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Abstract 

Two-dimensional (2-D) titanium carbide MXene core (Ti3C2Tx) shell aerogel spheres (MX-SA) for 

mercuric ion removal were designed and fabricated with varying concentrations of Ti3C2Tx MXene 

and sodium alginate (SA) using a facile method. Owing to their unique inside structures, high 

porosities, large specific surface areas, oxygenated functional groups of MXene nanosheets, and 

available active binding sites, the synthesized microspheres constitute a unique adsorbent for heavy 

metals removal in water. The MX-SA4:20 spheres exhibit an exceptional adsorption capacity of 

932.84 mg/g for Hg2+, which is among the highest value reported for adsorbents. The adsorbent 

exhibits high single- and multi-component removal efficiencies, with 100% efficiency for Hg2+ and 

> 90% efficiency for five heavy metal ions. The synthesized materials are highly efficient for Hg2+ 

removal under extreme pH conditions (0.5–1.0 M HNO3) and have additional excellent 

reproducible properties. The micro-size and spherical shape of MX-SA4:20 also allow it to be used 

in column-packed devices. 
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1. Introduction 

With water scarcity and pollution representing global concerns in the twenty-first century [1–3], 

the presence of heavy metals in water constitutes a serious risk to humans and other life forms on 

Earth [4,5]. Mercury (Hg) is known to be one of the most poisonous heavy metals both in water and 

air environments [6–8], as a result of its persistence, bioaccumulation, and volatile nature, poses a 

large potential health threat to living organisms [9,10]. It is therefore of cardinal importance to 

address the issue of Hg contamination in waste and drinking water [11,12]. Among the technologies 

currently being used for heavy metal ion treatment, adsorption is considered to be the most useful 

and practical owing to its simplicity and effectiveness [13–16]. A large and diverse (in terms of 

sorption activities toward mercuric ions) set of adsorbents has been synthesized and assessed to date. 

Ion exchange resins [17], activated carbon [18], metal organic frameworks (MOFs) [19,20], and 

thiol-functionalized materials such as functionalized clay [21–23], have all shown exceptionally 

high adsorption capacities. However, such materials suffer from low functional densities, improper 

distributions of functional groups on their sorbents, stability issues, low surface areas, and/or small 

pore sizes [24], These undesirable characteristics are compounded by the need for multiple-step, 

complex synthesis procedures and costly feedstock chemicals such as organic ligands for COFs 

synthesis [19,25]. Engineered nanomaterials, particularly two-dimensional (2-D) nanomaterials, 

with unique physical and chemical properties such as unsaturated surface atoms and greater surface 

energy fractions, offer an alternative for effectively adsorbing heavy metals such as Hg(II) [26]. 

One example of these substances is the recently invented 2-D MXenes (Mn+1XnTx) [27]. 2-D 

Titanium carbide  (Ti3C2Tx), a member of the MXene family, has shown promise for use in 

antibacterial activates [28], fouling-resistant membranes [29], and heavy metal decontamination 

[30,31]. Ti3C2Tx MXene nanosheets are an expanding class of 2-D nanomaterials that offer post-

synthesis surface engineering capability, tunable chemistry, hydrophilic surfaces, and high surface 

areas [32,33]. Previously, the authors reported on the extraordinarily high affinity of Ti3C2Tx-based 

nanocomposite (MGMX) for Hg2+ adsorption [31]. However, long-term stability issues, low 
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porosity, and proneness to oxidation mean that it is impractical to continuously use Ti3C2Tx in 

large-scale applications. Increasing the industrial-scale applicability of Ti3C2Tx nanosheets will 

require the development of more stable and highly porous Ti3C2Tx-based materials for use in large-

scale applications involving continuous operation, i.e., fixed-bed columns. 

Hydrofluoric acid (HF) has been used extensively to exfoliate MAX phases but HF is an 

extremely hazardous material that causes serious environmental pollution and very harmful to 

health [27]. LiF with HCl has been proven as a relatively less toxic and mild etching agent for 

MAX phase exfoliations than HF, but long time reaction, multi-step synthesis process, and high 

operating temperature could limited its application to some extent [34]. Ammonium fluoride 

(NH4F), on the other hand, is a less toxic and safe etching agent and has been also used to produce 

larger interplaner spacing Ti3C2Tx MXene nanosheets [35,36]. One potential enhancement is 

sodium alginate (SA), a naturally occurring biopolymer possessing the characteristics of hydrogels 

with multivalent cations, that has been used widely in the entrapment of adsorbents in 

environmental applications [37]. SA is biocompatible, biodegradable, non-toxic, and available on a 

large scale; these are key features for its successful use in wastewater remediation applications [37]. 

Especially, carboxylate functional groups of the alginate polymer can form biodegradable gels in 

the presence of polyvalent cations, which make SA unique over other existing biopolymers such as 

cellulose  and its derivatives [38]. 

In this study, Ti3C2Tx-filled spheres containing sodium alginate (MX-SA) were prepared at 

different weight ratios (% w/w) by deposition into calcium chloride aqueous solutions (with the 

divalent Ca2+ cation serving as a crosslinking agent). The spheres were shown to contain unique 

internal structures and exhibited an exceptional saturation Hg2+ uptake capacity of 932.84 mg/g.  

Although a mild, reduced-toxicity etching agent (NH4F) was used in the Ti3C2Tx nanosheets 

synthesis process, the result was a high quality product. The accessibility of Hg2+ ions to adsorbent 

binding sites was also assessed in terms of kinetics, adsorption capacity, pH involvement, and mass 
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transportation rates in the porous structure of adsorbent. Finally, the physical and chemical 

properties of the new adsorbent were analyzed. 

 

2. Materials and Methods 

2.1. Material 

Titanium (-325 mesh, 99.0%), graphite powder (-325 mesh, 99.0%, Alfa Aeser), ammonium 

fluoride (NH4F), arsenic oxide (AsO3), chromium chloride (CrCl3), and mercury chloride (HgCl2) 

were purchased from Alfa Aeser, South Korea. Aluminum (-325 mesh, 99.7) was purchased from 

STEM Chemical INC. USA). Calcium chloride (CaCl2), copper chloride (CuCl2), lead chloride 

(PbCl2), zinc nitrate (Zn(NO3)2.6H2O), nickle nitrate (Ni(NO3)2.6H2O), and cobalt nitrate 

(Co(NO3)2.6H2O) was purchased from Daejung Chemicals, South Korea. CdCl2 was acquired from 

Honeywell, South Korea. 

 

2.2. 2-D Ti3C2Tx (MXene) formation 

Following the Ti3AlC2 MAX phase synthesis procedure explained in our previous work [32], 

Ti3C2Tx MXene was synthesized using ammonium fluoride (NH4F) as an etching agent. About 0.5 

g of Ti3AlC2 powder (sieved with 200-mesh) was immersed slowly into 100 mL of 1-M NH4F 

solution at room temperature (333 K) for 24 h. Following this, the mixture was washed with 

deionized water using vacuum filtration until a pH value of 6–7 was achieved. The filtrate was then 

dried in vacuum at 298 K to produce the synthesized Ti3C2Tx MXene, which was stored for further 

use. 

 

2.3. MX-SA sphere formation 

MX-SA spheres were synthesized with different Ti3C2Tx MXene and SA powder compositions. 

Ti3C2Tx MXene powder was placed in pre-degassed deionized (DI) water and then ultrasonicated 

for 10 min under Ar gas to attain a homogenous dispersion of Ti3C2Tx MXene multilayers. In 
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general, this process involved mixing 2.0 mg/mL Ti3C2Tx MXene solution (50 mL) into 20 mg/mL 

SA (50 mL) solution followed by thorough dispersion under magnetic stirring. The aqueous 

MXene-alginate mixture was then injected as small droplets through a syringe needle (17 gauge) 

into a CaCl2 (1.0 M, 200 mL) solution. A peristaltic pump connected to the tube controlled the flow 

rate of the solution (25 mL/min). The synthesized MX-SA2:20 spheres were then stirred 

magnetically for 1 h, rinsed with DI water several times until a pH of 6.5–7 was attained, and then 

dried in a freeze dryer. Spheres with varying initial Ti3C2Tx MXene concentrations (MX-SA1:20, 

MX-SA2:20, MX-SA3:20, MX-SA6:20, and GO-SA4:20, where the subscripts denote the concentration 

of Ti3C2Tx and SA in the mixed solution, respectively) were synthesized using the same protocol.  

 

2.4. Sample Characterization 

The samples were characterized via scanning electron spectroscopy (SEM) using a field emission 

scanning electron microscope (S-4800, HITACHI, Japan). The X-ray powder diffraction (XRD) 

spectra of the MX-SA4:20 spheres were recorded using an XRD instrument (Rigaku D/MAX 

2500PC powder XRD, 0.15418 nm Cu Kα radiation operating at 40 kV and 200 mA over a 

scanning range of 2–80°). Fourier-transform infrared spectroscopy (FTIR) spectra of the MX-SA4:20 

spheres were recorded in the 4,000–400 cm–1 spectral range using a spectrometer (Perkin–Elmer, 

USA). A scanning X-ray micrograph (SXM: ULVAC-PHI II, Quantera, Japan) was used to conduct 

X-ray photoelectron spectroscopy (XPS) to characterize the MX-SA4:20 spheres. A Brunauer–

Emmett–Teller (BET) analyzer was used to determine the surface area of the MX-SA4:20 spheres 

while the Barrett−Joyner−Halen (BJH) method was applied using a Micromeritics ASAP-2020 

analyzer with a nitrogen gas adsorption-desorption isotherm at 77 K to determine the pore size 

distribution. Thermo gravimetric analysis (TGA) under nitrogen gas was performed using a thermal 

analyzer system (TGA-DS, Q600 TA Instrument) at 23−1,000 °C with a heating flow rate of 10 °C 

min-1. 
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2.5. Hg2+ Adsorption measurements 

HgCl2 salt was used to prepare a stock solution of 1000 mg/L mercuric ions (Hg2+) in 3% HNO3, 

which was then pH-adjusted using 0.1M/0.5M HNO3 or NaOH. In a typical batch adsorption 

process, adsorbent was added into 30 mL of the Hg2+ solution at a concentration of 25 ppm (pH 

~6.0) and agitated using a 180 rpm shaking incubator at 298 K for 24 h. Upon completion of the 

reaction, the remaining Hg2+ concentration was measured via inductively coupled plasma-optical 

emission spectrometry (ICP-OES) (ThermoFisher Scientific, Germany). The adsorbents’ removal 

capacities for Hg2+ ion removal were quantified using equations given in Supplementary 

Information. 

 

2.5.1. Kinetics measurements 

Amount of 0.050 g/L MX-SA4:20 sphere samples was added to a 25 ppm concentrated Hg2+ 

solution (pH 5.5), and agitated for several hours, with the samples filtered using a membrane filter 

at specific intervals. The filtrates were subjected to ICP-OES analysis to obtain the remaining 

concentration measurements. 

 

2.5.2. Isotherm measurements 

The ability of the MX-SA4:20 samples to adsorb Hg2+ from water were determined using a batch 

adsorption system. 50 mg each of MX-SA2:20 and MX-SA4:20 spheres were added to 30 mL of 

various Hg2+ solutions (993.8, 695.66, 538, 405.6, 281.28, 198.12, 129.8, 64.61, and 31 ppm, 

respectively) under constant shaking at room temperature for 24 h. The initial and residual Hg2+ 

concentrations were determined using ICP-OES.  

 

2.5.3. Multi-element system measurements 

A 30 mL solution containing nine different metal ions (Hg2+, Cd2+, Cu2+, Pb2+, Zn2+, Ni2+, Co2+, 

Cr3+, and As3+), each at a concentration of 3 ppm, was prepared and then 50 mg of MX-SA4:20 was 
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introduced into the reaction bottle containing the metal ion solution. The reaction was allowed to 

proceed for 24 h under continuous agitation and the resulting solution was analyzed using ICP-OES. 

As a breakthrough experiment, 3.1 g of MX-SA4:20 aerogel spheres were loaded into a column with 

a maximum bed height of 20 cm and a 1.5 cm inner dimeter to produce a dried adsorbent bed with a 

height of 12.5 cm that was then covered by glass wool. A multi-ion solution containing the nine 

elements listed above at 3 ppm concentrations and 4.67±0.05 pH was then run through the column 

at room temperature at a flow rate of 0.3 mL/min using a Masterflex L/S digital pump. The samples 

were collected at different time intervals and subjected to ICP-OES analysis. 

 

2.5.4. pH measurements 

Typical batch adsorption experiments were carried out to investigate the effect of pH on the 

adsorption system. Several mixtures of 0.05 mg of MX-SA4:20 spheres in Hg2+ (25 mg/L) solutions 

in 60 mL polypropylene tubes were prepared at initial pH ranges varying from 2–11. To further 

assess the Hg2+ adsorption in extreme pH conditions, mixing was also conducted in 0.5 and 1.0 

molar HNO3 solutions. After shaking the mixtures for 24 h, the Hg2+-laden (Hg2+@MX-SA4:20) 

samples were analyzed using ICP-OES to measure the residual concentrations of Hg2+. 

 

2.5.5. Adsorbent comparison measurements 

Typical batch adsorption experiments were performed to examine the Hg2+ adsorption 

effectiveness of different adsorbents. Fixed amounts of three adsorbents GO-AS4:20, SA20, and MX-

SA4:20 spheres, respectively, were added to 25 ppm 30 mL Hg2+ solutions and the reactions were 

allowed to proceed for 24 h, after which the residual metal ion concentrations were measured using 

ICP-OES. 

 

3. Results and discussion 

3.1. Preparation of Ti3C2Tx spheres and morphology 
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2-D Ti3C2Tx MXene-based spheres (MX-SA) were formed by dropping homogenous mixtures 

of Ti3C2Tx and sodium alginate into a 1.0 M CaCl2 solution, resulted in black-colored regular 

spheres. The structural morphology of synthesis sphere was studied by optical microscopy and 

scanning electron microscopy (SEM) techniques. The average diameter of spheres was 3.0 ± 0.2 

mm and 2.1± 0.1  mm in wet and dry form, respectively (Fig. 1A and 1F). Examination of the 

morphologies and internal structures of the MX-SA4:20 spheres (Fig. 1) via optimal microscopy 

revealed that the wet hydrogel spheres exhibited deceptively amorphous-like behavior, with internal 

structures not emerging until the spheres were dried (Fig. 1A and 1B).  

Upon carving the spheres with a razor blade, revealed cross-sections with unambiguous 

core/shell structures observed by SEM images. The quite dense internal cores exhibited MXene-

alginate amalgamation (Fig. 1D), while there were vacant spaces between the shell walls and inner 

cores (Fig. 1C, and 1G) that could only have been produced by a vacuum-freeze drying process, as 

processes such as air-drying in a high temperature oven under vacuum conditions cannot produce 

such unique structures. The average thicknesses of the inner cores and outer shell walls of the MX-

SA4:20 spheres were ~1.5 mm and ~20 µm, respectively (Fig. S1). Optical (Fig. 1C) and SEM (Fig. 

1G) cross-sectional images of a vacuumed-freeze dried MX-SA4:20 sample clearly revealed a self-

structured core. Especially, Ti3C2Tx MXene displayed a 2D nano-layered structure (Fig. 1E). 

Furthermore, SEM-energy dispersive spectroscopy measurements found increases in the C and O 

content relative to Ti3C2Tx (from 11.31 and 13.47 wt% to 34.60 and 40.30 wt%, respectively) in 

the MX-SA4:20 sample (Fig. S2). By contrast, very little Ti was found in the MX-SA4:20 (3.32 wt%), 

although Cl and Ca were found to be present as a result of the complexation of alginate with 

calcium.  

The XRD patterns (Fig. 2A) confirmed the successful production of 2-D Ti3C2Tx MXene from 

the parent Ti3AlC2 MAX phase following extraction of the weakly bonded Al layers [39]. 

Treatment in a 1-M bifluoride (NH4F) solution at 60 oC was sufficient to eliminate the entire Al 

from the MAX phase. A shift in a representative peak (002) from 9.5o to a lower angle (7.16o) 
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parallel to the c lattice parameter suggested the synthesis of larger interplaner spacing Ti3C2Tx 

MXene [34,40]. Furthermore, the pristine alginate spheres demonstrated peak vibrations at 2𝜃𝜃 

values of ~20o [41]. In MX-SA4:20, the appearance of the Ti3C2Tx representative peak (002) at 

6.98o confirmed the synthesis of 3-D MXene-alginate network in the spheres, with the (002) peak 

shifting from 7.16 to 6.98o suggesting an increase in interlayer spacing between the Ti3C2Tx 

nanosheets, which was potentially attributable to the pristine MXene ultrasonication process during 

sphere synthesis [28]. Moreover, the intensity of the representative (002) peak increased with the 

Ti3C2Tx MXene content in the MX-SA spheres in the order MX-SA1:20 > MX-SA1:20 > MX-SA4:20 

(Fig. S3). Further XPS analyses were conducted to confirm the successful synthesis and adsorption 

of Hg2+ onto the MX-SA4:20 (Fig. 2B). The MX-SA4:20 component spectra included typical 

Ti3C2Tx MXene spectra for Ti2p, C1s, F1s, and O1s (Fig. S4 and S5). The emergence of F1s, and O1s 

and elimination of Al in the XPS scans confirmed the exfoliation of the MAX phase into the 

MXene [42]. In the MX-SA4:20 XPS scans there was an addition of Cl1s and Ca1s component peaks 

as well as enhancements of C1s, and O1s components with respect to virgin MXene, which could be 

attributed to the addition of alginate into the heterostructural material. The component spectra could 

be decomposed into various peaks, namely, Ti2p (5 peaks), C1s (3 peaks), F1s (2 peaks), O1s (5 

peaks), and Cl1s (3 peaks). The binding energies of the respective peak fittings are shown in Table 

S1.  

FTIR spectroscopy was used to determine the infrared absorption spectra of Ti3C2Tx, SA20, MX-

SA4:20, and Hg2+@MX-SA4:20. These are shown in Fig. S6, from which it is seen that the composite 

spectra all have multiple major peaks in 4,000-400 cm-1 wavelength range. Note also that the IR 

spectra of MX-SA4:20 are dissimilar to those of Ti3C2Tx, which has an enhanced absorption peak at 

567 cm-1 that is potentially attributable to the deformation vibration of the Ti-O bond [43]. The 

absorption peaks at 3,445, 3,443, and 3,434 cm-1 and at 1,632, 1,624, and 1,602, cm-1 are 

attributable to the presence of external water and potential hydrogen-bonded OH in the Ti3C2Tx, 

SA20, and MX-SA4:20, respectively [44]. Following Hg2+ adsorption, the spectral peak at 3,434 cm-1 
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is displaced to a lower angle at 3,423 cm-1. The C-O and Na-O peaks at 1,034 and 821 cm-1, 

respectively, in MX-SA4:20, are the representative peaks of sodium alginate and are also shifted to 

lower angles following adsorption of Hg2+.  

Nitrogen gas sorption isotherms at 77.3 K corresponding to the calculated specific surface areas 

(BET) of 13.54, 9.23, and 9.66 m2/g were collected for the Ti3C2Tx MXene, SA20, and MX-SA4:20 

spheres, respectively (Fig. S7A). The pore size distributions were calculated using density 

functional theory and found to be indicative of a hierarchical porosity from 2 to 6 nm in MX-SA4:20 

that can offer high accessibility to binding sites (Fig. S7B). TGA of the synthesized MX-SA4:20 

spheres was performed at 10 oC min-1 in a nitrogen atmosphere from ambient temperature to 

1,000 oC. In the process, thermal degradation of MX-SA4:20 occurred in five stages (Fig. 2D). A 

thermal degradation of 11.91% occurred between 23–160 oC (stage-I) as a result of loss of adsorbed 

water. Further decomposition occurred continuously across the applied temperature range, with a 

weight loss of up to 54.69% between 160⎼204 oC followed by more gradual weight reductions of 

13.27, 2.988, and 4.376% from 204⎼400, 400⎼550, and 550-1,000 oC, respectively. 

 

3.2. Mercuric ion capture and kinetics 

The effectiveness of the synthesized materials was assessed through an analysis of their abilities 

to capture mercuric ions from an aqueous solution. For comparison with an identical 2-D 

nanomaterial that is potentially comparable to 2-D MXenes, a solution of GO and alginate was 

mixed into CaCl2 to synthesize GO-AS4:20 spheres. For further comparison with MX-SA4:20, 

additional alginate spheres (SA20) were also synthesized. The MX-SA4:20 was found to have an 

adsorption efficiency (100%) superior to those of both GO-AS4:20 and SA20, which had quantitative 

efficiencies of 34.63 and 11.53%, respectively (Fig. 3). Graphene oxide possess similar features 

likewise MXene, but intrinsic properties of graphene oxide show lack of surface functional groups 

available to metal ions [45]. On the other hand, Ti3C2Tx MXene has superiority over graphene 

oxide owing to its hydrophilic nature, functional groups, and chemical stability. Especially, MX-
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SA4:20 spheres offered unique spherical structures (Fig. 1), which act like a cage to entrap Hg2+ ions 

and provide large available binding sites. The adsorption capacity of MX-SA4:20 for Hg2+ was 

highest among those similar 2D graphene oxide and their derivatives (Table S4) [46-48]. 

Four different adsorbents—SA20 (without MXene), MX-SA1:20, MX-SA2:20, and MX-SA4:20—

were added to a Hg2+-contaminated solution (17.55 ppm)  to compare their respective adsorption 

kinetics for Hg2+ capture (Fig. S8). The decreases in adsorption equilibrium time were found to be 

directly proportional to the MXene concentration, while the alginate concentrations remained 

constant up to a concentration ratio of 4:20% (MX-SA4:20). As shown in Fig. 4A, particularly fast 

adsorption kinetics was observed for the MX-SA4:20 spheres, with a 90% metal ion diffusion 

occurring in only 60 min and complete removal by 120 min. By contrast, the removal efficiencies 

of MX-SA1:20 and MX-SA2:20 were ~44 and ~72%, respectively, over 120 min (Fig. S8). The 

enhanced Hg2+ adsorption by MX-SA4:20 can be credited to the porous structure of its spheres, its 

high specific surface, the unique functionality of MXene nanosheets in alginate, and the readily 

available functional groups for bonding with M2+ (OH, O, etc.) found in Ti3C2Tx MXene.    

Regeneration tests were then performed using HCl. An Hg2+-laden MX-SA4:20 sample was 

dissolved into 2, 4, 6, and 8 M HCl, kept under agitation for 5 h, and then analyzed via ICP-OES. 

The desorption results at different HCl concentrations are shown in Fig. S10, from which only 8 M 

HCl was capable of almost complete (99.69%) desorption of adsorbed Hg2+. Therefore, an extreme 

acidic condition was required to desorb mercury ions from MX-SA4:20 surfaces. In the literature, 

layered hydrogen metal sulfides and metal-organic frameworks showed similar desorption 

characteristics [49,50]. The regeneration of layered hydrogen metal sulfides after Hg loading 

required about 12 M HCl solutions [49]. In case of metal organic frame works, the Cd2+ ions 

adsorbed onto FJI-H9 could not leached out easily, required 16 M HNO3 for reconstruction of 

structure and desorption of Cd2+ [50].  

Adsorption kinetics models were then applied to carry out adsorption kinetics predictions using 

linearized Lagergren pseudo first- and second-order kinetic model equations (details on these 
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equations are given in Supplementary Information). The experimental data were well fitted to the 

pseudo second-order kinetic model (inset Fig. 4A), suggested that the rate determining step of Hg2+ 

adsorption onto MX-SA4:20 and MX-SA2:20 was primarily chemical (Table S2).  

A further assessment of rapid decontamination ability for practical applications was carried out 

by reacting 3.32 ppm Hg2+ in tap water with MX-SA4:20. At various intervals, aliquots were 

extracted from the mixture and measured using inductively coupled plasma-mass spectrometry. 

Within 15 min, the Hg2+ concentration was 1.8 ppb, which is below the US Environmental 

Protection Agency permissible limit of 2 ppb (Fig. 4B). This result suggests possible applications of 

MX-SA4:20 for, e.g., the instant treatment of water contaminated by mercuric ions. The equilibrium 

Hg2+ adsorption capacity of MX-SA2:20 and MX-SA4:20 increased rapidly in the low concentration 

range (25–500 ppm), with the rate of increase slowing from 700–1,000 ppm before finally attaining 

maximum equilibrium capacities of 269.46 and 494.40 mg/g, respectively. For comparison with 

previously reported benchmark materials, distribution coefficient (kd
Hg) values, as given by Eq. S5 

in Supplementary Information, were calculated at a 500-ppm initial Hg2+ concentration. The results 

for MX-SA4:20 were found to be as high as or higher than most of the reported benchmark values, 

with a kd
Hg value of 8.75 × 107 mL/g (Fig. 5A). Attempts to use phosphate buffers (1.0 and 0.5 

molar) at pH values of 6.5 were thwarted by the instability of the MX-SA4:20 spheres in these 

solutions. In this case, Ca2+  in the solution reacted with HPO42-, creating CaHPO4 precipitation 

[51], which resulted in the disintegration of the spheres (Fig. S9). The use of sodium maleate (1.0 

and 0.5 M) buffer also resulted in breakdown of the MX-SA4:20. Therefore, a stock solution 

prepared in DI water with a pH of ~4.5 was maintained for each concentration.  

To further evaluate the mobility of Hg2+ ions onto the slid-phase adsorbent in aqueous solution, 

adsorption isotherm models were developed, with the Langmuir, Freundlich, and Redlich-Peterson 

adsorption isotherm approaches (Supplementary Information) used to simulate the adsorption 

isotherm of the system. The behavior of Hg2+ adsorption onto the MX-SA4:20 spheres was found to 

fit best with the non-linear Redlich-Peterson adsorption isotherm (Fig. 5B), which is a combination 
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of the Langmuir and Freundlich isotherms [52]. The high value (>1) of the constant g (3.55) in the 

system suggested a multilayer-type adsorption process that was obviously well-suited to treatment 

using the Freundlich isotherm model. The maximum adsorption capacities calculated by the 

Langmuir isotherm model were 346.52 and 932.84 mg/g for MX-SA2:20 and MX-SA4:20, 

respectively (Table S3). The differences between the actual equilibrium adsorption capacities and 

the simulated maximum capacities calculated by the Langmuir isotherm model reflected the role of 

the multilayered Ti3C2Tx MXene nanosheets in the MX-SA4:20 dynamics. The isotherm models 

suggested that multilayer adsorption plays the primary role in the adsorption of Hg2+ onto the MX-

SA4:20 spheres.  

 

3.3. pH effect 

The effect of pH on the Hg2+ adsorption efficiency of MX-SA4:20 was also assessed by adsorbing 

Hg2+ solution (25 ppm) onto MX-SA4:20 (40 mg) at various pH values (2–11) at 25 oC. The results 

(Fig. 6) showed an exceptionally high quantitative removal of mercuric ions over the entire pH 

range. With a high removal efficiency under highly acidic conditions (~96% removal of Hg2+ at pH 

2) and a complete capture of mercuric ions between pH 7–10 were found, although a slight decrease 

in removal efficiency (~98%) was observed in more basic environments (pH 11). The Hg2+ 

adsorption capability of MX-SA4:20 under extreme acidic conditions was also notable: in the 

presence of 0.5 and 1 M HNO3, MX-SA4:20 could remove 88.13 and 86.39%, respectively, of the 

total Hg2+ (25 ppm) from the aqueous solution. The experimentally determined kd
Hg values at high 

HNO3 concentrations were unprecedented (9.29 × 103 and 8.01 × 103 mL/g for 0.5 and 1.0 M 

HNO3, respectively). It was found that, in extremely concentrated acidic solutions (3 M HNO3), the 

outer shells of the MX-SA4:20 spheres were partially dissolved, which changed the solution color to 

a pale yellow. At HNO3 concentrations of 1 M, by contrast, the MX-SA4:20 spheres were stable. 

The stability of the inner core structures of the spheres under even extremely acidic conditions 

helped account for their high adsorption of Hg2+; another potential adsorbent form for such extreme 
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acidic environments is the 3-D MXene-alginate gel-like structure. Previously, adsorption affinity 

toward Hg2+ over a broad pH range had only been reported for thiol-functional materials [53,54], 

and layered hydrogen metal sulfide [45]. The results reported here suggest the potential usefulness 

of MX-SA4:20 spheres in the remediation of mercury in extreme acidic wastewater conditions such 

as the removal of mercury from nuclear waste.  

 

3.4. Multiple element performance 

Given that wastewater can hold multiple metal contaminants, further batch and breakthrough 

tests were performed to investigate the simultaneous removal of diverse metal ions. MX-SA4:20 

demonstrated good multi-component adsorption performance for nine toxic heavy metals ions, 

including soft  (Hg2+ and Cd2+), hard (Cr3+ and As3+), and borderline Lewis metal ions (Pb2+, Cu2+, 

Zn2+, Ni2+, and Co2+). In a typical batch experiment, MX-SA4:20 performed remarkably well in 

removing >90 and >80% of five and three of the tested metal ions, respectively, although only 37% 

of the arsenic (As3+) was removed (Fig. 7A). The presence of As3+, or arsenite, depends highly on 

the pH of the solution, the nature of the adsorbent, and the functional group types. At an acidic pH, 

i.e., pH = 4.67, arsenite shows lower affinity for oxygenated and carboxylic host groups than Cr3+, 

which exhibits high adsorption at lower pH because HCrO4─ is more easily adsorbed over a 

protonated surface [55]. These results indicate the high affinity of MX-SA4:20 toward all types of 

metals ions. Even in the presence of competitive metal ions, the Hg2+ adsorption efficiency was still 

remarkably high, with a 99% removal rate; this was second only to Cd2+, which was completely 

removed. The breakthrough experiment was carried out using an upflow column in which the bed 

was packed with MX-SA4:20 and subjected to a flow rate of 0.3 mL/min. At the conclusion of the 

experiment, the terminal concentrations of eight metal ions were all decreased from 3 ppm to very 

low (detectable) levels. The results are shown in Fig. 7B; once again, the breakthrough time (taken 

as C/C0=0.1) of Hg2+ appeared at one before the last (Cd2+), indicating a good Hg2+ adsorbing 

capacity of MX-SA4:20. Metal organic frameworks have only reported such exceptional adsorption 
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behaviors toward heavy metal ions adsorption [2]. Overall, the outcomes of these experiments 

reveal the ability of MX-SA4:20 to perform very well with respect to Hg2+ adsorption in a 

competitive environment while simultaneously purifying multiple metal contaminants.  

 

3.5. Analysis of removal mechanisms 

The aqueous phase Hg2+ removal ability of MX-SA4:20 spheres is driven by multiple mechanisms, 

including complex formation, ion-exchange, and electrostatic interaction. The inner-surface 

complexation between [Ti−O]−H+ and Hg2+ and ion exchange reaction between Ca2+ and Hg2+ are 

believed to be involved in adsorption of Hg2+. The porous structure of sphere was beneficial for 

metal ion capturing during adsorption process. The hydroxyl (−OH), alkanes (−CH), and carboxyl 

(−COO) groups of biopolymer alginate also played an important role in adsorption mechanism. The 

hydroxyl and carboxylate groups from alginate are well known for heavy metal binding groups [52]. 

Further, the formation of [Ti−O]−H+ and [Ti−O]−Ca+ binding groups are predicted in MX-SA4:20. 

The binding group [Ti−O]−H+ demonstrated strong metal-ligand interaction with Hg2+ [53]. 

Furthermore, the formation of [Ti−O]−Ca+ group during synthesis processes was also believed to be 

favorable for the enhancement in Hg2+ uptake.  

The multi-layered and spontaneous Hg2+ adsorption processes were predicted using isotherms 

and kinetics models and XPS spectra of MX-SA4:20, before and after adsorption of Hg2+ were 

analyzed to gain a better understanding of the removal mechanism (Scheme I). The XPS wide 

spectra scans indicated the presence of Ti3C2Tx MXene and alginate representative peaks (Ti2p, C1s, 

F1s, O1s, Ca1s, and Cl1s) in the MX-SA4:20. Following the adsorption of Hg2+, peaks emerged in the 

Hg2+@MX-SA4:20 sample spectra (Fig. 2B) that demonstrated the immobilization of Hg on the 

surface of the MX-SA4:20. The Hg2+@MX-SA4:20 Hg4f spectrum peaks at 4f7/2 and 4f5/2 with 

binding energies of 100.36 and 104.43 eV, respectively, and divided by a spin orbit splitting of 4.07 

eV might be attributable to HgO [31]. Additionally, the structural changes in the O1s spectrum in 

Hg2+@MX-SA4:20 suggests an oxidation process between O⎼ and Hg2+. During Hg2+ removal 
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processes, the amount of hydroxyl groups on the MX-SA4:20 decreased progressively and the shift 

in binding energies of the peaks in the O1s region to lower angles also suggested Hg2+ adsorption on 

MX-SA4:20 (Table S1). In addition, a significant shift in Ti 2p to higher binding energy was 

observed (Fig. S4), confirming the presence of strong interaction between Hg2+ and Ti−O. In 

previous studies, the authors found reductive adsorption of Cu2+ by Ti3C2Tx MXene nanosheets in 

which Cu2+ was partially reduced to Cu+ and formed cupric and cuprous oxides [54]. However, 

neither Ti3C2Tx nor composites of Ti3C2Tx MXene can reduce Hg2+ ions [31], indicating that the 

Hg2+ removal onto MX-SA4:20 was controlled only by adsorption.  

 

4. Conclusion 

In this study, a safer route for synthesizing 2-D Ti3C2Tx MXene using NH4F instead of 

dangerous hydrofluoric acid was developed and a novel adsorbent, spherical MX-SA4:20, was 

fabricated using a facile synthesis method involving 2-D Ti3C2Tx MXene and SA networking. The 

core-shell of the MX-SA4:20 sphere was found to be capable of very effectively removing Hg2+ ions 

from aqueous solution. The structure of MX-SA4:20 was characterized using optical microscopic, 

SEM, XRD, FT-IR, and XPS imaging to determine its morphological, structural, and surface 

properties. Analysis of the synthesis and characterization of the MX-SA4:20, adsorption behavior of 

Hg2+, and the effects of other toxic heavy metals on Hg2+ removal revealed that the primary 

adsorption mechanisms of metal ions onto MX-SA4:20 are the host-guest inclusion of [Ti−O]−H+, 

functional groups on biopolymer alginate, and porous structures of the spheres. Batch and column 

testing of MX-SA4:20 revealed that it could efficiently and simultaneously reduce single and multi-

component metallic ion concentrations from high to environmental levels. MX-SA4:20 performed 

excellently in extreme acidic conditions (pH <0) with an affinity and binding capacity for Hg2+ that 

reached or surpassed those of the most efficient known mercury adsorbents. The Ti3C2Tx MXene 

nanosheets, which extended the adsorption capacity of the alginate spheres, also exhibited unique 

structures. The authors believe that the sphere fabrication process using 2D MXenes can be 
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extended and scaled to enable large-scale synthesis for multiple pollutant remediation’s at an 

industrial level.   
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List of Figures 

Figure 1: Optical microscopic images of MX-SA4:20 (A) hydrogel sphere (3 mm), (B) following 

vacuum freeze-drying (~2 mm), (C) cross-sectional view, and (D) core of MX-SA4:20 spheres. 

SEM images of (E) Ti3C2Tx MXene, (F) dried MX-SA4:20 sphere, and (G) internal structure of 

sphere cross-section.  

Figure 2: (A) PXRD diffractogram of Ti3AlC2, Ti3C2Tx MXene, and MX-SA4:20 spheres. (B) Pre 

and post Hg2+ adsorption XPS spectra of MX-SA4:20 spheres and Hg2+@MX-SA4:20. Various 

moieties believed to exist in MX-SA4:2 and Hg2+@MX-SA4:20 (C) XPS component peak-fitting 

spectra of Hg 4f. (D) TGA curve of MX-SA4:20; a multistep weight loss was observed. 

Figure 3: (A) Hg2+ adsorption efficiencies of sodium alginate sphere (SA20), graphene oxide 

sodium alginate spheres (GO-SA4:20), and MX-SA4:20 spheres (experimental conditions: 15 ppm 

of Hg2+ (30 mL), 42 mg of adsorbent at pH 5.5 and 298 K). 

Figure 4: (A) Adsorption kinetics graphs of Hg2+ onto MX-SA2:20 and MX-SA4:20. The pseudo 

second-order kinetics regression was found to be superior for both adsorbents, indicating that 

Hg2+ onto MX-SA2:20 and MX-SA4:20 drive the chemisorption and rate-limiting nature of the 

adsorption reaction. (B) Kinetics of removal of Hg2+ from tap water by MX-SA4:20. 

Figure 5: (A) Comparison of kd values (measured at 500 ppm initial Hg2+ concentration) and 

Hg2+ saturation uptake capacities of MX-SA4:20 spheres with other benchmark 2-D materials: 

MoS2-rGO,[41] porous and MOF-functionalized materials, POP-SH,[21] PAF-1-SH,[17] 

Chalcogel-1,[42] SAMMS,[43] LHMS-1,[44] Zr-DMBD,[45] TAPB-BMBD,[46] KMS-1,[47] 

FMMS,[48] and S-FMC-900.[49] (B) Adsorption isotherm of Hg2+ onto MX-SA2:20 and MX-



SA4:20, demonstrating exceptional maximum adsorption capacities (Qmax) of 364.52 and 932.84 

mg/g, respectively (calculated by Langmuir isotherm model). 

 Figure 6: Effect of pH on Hg2+ adsorption (quantitatively) on MX-SA4:20 spheres. The kd
Hg 

values in 1 and 0.5 M HNO3 solution are 8.01  103 and 9.29 103 mL g-1, respectively. 

Figure 7: Adsorption performance of MX-SA4:20 in multi-component system: (A) simultaneous 

adsorption of eight toxic metal ions in batch system (conditions: 50 mg adsorbent dose added to 

30 mL aqueous solution containing 3 ppm of each metal ion, agitated for 24 h at pH; 4.67). (B) 

Breakthrough curve in fixed bed adsorption of multi-ions. 

Scheme I: Graphical illustration of Hg2+ ions uptake onto MX-SA4:20 spheres. 
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Figure 7  
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Supplementary note I 
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where Co and Ct (mg/L) are the initial and final (at time t) concentrations of Hg2+, respectively, V 

is the solution volume, m is the mass of adsorbent, and Qe is the absolute sorption capacity at 

equilibrium 

 

Adsorption Kinetics models for Hg(II) 

1ln( ) lne t eQ Q Q k t                            (S3) 

where Qt are the metal ion concentrations at time t and k1 is the first-order rate constant (s-1).  

2
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                            (S4) 

where k2 represents the second-order rate constant (g/mg s); in this case, t/Qt is plotted against t.  

The equilibrium rate constants of the linearized Lagergren pseudo first- and second-order kinetic 

models were expressed by plotting temperature T (K) against ln(qe-qt) and T/qt, respectively.   

 

Distribution coefficient for Hg(II) 
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where Co (mg/L) is the initial concentration of Hg2+, Ct (mg/L) is the concentration of Hg2+ after 

adsorption equilibrium, V (mL) is the solution volume, and m (mg) is the mass of MX-SA4:20 

used. 



Adsorption Isotherm models for Hg(II) 

Langmuir isotherm equation: 

1
m a e

e
a e

q K C
q

K C


                            (S6) 

Freundlich isotherm equation: 
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Redlich-Peterson isotherm equation: 
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                 (S8) 

where qe is the sorption capacity of MX-SA4:20 at equilibrium, Ce is the equilibrium concentration 

of Hg(II) in solution, qm is the maximum adsorption capacity, and Ka, KF, n, A, B, and g are the 

isotherm constants for the Langmuir, Freundlich, and Redlich-Peterson adsorption isotherm 

model equations. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Outer shell wall of MX-SA4:20 sphere. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. SEM-EDS elemental composition of Ti3C2Tx (A) and MX-SA4:20 spheres (B). 

Following adsorption, aluminum and fluoride are completely removed from the MX-SA4:20. 

 

Element Wt% Atomic % 
C (K) 11.31 11.31
O (K) 13.47 13.47
F (K) 8.19 8.19
Al (K) 0.42 0.42
Ti (K) 66.15 66.15
Total: 100.00 100.00

Element  Wt%  Atomic % 
C (K)  34.60  47.66
O (K) 40.30  41.67
Cl (K)  9.99  4.66
Ca (K)  11.78  4.86
Ti (K) 3.32  1.15
Total:  100.00  100.00
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Figure S3. XRD spectra of SA20, MX-SA4:20, MX-SA2:20, and M X-SA1:20. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Pre- and post-adsorption component peak-fitting of XPS spectra. Prior to Hg2+ 

adsorption: (A) Ti 2p, (B) C 1s, and (C) O1s of MX/SA4:20 spheres. Following adsorption: (D) 

Ti2p, (E) C1s,  and (F) O1s of Hg2+@MX/SA4:20. These reflect the various moieties believed to 

exist in MX/SA4:2 and Hg2+@MX/SA4:20. 
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Figure S5.  Pre- and post-adsorption components of peak-fitting XPS spectra. Prior to adsorption: 

(A) F1s, and (B) Cl1s of MX/SA4:20 spheres. Post-adsorption: (C) F1s, and (D) Cl1s of 

Hg2+@MX/SA4:20. 
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Figure S6 Fourier transform infrared (FTIR) spectra of  Ti3C2Tx MXene, SA20, MX-SA4:20, and 

Hg2+@MX-SA4:20  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. (A) Nitrogen adsorption–desorption isotherms and (B) pore size distributions 

calculated from N2 desorption isothermals for SA20, Ti3C2Tx MXene, and MX-SA4:20. 
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Figure S8. Hg2+ adsorption kinetics onto SA20, MX-SA1:20, MX-SA2:20, and MX-SA4:20  spheres. 
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Figure S9. MX-SA4:20 spheres in 1.0 M phosphate buffer solutions at different time intervals. 
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Figure S10. Desorption of adsorbed Hg2+ from Hg2+@MX-SA4:20 in HCl solution. 
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Table S1. MX-SA4:20 sphere chemical compositions under different states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adsorbent 
1st order 2nd order  Experimental

qe 

(mg/g) 
K1 

(g/mg/min)
r2 qe 

(mg/g) 
K2 

(g/mg/min) 
r2  qe 

(mg/g) 

Hg2+@MX/SA2.20 6.16 -0.0029 0.746 7.99 0.12446 0.996  7.692 

Hg2+@MX/SA4.20 2.58 -0.0027 0.213 10.75 0.034577 0.999  10.53 



Table S2. Adsorption kinetics parameters of Hg2+ adsorption by MX/SA2:20 and MX/SA4:20 

 

 

 

MXene Sample Region BE [eV] Assigned to 

 
MX-SA4:20 

Ti 2p 

454.7 Ti (I, II, or IV)
455.5 (461.8) Ti2+ (I, II, or IV) 
456.51(463.8) TiO2 

458.29 TiO2 
460.67 C⎼Ti⎼Fx III  

C 1s 
286.83 C⎼O 
284.75 C⎼C or C C 
281.56 C⎼Ti⎼Tx 

O 1s 

529.64 TiO2 
531.19 C⎼Ti⎼Ox (I) or OR 

532.18 C⎼Ti⎼(OH)x (II) 
and/or OR 

532.97 Cl⎼O⎼ 
533.77 H2Oads (IV) and/or OR 

F 1s 
684.86 C⎼Ti⎼Fx (III) 
689.17 OR⎼Fx 

Cl 1s 
198.08 Metal⎼Clx 
199.05 CaCl2 
200.05 CH CHClx 

Hg2+@MX-SA4:20 

Ti 2p 

455.18 Ti (I, II, or IV) 
456.14 (461.7) Ti2+ (I, II, or IV) 

457.61 Ti3+ (I, II, or IV) 
464.6 TiO2 

C 1s 

281.65 C⎼Ti⎼Tx 
284.47 C⎼O 
283.64 R⎼Al 
286.27 CHx/C⎼O 
288.34 C O 

O 1s 

530.35 TiO2 
529.59 TiO2 

531.7 C⎼Ti⎼ (OH)x (II) 
and/or OR 

532.61 C O 

F 1s 
685.01 C⎼Ti⎼Fx (III) 
688.58 OR⎼Fx 

Cl 
197.88 Metal⎼Clx 
199.39 OR⎼Clx 

Hg 4f 
100.36 HgO 
104.43 HgO 



Table S3. Adsorption isotherm parameters of Hg2+ adsorption by MX/SA2:20 and MX/SA4:20 

sphere 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isotherm Parameters 
Hg2+@MX/SA2.20 Hg2+@MX/SA4.20 

Values R2 Values R2 

Langmuir qmax (mg/g) 364.52 0.982 932.84 0.981 

kL 0.0026 0.000933  

Freundlich kF (mg/g) 9.19 0.933 4.45 0.959 

1/n 0.48 0.67  

Redlich-
Peterson 

A (L/mg) 0.632 0.999 0.628 0.997 

B (L/mg) 1.264×10-5 4.299×10-7 

g 1.68 2.95 



Table S4. Comparison between two-dimenssional nanomaterials, cellulose and their darivatives 

with MX-SA4:20. 

 

 

 

 

 

 

 

 

Adsorbent Initial conc. 

(mg L-1) 

Adsorption 

Capacity (mg g-1) 

pH Ref. 

Fe3O4-GS 5 23.03 6.0 [S1] 

EDTA-mGO 50 268.40 4.1 [S2] 

MGO 100 71.3 6 [S3] 

PEI–PD/GO composite 50 110 4.0 [S4] 

Spanish broom 100 20 6 [S5] 

cellulose nanofibers (CNFs) 200 116.82 7 [S6] 

Activate Carbon 20-50 16.15 5.0 [S7] 

GO/mCS nanofilling 0-500 397 6.0 [S8] 

CS/CNTs beads 1000 183.2 5 [S9] 

MX-SA4:20 31-993 932.84 4.5 This 

work 
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