations are very common [39,43-45].93

Furthermore, there is clear evidence that both selection and mutation are correlated among traits [46,47], and94

that mutations are characterised by highly leptokurtic distributions, with stronger concentrations of very small and95

very large effects; and bias, with a tendency to change traits in a particular direction [48,49]. Furthermore, there96

is some evidence of appreciable epistasis at the level of phenotype [50,51]; and restricted or modular pleiotropy,97

where mutations affect only a subset of traits ([39,52]; though see [53]). Finally, there is often evidence of beneficial98

mutations, which implies that the wild-types are suboptimal. None of this is consistent with eqs. 8-9.99

Some of the simplifying assumptions are only apparent. For example, the major effect of correlations can
often be transformed away, by redefining the axes, and considering a smaller “effective number of traits” [21,29,46].
Nonetheless, other assumptions are certainly restrictive. In Appendix 1, we explore several extensions of the model,
building on the results of several previous studies [29,32,38,39,41,44,46], but focussing only on assumptions that can
be relaxed in a general way. In particular, we consider variable distributions of effect sizes, restricted pleiotropy,
mutational bias, and suboptimal wild-types. Despite their heterogeneity, most of these extensions act to reduce
mean levels of epistasis. With modular pleiotropy, this is because mutations affecting different traits will interact
less; with high kurtosis, it is because epistasis is reduced when any of the mutations is very small in magnitude;
finally, parental maladaptation reduces “overshoots” of the optimum, which cause sign epistasis [27]. In all cases,
the predicted m(d) is intermediate between predictions from the simplest phenotypic models (eq. 10) and the null
model (eq. 3). This is illustrated by the green lines in Figure 1c, which show results with a leptokurtic distribution
of effects on each trait. Only one of the modifications has a qualitatively different effect. When mutations are
biased, their tendency to modify traits in a consistent direction makes epistasis more negative. To illustrate this,
let us assume that mutational effects have a non-zero mean, �i, such that, xij ⇠ N(�i, 1). When the bias is large,
we find that

m�(d) ⇡ d

k
, � � 1 (12)
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where � ⌘
P

�

2
i (see Appendix 1 for details). The decline of the mean fitness is now more rapid than in a model100

without bias (compare eqs. 10 and 12), and this is illustrated by the blue lines in Figure 1a, which show the effects101

of bias when k = 2.102

For the variance in log fitness, the effects are even more consistent. For all of the extensions, we find a reduction,103

compared to simplest phenotypic model, such that104

v(d) < m

2
(d), d > 1 (13)

and when k � 2, results for the null model act as lower bound, such that v(d) � m(d). This is illustrated by the105

green and blue lines in Figure 1b and d.106

To summarize, modifying the phenotypic model, to reflect data from real quantitative traits, has two main107

effects. First, it erases information about the true curvature of the fitness landscape, so that the form of m(d)108

cannot easily be used to estimate k. Second, it reduces the variance in log fitness, below m

2
(d).109

Reanalysis of data from a yeast snoRNA110

To illustrate the approach above, we now reanalyse a published data set, examining its fit to the predictions above,111

and comparing different measures of epistasis. In particular, we examine data from Puchta et al. [1], who used112

saturation mutagenesis of the U3 snoRNA in Saccharomyces cerevisiae (see Appendix 2 for full details). Figure113

2a confirms that pairwise epistatic interactions are present in these data [1]. Nevertheless, Figure 2c-d show that,114

considered as a whole, the data give a very good fit to the non-epistatic null model (eqs. 3-4).115

Some of this apparent discrepancy can be attributed to the greater robustness of our statistics to measurement116

error. For example, we show in supplementary Figures S4 and S5, that the inferred variance in epistatic effects117

decreases with the amount of replication, while patterns in m(d) and v(d) are little changed. Furthermore, some118

reduction in epistasis, relative to simple phenotypic model, could have been predicted from other aspects of the119

data. For example, the distribution of single-mutant fitnesses (Figure 2b), shows that the distribution is highly120

leptokurtic, and indicates the presence of beneficial mutations (346/965 mutations increase growth rate). Neverthe-121

less, kurtosis and wild-type maladaptation both need to be extreme for predictions to converge to the null model122

(see Appendix 1). Furthermore, the hypothesis of modularity, whereby mutations each affect different sets of traits,123

seems inherently implausible for these data, where all mutations affect sites in the same snoRNA. As such, we124

conclude that the phenotypic models - even in modified form - overestimate the true amount of fitness epistasis in125

these data. This implies that the simplest population genetic models, which ignore epistasis altogether, might be126

sufficient to understand several aspects of the evolutionary dynamics in this system, despite the clear presence of127

some fitness interactions [1].128

Discussion129

We have used simple summary statistics to describe levels of fitness epistasis. These statistics are relevant to130

evolutionary questions [7], and are less sensitive to measurement error than are estimates of individual epistatic131

effects.132

We then developed analytical predictions for these statistics under simple models of quantitative traits selected133

towards a single optimum. The simplest such model assumes that mutant effects on each trait are i.i.d. normal, and134

considered as a model of quantitative traits, this seems unrealistic [39,42-44]. Nevertheless, considered as a fitness135

landscape, the samemodel has been shown to give a good fit to fitness data from E. coli and VSV [15,32,37]. Our136

results go further, and show that only this simple model would have fit those data; increasing the realism of the137
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quantitative traits (e.g., by introducing leptokurtic effects, or restricting pleiotropy), would have underpredicted138

the amount of epistasis. This reinforces the argument of [21], that the “traits” in Fisher’s geometric model, when139

considered as a fitness landscape, should not be equated with standard quantitative traits. On a related point, the140

good fit to the fitness data was obtained by assuming that k = 2 [15], and we have shown that no other value of141

k could have given a comparable fit. This has implications for the evolution of epistasis, because multiple authors142

have shown that models with no epistasis on average (i.e., with k = 2), are vulnerable to invasion by modifiers143

[26,54,55]. As such, the good fit of k = 2 implies that global modifiers of fitness epistasis do not arise in these144

systems.145

Of course, there is no reason to assume that identical patterns of epistasis will characterise all data sets [56,57],146

and we have offered two further reasons to doubt this. First, empirically, we have shown that the data of [1] give147

a good overall fit to a non-epistatic null model, despite the likely presence of some fitness interactions ([1]; Figure148

2). Second, theoretically, we have shown how the observed level of epistasis will depend on both the underlying149

fitness landscape, and the distribution of mutation effects. For example, a landscape with a high level of curvature150

(i.e., k > 2), might still generate a linear decline in mean log fitness (such that m(d) ⇡ d) if the distribution of151

mutant effect sizes is highly leptokurtic; but this effect should be evident in the reduced levels of variance (such152

that v(d) < m

2
(d) for d > 1). Finally, if mutations of very large or very small effect are less likely to contribute153

to adaptation, then the fixation process acts to restrict the distribution towards mutations of medium size [38]. As154

such, the levels of observed epistasis should increase steadily for new mutations, standing variation, and differences155

that are fixed between populations.156
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Figure Legends288

Figure 1289

Predictions for mean log fitness (a,c) or the standard deviation in log fitness (b,d). Upper panels show predictions290

for individuals carrying different numbers of mutations, d. Lower panels show results for double mutants (d = 2),291

varying the curvature of the fitness landscape, k. Results for the null model, with no epistasis, are shown as red292

dashed lines. In this case, the mean and variance in log fitness both change linearly with d (eqs. 3-4). Results for293

simple phenotypic models are shown as black lines. The upper panels show results with no epistasis on average294

(solid lines, k = 2), negative epistasis on average (dashed lines, k = 4), or positive epistasis on average (dotted295

lines, k = 1). Blue lines show results for a model with strongly biased mutations (� = 3, k = 2; eqs. 51-52); these296

can be compared to the dashed line in (a) or the solid line in (b), which correspond to results with very large bias297

(e.g., eq. 12). Green lines show results where the mutations on each trait are drawn from a leptokurtic reflected298

exponential distribution (eqs. 44).299

Figure 2300

Reanalysis of mutations in Saccharomyces cerevisiae U3 snoRNA [1]. (a) shows the distribution of pairwise epistatic301

effects (eq. 5), compared to the predictions of the simplest phenotypic model with k = 2: " ⇠ N(0, 2Var (lnw1))302

(black line; [32]; Appendix 1), and a normal distribution with matching mean and variance (dotted line). (b) shows303

the distribution of single mutant log fitnesses, and the best-fit shifted gamma distribution, as predicted by the304

simplest phenotypic models [29]. (c) shows the mean of the log fitnesses of individuals carrying d mutations (black305

points with barely visible standard error bars); the median and 90% quantiles (grey points and bars); the analytical306

prediction, which applies to both the null model and the phenotypic model with k = 2 (black line; eqs. 3 and 10);307

and the best-fit regression for lnm(d) ⇠ ln d (dotted line, which has a slope implying ˆ

k = 2.16). (d) shows the308

standard deviation in the log fitnesses of individuals carrying d mutations (black points with barely visible standard309

error bars); analytical predictions from the null model, eq. 4 (dashed line), or the phenotypic model with k = 2,310

eq. 11 (solid line); and the best-fit regression of ln v(d) ⇠ ln d (dotted line, which has slope 0.89).311
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Appendix 1: Derivations322

In this Appendix, we derive the key results in the main text, and justify claims about the extensions to the simplest323

phenotypic model. We will also present results for direct measures of pairwise epistasis (eq. 5).324

1. The distribution of pairwise epistatic effects:325

Martin et al. [1] examined the scaled moments of the distribution of pairwise epistatic effects (eq. 5). These326

moments are closely related to the scaled moments of the genotypic fitness values, m(d) and v(d), that we use in327

the main text (eqs. 1-2). To see this, let us consider individuals with a wild-type phenotype z. The relative fitness328

of an individual carrying a single mutation, with phenotypic effects x, is329

lnw1 ⌘ lnW (z+ x)� lnW (z) (14)

This is closely related to the selection coefficient of the mutation, s, because when s is small in magnitude,330

s ⇡ ln(1 + s) = lnw1. This is why the quantity shown in eq. 14 is denoted as s by Martin et al. [1]. From eq. 5,331

the pairwise epistatic effect for two mutations, a and b, is then332

" = lnW (z+ xa + xb)� lnW (z+ xa)� lnW (z+ xb) + lnW (z) (15)

[1,2]. We can now use eqs. 1-2 to write the mean and variance of epistatic effects, scaled by the same quantities for333

single mutations:334

E (")

E (lnw1)
= m(2)� 2 (16)

Var (")

Var (lnw1)
= v(2) + 2� 4

p
v(2)r12 (17)

Here, we have defined335

r12 ⌘ Cor (lnW (xa + xb + z) , lnW (xa + z)) (18)

as the correlation coefficient between the log fitnesses of genotypes carrying a single mutation alone, and in combina-336

tion with a second mutation. Under the null model, with no epistasis, the double mutant log fitness must be the sum337

of two i.i.d. random variables, describing the effects of each of the two mutations. Since Cor (x+ y, y) =

p
1/2 if x338

and y are i.i.d., it follows that r12 =

p
1/2 under the null model. With this value, Var (") = 0 when v(2) = 2, justify-339

ing the assertion in the main text, that eq. 4 implies no variation in epistatic effects. The value r12 =

p
1/2 ⇡ 0.707340

for the null model can also be compared to results from other models below.341

2. Results for the simplest phenotypic model:342

Let us first consider results for the simplest model, when the wild-type is phenotypically optimal (z = 0), and the343

effects of each mutation on each trait are drawn from independent standard normal distributions (eq. 9).344

If we use the fitness function of eq. 6 [2,3], which assumes equal selection on all n traits, then the quantities we345

require for eqs. 1-2 are simply moments of the Chi-squared distribution, with n degrees of freedom:346
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�E (lnwd) = (2d)

k/2�
�
k+n
2

�

�

�
n
2

� (19)

Var (lnwd) = (2d)

k

 
�

�
2k+n

2

�

�

�
n
2

� �
�

2
�
k+n
2

�

�

2
�
n
2

�
!

(20)

The results of eqs. 10-11 follow directly.347

If we allow for variation in the strength of selection between traits, and use the fitness function of eq. 7 [4],348

then the key quantities are now the moments of a folded normal distribution (i.e., the absolute value of a normally-349

distributed random variable).350

�E (lnwd) = (2d)

k/2�
�
k+1
2

�
p
⇡

nX

i=1

�i (21)

Var (lnwd) = (2d)

k

 
�

�
2k+1

2

�
p
⇡

�
�

2
�
k+1
2

�

⇡

!
nX

i=1

�

2
i (22)

and again, eqs. 10-11 follow directly. Figure S1a confirms, with simulations, that the two fitness functions give351

identical results.352

2.1 Pairwise epistatic effects353

To calculate the variance in pairwise epistatic effects (eq. 17), we also require the correlation coefficient of eq. 18.354

For the fitness function of eq. 7, this is maximized at k = 2, where it takes the value:355

r12 = Cor

⇣
|xai + xbi|2 , |xai|2

⌘
=

1

2

, k = 2 (23)

and so the correlation between single- and double-mutant fitnesses is always lower than under the null model. The356

same value holds approximately for other values of k, and for the alternative fitness function of eq. 6. As such, we357

have the results358

� E (")

E (lnw1)
= 2� 2

k/2 (24)

= 0, k = 2 (25)

Var (")

Var (lnw1)
⇡ 2(1 + 2

k�1 � 2

k/2
) (26)

= 2, k = 2 (27)

These results are compared to simulation in Fig. S2. When k = 2, eqs. 25 and 27 reproduce the results of359

Martin et al. [1], while increasing k above this value makes expected levels of epistasis more negative (E (") < 0),360

and increases the variance in epistatic effects (Var (") > 2Var (lnw1)).361

The complete distribution of " is also derivable for k = 2, since we have362
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" /
nX

i

�i⇠i, k = 2 (28)

where ⇠i ⌘ xaixbi, and this has the pdf363

pdf(⇠) =

Z 1

0

cos(|⇠|t)
⇡

p
t

2
+ 1

dt

which has a vanishing mean and unit variance. As shown in Fig. S2, the mode of the distribution remains close to364

zero for all k values, meaning that variation in the curvature of the fitness landscape acts to skew the distribution365

of epistatic effects.366

3. Extensions to the simplest phenotypic model367

In this section, we consider various extensions to the simplest phenotypic model. These analyses support eqs. 12368

and 13 and statements in the main text.369

3.1. Modular pleiotropy and variable effects sizes370

The first set of extensions are most easily made with the isotropic fitness function of eq. 6.371

Let us first consider the effects of restricting pleiotropy. Instead of assuming that each mutation affects all n372

traits, we now assume that pleiotropy is modular ([5]; see also [6,7]), such that each new mutation affects a distinct373

“module” containing n

0 traits, which are under selection independently of other modules. To treat this case, consider374

the total length of the phenotypic effect for a double mutant. This can be written as:375

kxa + xbk =

vuut
nX

i

(xai + xbi)
2
=

q
kxak2 + kxbk2 + 2 kxak kxbk cos(✓) (29)

where ✓ is the angle in radians between the two mutational vectors, in the n-dimensional trait space [5]. If the376

mutations affect different modules, then their individual vectors will be orthogonal, such that cos(✓) = 0. Since377

the sum of Chi-squared random variables is also Chi-squared distributed, we require the moments of a Chi-squared378

distribution, with dn

0 degrees of freedom:379

�E (lnwd) = 2

k/2
�

⇣
k+dn0

2

⌘

�

�
dn0

2

�
, (30)

= dn

0
, k = 2

Var (lnwd) = 2

k

0

@
�

⇣
2k+dn0

2

⌘

�

�
dn0

2

� �
�

2
⇣

k+dn0

2

⌘

�

2
�
dn0

2

�

1

A (31)

= 2dn

0
, k = 2

When k = 2, these results immediately reproduce the null model (eqs. 3-4). We also have the approximation380
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v (d)

m

2
(d)

=

� (dn

0
/2 + k)� (dn

0
/2)�

�2
(dn

0
/2 + k/2)� 1

� (n

0
/2 + k)� (n

0
/2)�

�2
(n

0
/2 + k/2)� 1

⇡ 1

d

(32)

which is exact when k = 2, or in the limit as n

0 ! 1. Using the Beta function, we also have the limits:381

m(d) =

B

⇣
n0

2 ,
k
2

⌘

B

�
dn0

2 ,

k
2

� (33)

! d

k/2
, n

0 ! 1 (34)

! d, n

0 ! 0 (35)

More complete models would have to specify the probability that a pair of mutations appears in the same382

module, and also consider modules of different sizes. However, the results above are sufficient to show that m(d)383

will be intermediate between the simple phenotypic model (eq. 10), and the null model (eq. 3), and that eq. 13384

will hold. Simulations with intermediate values of n0 are shown in Figure S1b, and confirm these claims.385

The effects of modular pleiotropy can also be replicated in a model with universal pleiotropy, if we allow for386

mutations of very different sizes. This is equivalent to assuming a highly leptokurtic distribution of effects on the387

overall size of mutations, and thereby on each trait. This is easiest to demonstrate by considering pairwise epistatic388

effects, when k = 2. In this case, we have389

" = 2 kxak kxbk cos(✓), k = 2 (36)

As shown by Fisher [8], when the number of traits, n, is not very small, then an unbiased distribution of mutation390

directions leads to 2 cos(✓) ⇠ N(0, 4/n) [9,10]. As such, we have391

E (") = 0, k = 2

Var (") ⇡ 4

n

E

⇣
(kxak kxbk)2

⌘
, k = 2 (37)

If we follow Lourenço et al. [7] and draw the squared mutation magnitudes from a Chi-squared distribution with392

n

0 degrees of freedom, then it follows that Var (") =

4
nn

02. The excess kurtosis of the Chi-squared distribution is393

12/n

0
and so decreasing n

0 increases the kurtosis, and decreases the variance in epistatic effects. Simulation results,394

shown in Figure S1c and Figure S2c-d, show that the same general pattern holds for other values of k, and for other395

leptokurtic distributions of mutation sizes.396

3.2. Varying the distribution of effects on each trait397

In the previous section, we used a “top-down” approach to mutation, in which the vector size and direction were398

independently calculated [11]. The alternative, “bottom-up” approach is to directly specify the distribution of effects399

on individual traits. This is simplest with the fitness function of eq. 7, where analytical results can be obtained for400

double mutants, with d = 2.401

Because the distribution of mutations on quantitative traits is often leptokurtic, let us first consider results when402

mutational effects are drawn from a reflected exponential distribution, with parameter µ. In this case, the absolute403
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effect on a single trait, |x|, is exponentially distributed, such that404

E[|x|k] = k!µ

k (38)

Var

�
|x|k

�
= µ

2k
�
(2k)!� (k!)

2
�

(39)

For quantities involving two mutations (d = 2), if their effects have the same sign, then we have an Erlang405

distribution:406

E

�
|xa + xb|k |xaxb > 0

�
= µ

k�(2 + k)

�(2)

= µ

k
(k + 1)! (40)

If they have different signs, we have a difference in exponentials, whose pdf is407

f(�) =

2

µ

2
e

�|�|/µ (41)

E

�
|xa + xb|k |xaxb < 0

�
= k!µ

k (42)

The signs differ with 50% probability, and so, combining these results, we have408

E[|xa + xb|k] = µ

k

✓
(k + 1)! + k!

2

◆
= µ

k
k!

✓
k + 2

2

◆

(43)

Var[|xa + xb|k] = µ

2k

"
(2k)! (k + 1)�

✓
k!

✓
k + 2

2

◆◆2
#

and so, we find:409

m(2) = 1 +

k

2

v(2) =

(2k)! (k + 1)� (k!)

2
�
k+2
2

�2

(2k)!� (k!)

2
⇡ 1 + k (44)

where the approximate expression for v(2) uses Stirling’s approximation: k! ⇡
p
2n⇡

�
n
e

�n, such that (2k)!/(k!)2 ⇡410

2

2k
/

p
⇡k. The results are supported by simulations shown in Figure S1d. The important point is that the intro-411

duction of kurtosis reduces the curvature in m(d), taking it closer to the null model, while for the variance, v(d),412

we have m

2
(2) /v(2) ⇡ 1 + k

2
/(4(1 + k)), such that eq. 13 holds.413

For completeness, and to highlight the role of kurtosis, let us now assume a platykurtic distribution of effects,414

such that the effect on each trait is assumed to be uniformly distributed with mean zero: xi ⇠ U (�u/2, u/2). The415

key quantities can now be found by direct integration for d = 1 and d = 2.416

6



�E (lnwd) =

(u/2)

k

k + 1

nX

i=1

�i, d = 1
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u

k

�k+2
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�
nX
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�i, d = 2
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2k
�
(2k + 1)

�1 � (k + 1)
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� nX
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�

2
i , d = 1
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2k + 2

2

◆�1

�
✓
k + 2

2

◆�2
!

nX

i=1

�

2
i , d = 2 (45)

and so417

m(2) =

2

k+1

k + 2

v(2) =

2

2k
(k + 5)

(k + 2)

2
(46)

Simulations of this model are shown in Figure S1e. The results show that reducing the kurtosis of the mutational418

effects acts to increase the effects of epistasis on the mean fitness (i.e., exaggerating the effects of k on m(d)), and419

also increases the variance, such that v(2) > m

2
(2).420

3.3. Biased mutations, and suboptimal wild-type421

In this section, we allow for bias in the effects of mutations (i.e. a non-vanishing mean effect), and relax the422

assumption that the wild-type genotype, carrying no mutations, is phenotypically optimal. In both cases, this is423

easiest if we assume the isotropic fitness function of eq. 6.424

For bias, we assume that the effects of the j

th mutation on the i

th trait is distributed as425

xij ⇠ N(�i, 1) (47)

For suboptimality, we denote as zi, the deviation from the optimum for the i

th trait in the wild-type. In this426

case, the sum of squared trait values follows a non-central Chi-squared distribution, whose noncentrality parameter427

is given by the sum of the squared deviations for each trait, namely ↵ ⌘
Pn

i (zi + d�i)
2. The P

th moment of log428

fitness is the (Pk/2)

th moment of this distribution, and so429

E

�
(�lnWd)

P
�
= (2d)

Pk/2
e

�↵/(2d)�
�
Pk+n

2

�

�

�
n
2

�
K

✓
Pk + n

2

,

n

2

,

↵

2d

◆
(48)

= dn+ ↵, Pk/2 = 1

= 2d(dn+ 2↵) + (dn+ ↵)

2
, Pk/2 = 2
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where430

K (a, b, z) ⌘
1X

i=0

�a
i

�
�b
i

�
z

i

i!

is Kummer’s confluent hypergeometric function [12]. Simple results now follow for k = 2, namely, E (lnwd) =431

�(dn+ ↵+ lnW0) and Var (lnwd) = 2d(dn+ 2↵). For general k, well defined limits [12], allow us to derive results432

where maladaptation, or bias, are large.433

First, let us consider the case where mutations are unbiased (�i = 0), but the wild-type is suboptimal. If we434

define ⇠ =

P
z

2
i , and note that lnW0 = �⇠

k/2, then we find435

m⇠(d) = d, k = 2,

! d, ⇠ ! 1 (49)

v⇠(d) = d

2 1 + 2⇠/d

1 + 2⇠

, k = 2

! d =

m

2
⇠(d)

d

, ⇠ ! 1 (50)

These results show that the non-epistatic null model is approached as the wild-type becomes very maladapted436

[13].437

Results with bias, but an optimal wildtype (zi = 0), follow in the same way. If we define � ⌘
P

�

2
i , then we438

find:439

m�(d) = d

1 + d�

1 + �

, k = 2

! d

k
, � ! 1 (51)

v�(d) = d

2 1 + 2d�

1 + 2�

, k = 2

! d

2k�1
=

m

2
�(d)

d

, � ! 1 (52)

Note that eqs. 50 and 52, are equivalent to eq. 32, showing that extreme levels of maladaptation, modularity440

and bias have identical effects on the variance. Simulation results with mutational bias are shown in Figure S1f.441

4. Simulation procedure442

In Figures S1 and S2, analytical predictions are compared to simulations written in R. The simulations made various443

assumptions about the fitness function, and the distribution of mutant effects, and these are described in the text444
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and Figure legends. For Figure S1, each increase in d was simulated by adding a 10

6 new mutations to the existing445

backgrounds. As such, each point in each Figure S1 represents the scaled mean or variance in fitness among 10

6
446

mutant individuals. For Figure S2, we generated 2⇥ 10

6 single mutations at random, and then combined these in447

pairs to calculate the 10

6 epistatic effects. As such, the larger points in Figure S2 represent the mean or variance448

in epistatic effects among 10

6 pairs of mutations, scaled by the mean or variance among the 2⇥ 10

6 single mutants.449

The smaller points in Figure S2a and c show estimated modal values. These were calculated using the half-range450

mode estimator of Bickel [24] with a bandwidth of 0.95, as implement in the R package modeest v. 2.1 [25]. When451

simulations used the fitness function of eq. 7, to generate the �i parameters, we followed [4,23], and used the452

eigenvalues of selection and mutation matrices, which were random Wishart matrices with n degrees of freedom.453

Appendix 2: Details of data reanalysis454

We searched the literature for data sets combining replicated measures of fitness for multiple mutations, chosen455

without regard for their fitness consequences. We rejected many excellent data sets where the trait measured was456

not a plausible proxy for fitness [14,15], or which contained no genotypes carrying four or more mutations [16,17],457

or mutations that were known in advance to be beneficial [18,19], or were otherwise biased [17], or which contained458

clear edge effects that could not be easily corrected [17,20]. Moreover, we did not consider mutation accumulation459

lines, where the number of mutations was not measured directly, so that estimates can be confounded by changes460

in mutation rate [21].461

For the data set of Puchta et al. [22], a 333-nucleotide long U3 snoRNA gene in Saccharomyces cerevisiae was462

the target of a saturation mutagenesis experiment. The wild-type was a D343 strain, in which the U3 gene was463

transformed to allow the yeast to survive on a selected environment containing glucose (otherwise U3 is down-464

regulated and growth arrested). Libraries of U3 mutated strains were constructed using “doped oligonucleotides”465

that randomly mutated any possible site between position 7 to 333 of the gene (327/333 sites, with an approximately466

1% mutation rate per position). All possible point mutations of the U3 gene were represented in the libraries, which467

contained single-nucleotide polymorphisms (SNPs) and short insertions and deletions (indels). To measure fitness,468

competition experiments were performed in an environment containing glucose. Following Puchta et al. [22], our469

main text reports results from the “env. 1” condition, which was kept at 30°C.470

Due to the mutagenesis procedure, many mutation combinations were present multiple times, and where this was471

the case, we took the mean of the log fitness estimates. Figure S3a compares the mean and standard deviation of472

the log fitness estimates for replicated strains. The plot shows a clear trend for heteroscedasticity, with larger fitness473

effects associated with greater measurement uncertainty (or higher environmental variance). Such heteroscedasticity474

should increase v(d) above its true value, militating against a fit to the null model, and therefore making our475

conclusions conservative.476

The data set of Puchta et al. [22] also includes additional replication, because fitness estimation was repeated477

in a second environment at 37°C (“env. 2”), and a third environment, also at 30°C (“env. 3”). As shown in Figure478

S4a-b, results for the two identical environments were highly correlated. Considering these replicate experiments,479

clarifies a disadvantage of using direct estimates of pairwise epistasis, eq. 5, because the estimates of this quantity,480

as shown in Figure S4c, are much less precisely replicated than the estimates of single- or double-mutant effects481

(Figure S4a-b). Furthermore, the estimated variance in epistatic effects, which was the subject of predictions by482

Martin et al. [1], is highly sensitive to the amount of replication. This is shown in Figure S4d. By contrast, as shown483

in Figure S5, the patterns evident in the moments of lnwd, are relatively robust between the three experiments484

(Figure S5a), and even more so, when multiple experiments are treated as replicates (Figure S5b). This remains true485

when we consider only Single Nucleotide Polymorphism mutations (i.e., excluding small insertions and deletions),486

of the kind that are used in the calculation of pairwise epistasis measures (Figure S5c). As is clear from Figure487
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S5a,c, the experiment “env. 1”, which we report in the main text, shows the largest deviations from expectations488

under the null model, again making our conclusions conservative.489

A final consequence of the saturation mutagenesis procedure was that around half of the strains contained more490

than d = 4 mutations, and some contained as many as d = 57. We did not reanalyze these highly mutated strains,491

due to experimental difficulties in measuring very low fitness values. In particular, Puchta et al. [22] truncated492

their fitness measurements at lnw = �3. This leads to edge effects that are clearly visible in Figure S3b (where log493

fitness values were averaged across all three replicate experiments). The edge effects are also visible in Figure S6,494

where we replicate Figure 1a-b, but retaining strains carrying up to d = 12 mutations (thereby including 93% of495

the data set). These edge effects explain our conservative choice to restrict the reanalysis to strains carrying d  4496

mutations in the main text.497

Supplementary Figure Legends498

Figure S1499

Properties of fitness epistasis between mutations under simple phenotypic models, based on Fisher’s geometric500

model. The left-hand panel of each pair shows the mean log fitness of individuals carrying d mutations (eq. 1), and501

right-hand panel shows the equivalent standard deviation in log fitnesses for individuals carrying d mutations (eq.502

2). For all plots, simulations are compared with k = 1 (triangles), k = 2 (circles) and k = 3 (squares). The lines503

show predictions for the simplest phenotypic model (eqs. 10-11), and the null model (eqs. 3-4 shown as dashed red504

lines). Each pair of panels shows results from two simulation conditions shown in either black or grey points. The505

conditions differ between panels as follows. In panel (a) results are compared for the simplest phenotypic models506

(eqs. 8-9) with the two different fitness function, each with n = 5 traits (black points: eq. 7; grey points: eq.507

6). In panel (b), results use the fitness function of eq. 6, but with each mutation affecting either a distinct trait508

(black points: n

0
= 1), or a distinct set of 50 traits (grey points: n

0
= 50). In panel (c) the fitness function of eq.509

6, was used with randomly orientated mutations on n = 5 traits; their magnitudes were drawn from either a Chi510

distribution with 0.1 degrees of freedom (black points), or an exponential distribution (grey points). In panel (d),511

the fitness function of eq. 7 was used, with the effects on each trait drawn from a reflected gamma distribution, with512

scale parameter 1, and shape parameter (

p
5� 1)/2 ⇡ 0.61 (i.e., a distribution with vanishing mean, unit variance,513

and a high kurtosis); results are compared with n = 5 traits (black points), and n = 50 traits (grey points). In514

panel (e), all details are as for panel (d), but the effects on each trait were drawn from a uniform distribution, on515

the range, [�0.5, 0.5]. In panel (f), the fitness function of eq. 6 was used with n = 5 traits, each with a non-zero516

mean effect; results are compared for biases of �i = 0.5 (black points), and �i = 0.1 (grey points). Other details of517

the simulations are given in the text.518

519

Figure S2520

Simulations and analytical predictions for the distribution of pairwise epistatic fitness effects (eq. 5), under the521

additive phenotypic models. Each panel shows the scaled mean or variance in epistasis (eqs. 16-17), as a function522

of k, the curvature of the fitness landscape (eqs. 6-7), and compares predictions (curves) to simulations (points).523

In panels (a)-(b), mutation effect sizes were normal (eq. 9); curves show eqs. 24-26, and simulations and colours524

match Figure S1a. In panels (c)-(d), mutation sizes have a highly leptokurtic distribution; curves use eqs. 16, 17,525

32 and 33; and simulations and colours match those used in Figure S1c. In panels (a) and (c), larger dots show526

means, and smaller dots show modal values.527

528
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Figure S3529

The correlation between the mean and standard deviation of replicate measures of mutant fitness for the dataset of530

Puchta et al. [22]. Results are for all individuals carrying up to d = 12 mutations. Panel (a) shows fitness measure-531

ments in environment 1, and includes only mutations that were replicated due to multiple hits during the random532

mutagensis. Panel (b) shows results for all mutations, by treating the 3 environments as replicated measures. The533

visible lines show the edge effects caused by inability to measure very small fitness values.534

535

Figure S4536

Saccharomyces cerevisiae snoRNA mutants generated by Puchta et al. [22]. Fitness measurements are shown for537

the same mutant strains, assayed in two environments, env 1 and env 3 (both containing glucose at 30°C). Results538

are shown only for Single Nucleotide Polymorphism mutations that were present as both single and double mutants539

(i.e., discarding all insertions and deletions, and mutations appearing only a singletons). Panel (a) shows the single540

mutants; panel (b) the double mutants, and panel (c) shows the corresponding epistatic effects (eq. 5). In each541

case, the best-fit Standardized Major Axis regression (solid line) is compared to the 1:1 slope (dashed line). Panel542

(d) shows the scaled variance in epistatic effects (eq. 17), when the log fitness values were either measured in a543

single environment, or averaged over 2 or 3 environments. Increasing the level of replication decreases the inferred544

variance in epistatic effects.545

546

Figure S5547

Saccharomyces cerevisiae snoRNA mutants generated by Puchta et al. [22], and assayed in competition experiments548

in three environments (env. 1 and 3 in glucose at 30°C, and env. 2 in glucose at 37°C). All plots show the mean and549

standard deviation in the log fitnesses of individuals carrying d mutations, as in Figure 2. Panel (a) shows results550

for the three environments separately (env. 1: black circles, env. 2: dark grey squares, and env. 3: lighter grey551

triangles). Panel (b) shows results when log fitness measurements were averaged across environments: (env. 1 and552

3: black points, env. 1 and 2: dark grey squares, and all three environments: lighter grey triangles). Panel (c) is553

identical to panel (a), but shows only Single Nucleotide Polymorphism mutations (i.e., discarding small insertions554

and deletions).555

556

Figure S6557

Saccharomyces cerevisiae snoRNA mutants generated by Puchta et al. [22]. Plots are identical to Figure 2c-d,558

but show results for individuals carrying up to d = 12 mutations. Edge effects, caused by the inability to measure559

fitness accurately below a certain value, have a visible effect after the first few mutations. This explains why our560

main results were truncated at d = 4.561
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