
Liveness-Based Garbage Collection

Author’s Version

Rahul Asati1, Amitabha Sanyal1, Amey Karkare2, and Alan Mycroft3

1 IIT Bombay, Mumbai 400076, India

{rahulasati,as}@cse.iitb.ac.in,
2 IIT Kanpur, Kanpur 208016, India

karkare@cse.iitk.ac.in,
3 Computer Laboratory, University of Cambridge, CB3 0FD, UK

alan.mycroft@cl.cam.ac.uk

Abstract. Current garbage collectors leave much heap-allocated data uncollected

because they preserve data reachable from a root set. However, only live data—a

subset of reachable data—need be preserved.

Using a first-order functional language we formulate a context-sensitive liveness

analysis for structured data and prove it correct. We then use a 0-CFA-like con-

servative approximation to annotate each allocation and function-call program

point with a finite-state automaton—which the garbage collector inspects to cur-

tail reachability during marking. As a result, fewer objects are marked (albeit with

a more expensive marker) and then preserved (e.g. by a copy phase).

Experiments confirm the expected performance benefits—increase in garbage re-

claimed and a consequent decrease in the number of collections, a decrease in the

memory size required to run programs, and reduced overall garbage collection

time for a majority of programs.

1 Introduction

Most modern programming languages support dynamic allocation of heap data. Static

analysis of heap data is much harder than analysis of static and stack data. Garbage col-

lectors, for example, conservatively approximate the liveness of heap objects by their

reachability from a set of memory locations called the root set. Consequently, many ob-

jects that are reachable but not live remain uncollected, causing a larger-than-necessary

memory demand. This is confirmed by empirical studies on Haskell [1], Scheme [2]

and Java [3] programs.

Here we consider a first-order pure functional language and propose a liveness anal-

ysis which annotates various program points with a description of variables and fields

whose object references may be dereferenced in the future. The garbage collector then

only marks objects pointed to by live references and leaves other, merely reachable,

objects to be reclaimed. (Although not strictly necessary, a collector would normally

nullify dead variables and fields rather than leaving dangling references.) Since there

are fewer live objects than reachable objects, more memory is reclaimed. Addition-

ally, since the collector traverses a smaller portion of the heap, the time spent for each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/189163335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

collection is also smaller. The work is presented in the context of a stop-the-world non-

incremental garbage collector (mark-and-sweep, compacting or copying) for which we

also show a monotonicity result: that our technique can never cause more garbage col-

lections to occur in spite of changing the rather unpredictable execution points at which

collections occur. We anticipate that our technique is applicable to more modern collec-

tors (generational, concurrent, parallel), but leave such extensions to future work.

We first define a fully context-sensitive (in the sense that its results are unaffected

by function inlining) liveness analysis and prove it correct. However, fully context-

sensitive methods often do not scale, and this analysis would also require us to deter-

mine, at run-time, the internal liveness of a function body at each call. Hence, simi-

larly to the 0-CFA approach, we determine a context-independent summary of liveness

for each function which safely approximates the context-dependence of all possible

calls [4–6]. (Note that an intraprocedural context-insensitive method which assumes no

information about function callers would be too imprecise for our needs.) In essence

our approach sets up interprocedural data-flow equations for the liveness summaries of

functions and shows how these can be solved symbolically as context-free grammars

(CFGs). We can then determine a CFG for each program point; these are then safely

approximated with finite-state automata which are encoded as tables for each program

point. For garbage collection purposes only automata corresponding to GC points need

to be stored. GC points are program points associated with a call to a user function or

to cons—see Section 4.

We previously proposed an intraprocedural method for heap liveness analysis for a

Java-like language [7] which statically inserted statements nullifying dead references to

improve garbage collection; by contrast nullification here occurs dynamically (which

can work better with aliasing) when the garbage collector acts on liveness annotations

to avoid traversing dead references. A workshop paper [8] outlined the basic 0-CFA-

style-summary interprocedural approach to functional-program liveness analysis. The

current paper adds the context-sensitive analysis and better formalisation along with

experimental results.

Motivating Example Figure 1(a) shows an example program. The label π of an ex-

pression e denotes a program point. During execution of the program, it represents the

instant of time just before the evaluation of e. We view the heap as a graph. Nodes in

the heap, also called (cons) cells contain car and cdr fields containing values. Edges in

the graph are references and emanate from variables or fields. Variable and field val-

ues may also be atomic values (nil, integers etc.) While it is convenient to box these in

diagrams, our presented analysis treats them as non-heap values.

Figure 1(b) shows the heap at π. The edges shown by thick continuous arrows are

those which are made live by the program. In addition, assuming that the value of any

reachable part of the program result may be explored or printed, the edges marked by

thick dashed arrows are also live. A cell is marked and preserved during garbage collec-

tion, only if it is reachable from the root set through a path of live edges. All other cells

can be reclaimed. We model the liveness properties of the heap as automata and pass

these automata to the garbage collector. Thus if a garbage collection happens at π with

2

(define (append l1 l2)

(if (null? l1) l2

(cons (car l1)

(append (cdr l1) l2))))

(let z←(cons (cons 4 (cons 5 nil))

(cons 6 nil)) in

(let y← (cons 3 nil) in

(let w← (append y z) in

π:(car (cdr w)))))

3

y w z

4 6

5

(a) Example program. (b) Memory graph at π. Thick edges denote
(b) live links. Traversal stops during garbage
(b) collection at edges marked .

Fig. 1. Example Program and its Memory Graph.

the heap shown in Figure 1(b), only the cells w and (cdr w), along with (car (cdr w))
and all cells reachable from it, will be marked and preserved.

Organisation of the paper Section 2 gives the syntax and semantics of the language

used to illustrate our analysis along with basic concepts and notations. Liveness analysis

is described in Section 3 followed by a sketch of a correctness proof relative to a non-

standard semantics. Section 4 shows how to encode liveness as finite-state automata.

Section 5 reports experimental results and Section 6 proves that a liveness-based col-

lector can never do more garbage collections than a reachability-based collector.

2 The target language—syntax and semantics

We let x, y, z range over variables, f over user-functions and p over primitive functions

(cons, + etc.). The syntax of our language is shown in Figure 2; it has eager semantics

and restricts programs to be in Administrative Normal Form (ANF) [9] where all actual

parameters to functions are variables. This restriction does not affect expressibility (and

indeed we feel free to ignore it in examples when inessential), but simplifies the anal-

ysis formulation. Additionally, as in the three-address instruction form familiar from

compiler texts, it forces each temporary to be named and function calls to be serialised

(necessary to get an unambiguous definition of liveness). We further require that each

variable in a program is distinct, so that no scope shadowing occurs—this simplifies

proofs of soundness. In this formulation expressions: either perform a test (if), make a

computation step (let) or return (return). The return keyword is logically redundant,

but we find it clarifies the semantics and analysis.

The body of the program is the expression denoted by emain; for analysis purposes

it is convenient to regard emain as part of a function definition (define (main) emain) as

in C. We write π : e to associate the label π (not part of the language syntax) with the

program point just before expression e.

In spite of the ANF restrictions it is still possible to inline non-recursive func-

tions (a fact we use to prove the safety of liveness analysis). A user-function call

(let x← (f y1 . . . yn) in e) to a function defined (after renaming its formals and locals

3

p ∈ Prog ::= d1 . . .dn emain — program

d ∈ Fdef ::= (define (f x1 . . . xn) e) — function definition

e ∈ Expr ::=







(if x e1 e2) — conditional

(let x← s in e) — let binding

(return x) — return from function

s ∈ Stmt ::=































k — constant (numeric or nil)

(cons x1 x2) — constructor

(car x) (cdr x) — selectors

(null? x) (+ x1 x2) — tester and generic arithmetic

(id x) — identity function (for inlining)

(f x1 . . . xn) — function application

Fig. 2. The syntax of our language

to be disjoint from existing variables) by (define (f z1 . . . zn) e f) is replaced by a se-

quence of lets of the form zi← (id yi) followed by the body e f but with its (return w)
expressions replaced by (let x← (id w) in e). (We prefer to use id as a form of no-op

function rather than introducing the form (let x← w in e) where the Stmt part of let is

a simple variable.)

Semantics We now give an operational semantics for our language. Later, a refinement

of the operational semantics, which we call minefield semantics, will serve to prove

liveness analysis correct. We give a small-step semantics because, unlike big-step se-

mantics, correctness for non-terminating programs does not need special treatment. We

start with the domains used by the semantics:

v : Val = N+ {nil}+Loc – Values

ρ : Env = Var→Val – Environment

H : Heap = Loc→ (Val×Val) – Heap

Here Loc is a countable set of locations which hold cons cells. A value is either a

number, the empty list nil, or a location ℓ. Our liveness analysis does not track numeric

values, and thus is neutral as to whether these are boxed or represented as immediates.

An environment is a finite mapping from variables to values, and a heap a finite mapping

from locations to pairs of values. Finally, S is a stack (using • for push and [] for empty

stack) of frames of unfinished function calls. A frame is a triple (e,x,ρ) representing

the call site (let x← (f y1 . . . yn) in e) being evaluated in environment ρ. Frames can

also be viewed as continuations, in this view the (ORD-RETURN) rule in the small-step

operational semantics (Figure 3) invokes them.

The semantics of statements s are given by the judgement form ρ,H,s H′,v
and those for expressions e by the form ρ,S,H,e → ρ′,S′,H′,e′. The start state is

({}, [],{},emain) and the program terminates successfully with result value ρ(x) on

reaching the halt state (ρ, [],H,(return x))

4

ρ,H,k H,k
(ORD-CONST) ℓ 6∈ dom(H) is a fresh location

ρ,H,(cons x y) H[ℓ 7→ (ρ(x),ρ(y))], ℓ
(ORD-CONS)

H(ρ(x)) = (v1,v2)

ρ,H,(car x) H,v1

(ORD-CAR)
H(ρ(x)) = (v1,v2)

ρ,H,(cdr x) H,v2

(ORD-CDR)

ρ,H,(id x) H,ρ(x)
(ORD-ID) ρ(x) ∈ N ρ(y) ∈ N

ρ,H,(+ x y) H,ρ(x)+ρ(y)
(ORD-PRIM)

ρ(x) 6= nil

ρ,H,(null? x) H,0

ρ(x) = nil

ρ,H,(null? x) H,1
(ORD-NULL)

ρ(x) ∈ N\{0}

ρ,S,H,(if x e1 e2)−→ ρ,S,H,e1

ρ(x) = 0

ρ,S,H,(if x e1 e2)−→ ρ,S,H,e2

(ORD-IF)

ρ,H,s H′,v s is not (f y1 . . .yn)

ρ,S,H,(let x← s in e)−→ ρ[x 7→ v],S,H′,e
(ORD-LET-NONFN)

s is (f y1 . . .yn) f defined as (define (f z1 . . . zn) e f)

ρ,S,H,(let x← s in e)−→ [~z 7→ ρ(~y)], (ρ,x,e)•S, H,e f

(ORD-LET-FNCALL)

ρ, (ρ′,x′,e′)•S, H,(return x)−→ ρ′[x′ 7→ ρ(x)],S,H,e′
(ORD-RETURN)

Fig. 3. The small-step operational semantics

Notation: we write ρ[x 7→ v] for the environment which is as ρ but has value v at

x. We also write [~x 7→~v] which respectively has values v1, . . . ,vn at x1, . . . ,xn and write

[~x 7→ ρ(~y)] when v1, . . . ,vn are ρ(y1), . . . ,ρ(yn).

Stuck states. Note that certain forms of e do not reduce with → (perhaps because

could not reduce a contained s). Some of these we eliminate syntactically, e.g. ensuring

all variables and functions are defined and are called with the correct number of param-

eters. Others include (cdr nil),(car 3),(+ nil 4) and (if nil e1 e2). All but the first can

be eliminated with a static type system but, treating our program as dynamically typed,

we regard all these as stuck states.

3 Liveness

In classical liveness analysis a variable is either ‘live’ (its value may be used in future

computation) or ‘dead’ (definitely not used). Semantically, a variable is dead at a given

program point if arbitrary changes to its value have no effect on the computation. Later

we will use ⊥ to represent a value which ‘explodes’ when it is used in a computation;

dead variables can safely have their value replaced with ⊥. For heap-allocated data we

need a richer model of liveness in that both variables and fields of cons cells may be

dead or live. Using 0, 1 to represent access using car, cdr respectively, liveness of the

structure reachable from a variable is a set of access paths which we represent as a

subset of {0,1}∗, and use conventional grammar notation. Thus the liveness of x being

{10,110}means that future computation can only refer to the second and third members

of x considered as a list. Semantically, access paths are prefix-closed, as accessing a

5

field requires accessing all the paths from the variable to the field, and hence the above

liveness is properly written {ε,1,10,11,110}. The classical notions of a scalar variable

being live or dead correspond to {ε} and {}.
The overall liveness (also written liveness environment for emphasis) at a program

point is conceptually a mapping from variables to subsets of {0,1}∗, but we often abuse

notation, for example writing {x.01,x.1,y.ε} instead of the map [x 7→ {ε,0,01,1},y 7→
{ε},z 7→ {}]. Analogously to classical liveness, the liveness at program point π in π : e

is the liveness just before executing e.

A complementary notion to liveness is demand. The demand for expression e is

again an access path—that subset of {0,1}∗ which the context of e may explore of

e’s result. So, for example given a demand σ and the expression π : (return x), the

liveness at π is exactly x.σ. The classical analogy of this is in strong liveness, where

an assignment node n : x := y+ z causes y and z to be live on entry to n if (and only

if) x is live at exit of n—the liveness of x at exit from n becomes the demand on y+ z.

Note that, for an operation like division which may raise an exception, the assignment

n : x := y/z makes y and z live regardless of the liveness of x.

We use σ to range over demands, α to range over access paths and L to range over

liveness environments. The notation σ1σ2 denotes the set {α1α2 | α1 ∈ σ1,α2 ∈ σ2}.
Often we shall abuse notation to juxtapose an edge label and a set of access paths: 0σ
is a shorthand for {0}σ. Finally, we use LF to range over demand transformers; given

user function f , LF f transforms demands on a call to f into demands on its formal

parameters: if f is defined by (define (f x1 . . . xn) e f) and called with demand σ, then

LFi
f (σ) is the liveness of xi at e f .

Note that liveness refers to variables and fields, and not to cons cells (i.e. to edges

in the memory graph, not to locations themselves). Hence liveness of {x.ε,x.0} means

that future computation may refer to the value ℓ of variable x, and also to the car field

of location ℓ. In the absence of other pointers to heap location ℓ, we are certain that

the cdr field of ℓ will not be referenced and may hence be corrupted arbitrarily. Note

therefore, that while ℓ cannot be garbage collected, any location ℓ′ stored in the cdr

field of ℓ would be garbage (again provided there are no other aliases to ℓ or ℓ′).

3.1 Liveness Analysis

First recall the classical formulation of liveness (as sets of simple variables) on three-

address instructions, livein(I) = liveout(I) \ def (I)∪ ref (I), and then note that strong

liveness needs, when I is the instruction z := x+ y, that ref (I) be refined to {x,y} if

z ∈ liveout(I) and {} otherwise.

Our liveness analysis formulated in Figure 4 is analogous. Firstly, the function ref ,

when given a statement s, returns the liveness generated by s. Because we generalise

strong liveness, ref needs a second parameter, specifying the demand σ on the result of

s, to determine which access paths of its free variables are made live. The cases for (id x)
and (+ x y) exemplify this. A demand of σ on (car x) is transformed to the demand 0σ
on x. In addition, car always dereferences its argument (even if its result is never used).

This generates the liveness {x.ε}∪ x.0σ (note σ may be {}). In the opposite sense, the

demand of 0σ on (cons x y) is transformed to the demand σ on x. Note that cons does

not, by itself, dereference its arguments. Thirdly, for the case of a user-function call, a

6

third parameter LF to ref expresses how the demand σ on the result is transformed into

demands on its parameters. Constants generate no liveness.

The function L now gives the (total) liveness of an expression e. The cases return

and if are straightforward, but note the liveness x.ε generated by the latter. The case

(let z← s in e′) resembles a three-address instruction: the liveness of e is given by

taking the liveness, L, of e′, killing any liveness of z and adding any liveness generated

by s. The main subtlety is how the liveness of z in L is converted to a demand L(z) to be

placed on s via ref (s,L(z),LF).

Finally, the judgement form Prog ⊢l LF is used to determine LF. Analogously

to classical liveness being computed as a solution of dataflow equations, we require,

via inference rule (LIVE-DEFINE), LF to satisfy the fixed-point property that: when we

assume LF to be the demand transformer for the program then the calculated liveness

of each function body L(e f ,σ,LF) agrees with the assumed LF f . As usual, there are

often multiple solutions to LF; all are safe (see Section 3.2) but we prefer the least one

as giving the least liveness subject to safety—and hence greatest amount of garbage

collected.

We make three observations: firstly the rule (LIVE-DEFINE) has a least solution as

L(·) is monotonic in σ; secondly that (LIVE-DEFINE) resembles the rule for type infer-

ence of mutually recursive function definitions, and thirdly the asymmetry of demand

and liveness (compared to post- and pre-liveness classically) is due to the functional

formulation here.

Section 4 shows how the demand transformer LF for a program (representing a

fully context-sensitive analysis) can be safely approximated, for each function, by a

procedure summary (unifying the contexts in the style of 0-CFA). The summary consists

of a pair of a single demand and, for this demand, the corresponding tuple of demands

the function makes on its arguments.

3.2 Minefield semantics and correctness

This section gives a modified semantics which checks liveness annotations at run time,

and ‘explodes’ when these are found to be inconsistent with execution behaviour, but

otherwise behaves as the standard semantics. We show that such explosions never occur

and hence run-time checks can be elided. We first assume an arbitrary demand trans-

former LF (below we assume Prog ⊢l LF). We then enrich the abstract machine state

ρ,S,H,e to ρ,S,H,e,σ,Σ. Here σ is the demand to the currently active function, thus

the liveness L at e is L(e,σ,LF),4 and Σ is a stack of demands—one for each function

frame pushed in S.

Second, we augment Val with a value ⊥. To model strong liveness ⊥ may be

copied freely, including into a cons cell, but explodes when used computationally (in a

primitive operation other than a copy). Additionally we define GC(L,Σ) : (ρ,H,S) 7→
(ρ′,H′,S′) which determines live-reachability5 using ρ and the ρ’s in S as the root set

and following links in H only as far as allowed by L and Σ. Hence GC(L,Σ) replaces

4 This a simple liveness propagation using L(· · ·) and ref (· · ·) as LF is assumed given.
5 Reachability curtailed by liveness information.

7

ref (κ,σ,LF) = {}, for κ a constant, including nil

ref ((cons x y),σ,LF) = {x.α | 0α ∈ σ}∪{y.α | 1α ∈ σ}

ref ((car x),σ,LF) = {x.ε}∪{x.0α | α ∈ σ}

ref ((cdr x),σ,LF) = {x.ε}∪{x.1α | α ∈ σ}

ref ((id x),σ,LF) = {x.σ}

ref ((+ x y),σ,LF) = {x.ε,y.ε}

ref ((null? x),σ,LF) = {x.ε}

ref ((f y1 · · · yn),σ,LF) =
⋃n

i=1 yi.LF
i
f (σ)

L((return x),σ,LF) = x.σ

L((if x e1 e2),σ,LF) = L(e1,σ,LF)∪L(e2,σ,LF)∪{x.ε}

L((let x← s in e),σ,LF) = L\x.{0,1}∗ ∪ ref (s,L(x),LF), where L= L(e,σ,LF)

L(e f ,σ,LF) =
⋃n

i=1 zi.LF
i
f (σ) for each f and σ

d1 . . .dk ⊢
l LF

where (define (f z1 . . . zn) e f) is a member of d1 . . .dk

(LIVE-DEFINE)

Fig. 4. Liveness equations and judgement rule

live-unreachable values—in ρ, in H and the ρ’s in S—with ⊥. For example, if x.ε 6∈ L

then ρ′(x) =⊥. Only GC(· · ·) introduces⊥.

Third, we update the semantics in four ways: (i) we arrange that all (→) transitions

on expressions e first use GC(· · ·) to update the state and then continue as before;

and (ii) whenever the value ⊥ is used computationally in a reduction (), we enter a

distinguished stuck state BANG. For example, supposing ρ(x) =⊥ then ρ,H,s BANG

if s is (car x), (cdr x) or (+ x y), but not if s is (id x), (cons x y) or (f x y). Finally

(iii) we make a similar change to the (→) reduction for (ORD-IF) and (iv) augment the

(ORD-LET) rule for primitives to propagate BANG from () to (→).

The resulting minefield semantics behaves identically (identical heap, identical steps,

including possible non-termination) to the standard semantics, except for the sole pos-

sibility of the minefield semantics going BANG while the standard semantics continues

(either to a halt state, to a stuck state, or reduces forever).

We now prove a result that relates liveness analysis to the semantics.

Proposition 1. Given program P with P ⊢l LF, then in the minefield semantics P→
BANG can never occur (cf. ‘well-typed programs do not go wrong’).

Proof outline: Space does not permit a full proof, but we give the two main steps. We

proceed by contradiction and assume there is a program P for which P ⊢l LF can enter

state BANG. The first step is to construct a program P′ with identical behaviour, but with

no user-function definitions, using inlining. This is possible because a program which

goes BANG does so after a finite number of reductions, and hence even recursive func-

tions have only had a finite number of invocations. We hence repeatedly inline-expand

8

user-function calls in P until we obtain a program P′ which behaves identically6 to

P in the standard semantics, but executes no user-function calls. Any remaining, non-

executed, calls can be replaced with a new primitive with the same demand-to-liveness

transfer function—thus making P′ a simple expression e′. Not only do the program

points in reducing e′ correspond one-one to states during evaluation of P, but also the

liveness associated with a point in e′ is identical to the liveness at the corresponding

state (ρ,S,H,e,σ,Σ) of P (concatenating the liveness L(e,σ,LF) at e with the liveness,

obtained from Σ, of the call sites in S and after renaming the variables correspond-

ingly to the inlining which produced e′). This assertion relies on the analysis being

fully context-sensitive, and noting that while the change of scope caused by inlining

changes variable visibility between P and e′ it does not change the liveness—as local-

to-a-function let-variables whose scope has been prolonged due to inlining are dead in

the prolonged scope.

The second step of the proof is to show that e′ cannot go BANG. We proceed by in-

duction. Correctness of the if and final return forms are immediate; the (let z← s in e)
form requires showing the inference rules ensure that any value referenced via z in e

was already live-reachable (via another variable and path) in any enclosing expression

(so that GC(· · ·) could not re-write it to ⊥).

4 Computing liveness and its encoding as a table

Section 3 gave a context-sensitive liveness analysis and proved it correct with refer-

ence to a minefield semantics. For practical use we need to solve the liveness equations

finitely and symbolically. As expressed mathematically, and given a fixed program, three

things are potentially unbounded: (i) the number of call strings (and hence arguments σ
to LF); (ii) the length of access paths α ∈ σ and (iii) the number of such access paths.

We commonly first solve (i) by reducing the number of distinct calling contexts

(e.g. to a single unified context in 0-CFA style). However, it turns out that we can

solve the equations for LF symbolically without this reduction, so here we defer this to

Section 4.2. (It also allows easier extension to dynamically determined liveness—future

work.) We address (ii) and (iii) by re-interpreting the liveness definitions in Figure 4

symbolically as a grammar rather than a mutually recursive set of equations on sets of

access paths.

This requires two ideas. Firstly we have to control the use of functions—they tend

to be infinitary and do not occur naturally in CFGs; in particular our L maps names

to access paths, and LF maps access paths to a tuple of access paths. The former is

achieved by using a separate meta-variable (later non-terminal) Lx
i for each variable x

and each program point πi (Lx
i represents L(x) at πi). Section 4.1 shows how the latter

LFi
f is also expressible finitely (it is a linear form).

Secondly, there are also two technical issues in re-interpreting Figure 4 as a gram-

mar. One is the use of the set-difference operator \ in “· · · \ x.{0,1}∗” reflecting the

classical gen/kill dataflow formulation. However after separating, as above, liveness en-

vironments into per-variable liveness Lx
i the ‘\’ operator reduces to the harmless gram-

mar rule Lx
i = {} (assuming i labels the (let x . . .) expression). The other is that ref for

6 Modulo replacement of (ORD-CALL) and (ORD-RETURN) steps with (ORD-ID) steps.

9

cons decomposes strings and thus gives a general grammar not a CFG. Below we show

how symbols 0̄, 1̄ can give an equivalent CFG.

Finally, Section 4.3 uses a construction due to Mohri and Nederhof [10] to over-

approximate context-free grammars with regular grammars; these are more appropriate

for run-time use. Hence the overall ‘big picture’ view is that each GC point is annotated

with a table encoding the DFA for that program point. When garbage collection occurs,

each saved return address on the run-time stack identifies the call-site GC point. The

DFA annotating each such GC point is then used by the garbage collector to curtail (to

access paths accepted by the DFA) its local-variable reachability-based marking.

GC points. Given a call site (an expression π1 : (let x ← (f y1 . . . yn) in π2 : e)) its

associated GC point is π2, as it is liveness at π2 that should be encoded in the DFA

associated with the call.7 In the case of a call to cons as in π1:(let x← (cons y1 y2) in π2:

e), the situation is slightly more complex. We may either treat cons as doing a full

procedure call (and mark its formal parameters separately during garbage collection,

which again leads to its GC point being π2), or we may regard cons as being inlined,

in which case it is vital that liveness of y1 and y2 are represented in the DFA (which is

achieved by using π1 rather than π2 as the GC point). We adopt the latter approach.

Modifying the cons rule. The ref rule for cons, shown in Figure 4, requires us to

remove the leading 0 and 1 from access paths in σ. Mathematically this is fine but causes

problems when solving the liveness equations symbolically since such decomposition

cannot be expressed as a context-free grammar. To handle this, we introduce two new

symbols 0̄ and 1̄ with the properties:

0̄σ, {α | 0α ∈ σ} and 1̄σ, {α | 1α ∈ σ}

We can now rewrite the cons rule as:

ref ((cons x y),σ,LF) = x.0̄σ∪ y.1̄σ

We call the liveness equations with this modification L
′. The definitions of 0̄ and 1̄

induce the following relation →֒ over sets of access paths:

σ10̄σ2 →֒ σ1σ′2, where σ′2 = {α | 0α ∈ σ2}, and

σ11̄σ2 →֒ σ1σ′2, where σ′2 = {α | 1α ∈ σ2}

The reflexive transitive closure of →֒ will be denoted as
∗
→֒. The following proposition

relates L and L
′:

Proposition 2. Assume that a liveness computation based on L gives the liveness of the

variable x at a program point πi as σ (symbolically, Lx
i = σ). Further, suppose Lx

i = σ′

when L
′ is used for liveness computation instead of L . Then σ′

∗
→֒ σ.

7 A subtlety is that at machine code level the assignment to x does not take place until after the

call, and so for garbage-collection purposes the DFA need not represent liveness of x.

10

(define (append l1 l2)

π1: (let test← (null? l1) in

π2: (if test π3:(return l2)

π4: (let tl← (cdr l1) in

π5: (let rec← (append tl l2) in

π6: (let hd← (car l1) in

π7: (let ans← (cons hd rec) in (return ans))))))))

πmain: . . .
π8: (let y← (append a b) in

π9: (let w← (append y z) in

π10: (let c← (cdr w) in

π11: (let d← (car c) in (return d)))))))

Fig. 5. An example program. GC points are π6, π7, π9 and π10.

To see why the proposition is true, consider an analysis based on L
′ in which σ

appears in the context ref ((cons x y),σ,LF). Let α ∈ σ. The symbol 0̄ (respectively 1̄)

merely marks a place in α where the original cons rule would have erased an immedi-

ately following 0 (respectively 1), or, in absence of such a symbol, would have dropped

α itself. Since the application of any rule in L
′ merely adds symbols at the beginning

of α, the markers and other symbols in α are propagated to other dependent parts of

program in their same relative positions. Consequently, the erasure carried out at the

end of the analysis with
∗
→֒ gives the same result as obtained through L .

4.1 Generating equations for the demand transformer LF

We shall consider the program in Figure 5 as a running example. Unlike the program in

Figure 1, this program is in ANF.

To generate the equations defining LFf , we follow the rule DEFINE-LIVE. We start

with a symbolic demand σ and determine L = L(ef ,σ,LF), treating LF as an uninter-

preted function symbol. We then generate equations of the form LFi
f (σ) = L(xi) where

xi is the ith formal parameter of f and L(xi) is the liveness of xi. For our example pro-

gram which has a single function append, this generates the following equations:

LF1
append(σ) = {ε}∪00̄σ∪1LF1

append(1̄σ)

LF2
append(σ) = σ∪LF2

append(1̄σ)

In general, the equations for LF are recursive since L may, in turn, be expressed in terms

of LF. We assume that LFf is expressible in the closed form as:8

LFi
f (σ) = Iif ∪D

i
f σ (1)

8 This is similar to solving the differential equation ay′′ + by′ + c = 0, where we guess that

the solution has the form y = erx. Substituting the solution in the equation yields a quadratic

equation in r, and each solution of r gives rise to a solution of the differential equation (in our

setup we can effectively pick the least solution rather than needing linear combinations).

11

where Iif and Di
f are sets of strings over the alphabet {0,1, 0̄, 1̄}. The reason why LF has

this form is as follows. Recall that LFi
f (σ) gives the access paths starting from i that

have to be dereferenced to produce the sub-structure σ of the result of f . Iif represents

the access paths that would be dereferenced, but do not contribute to the result. This

happens, for instance, when the argument is used only within the condition of an if. Di
f ,

in contrast, represents the paths that are dereferenced to actually produce the result.

To solve for LFf , we substitute the guessed form into its equations. LFappend gives:

I1append ∪D
1
appendσ = {ε}∪00̄σ∪1(I1append∪D

1
append1̄σ)

I2append ∪D
2
appendσ = σ∪ I2append∪D

2
append1̄σ

Equating the terms containing σ on the two sides of each equation, and doing the

same for the terms without σ, we get equations for Iif and Di
f that are independent of σ.

I1append = {ε}∪1I1append I2append = I2append

D1
append = {00̄}∪1D1

append1̄ D2
append = {ε}∪D2

append1̄

Note that these equations can be viewed as CFGs, with all but D1
append being regular,

and that any solution of Iif and Di
f yields a solution of LFf .

4.2 Generating liveness equations L for function bodies

We now calculate a 0-CFA-style summary liveness for each GC point of a program.

There are two parts to this. First, for each function f , we determine a summary demand

σ f over-approximating any demand σ passed to f . Such demands are caused by calls

to f occurring at call sites. We introduce the notation δ f (π,g) for the contribution to σ f

caused a call site π occurring in function g. So, suppose function g contains a call site

π to f , say π:(let x← (f y1 . . . yn) in e). Under the assumption that the demand on g is

σg, the liveness at e is L= L(e,σg,LF), and the let case of Figure 4 tells us this call site

contributes L(x) to the demand σ f placed on f ; hence δ f (π,g) is simply L(x).
Now, supposing the k call sites to function f are π1 (in function g1) . . . πk (in

function gk), then the over-approximation requirement on σ f is achieved by taking

σ f = δ f (π
1,g1)∪·· ·∪δ f (π

k,gk).

The expression emain is a special case; we assume it may be called externally with

demand σmain = {0,1}∗ (denoted σall). This is because any part of its value may be

used by the environment—for printing the result, for instance.

For the running example, append has calls from main at π9 and a recursive call at

π5. So σappend = δappend(π9,main)∪δappend(π5,append). Calculating the δappend(π,g)
for the two call sites, and substituting gives:

σappend = ({ε,1}∪10σall) ∪ 1̄σappend

Second, for each function f (possibly main) we need the liveness at each contained

GC point π. Given σ f calculated above, this is simply L(π,σ f ,LF). For the running

12

example, containing GC points π6,π7 in append and π9, π10 in emain, this gives (recall

Equation (1) above states LFi
f (σ) = Iif ∪D

i
f .σ):

Ll16 = {ε}∪00̄σappend Lrec6 = 1̄σappend

Lhd7 = 0̄σappend Lrec7 = 1̄σappend

L
y

9 = LF1
append({ε,1}∪10σall) Lz9 = LF2

append({ε,1}∪10σall)

Lw10 = {ε,1}∪10σall

In summary, the equations generated during liveness analysis are:

1. For each function f , equations defining Iif and Di
f for use by LFf .

2. For each function f , an equation defining the summary demand σf on e f .

3. For each function f (including main for emain) an equation defining liveness at each

GC point of ef .

4.3 Solving liveness equations—the grammar interpretation

The liveness equations above (of the form X = . . .) can now be re-interpreted as a

context-free grammar (CFG) on the alphabet {0,1, 0̄, 1̄}. We use 〈X〉 to denote the cor-

responding non-terminal which then appears in a production 〈X〉→ We can think

of the resulting productions as being associated with several grammars, one for each

non-terminal 〈Lx
i 〉 regarded as a start symbol. As an example, the grammar for 〈L

y

9〉
comprises the following productions:

〈L
y

9〉→ 〈I
1
append〉 | 〈D

1
append〉(ε | 1 | 10〈σall〉)

〈I1append〉→ ε | 1〈I1append〉

〈D1
append〉→ 00̄ | 1〈D1

append〉1̄

〈σall〉→ ε | 0〈σall〉 | 1〈σall〉

Other equations can be converted similarly. The language generated by 〈Lx
i 〉, denoted

L (〈Lx
i 〉), is the desired solution of Lx

i . However, recall from our earlier discussion that

the decision problem that we are interested in during garbage collection is:

Let x.α be a forward access path—consisting only of edges 0 and 1 (but not

0̄ or 1̄). Let L (〈Lx
i 〉)

∗
→֒ σ, where σ consists of forward paths only. Then does

α ∈ σ?

We could convert the rules defining →֒ into productions and add them to the grammar.

However, this results in an unrestricted grammar [11], and the membership problem for

such grammars is undecidable. We circumvent the problem by over-approximating the

CFG generated by the analysis to strongly regular CFGs which have easy translations

to non-deterministic finite state automata (NFA). The NFAs are then simplified on the

basis of the →֒ rules to enable checking of membership of forward access paths. The

resulting NFAs are finally converted to DFAs for use during garbage collection.

13

Input: NFA N with underlying alphabet {0,1, 0̄, 1̄}

Output: NFA N with underlying alphabet {0,1} such that L (N)
∗
→֒L (N).

Steps:

i← 0

N0← Equivalent NFA of N without ε-moves [11]

repeat

N′i+1← Ni

for all states q in Ni such that q has an incoming edge from q′ with label 0̄ and outgoing

edge to q′′ with label 0 do

add an edge in N′i+1 from q′ to q′′ with label ε. {bypass 0̄0 using ε}
end for

for all states q in Ni such that q has an incoming edge from q′ with label 1̄ and outgoing

edge to q′′ with label 1 do

add an edge in N′i+1 from q′ to q′′ with label ε. {bypass 1̄1 using ε}
end for

Ni+1← Equivalent NFA of N′i+1 without ε-moves

i← i+1

until (Ni = Ni−1)

N← Ni

Fig. 6. Algorithm for transforming an NFA to accept forward paths only.

Approximating CFGs using NFAs. We use the algorithm by Mohri and Nederhof [10]

to approximate a CFG to a strongly regular grammar. The transformation has the prop-

erty that if L is a non-terminal in the grammar G and G′ is the grammar after the Mohri-

Nederhof transformation, then LG(L)⊆LG′(L). This is required for the approximation

to be safe with respect to liveness.

We exemplify the Mohri-Nederhof transformation on the 〈L
y

9〉 grammar above. We

pick the only production that is affected by the transformation—the production for

D1
append. The production for I1append, while recursive, is already in strongly regular form

and is therefore unaffected by the transformation.

〈D1
append〉→ 00̄〈D1

append〉
′
| 1〈D1

append〉

〈D1
append〉

′
→ 1̄〈D1

append〉
′
| ε

The languages generated for 〈D1
append〉 in the original grammar and the new grammar

are 1i00̄1̄i and 1∗00̄1̄∗, showing a loss of precision.

Transforming NFAs to accept forward paths: The strongly regular CFGs obtained

after the Mohri-Nederhof transformation are first converted into NFAs. The algorithm

described in Figure 6 converts an NFA N to a NFA N such that L (N)
∗
→֒L (N), where

N accepts forward paths only. Thus N can be used to check membership of forward

paths.

The algorithm repeatedly introduces ε edges to bypass a pair of consecutive edges

labelled 0̄0 or 1̄1. The process is continued until a fixed point is reached. When the

14

〈I1append〉

1

(a)

〈D1
append〉

1

0 0̄

1̄

(b)

〈L
y

9〉

ε

ε 0 0̄ ε 1 0

1

1 1̄ 0/1

(c)

〈L
y

9〉
q0 q1 q2 q3 q4

0 0̄ 1 0

1 1̄ 0/1

(d)

〈L
y

9〉
q0 q1 q2 q3 q4

0 0̄ 1 0

1 1̄ 0/1

ε

(e)

〈L
y

9〉
q0 q1 q5 q2

0 0̄ 0

1 1,1̄ 0,1

ε

(f)

〈L
y

9〉
q0 q6 q5

0 0̄

1 1,1̄0,1

0̄

(g)

〈L
y

9〉
q0 q6

0

1 0,1

(h)

Fig. 7. Automata for the example program

fixed point is reached, the resulting NFA contains all possible reductions corresponding

to all the paths in the original NFA. The proofs of the termination and correctness of

the algorithm are given in our earlier paper [8].

We illustrate the algorithm in Figure 6 by constructing the automaton for 〈L
y

9〉. Fig-

ure 7 (c) shows the automaton for 〈L
y

9〉 constructed by composing the automata for

〈I1append〉, 〈D
1
append〉 and (ε | 1 | 10σall). After ε removal we get (d). We add an ε edge

from q2 to q3 bypassing the 1̄1 pair from q2 to q2 and then to q3. This is shown in (e).

The ε edge is removed in (f) and a second ε is added to the automaton bypassing the 0̄0

pair from q1 to q2. Removing this ε edge gives the automaton shown in (g). Restricting

this automaton to forward edges only, we get the final automaton shown in (h). This

automaton recognises 1∗ | 1∗0σall , showing that the entire list y, including its elements,

is live at π9. Also note that the language accepted by the final automaton satisfies the

prefix-closed property.

5 Prototype and evaluation

To demonstrate the effectiveness of liveness-based garbage collection, we have built a

prototype consisting of an interpreter for our language, a liveness analyser and a copy-

ing collector that can optionally use the results of liveness analysis for marking instead

of reachability. When the collector uses liveness for marking, we call it a liveness-based

15

collector (LGC), else we use the term reachability-based collector (RGC). The collec-

tor is neither incremental nor generational. As a consequence, any cell that becomes

unreachable or dead is assuredly collected in the next round of garbage collection.

When LGC is invoked (by a call to cons) the activation records on the stack all

correspond to functions suspended at GC points, and by construction at each GC point

we have a DFA specifying liveness of each local variable in the activation record. As

usual such local variables form the root set for garbage collection.

Let dfax
π denote the DFA for the variable and program point pair (x, π). We write

initial(dfax
π) for the initial state of dfax

π. Considering a DFA as a table, dfax
π(q,sym)

returns the next state for the state q and the symbol sym, where sym is 0 or 1. We

shall also write dfax
π(q,sym)? for a predicate indicating whether there is a transition

from q on sym. The LGC action to chase the root variable x at π can be described

as follows: If L (dfax
π) is empty, then nothing needs to be done. Otherwise we call

copy(dfax
π, initial(dfa

x
π),x) in Figure 8 and assign the returned pointer to x. The function

move to tospace(x) copies the value of x in the other semi-space and returns the new

address. It hides details such as returning the forwarding pointer if the value of x is

already copied, and creating the forwarding pointer otherwise.

The graphs in Figures 9, 10, and 11 show the number of cells in the heap over

time for RGC and LGC—here time is measured in terms of the number of cons cells

allocated. In addition, they also show the number of reachable cells and the number

of cells that are actually live (this is statically approximated by our liveness analysis).

Since the programs have different memory requirements, we have tuned the size of heap

for each program to ensure a reasonable number of collections. An invocation of RGC

decreases the number of cells in heap until it touches the curve of reachable cells. An

invocation of LGC decreases the number of heap cells to no lower than the curve of live

cells.

To construct the reachable and live curves, we record for every cell its creation

time (Create time), its last use time (Use time), and the earliest time when the cell

becomes unreachable and can be garbage collected (Collection time). For accurate

recording of Collection time, we force frequent invocations of a reachability-based

collector in a separate run. A cell is live at time T if Create time ≤ T≤ Use time. If

Create time ≤ T≤ Collection time, it is reachable.

The benchmark programs are drawn from the no-fib suite and other sources and

have been manually converted to ANF. All graphs except fibheap show strictly fewer

garbage collector invocations for LGC; fibheap is an exception in that the number of

reachable cells first grows steadily until it almost fills the heap. This triggers garbage

collections in both LGC and RGC. The number of reachable cells then drops steeply to

a low level and remains low resulting in no further garbage collections. The graphs also

show the precision of our liveness analysis. For all programs except nperm and lambda,

LGC manages to collect a good portion of the cells that are not live.

5.1 Results

The increased effectiveness of LGC over RGC is also shown in the tables in Figure 12.

The first table provides statistics regarding the analysis itself. The number of states

and the analysis times are within tolerable limits. Precision of analysis refers to the

16

function copy(dfa, q, x)

let y←move to tospace(x)
if x.tag 6= cons then skip

else if dfa(q,0)? then y.car = copy(dfa,dfa(q,0),x.car)
if dfa(q,1)? then y.cdr = copy(dfa,dfa(q,1),x.cdr)

return y

Fig. 8. Function for copying a root set variable.

percentage of dead cells that is collected by LGC, averaged over all invocations. The

second table shows garbage collection statistics for RGC and LGC. LGC collects larger

garbage per invocation, drags cells for lesser time and requires a smaller heap size

(MinHeap) for program to run in comparison with RGC.

There are a couple of issues of concern. The garbage collection time is larger in

the case of LGC for some programs. The reason is that the cost of consulting the live-

ness DFA may outweigh the combined benefits of fewer garbage collections and fewer

markings per garbage collection. The other issue is illustrated by the program lambda.

As can be seen from the table in Figure 12, the number of touched cells9 in this example

is much higher for LGC. This increase is due to excessive sharing among heap nodes in

this program. Note that a node re-visited because of sharing is not explored any further

during RGC. However, this curtailment cannot happen in LGC because of the possibil-

ity that the node, re-visited in a different liveness state, may mark a set of cells different

from the earlier visit.

6 Collecting more garbage can never slow things down

Since garbage collection is effectively asynchronous to the allocator thread, one might

worry as to how robust our measurements are. For example, while LGC would, in gen-

eral, collect more garbage than RGC in the same heap state, might LGC do a larger

number of collections for some programs? We prove below that this cannot happen.

This result applies to classical mark-and-sweep and copying garbage collectors and, we

believe, also to generational collectors.

Lemma 1. For the same mutator, a liveness-based collector can never do more garbage

collections than a reachability-based collector.

Proof. Assume, as before, that time is measured in terms of the number of cons cells

allocated. Now run two copies of the mutator, one with RGC and one with LGC, in

parallel. Memory allocations by cons happen simultaneously, but the times of garbage

collections diverge.

To prove the lemma, it is enough to show the truth of the following statement:

After every LGC invocation, the count of LGC invocations is no greater than RGC

invocations. The base case holds since the first invocations of both GCs happen at the

same time. Assume the statement to be true after n invocations of LGC. Since LGC

9 These are the cells visited during the marking phase, often more than once due to sharing.

17

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 0 2050 4100 6150 8200 10250 12300

sudoku

 0

 9000

 18000

 27000

 36000

 45000

 54000

 0 100000 200000 300000 400000

lcss

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 400000 800000 1.2e+06

gc_bench

Fig. 9. Memory usage of programs. The red and the blue curves indicate the number of cons cells

in the active semi-space for RGC and LGC respectively. The grey curve represents the number of

reachable cells and the black curve represents the number of cells that are actually live (of which

liveness analysis does a static approximation). x-axis is the time measured in number of cons

cells allocated. y-axis is the number of cons cells.

18

 0

 35000

 70000

 105000

 140000

 175000

 210000

 0 145000 290000 435000 580000 725000 870000

nperm

 0

 30000

 60000

 90000

 120000

 150000

 180000

 210000

 240000

 270000

 0 70000 140000 210000 280000 350000 420000

fibheap

 0
 40000
 80000

 120000
 160000
 200000
 240000
 280000
 320000
 360000
 400000
 440000
 480000
 520000

 0 850000 1.7e+06 2.55e+06 3.4e+06

knightstour

Fig. 10. Memory usage of programs. The red and the blue curves indicate the number of cons cells

in the active semi-space for RGC and LGC respectively. The grey curve represents the number of

reachable cells and the black curve represents the number of cells that are actually live (of which

liveness analysis does a static approximation). x-axis is the time measured in number of cons

cells allocated. y-axis is the number of cons cells.

19

 0

 210000

 420000

 630000

 840000

 1.05e+06

 1.26e+06

 1.47e+06

 1.68e+06

 1.89e+06

 0 3e+06 6e+06 9e+06 1.2e+07 1.5e+07

nqueens

 0

 110000

 220000

 330000

 440000

 550000

 0 130000 260000 390000 520000 650000

treejoin

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 900 1800 2700 3600 4500 5400

lambda

Fig. 11. Memory usage of programs. The red and the blue curves indicate the number of cons cells

in the active semi-space for RGC and LGC respectively. The grey curve represents the number of

reachable cells and the black curve represents the number of cells that are actually live (of which

liveness analysis does a static approximation). x-axis is the time measured in number of cons

cells allocated. y-axis is the number of cons cells.

20

Program sudoku lcss gc bench nperm fibheap knightstour treejoin nqueens lambda

Time (msec) 120.95 2.19 0.32 1.16 2.4 3.05 2.61 0.71 20.51

DFA size 4251 726 258 526 675 922 737 241 732

Precision(%) 87.5 98.8 99.9 87.1 100 94.3 99.6 98.8 83.8

(a)

Collected # Touched MinHeap Avg. Drag GC time

cells per GC cells per GC #GCs (#cells) (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 1568 774 22 9 1704 589 858 146 .028 .122

lcss 46522 51101 6216 1363 8 7 52301 1701 5147 588 .045 .144

gc bench 129179 131067 1894 4 9 9 131071 6 16970 4 .086 .075

nperm 47586 174478 201585 60882 14 4 202597 37507 171878 76618 1.406 .9

fibheap 249502 251525 5555 2997 1 1 254520 13558 78720 0 .006 .014

knightstour 2593 314564 907502 319299 1161 10 508225 307092 206729 82112 464.902 14.124

treejoin 288666 519943 297570 5547 2 1 525488 7150 212653 1954 .356 .217

nqueens 283822 1423226 2133001 584143 46 9 1819579 501093 521826 39465 70.314 24.811

lambda 205 556 2072 90345 23 8 966 721 303 95 .093 2.49

(b)

Fig. 12. Experimental results comparing RGC and LGC. Table (a) gives data related to liveness

analysis, and (b) gives garbage collection data.

copies a subset of reachable cells, its heap would contain no more cells than RGC heap

at the end of the nth invocation. Thus either RGC is invoked next before LGC, or LGC

and RGC are both invoked next at the same time. In either case, the statement holds

after n+ 1 invocations of LGC.

7 Related Work

Previous attempts to increase the space efficiency of functional programs by additional

reclamation of memory fall in two broad categories. In the first, the program itself is

instrumented to manage reclamation and reallocation without the aid of the garbage

collector. Such attempts include: sharing analysis based reallocation [12], deforestation

techniques [13–15], methods based on linear logic [16] and region analysis [17]. Closer

to our approach, there are methods that enable the garbage collector to collect more

garbage [18, 6] by explicitly nullifying pointers that are not live. However, the nullifi-

cation, done at compile time, requires sharing (alias) analysis. Our method, in contrast,

does not require sharing because of the availability of the heap itself at run time. To the

best of our knowledge, this is the first attempt at liveness-based marking of the heap

during garbage collection.

8 Conclusions

We have defined a notion of liveness on structured data; this generalises classical live-

ness and strong liveness. We started with a general fully context-sensitive analysis

which we proved correct with respect to a minefield semantics (this models the effect

of garbage collection between every evaluation step).

21

To avoid scalability issues (and to avoid performing part of the liveness computation

at run time) we defined an 0-CFA version of this liveness analysis in which demands for

function f at all calling contexts are conflated into a single demand σ f . This enabled us

to treat the liveness equations symbolically obtaining context-free grammars for live-

ness at each GC point (calls to user functions and to cons). These were then converted

to DFAs for run-time consultation by the garbage collector. Experiments confirm the

precision of the analysis.

To obtain performance figures we compared a reachability-based garbage collector

with a liveness-based collector. This showed a decrease in the number of GCs, more

garbage collected per invocation. A significant benefit of LGC is that programs can

run in smaller memory when compared to RGC. This is potentially useful in situations

where memory is limited—as with embedded systems. For a majority of programs, the

garbage collection times were reduced.

One issue we highlighted was that while fewer nodes were marked (and hence more

garbage collected), sometimes cons cells could be visited and traversed multiple times

with different sets of liveness paths to explore; this risks infinite looping if extended to

languages with cyclic data structures. Avenues of further work include static analysis

to avoid revisiting cells known to have been visited. One possibility is to record a rep-

resentation of the liveness paths already visited from each cons cell; the classical mark

bit indicates that all paths have been visited from the cell.

Acknowledgements We thank the anonymous referees for their helpful comments.

Thanks are also due to Hemanshu Vadehra for a preliminary implementation of the

prototype system. Amey Karkare was supported for this work by the DST/SERC fast

track scheme for young scientists.

References

1. Röjemo, N., Runciman, C.: Lag, drag, void and use—heap profiling and space-efficient

compilation revisited. In: ICFP. (1996)

2. Karkare, A., Sanyal, A., Khedker, U.: Effectiveness of garbage collection in MIT/GNU

Scheme. http://arxiv.org/abs/cs/0611093 (2006)

3. Shaham, R., Kolodner, E.K., Sagiv, M.: Estimating the impact of heap liveness information

on space consumption in Java. In: ISMM. (2002)

4. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL. (1999)

5. Cherem, S., Rugina, R.: A practical escape and effect analysis for building lightweight

method summaries. In: CC. (2007)

6. Lee, O., Yang, H., Yi, K.: Static insertion of safe and effective memory reuse commands into

ML-like programs. Science of Computer Programming (2005)

7. Khedker, U.P., Sanyal, A., Karkare, A.: Heap reference analysis using access graphs.

TOPLAS (2007)

8. Karkare, A., Khedker, U., Sanyal, A.: Liveness of heap data for functional programs. In:

Heap Analysis and Verification Workshop (HAV). (2007) http://research.microsoft.

com/˜jjb/papers/HAV_proceedings.pdf.

9. Chakravarty, M.M.T., Keller, G., Zadarnowski, P.: A functional perspective on SSA optimi-

sation algorithms. In: COCV. (2003)

22

10. Mohri, M., Nederhof, M.J.: Regular approximation of context-free grammars through trans-

formation. In Junqua, J.C., van Noord, G., eds.: Robustness in Language and Speech Tech-

nology. Kluwer Academic Publishers (2000) 251–261

11. Hopcroft, J.E., Ullman, J.D.: Introduction To Automata Theory, Languages, And Computa-

tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1990)

12. Jones, S.B., Metayer, D.L.: Compile-time garbage collection by sharing analysis. In: FPCA.

(1989)

13. Wadler, P.: Deforestation: transforming programs to eliminate trees. In: ESOP. (1988)

14. Gill, A., Launchbury, J., Jones, S.L.P.: A short cut to deforestation. In: FPCA. (1993)

15. Chitil, O.: Type inference builds a short cut to deforestation. In: ICFP. (1999)

16. Hofmann, M.: A type system for bounded space and functional in-place update. In: ESOP.

(2000)

17. Tofte, M., Birkedal, L.: A region inference algorithm. TOPLAS (1998)

18. Inoue, K., Seki, H., Yagi, H.: Analysis of functional programs to detect run-time garbage

cells. TOPLAS (1988)

23

