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Abstract

The paper studies analytic functors between presheaf categories. Generalising results of A. Joyal [11] and
R. Hasegawa [9] for analytic endofunctors on the category of sets, we give two characterisations of analytic
functors between presheaf categories over groupoids: (i) as functors preserving filtered colimits, quasi-
pullbacks, and cofiltered limits; and (ii) as functors preserving filtered colimits and wide quasi-pullbacks.
The development establishes that small groupoids, analytic functors between their presheaf categories, and
quasi-cartesian natural transformations between them form a 2-category.
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1. Introduction

The concept of multivariate analytic functor on the category Set of sets and functions was introduced
by A. Joyal in [11] to provide a conceptual basis for his theory of combinatorial species of structures [10, 1].

A species of structures is a functor from the category of finite sets and bijections to Set . These can
be equivalently presented as functors from the category of finite cardinals and permutations to Set , or as
symmetric sequences

P =
{
Pn ×Sn // Pn : (p, σ)

� // p ·P σ
}
n∈N

given by families of set-theoretic representations of the symmetric groups. Here, the sets Pn are thought of
as a species of combinatorial structures P on an n-element set, while the symmetric-group representations
induce isomorphism types that correspond to their unlabelled version. In general, for a species P and a set
of labels X, the set of X-labelled P-structures is given by

P̃ X
def
=
∑
n∈N Pn×Sn X

n (X ∈ Set) (1)

where Pn×
Sn

Xn denotes the quotient of Pn × Xn by the equivalence relation identifying
(
p, (xσ1, . . . , xσn)

)
with

(
p ·P σ, (x1, . . . , xn)

)
for all σ ∈ Sn, p ∈ Pn, and x1, . . . , xn ∈ X. In particular, the set P̃ 1 for a

singleton set 1 corresponds to that of unlabelled P-structures.
An endofunctor on Set is said to be analytic if it has a Taylor series development as in (1) above; that

is, if it is naturally isomorphic to P̃ for some species P. One respectively regards species of structures and
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analytic functors as combinatorial versions of formal exponential power series and exponential generating
functions. A. Joyal characterised the analytic endofunctors on Set as those that preserve filtered colimits,
cofiltered limits, and quasi-pullbacks (equivalently, weak pullbacks).

In [10], A. Joyal also introduced the notion of a linear species as a functor from the category of finite
linear orders and monotone bijections to Set ; equivalently, an N-indexed family of sets. Every linear species
L freely induces a species L×S as follows

(Ln ×Sn)×Sn // (Ln ×Sn) :
(
(`, σ), σ ′

) � //
(
`, σ · σ ′

)
(n ∈ N)

Its associated analytic endofunctor L̃×S on Set is of the form

L̃×S(X) ∼=
∑
n∈N Ln × Xn (X ∈ Set) (2)

Thus, one respectively regards linear species and their induced analytic functors as combinatorial versions
of formal power series and generating functions.

Independently of the above considerations, the multivariate version of functors on Set of the form (2) was
introduced by J.-Y. Girard in [6] also under the name of analytic functors. These he characterised as those
that preserve filtered colimits, wide pullbacks, and equalisers. In [12], P. Taylor tighten this characterisation
remarking that the preservation of equalisers was redundant. R. Hasegawa revisited the characterisation of
Joyal’s analytic endofunctors on Set in this light in [9], observing that they can be also characterised as those
preserving filtered colimits and weak wide pullbacks (equivalently, wide quasi-pullbacks). The development
of J.-Y. Girard put this line of work in the context of categorical stable domain theory (as so did explicitly
the subsequent work of P. Taylor) and was a preliminary step leading to linear logic [7].

A bicategorical framework for the above body of work was put forward by G. L. Cattani and G. Winskel
in [2] from the perspective of presheaf models for concurrency and by M. Fiore, N. Gambino, M. Hyland
and G. Winskel in [5] from the viewpoint of species of structures. The work reported here supplements the
latter one. Indeed, we generalise the aforementioned characterisations of analytic endofunctors on Set to
analytic functors between presheaf categories over groupoids (Theorem 6.8); and, in this context, exhibit an
equivalence of categories between generalised species of structures and natural transformations, and analytic
functors and quasi-cartesian natural transformations (Corollary 5.14). This leads to the 2-category of small
groupoids, analytic functors between their presheaf categories, and quasi-cartesian natural transformations
between them (Corollary 6.9), placing the subject in the context of categorical stable domain theory and
providing 2-dimensional models of a rich variety of computational structures (Remark 6.10).

The paper contributes thus to one of the many fundamental structures researched by Glynn Winskel in
his work on the mathematical understanding and modelling of processes.

2. Free symmetric strict monoidal completion

We let ! be the left adjoint to the forgetful functor from the category of symmetric strict monoidal small
categories and strong monoidal functors to the category Cat of small categories and functors. For a small
category C, the unit of this adjunction is denoted 〈[ ]〉 : C // !C.

The category !C can be explicitly described by the Grothendieck construction [8] applied to the functor
C( ) : P // Cat : n

� // Cn for P the category of finite cardinals and permutations. That is, !C has objects
given by functions C : |C| // C with |C| in P and morphisms γ = (γ, γ) : C // C ′ given as in the following
diagram

|C|
γ

//

C
��

@@@@@@@
γ +3

|C ′|

C ′~~}}}}}}}}

C
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with γ in P. Identities are given by the maps (id|C|, idC), while diagrammatic composition is given by

α · β def
=
(
α · β,α · βα

)
. Thus, maps and their composition can be visualised as follows

A0

α0

��

A1

α1

**

��
******

A2

α2

******

��
**

A3

α3
					

��					

A0

α0·β0

*****************

��
***

A1

α1·β2

��

A2

α2·β3

$$$$$$$$$$$

��
$$$$$$$

A3

α3·β1
��������

���������������
B0

β0

5555

��
5555

B1

β1
������



��

B2

β2
��



������

B3

β3

��

=

C0 C1 C2 C3 C0 C1 C2 C3

The strict symmetric monoidal structure of !C has as unit object the empty function 0 // C, as tensor
product ⊕ the construction [C,C ′] : |C|+ |C ′| // C, and as symmetry the maps

|C|+ |C ′|

[C,C ′]
##HHHHHHHHH

[q2,q1]
//

id +3

|C ′|+ |C|

[C ′,C]
{{vvvvvvvvv

C

where + denotes the sum of cardinals, with injections q1 and q2, and copairing [ , ].

We write Ĉ for the presheaf category SetC
◦

over a small category C. By the universal property of !C,
the Yoneda embedding yC : C � � // Ĉ extends as a (strong symmetric monoidal) sum functor SC : !C // Ĉ
(with respect to the coproduct symmetric monoidal structure of Ĉ) as follows

C � o

yC
��

????????
〈[ ]〉

//

∼=

// !C

SC

��

Ĉ

where

SC(C)
def
=
∑
i∈|C| yC(Ci) (C ∈ !C)

Examining the sum functor, one notes that, for A,B ∈ !C,

Ĉ[SA, SB] ∼=
∏
i∈|A| Ĉ[y(Ai), SB] ∼=

∏
i∈|A| SB(Ai)

∼=
∏
i∈|A|

∑
j∈|B| C[Ai, Bj] ∼=

∑
ϕ∈|B||A|

∏
i∈|A| C[Ai, Bϕi]

(3)

In other words, the full subcategory of Ĉ determined by the set of objects { SC ∈ Ĉ | C ∈ !C } is the free finite
coproduct completion of C.

By means of the projection map∑
ϕ∈|B||A|

∏
i∈|A| C[Ai, Bϕi] // Set( |A|, |B| ) :

(
ϕ, 〈fi〉i∈|A|

) � // ϕ

the isomorphism (3) induces a map

Ĉ[SA, SB] // Set( |A|, |B| )

that associates an underlying function |A| // |B| to every morphism SA // SB in Ĉ.
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Definition 2.1. For A,B ∈ !C, we say that SA // SB in Ĉ is injective, surjective, or bijective on indices
whenever its underlying function |A| // |B| is.

Proposition 2.2. (i) The sum functor is faithful.

(ii) If f : SA // SB in Ĉ is bijective on indices then there exists a (necessarily unique) γ : A // B in !C
such that Sγ = f. Hence, the sum functor is conservative.

Proposition 2.3. (i) For a small category A and A,A ′ ∈ !A, every epi (resp. iso) SA // SA ′ in Â is
surjective (resp. bijective) on indices.

(ii) For a small groupoid G and G,G ′ ∈ !G, every mono SG // SG ′ in Ĝ is injective on indices.

3. Analytic functors

We recall the notion of analytic functor between presheaf categories introduced in [5]. These analytic
functors generalise the ones previously introduced by A. Joyal between categories of indexed sets and sets [11,
§ 1.1], and are the central structure of study in the paper.

Definition 3.1. A functor Â // B̂ is said to be analytic if it appears in a left Kan extension as follows

!A
SA //

��
>>>>>>>>

Lan+3
Â

��

B̂

for some functor !A // B̂.

That is, analytic functors between presheaf categories are those naturally isomorphic to the functors
P̃ : Â // B̂ given by the following coend

P̃ X b
def
=
∫A∈!A

PAb× Â
[
SA(A), X

]
(X ∈ Â, b ∈ B◦) (4)

for some P : !A // B̂.

Notation. For a functor F : C // Ĉ it will be convenient to use the following notational conventions. For

morphisms f : A // B in C and g : c // d in C, and for an element x ∈ FAd, we set x ·F f
def
= (F f)d(x) ∈ FBd;

g ·F x
def
= FAg (x) ∈ FAc; and g ·F x ·F f

def
= g ·F (x ·F f) = (g ·F x) ·F f ∈ FB c.

Henceforth, we will use the following explicit description of the coend (4):(∑
A∈!A PAb× Â

[
SA(A), X

])
/≈ (X ∈ Â, b ∈ B◦)

where ≈ is the equivalence relation generated by

(A,p,SA(α) · x) ∼ (A ′, p ·P α, x) (5)

for all α : A // A ′ in !A, p ∈ PAb, and x : SA(A
′) // X in Â. Further, we write p ⊗

A
x for the equivalence

class of (A,p, x). Under this convention, the identification (5) amounts to the identity

p ⊗
A

(
SA(α) · x

)
=

(
p ·P α

)
⊗
A′
x

and the functorial action of P̃ is given by

β ·
P̃
(p ⊗

A
x) ·

P̃
f

def
= (β ·P p) ⊗

A
(x · f)

for all (p ⊗
A
x) ∈ P̃ X b, f : X // X ′ in Â and β : b ′ // b in B.
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Notation. For categories A and B, we let CAT[A,B] denote the category of functors A // B and natural
transformations between them.

Proposition 3.2. The functor (̃ ) : CAT
[
!A, B̂

]
// CAT

[
Â, B̂

]
is faithful.

This is a consequence of the following.

Lemma 3.3. Let P : !A // B̂. For α0 : A0 // A in !A, and p0 ⊗
A0

S(α0) and p1 ⊗
A1

x1 in P̃(SA)(b), if

p0 ⊗
A0

S(α0) = p1 ⊗
A1

x1 then there exists (a necessarily unique) α1 : A1 // A in !A such that x1 = S(α1)

and p0 ·P α0 = p1 ·P α1.

Proof. It is enough to establish the lemma in the following two cases.

• When there exists α : A1 // A0 in !A such that p1 ·P α = p0 and S(α) · S(α0) = x1. In which case, taking
α1 = α · α0 we are done.

• When there exists α : A0 // A1 in !A such that p0 ·P α = p1 and Sα · x1 = S(α0). In which case,

x1 : S(A1) // S(A) in Â is bijective on indices and hence, by Proposition 2.2(ii), there exists α1 : A1 // A
in !A such that S(α1) = x1. Further, by Proposition 2.2(i), we have that α0 = α · α1 and hence also that
p0 ·P α0 = p ·P (α · α1) = (p ·P α) ·P α = p1 ·P α1. �

Corollary 3.4. For P : !A // B̂, if p ⊗
A

idSA = p ′ ⊗
A

idSA in P̃(SA)(b) then p = p ′ in PAb.

4. Coefficients functors

Via the canonical natural isomorphisms

Â
[
SA,X

]
∼=
∏
i∈|A| Â

[
y(Ai), X

]
∼=
∏
i∈|A| X(Ai) (A ∈ !A, X ∈ Â)

every analytic functor F : Â // B̂ admits a Taylor series development as follows

FXb ∼=
(∑

n∈N
∑
a1,...,an∈A P

(
⊕ni=1 〈[ai]〉

)
(b)×

∏n
i=1 X(ai)

)
/≈

(X ∈ Â, b ∈ B◦) (6)

for some coefficients functor P : !A // B̂ (referred to as an (A,B)-species of structures in [4, 5]). The
representation of analytic functors (6) for A a finite discrete category and B the one-object category directly
exhibits them as the multivariate analytic functors of A. Joyal [11, § 1.1].

The coefficients functors of an analytic functor are unique up to isomorphism.

Proposition 4.1. The functor (̃ ) : CAT
[
!A, B̂

]
// CAT

[
Â, B̂

]
is conservative. That is, for P,Q : !A // B̂,

if P̃ ∼= Q̃ : Â // B̂ then P ∼= Q.

This result is a corollary of Proposition 4.3 below, for which we need to recall that a natural transformation
is said to be quasi-cartesian whenever all its naturality squares are quasi-pullbacks, where a quasi-pullback is
a commutative square for which the unique mediating morphism from its span to the pullback of its cospan
is an epimorphism.

The notion of quasi-pullback in presheaf categories is given pointwise.

Lemma 4.2. For a small category C, a commutative square in Ĉ as on the left below

Q

h

��

k // Y

g

��

X
f

// Z

Qc

hc

��

kc // Y c

gc

��

Xc
fc

// Zc
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is a quasi-pullback iff so are the commutative squares in Set as on the right above for every c ∈ C.

Proof. Follows from the facts that in presheaf categories limits and colimits are given pointwise and that
the functors that evaluate presheaves at an object preserve them. �

Proposition 4.3. Let P,Q : !A // B̂ and ϕ : P̃ +3 Q̃ : Â // B̂. For the following statements:

(i) The natural transformation ϕ is quasi-cartesian.

(ii) For every A ∈ !A, b ∈ B◦, and p ∈ PAb there exists (a necessarily unique) q ∈ QAb such that
ϕ
(
p ⊗
A

idSA

)
= q ⊗

A
idSA.

(iii) There exists a (necessarily unique) natural transformation φ : P +3 Q : !A // B̂ such that ϕ = φ̃.

we have that (i) +3 (ii) +3 (iii).

Proof. (i) +3 (ii) For p ∈ PAb, let

ϕSA,b(p ⊗
A

idSA) = (q ⊗
A ′

idSA ′) ·P̃ s

for q ∈ Q(A ′)(b) and s : SA ′ // SA in Â.

Since ϕ is quasi-cartesian, there exists (p0 ⊗
A0

s0) ∈ P̃(SA ′)(b) such that

p0 ⊗
A0

(s0 · s) = p ⊗
A

idSA (7)

and
ϕSA ′,b(p0 ⊗

A0

s0) = q ⊗
A ′

idSA ′

From (7), by Lemma 3.3, there exists α0 : A0 // A in !A such that

s0 · s = S(α0) (8)

and p0 ·P α0 = p. In particular, thus, s0 : S(A0) // S(A ′) in Â is injective on indices.
Now, let

ϕS(A0),b(p0 ⊗
A0

idS(A0)) = q1 ⊗
A1

s1

for q1 ∈ Q(A1)(b) and s1 : S(A1) // S(A0) in Â. By naturality of ϕ, we have that

q1 ⊗
A1

(s1 · s0) = q ⊗
A ′

idS(A ′)

and, by Lemma 3.3, that there exists α1 : A1 // A ′ in !A such that s1 · s0 = S(α1) and q1 ·Q α1 = q.
In particular, thus, s0 is surjective, and hence bijective, on indices. It then follows from (8) that also s is
bijective on indices and hence that there exists α : A ′ // A such that Sα = s.

Thus, ϕSA,b(p ⊗
A

idSA) = (q ·Q α) ⊗
A

idSA.

(ii) +3 (iii) The family of mappings φA,b : PAb // QAb (A ∈ !A, b ∈ B◦) associating p ∈ P(A)(b)
with the unique q ∈ Q(A)(b) such that ϕSA,b

(
p ⊗
A

idSA
)
= (q ⊗

A
idSA) determine a natural transformation

φ : P +3 Q with the desired property. �

It is interesting to note that not every natural transformation in the image of (̃ ) : CAT
[
!A, B̂

]
// CAT

[
Â, B̂

]
is quasi-cartesian. Indeed, for Σ

def
=
(
⊥ // >

)
, P

def
= !Σ

[
〈[>]〉,

]
, and φ : P +3 1 : !Σ // Set , the naturality

square associated to φ̃ : P̃ +3 1̃ : Σ̂ // Set induced by y(⊥) // y(>) in Σ̂ is not a quasi-pullback. However,
we have the following result.

Proposition 4.4. For φ : P +3 Q : !G // Ĉ where G is a small groupoid, the natural transformation
φ̃ : P̃ +3 Q̃ : Ĝ // Ĉ is quasi-cartesian.
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Proof. For f : X // Y in Ĝ, let (p ⊗
G
y) ∈ P̃ Y b and (q ⊗

G ′
x) ∈ Q̃ Xb be such that

φG,b(p) ⊗
G
y = φ̃Y,b(p ⊗

G
y) = (q ⊗

G ′
x) ·

Q̃
f = q ⊗

G ′
(x · f)

Then, as G is a groupoid, it follows that there exists σ : G // G ′ in !G such that φG,b(p) ·Q σ = q and
y = S(σ) · x · f.

Since, for p ⊗
G
(Sσ · x) = (p ·P σ) ⊗

G ′
x in P̃ X b we have that (p ⊗

G
(Sσ · x)) ·

P̃
f = p ⊗

G
(Sσ · x · f) = p ⊗

G
y

and φ̃X,b
(
(p ·P σ) ⊗

G ′
x
)
=
(
φG ′,b(p ·P σ)

)
⊗
G ′
x =

(
φG,b(p) ·P σ

)
⊗
G ′
x = q ⊗

G ′
x we are done. �

Quasi-cartesian natural transformations are closed under vertical composition and we are naturally led
to introduce the following.

Definition 4.5. For small categories A and B, we let AF [A,B] be the subcategory of CAT
[
Â, B̂

]
consisting

of analytic functors and quasi-cartesian natural transformations between them.

Corollary 4.6. For G a small groupoid, the functor (̃ ) : CAT
[
!G, Ĉ

]
// CAT

[
Ĝ, Ĉ

]
restricts to an essen-

tially surjective, full and faithful functor

(̃ ) : CAT
[
!G, Ĉ

]
// AF

[
G,C

]
(9)

5. Generic coefficients functor

We proceed to construct a quasi-inverse to (9) when the small category C is a groupoid. The central
notion isolated by A. Joyal for this purpose is that of generic element [11, Appendice, Définition 2].

Definition 5.1. For F : Â // B̂, we say that x ∈ FXb is generic if for every cospan f : X // Z oo Y : g in Â
and y ∈ F Y b such that x ·F f = y ·F g there exists h : X // Y in Â such that f = h · g and x ·F h = y.

For instance, it follows from the proposition below that for P : !G // Ĉ with G a small groupoid, G ∈ !G,
and c ∈ C, the generic elements in P̃(SG)(c) are of the form p ⊗

G
idSG for p ∈ PGc.

Proposition 5.2. For P : !G // Ĉ with G a small groupoid, (p ⊗
G
x) ∈ P̃ X c is generic iff x : SG // X in Ĝ

is an isomorphism.

Proof. ( +3) Let (p ⊗
G
x) ∈ P̃ X c be generic. As (p ⊗

G
x) = (p ⊗

G
idSG) ·P̃ x, there exists h : X // SG such

that h · x = idX and p ⊗
G
(x · h) = (p ⊗

G
x) ·

P̃
h = (p ⊗

G
idSG). The latter identity implies that x · h is an

automorphism on SG, and we are done.
(ks ) Let (p ⊗

G
x) ∈ P̃ X c with x an isomorphism. Consider a cospan f : X // Z oo Y : g and (q ⊗

H
y) ∈ P̃ Y c

with
(
p ⊗
G
(x · f)

)
=
(
(p ⊗

G
x) ·

P̃
f
)
=
(
(q ⊗

H
y) ·

P̃
g
)
=
(
q ⊗
H
(y · g)

)
. Then, there exists σ : G // H in !G such

that p ·P σ = q and x · f = (Sσ) · y · g; and the map x−1 · (Sσ) · y : X // Y has the desired properties. �

Lemma 5.3. Let F : Â // B̂. For every x ∈ FXb generic, y ∈ F Y b, and f : Y // X in Â such that y ·F f = x,
one has that f is split epi.

Proof. Because the hypotheses imply the existence of h : X // Y such that x ·F h = y and h · f = idX. �

We now explain how analytic functors from presheaf categories over groupoids are engendered by their
compact generic elements uniquely up to isomorphism.

Definition 5.4. A functor F : Â // B̂ is said to be engendered by its (compact) generic elements whenever
for every x ∈ FXb there exists a generic element x0 ∈ F(X0)(b) (with X0 = SA for A ∈ !A) and f : X0 // X

in Â such that x0 ·F f = x.
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Proposition 5.5. Let F : Â // B̂. For x ∈ F(SA)(b) and x ′ ∈ F(SA ′)(b) both generic, and for f : SA // X

and f ′ : SA ′ // X in Â such that x ·F f = x ′ ·F f ′, there exists a split epi α : A // A ′ in !A such that
x ·F S(α) = x ′ and f = S(α) · f ′.

Proof. Since x is generic, there exists g : S(A) // S(A ′) in Â such that x ·F g = x ′ and g · f ′ = f.
Further, since x ′ is generic, by Lemma 5.3, g is split epi. Analogously, since x ′ is generic, there exists
g ′ : S(A ′) // S(A) in Â such that x ′ ·F g ′ = x and g ′ · f = f ′. Further, since x is generic, by Lemma 5.3, g ′

is split epi.
As g : S(A) // S(A ′) and g ′ : S(A ′) // S(A) in Â are both surjective, and hence bijective, on indices,

there exist α : A // A ′ and α ′ : A ′ // A in !A such that Sα = g and Sα ′ = g ′. Moreover, a section
S(A ′) // S(A) of Sα in Â is necessarily bijective on indices and hence of the form Sσ for σ : A ′ // A in !A.
Finally, by Proposition 2.2(i), the identity S(σ · α) = idS(A ′) implies that σ is a section of α. �

Proposition 5.6. Every analytic functor Ĝ // Ĉ with G a small groupoid is engendered by its compact
generic elements uniquely up to isomorphism.

Proof. It is enough to consider P̃ : Ĝ // Ĉ for P : !G // Ĉ. In which case, for every (p ⊗
G
x) ∈ P̃ X c one has

(p ⊗
G

idSG) ·P̃ x. �

Most importantly, generic elements of functors between presheaf categories over groupoids are invariant
under the functorial action.

Lemma 5.7. Let F : Ĝ // Ĥ for G and H small groupoids. If x ∈ F(SG)(h) is generic then so is the element
(ξ ·F x ·F Sσ) ∈ F(SG ′)(h ′) for all σ : G // G ′ in !G and ξ : h ′ // h in H.

Proof. We first show that (x ·F Sσ) ∈ F(SG ′)(h) is generic. So, consider a cospan f : SG ′ // Z oo Y : g in

Ĝ and y ∈ F Y h such that (x ·F Sσ) ·F f = y ·F g in FZh. As x is generic, there exists k : SG // Y in Ĝ such
that S(σ) · f = k · g and x ·F k = y. Then, (Sσ−1) · k : SG ′ // Y exhibits x ·F Sσ as generic.

Second, let us see that (ξ ·F x) ∈ F(SG)(h ′) is generic. To this end, consider a cospan f : SG // Z oo Y : g

in Ĝ and y ∈ F Y h ′ such that (ξ ·F x) ·F f = y ·F g in FZh ′. Then, x ·F f = (ξ−1 ·F y) ·F g and since x is

generic, there exists k : SG // Y in Ĝ such that f = k · g and x ·F k = ξ−1 ·F y; so that (ξ ·F x) ·F k = y. �

For F : Ĝ // Ĥ, define

F◦(G)(h)
def
=
{
x ∈ F(SG)(h) | x is generic

}
(G ∈ !G, h ∈ H◦)

By Lemma 5.7, for G and H small groupoids, we have a functor F◦ : !G // Ĥ with action, for σ in !G and

ξ in H, given by F◦(σ)(ξ)
def
= F(Sσ)(ξ). As F◦ is a subfunctor of the restriction of F along SG, we have the

following situation

!G

F◦
��

????????
SG //

+3
Ĝ

F

��

Ĥ
from which, by the universal property of left Kan extensions, we obtain a canonical natural transformation

ηF : F̃◦ +3 F : Ĝ // Ĥ explicitly given by

∫G∈!G
F◦(G)(h)× !G[SG,X]

ηFX,h // F(X)(h)

p ⊗
G
x

� // p ·F x

These mappings will be now shown to be injective. To this end, we need consider an important minimality
property of generic elements (see [11, Appendice, Définition 5]).

8



Definition 5.8. For F : Â // B̂, we say that x ∈ FXb is minimal if for every y ∈ F Y b and f : Y // X in Â,
y ·F f = x implies f epi.

Proposition 5.9. For P : !G // Ĉ with G a small groupoid, (p ⊗
G
x) ∈ P̃ X c is minimal iff x is epi.

Proof. ( +3) Follows from the definition of minimality using that (p ⊗
G

idSG) ·P̃ x = p ⊗G x.
(ks ) Let

(
q ⊗
G ′
y
)
∈ P̃ Y c and f : Y // X in Ĝ be such that q ⊗

G ′
(y · f) =

(
q ⊗
G ′
y
)
·
P̃
f = (p ⊗

G
x). It

follows that there exists an isomorphism σ : G ′ // G in !G such that (Sσ) · x = y · f. Thus, if x is epi then
so is f. �

Proposition 5.10. The generic elements of a functor between presheaf categories are minimal.

Proof. By Lemma 5.3. �

Proposition 5.11. For every F : Ĝ // Ĥ with G and H small groupoids, its associated natural transforma-
tion ηF is a monomorphism.

Proof. Let p ⊗
G
x and q ⊗

G ′
y in F̃◦ Xh be such that p ·F x = q ·F y.

Since p ∈ F(SG)(h) is generic and q ∈ F(SG ′)(h) is minimal, there exists an epimorphism f : SG // SG ′

in Ĝ such that p ·F f = q and f · y = x. Analogously, since q ∈ F(SG ′)(h) is generic and p ∈ F(SG)(h) is

minimal, there exists an epimorphism g : SG ′ // SG in Ĝ such that q ·F g = p and g · x = y.
By Proposition 2.3(i), f and g are bijective on indices and hence there exist σ : G // G ′ and τ : G ′ // G

in !G such that Sσ = f and Sτ = g.
It follows that

p ⊗
G
x = p ⊗

G
(f · y) = p ⊗

G
(S(σ) · y)

= (p ·
F̃◦
σ) ⊗

G ′
y = (p ·F Sσ) ⊗

G ′
y

= (p ·F f) ⊗
G ′
y = q ⊗

G ′
y �

Thus, a functor between presheaf categories over groupoids is analytic iff it is engendered by its compact
generic elements.

Corollary 5.12. A functor F : Ĝ // Ĥ with G and H small groupoids is analytic iff its associated natural

transformation ηF : F̃◦ +3 F is an epimorphism.

In particular, the coefficients functor of an analytic functor between presheaf categories over groupoids is
characterised by its generic elements. Furthermore, since quasi-cartesian natural transformations between
such analytic functors are precisely those that preserve generic elements, this correspondence extends to an
equivalence of categories between coefficient functors (and natural transformations) and analytic functors
(and quasi-cartesian natural transformations).

Proposition 5.13. (i) Quasi-cartesian natural transformations between functors Â // B̂ preserve generic
elements.

(ii) If a natural transformation between analytic functors Ĝ // Ĉ with G a small groupoid preserves generic
elements then it is quasi-cartesian.

Corollary 5.14. For small groupoids G and H, the functors

CAT[!G, Ĥ]

(̃ )
// AF [G,H]

( )◦
oo

establish an equivalence of categories.
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6. Characterisation of analytic functors

We conclude the paper with two characterisations of analytic functors between presheaf categories over
groupoids by means of preservation properties. As a first step in this direction, we leave the verification of
the following to the reader.

Proposition 6.1. Analytic functors Â // B̂ preserve filtered colimits. For A a groupoid, they further
preserve wide quasi-pullbacks and cofiltered limits.

Recall that a wide quasi-pullback is a commutative diagram
(
Q //

''
Di // D

)
i∈I for an indexing set I such

that the unique mediating morphism from the cone
(
Q //

''
Di D

)
i∈I to a limiting cone of the diagram(

Di // D
)
i∈I is an epimorphism.

Corollary 6.2. Analytic endofunctors on presheaf categories over groupoids have both initial algebra and
final coalgebra.

We will now consider the following properties of functors between presheaf categories over groupoids:

(1) preservation of filtered colimits,

(2) preservation of epimorphisms,

(3) preservation of quasi-pullbacks,

(4) preservation of wide quasi-pullbacks,

(5) preservation of cofiltered limits,

(6) being engendered by compact minimal elements,

(7) being engendered by compact generic elements (i.e. analytic).

and show

Proposition 6.4: (1)& (2) +3 (6)

Proposition 6.6: (4)& (6) +3 (7)

Proposition 6.7: (3)& (5)& (6) +3 (7)

so that, since (4) +3 (3) +3 (2), we have that

(1)& (4) +3 (7) and (1)& (3)& (5) +3 (7)

Definition 6.3. A functor F : Â // B̂ is said to be engendered by its (compact) minimal elements whenever
for every x ∈ FXb there exists a minimal element x0 ∈ F(X0)(b) (with X0 = SA for A ∈ !A) and f : X0 // X

in Â such that x0 ·F f = x.

Proposition 6.4. Every functor Ĝ // Ĉ, with G a small groupoid, preserving filtered colimits and epimor-
phisms is engendered by its compact minimal elements.

Proof. Let F : Ĝ // Ĉ be a functor, with G a small groupoid, preserving filtered colimits and epimorphisms,
and let x ∈ FX c.

Since X ∈ Ĝ is a filtered colimit of finitely presentable objects, there exist a finitely presentable object
X0 ∈ Ĝ, an element x0 ∈ F(X0)(c), and a morphism f : X0 // X in Ĝ such that x0 ·F f = x.

Further, since finitely presentable objects in Ĝ are quotients of finite coproducts of representables, there
exist an object G ∈ !G, an element x1 ∈ F(SG)(c), and an epimorphism q : SG // // X0 in Ĝ such that
x1 ·F q = x0.

Let G ′ ∈ !G, x ′ ∈ F(SG ′)(c), and m : S(G ′) // // S(G) a monomorphism in Ĝ be such that x ′ ·F m = x1
with |G ′| chosen minimally. We have that x ′ is a compact element engendering x, and we now show that it
is minimal.
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Indeed, consider y ∈ F Y c and g : Y // S(G ′) in Ĝ such that y ·F g = x ′. Note that the epi-mono
factorisation of g is of the form

Y

ε
!! !!CCCCCCCCC
g

// S(G ′)

S(G0)
;;

µ

;;vvvvvvvvv

because, as G is a groupoid,

SubĜ(SG) =
{ ∑

i∈I y(Gi)
∣∣ I ⊆ |G|

}
(G ∈ !G)

Thus we have G0 ∈ !G, y ·F ε ∈ F(S(G0))(c), and the monomorphism µ ·m : S(G0) // // S(G) in Ĝ satisfying
(y ·F ε) ·F (µ · m) = x1, from which it follows by the minimality of |G ′| that |G ′| ⊆ |G0|. Hence, the
monomorphism µ is bijective on indices and therefore (since G is a groupoid) an isomorphism, establishing
that g is epi. �

Lemma 6.5. (i) For F : Â // B̂, if x ∈ FXb is generic then for every minimal y ∈ F Y b and f : Y // X

in Â, y ·F f = x implies f iso.

(ii) Let F : Â // B̂ be a functor engendered by its (compact) minimal elements and preserving quasi-
pullbacks. For x ∈ FXb, if for every (compact) minimal element y ∈ F Y b (with Y = SA for A ∈ !A)

and f : Y // X in Â, y ·F f = x implies f iso, then x is generic.

Proof. (i) Assume the hypotheses. By Lemma 5.3, f has a section g : X // Y in Â such that g ·F x = y.
Since y is minimal, g is epi and hence an iso, and then so is f.

(ii) Let x ∈ FXb satisfy the hypothesis of the statement, and let the cospan f : X // Z oo Y : g in Â and
y ∈ F Y b be such that x ·F f = y ·F g in FZb.

Consider a pullback square

P
q

//

p

��

Y

g

��

X
f

// Z

in Â. Since F preserves quasi-pullbacks, there exists z ∈ F P b such that z ·F p = x and z ·F q = y. Further,
since F is engendered by its (compact) minimal elements, there exists Z0 ∈ Â (with Z0 = SA for A ∈ !A),

z0 ∈ F(Z0)(b) minimal, and h : Z0 // Z in Â such that z0 ·F h = z.

By hypothesis then, as z0 ·F (h · p) = x, we have that h · p : Z0 // X in Â is an isomorphism. We thus

have (h · p)−1 · h · q : X // Y in Â such that(
(h · p)−1 · h · q

)
· g = (h · p)−1 · h · p · f = f

and
x ·F

(
(h · p)−1 · h · q

)
= z0 ·F (h · q) = z ·F q = y

showing that x is generic. �

Proposition 6.6. Every functor Ĝ // Ĉ, with G a small groupoid, engendered by its compact minimal
elements and preserving wide quasi-pullbacks is engendered by its compact generic elements.

Proof. Let F : Ĝ // Ĉ, with G a small groupoid, be a functor engendered by its compact minimal elements
and preserving wide quasi-pullbacks.

For x ∈ FXb consider the wide cospan

∇ =
〈
∇(x0,f) = f : SG // X in Ĝ

∣∣ x0 ∈ F(SG)(b) is minimal and x0 ·F f = x
〉
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and let π : P
. // ∇ be a limiting cone in Ĝ. (Note that, as F is engendered by its compact minimal elements,

∇ is non-empty.)
Since F preserves wide quasi-pullbacks, there exists p ∈ F P b such that, for all minimal x0 ∈ F(SG)(b)

and f : SG // X in Ĝ with x0 ·F f = x, we have that p ·F π(x0,f) = x0. Thus, the cone π consists of
epimorphims.

We now show the following general property:

For all minimal y ∈ F(S(G ′))(b) and g : S(G ′) // P in Ĝ such that y ·F g = p, it follows that
g is split mono.

(10)

Indeed, with respect to any minimal x0 ∈ F(SG)(b) and f : SG // X in Ĝ with x0 ·F f = x, we have the
endomorphism

S(G ′)
g

//

e(x0,f)

**

P π(y,g·π(x0,f)
·f)

// // S(G ′)

(since y is minimal and y ·F (g · π(x0,f) · f) = p ·F (π(x0,f) · f) = x0 ·F f = x) satisfying

y ·F
(
g · π(y,g·π(x0,f)

·f)
)

= p ·F π(y,g·π(x0,f)
·f) = y

which, by the minimality of y, is then an epimorphism. Thus, e(x0,f) is bijective on indices and, as G is a
groupoid, an isomorphism; which makes g a split mono.

As F is engendered by its compact minimal elements it follows from (10) that there exists G0 ∈ !G,

p0 ∈ F(S(G0))(b), and a section m : S(G0) // // P in Ĝ such that p0 ·Fm = p. Since such a p0 engenders x (as
p0 ·F (m ·π(x0,f) · f) = p ·F (π(x0,f) · f) = x0 ·F f = x), we conclude the proof by showing that it further satisfies

the hypothesis of Lemma 6.5(ii). Indeed, let y ∈ F(S(G ′))(b) be minimal and f : S(G ′) // S(G0) in Ĝ be
such that y ·F f = p0. Since p0 is minimal, f is epi. Further, since y is minimal and y ·F (f ·m) = p0 ·Fm = p,
we have from (10) that f ·m is split mono. It follows that f is split mono, and thus an iso. �

Proposition 6.7. Every functor Ĝ // Ĉ, with G a small groupoid, engendered by its compact minimal
elements, and preserving quasi-pullbacks and cofiltered limits is engendered by its compact generic elements.

Proof. Let F be a functor as in the hypothesis.
We first show that

Every infinite cochain

x0 x1
g1oooo · · ·oooo xi

gioooo · · ·oooo (i ∈ N)

with xi ∈ F(S(Gi))(c) minimal and gi : S(Gi+1) // // S(Gi) in Ĝ such that xi+1 ·F gi+1 = xi
for all i ∈ N, stabilises; i.e. there exists i0 ∈ N such that gi is an iso for all i ≥ i0.

(11)

Indeed, let

S(G0) S(G1)
g1oooo

···

· · ·oooo S(Gi)
gioooo

···

· · ·oooo

P

π0IIII

ddIIII
π1

OO

πillllllll

55llllllll (i ∈ N)

be limiting in Ĝ. As F preserves cofiltered limits there exists p ∈ F P c such that p ·F πi = xi for all i ∈ N.
Further, since F is engendered by its compact minimal elements, there exist x ∈ F(SG)(c) minimal and

f : SG // P in Ĝ such that x ·F f = p. Thus, as x ·F (f · πi) = xi is minimal, we have epimorphisms
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f · πi : S(G) // // S(Gi) in Ĝ for all i ∈ N. It follows that |Gi| ⊆ |G| for all i ∈ N and hence, since
|Gi| ⊆ |Gi+1| (i ∈ N) that there exists i0 ∈ N such that |Gi| = |Gi+1| for all i ≥ i0. Thus, for all such i, we
have that gi is bijective on indices and consequently, as G is a groupoid, an iso.

Now, for x ∈ FX c, consider the set x̂̂ of finite cochains

x x0
eoo x1

e1oooo · · ·oooo xn
enoooo (n ∈ N)

with xi ∈ F(S(Gi))(c) minimal for all 0 ≤ i ≤ n, e : S(G0) // X in Ĝ such that x0 ·F e = x, and proper

epis (i.e. not isos) ei : S(Gi+1) // // S(Gi) in Ĝ such that xi+1 ·F ei = xi for all 1 ≤ i ≤ n. Since F is
engendered by its compact minimal elements, x̂̂ is non-empty. Further, by (11) above, every chain in x̂̂
under the prefix order is finite; hence the set of maximal elements of x̂̂ is non-empty. Finally, since for every
maximal cochain (x oooo x0 oooo · · · oooo xn) in x̂̂, we have that xn engenders x and satisfies the hypothesis
of Lemma 6.5(ii) we are done. �

We have thus established the following characterisation result.

Theorem 6.8. For a functor between presheaf categories over groupoids the following are equivalent.

(i) The functor is analytic (i.e. engendered by its compact generic elements).

(ii) The functor preserves filtered colimits and wide quasi-pullbacks.

(iii) The functor preserves filtered colimits, quasi-pullbacks, and cofiltered limits.

Corollary 6.9. Small groupoids, analytic functors between their presheaf categories, and quasi-cartesian
natural transformations between them form a 2-category AF .

Remark 6.10. The 2-category AF provides 2-dimensional models of the typed and untyped lambda cal-
culus and of the typed and untyped differential lambda calculus (cf. [4, 5]).
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[11] A. Joyal, Foncteurs analytiques et espèces de structures, in: G. Labelle, P. Leroux (Eds.), Combinatoire Énumérative,
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