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Abstract. In many markets, relationship specific investments are necessary for trade.

These formed relationships constitute a networked market in which not all buyers can

trade with all sellers. We show that networked markets can be decomposed to identify

how alternative trading opportunities affect who trades with whom and at what price.

This uncovers agents’ investment incentives. In some markets a buyer and seller must

make different, separate investments to trade, while in others investments are jointly

negotiated. Either way, inefficiencies can be severe and consume all the gains from

trade, but for different reasons. We consider three applications in detail: high-skill

labor markets, merger markets when industries are consolidating, and the international

market for natural gas.

Key Words: Networked markets, network formation, network bargaining, matching, outside

option, inefficient investment, relationship-specific investment, hold up.

1. Motivation

In many markets a buyer and a seller must make a relationship-specific investment before

they can trade: Countries invest in pipelines to trade oil and natural gas; contractors

learn the specific requirements of manufacturers;1 acquirers pay due diligence costs, while

takeover targets reveal private information; there are interviews prior to recruitment; art

dealers authenticate paintings; illegal-goods handlers risk transacting with under-cover

law enforcers; etc. After these investments have been made, only some buyer–seller pairs

can trade with each other—the market is networked. This paper analyzes inefficiencies

in these investments when long term contracts cannot be enforced.
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To analyze inefficiencies in the investments that enable trade it is necessary to first under-

stand how the structure of a formed networked market affects bargained outcomes–who

trades with whom and at what prices. Letting the buyers and sellers be the nodes, links

in a network can be used to represent which buyer–seller pairs have made the required

investments to trade with each other. We consider bargaining outcomes in which no

two linked agents have a profitable pairwise deviation. By utilizing and extending results

from the matching literature, an intuitive algorithm is constructed which decomposes any

network to identify (i) the role of each link in the network—whether it is used for trade

or to generate an outside option and affect the terms of trade—and (ii) the effect of each

link on each agent’s bargained outcome. This network decomposition clarifies agents’

investment incentives and underlies the subsequent analysis of investment inefficiencies.

Relationship-specific investments are subject to well-understood inefficiencies. An agent

may fail to make an efficient up-front investment, anticipating that he will be held up and

unable to recover his costs. This problem can lead to underinvestment. An agent may

also make costly investments into alternative trading relationships just to improve his

terms of trade. This overinvestment generates no additional gains from trade and is also

inefficient. We provide a systematic treatment of these inefficiencies when investments

are made to enable trade in a market context. Which agents will make the required

investments to trade? Who will actually trade with whom? How large will inefficiencies

be? Which types of inefficiency will be most severe and when?

We consider two investment protocols. In protocol A, both the buyer and seller must

make fixed, separate investments before they can trade, and we show that for this protocol

the inefficiency problem of most concern is the hold-up problem. For any parametrization

of the model, we characterize a tight bound on overinvestment inefficiency as buyers’ and

sellers’ gains from trade are varied. For different parameter values, this bound ranges

between zero and fifty percent of the potential gains from trade. Underinvestment ineffi-

ciency, in contrast, may consume all the gains from trade. In protocol B, the investment

costs necessary for forming a relationship are transferable and can be split in any way

between the buyer and seller. For this protocol we show that shares of the investment

costs can always be found to overcome the hold-up problem—the investment share of

the agent at risk of being held up can be reduced until participation is profitable. Are

the relationships that are formed then efficient, or close to efficient? While it is easier to

form links that will be used for trade when investments are negotiated, it is also easier to
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form links to establish outside options that will not be used for trade. Although proto-

col B overcomes the hold-up problem, it exacerbates the overinvestment problem. With

negotiated joint investments, overinvestment can consume all the gains from trade.

Both investment protocols seem important in practice. In some markets the relationship-

specific investments that enable trade are naturally separate and non-substitutable, while

in others the share of investments each agent is responsible for is negotiated. We examine

three applications in detail. In high-skill labor markets, interviews are required before

a firm can employ a worker. Investments into interviews are non-substitutable, and

we argue that protocol A applies. Moreover, we make the case that firms have higher

bargaining power and pay the majority of the interview costs. For this parameterization

of the model, the scope for underinvestment is limited (although the losses can be large

when it occurs) and the magnitude of overinvestment inefficiency is bounded fairly tightly.

A second application we consider is industry consolidation, where due diligence must be

completed before credible offers can be made. The widespread use of termination fees2

provides a mechanism through which transfers are made and means that protocol B

fits this application better. In the context of the model, we examine the Omnicare,

Inc. v. NCS Healthcare, Inc. decision that ruled against the use of an exclusive-dealing

agreement. We argue that by expanding the contracting space, such agreements can help

overinvestment be avoided. The final application we consider is the international market

for natural gas, where pipelines must be constructed before trade is possible. We again

argue that protcol B fits and identify possible instances of overinvestment.

This paper contributes primarily to the growing literatures on trade within, and the

formation of, networked markets. The cooperative game theoretic approach we take to

modeling trade builds on the matching literature and is most closely related to Kranton

and Minehart (2000a).3 The main contribution to this literature is the network decompo-

sition algorithm, which identifies how different trading opportunities affect market out-

comes. Our cooperative approach yields the same solution Corominas-Bosch (2004) finds

in her non-cooperative bargaining model.4 However, the Corominas-Bosch approach is

only applied to environments with homogeneous gains from trade—and cannot be readily

extended to environments with heterogeneous gains from trade. Experimental evidence

2 These are lump-sum transfers made from the target to a potential acquirer following a failed bid.
3 Nava (2011) models quantity competition in networked markets and Blume et al (2009) model trade
through intermediaries that quote bid and ask prices, while Fainmesser (2010) and Fainmesser and
Goldberg (2011) study repeated trade over networks.
4 Navarro and Perea (2001), Polanski (2007), Gale and Kariv (2007), Abreu and Manea (2012, 2010),
Manea (2011) and Elliott and Nava (2014) also model non-cooperative bargaining games over networks.
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supports her theory and, by extension, our theory (Charness, Corominas-Bosch, and

Fréchette, 2007).

A key feature of the bargaining approach we take is that players have endogenous dis-

agreement payoffs or “outside options,” and these depend on the network structure. A

related and complementary literature modeling input markets endogenizes disagreement

payoffs in a different way. Building on the foundations laid in Horn and Wolinsky (1988),

Iozzi and Valletti (2014) consider a supplier who simultaneously bargains bilaterally with

multiple downstream producers over input prices. Suppose competition downstream is in

quantities. If an agreement is not reached with a producer, the supplier may be able to

switch some additional supply to their other producers at the agreed-upon price, as these

producers will now demand more. When this is possible, the supplier’s outside option is

better and they negotiate a higher input price. In contrast, we turn off potential product

market effects by assuming that the surplus a buyer and seller generate does not depend

on the trades of other buyer-seller pairs. This allows us to consider general networked

markets, with multiple suppliers and multiple producers, permitting an analysis of the

network formation problem. How substantial product market effects can be depends on

how competitive the product market is and how much producers rely on a single supplier.5

There is a large literature on inefficient investment due to hold-up problems and over-

investment in outside options.6 Unlike much of this literature, we analyze investments

in a market context with multiple buyers and multiple sellers, and where investments

enable trade. In Cole, Mailath, and Postlewaite (2001a, 2001b), investments are made in

attributes valued by multiple potential trade partners, albeit at possibly different rates,

and conditions are found under which investments are efficient. Felli and Roberts (2002)

consider investments in quality where buyers and sellers are vertically differentiated. In

both cases it is critical for the results that investments be valuable to multiple potential

trade partners. Investments that enable trade are modeled by Kranton and Minehart

(2001), (2000b). We generalize the Kranton and Minehart environment by permitting

two-sided investments in links, heterogeneous potential gains from trade and a more

general bargaining solution.

5 Lee and Fong (2013) have an interesting recent paper that builds a dynamic model with general
externalities between buyers and sellers. While the cost of this generality is the loss of analytical
tractability, the paper helps draw out differences between a static and dynamic approach. In Section
7.4 we argue that some markets are likely to be well approximated by static models, while others will
be better suited to a dynamic treatment.
6 See Segal (1999) for a general treatment of inefficiencies that arise when one principal contracts with
many agents in the presence of externalities.
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Kranton and Minehart (2001, 2000b), like Cole, Mailath, and Postlewaite (2001a), (2001b),

and Felli and Roberts (2002), focus on finding conditions under which efficient invest-

ments are made. We take a different approach by identifying different types of inefficiency

and measuring the efficiency losses due to them. This is complicated by the presence of

multiple stable networks. Even for given gains from trade in a very small market with

five buyers and five sellers, just finding the set of stable networks is hard—there are over

thirty million possible (bipartite) networks to consider.7 We make some progress with

these questions by importing two concepts from the computer science literature: the cost

of anarchy and the price of anarchy, which measure the efficiency loss in the best and

worst stable networks respectively (Koutsoupias and Papadimitriou, 2009; Roughgarden

and Tardos, 2004). When bounding inefficiency losses from above, we focus on the worst

stable network; and when bounding inefficiency losses from below, we focus on the best

stable network. Despite taking this conservative approach, we find tight upper and lower

bounds on different types of inefficiency that vary with the investment protocol. These

results contrast with the positive efficiency results from the existing literature. We also

depart from the existing literature by allowing investments to be negotiated.8

The paper proceeds as follows. Section 2 provides a simple example illustrating the

main points of the paper. Section 3 then sets up the model, and Section 4 analyzes

bargaining over a formed network. Section 5 identifies the efficient network(s), providing

a useful benchmark for the set of stable networks which are considered in Section 6.

Section 6 examines the inefficiency present in stable networks. Section 7 discusses three

applications of the model, and Section 8 concludes.

2. Example

This section presents a very simple example to illustrate the inefficiency results. Suppose

that there are two sellers, s1 and s2, and a single buyer b1. Each seller has a single unit

to sell and the buyer demands one unit. To enable trade between either seller and b1,

a specific investment must be made at cost c = 1
2
− ε, where ε is small and positive.

Neither seller directly values the good they sell, and b1 values the good from s1 at 1 and

the good from s2 at 1− ε. Figure 1a shows the potential gains from trade.

7 The relevant set of networks are bipartite, as buyers can trade only with sellers. For m buyers and n
sellers, there are 2mn such networks.
8 Currarini and Morelli (2000) consider a non-cooperative network formation game in which players form
links and propose surplus splits, thereby endogenizing these splits. They find that the efficient network
is stable under their condition of ‘size monotonicity.’
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1

s1

b1

1-ε

s2

(a) Potential links

1

s1

b1

s2

(b) Efficient network

1

s1

b1

1-ε

s2

(c) Complete network

Figure 1. Networked market

The efficient network maximizes the net gains from trade (the realized gains from trade

less resources spent on forming links) and is shown in Figure 1b. The net gains from

trade generated by this network are 1−
(
1
2
− ε
)

= 1
2

+ ε.

We first consider investment protocol A and suppose a buyer must pay γc towards forming

a link, while a sellers must pay (1 − γ)c, where γ ∈ (0, 1) is an exogenous parameter.

Let the sellers have all the bargaining power and make take-it-or-leave-it offers after a

network is formed. If the efficient network were formed b1 would have no alternative but

to trade with s1, and s1 would sell to b1 at a price of 1, extracting all the surplus and

leaving b1 with a net payoff of −γc. Anticipating this, b1 will not invest in a single link

to s1, for fear of being held up. The complete network is not stable either. Sellers s1 and

s2 will compete with each other to supply b1, driving the price down until at least one

of them is unable to recover their (sunk) investment. The empty network is the unique

stable network. Underinvestment inefficiency due to a hold-up problem consumes all the

possible gains from trade.

Consider instead protocol B, and let the buyer and sellers negotiate their investment

shares. These negotiations are bilateral, and contingent contracts cannot be written.

The empty network is no longer stable: b1 and s1 could agree to split the cost c so that

s1 paid the entire cost, leaving b1’s payoff unaffected but strictly increasing s1’s payoff.

However, the efficient network is not stable either. If the efficient network were formed

s1 would extract all the rents and b1 would receive a payoff of at most 0. Buyer b1 would

then be willing to pay the entire investment cost required to form a link to s2. With this

additional link, s1 and s2 would compete to supply b1, and b1 would extract rents 1− ε
less his investment costs. With negotiation, the unique stable network is the complete
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network, with b1 paying all the investment costs of forming the link to s2 and at least

c− ε of the investment costs of forming the link with s1.

Under protocol A, the unique stable network is the empty network, and all gains from

trade are lost to underinvestment. Under protocol B, there is no longer any underinvest-

ment. However, underinvestment inefficiency is replaced by overinvestment inefficiency.

Buyer b1 forms a link to s2 for the sole purpose of improving his terms of trade with s1.

From an efficiency perspective, this investment generates no gains from trade and is a

waste of resources. Furthermore, as ε → 0 overinvestment inefficiency consumes all the

possible gains from trade.

3. Model

There is a set of m buyers denoted P and a set of n sellers denoted Q. The value of trade

between a buyer i and a seller j is given by aij ≥ 0. Each buyer demands one unit of

the good, and each seller supplies one unit of the good. The m× n dimensional matrix

a describes the value of all potential bilateral trades.

There are two stages. In stage one, buyers and sellers make relationship-specific in-

vestments to enable trade, where the gains from trade a are common knowledge. The

resulting network of potential trading relationships is labeled L. A link is formed enabling

trade between i and j (lij = 1) if and only if their joint investment is at least c; otherwise

no link is formed (lij = 0). Two investment protocols are considered. In protocol A,

buyers and sellers choose whether or not to pay an exogenously fixed proportion of the

cost c: γ and 1 − γ, respectively. In protocol B, buyers and sellers negotiate over how

the cost c is split between them, so that a link is formed whenever they jointly benefit

from it. It is assumed that future terms of trade are non-contractible.9

In stage two, buyers and sellers bargain over the network. The trades implemented are

described by an m × n matrix x, where element xij indicates that buyer i purchases

xij ∈ [0, 1] units from seller j. All rows and all columns of x must sum to no more than

1, as each buyer demands only a single unit and each seller supplies only a single unit.10

For xij > 0, the price buyer i pays seller j per unit is pij. Bargaining solutions that

map the potential gains from trade a and network L into trades x and prices p will be

considered. Buyer i’s payoff is denoted by ui(a,L) : R+m×n ×{0, 1}m×n → R+, and seller

9 This assumption is discussed in Section 7.4.
10 While it is possible for i to purchase xij ∈ (0, 1) of a unit from seller j and xik of a unit from another
seller k, it will turn out that endogenously xij ∈ {0, 1}.
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j’s payoff by vj(a,L) : R+m×n ×{0, 1}m×n → R+. The utilities of buyer i and seller j are

the surpluses they extract from each of their transactions.11

ui =
∑
k∈Q

xik(aik − pik) vj =
∑
k∈P

xkjpkj.

The symmetry of buyers and sellers means that for all the results found for buyers, there

are symmetric results for sellers. Some results will be stated for just buyers or just sellers.

4. Bargaining over a formed Network

To analyze network formation, a backward induction approach will be applied and trade

over a given network considered first. This section proposes a mapping from the formed

network (L) and potential gains from trade (a) into outcomes (quantities traded by

different pairs and prices) and identifies how the network structure affects these outcomes.

A bargaining outcome is a triple (x,u,v). Bargaining outcomes are considered that

satisfy pairwise stability. An outcome (x,u,v) is stable if payoffs are individually rational

(ui ≥ 0, vj ≥ 0 for all i, j) and no buyer and seller could both increase their payoffs by

trading with each other and splitting the resulting gains from trade in any way: for all

i, j, ui + vj ≥ aijlij. The set of stable outcomes is denoted by Ω.12

Let the matrix α, with elements αij := aijlij, summarize the values of feasible trades

after investments have been made. Unlinked buyer–seller pairs then generate no surplus

if they match, and will do equally well by remaining unmatched. The bargaining over

a network problem with potential gains from trade a and possible trades given by the

network L is then a matching with transferable utility (assignment) problem with gains

from trade α.

A match µ is a function from the set of all buyers and sellers into itself, µ : P∪Q→ P∪Q,

such that (i) each buyer (seller) is matched to a seller (buyer) or himself (herself), and

(ii) buyer i is matched to seller j if and only if seller j is matched to buyer i.13 Although

in principle a buyer can multihome and buy from multiple sellers, such outcomes are

11 Without loss of generality, sellers’ values from keeping their goods are normalized to 0, and buyers’
values of goods are adjusted to reflect the net gains from trade.
12 An alternative approach would be to require bargaining outcomes to satisfy the Shapley value (Myer-
son, 1977). However, in this environment, the Shapley value is not always stable (consider, for example
the network shown in Figure 2).
13 Formally: µ(i;α) ∈ Q ∪ i; µ(j;α) ∈ P ∪ j; and µ(i;α) = j if and only if µ(j;α) = i.
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typically unstable: Generically14 the quantity traded xij is an element of {0, 1} in all

stable outcomes. This follows from the linearity in the utility functions. It is then

without loss of generality that bargaining outcomes consisting of the triple (µ,u,v) are

considered. Denote the set of all possible matches M. Where there should be no confusion

notation will be abused and arguments dropped.

There is a generically unique match µ∗(·;α) that maximizes the gains from trade:

µ∗(·;α) := argmax
µ∈M

{∑
i∈P

αiµ(i)

}
. (1)

Shapley and Shubik (1972) show that the set of stable outcomes (matches and payoffs) has

many nice properties.15 First, we know that there exist payoffs for which a match is stable

if and only if that match maximizes the total surplus. This implies that there is a (generi-

cally) unique pairwise stable match. Second, when there are multiple surplus-maximizing

matches, the same payoffs support all such matches as a stable outcome. Third, each

matched buyer and seller must split their gains from trade between themselves in a stable

outcome: ui + vµ∗(i) = αij. Fourth, even though we look only for outcomes robust to

pairwise deviations, this also implies there are no profitable coalitional deviations—the

set of stable outcomes coincides with the set of core outcomes. Finally, the set of stable

payoffs forms a complete lattice for the partial ordering of buyers’ payoffs,16 where u > u′

if and only if ui > u′i for all i ∈ P.17

It will be helpful to define the lowest and highest stable payoffs the agents can receive:

ui := min
(µ,u,v)∈Ω

ui, ui := max
(µ,u,v)∈Ω

ui,

vi := min
(µ,u,v)∈Ω

vi, vi := max
(µ,u,v)∈Ω

vi.

We will refer to a buyer i’s lowest possible stable payoff (ui) as his “outside option.”

Seller j’s outside option (vj) is defined analogously. The lattice structure of the stable

outcomes implies that the payoff vectors (u,v) and (u,v) are stable.

14 Let εij be a noise terms drawn independently from an atomless distribution with continuous support.
If we take any gains from trade and perturb them by adding these noise terms, and so consider gains
from trade âij = aij + εij , then with probability 1, xij ∈ {0, 1} for all i, j in all stable outcomes. See
Roth and Sotomayor, (1990).
15 We discuss and provide intuition for these results in Section SA-1 of the supplementary appendix.
16 The equivalent partial ordering for sellers’ payoffs could be used.
17 More formally, suppose (u,v) and (u′,v′) are stable payoff vectors. Let û = u ∨ u′ such that for all
i, ûi = max(ui, u

′
i); and let ṽ = v ∧ v′ such that for all j ṽj = min(vj , v

′
j). Define ũ and v̂ analogously.

The payoff vectors (û, ṽ) and (ũ, v̂) must then also be stable.
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Figure 2 shows a simple formed network. On this network, b1 will be matched to seller

s1 (otherwise b1 and s1 would have a profitable deviation). The worst-case scenario for

b1 is to receive a payoff of 5. If b1 received any worse terms of trade, he would have

a profitable deviation by instead trading with s2. Thus ub1 = 5 and the set of stable

outcomes are ub1 = 5 + 5β, vs1 = 5(1− β) and vs2 = 0 for a parameter β ∈ [0, 1].

10

s1

b1

5

s2

Figure 2. Simple network

Démange, Gale and Sotomayor (1986) identify an algorithm to find buyers’ and sellers’

minimum stable payoffs. However, not much is known about how the structure of the

network α affects payoffs. The network decomposition algorithm identifies a simple way

of decomposing any weighted network α into a directed weighted network from which

the effect of every link on each agent’s outside option can be easily found:18

(1) Identify trade partners. Given a network α, find the match that maximizes the

possible gains from trade. This match (µ∗(·;α)) defines each agent’s trade part-

ner. Represent these relationships by directed solid links.

(2) Identify outside trade partners. To find an agent k’s outside trade partner, remove

his trade partner µ∗(k) from the network and identify the agent he rematches to

for the gains from trade to be maximized over the new network.19 More formally,

let α/µ∗(k;α) be the gains once player µ∗(k;α) is removed from the network so

that i and j have gains from trade αij if i, j 6= µ∗(k;α), and 0 otherwise. Agent

k’s outside trade partner is then η(k;α) := µ∗(k;α/µ∗(k;α)). Find all agents’

outside trade partners in this manner, and represent these relationships (outside

option links) by directed dashed links from k to η(k).

The network decomposition algorithm runs in polynomial time and can be programmed

as the solution to m+n+1 linear programming problems. To see how the decomposition

18 Generically, there is a unique network decomposition. When there are multiple directed network
representations, any one can be selected and all results will carry through.
19 If k is unmatched, k has no outside trade partner.
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is implemented (by hand), consider the network in figure 3a. The links traded over

are found first by considering the match that maximizes the gains from trade. These

relationships are represented by directed solid links in Figure 3b. For example, b1 must

trade with s1 for the gains from trade to be maximized and so s1 is b1’s trade partner. To

find each agent’s outside trade partner, his trade partner is removed from the network

and the match that maximizes the gains from trade on this reduced network is found.

If s1 is removed from the network, b1 has to rematch to s2 for the gains from trade to

be maximized, and so b1’s outside trade partner is s2, as shown by the dashed directed

link from b1 to s2. It is interesting that in this example the highest-value link does not

feature in the decomposed network and so is redundant.

10

15

s1

10

14

10

17

s2 s3

b3b2b1

(a) Formed network

10 15 10 14 10

b3b2b1

s1 s2 s3

(b) Decomposition

Figure 3. Directed network decomposition

Agent k’s outside option chain is a sequence of links that can be easily identified from

the network decomposition. Start at the node k. Then alternately follow the directed

dashed links and then directed solid links, until this is no longer possible. Let Ldl
k denote

the set of dashed links in k’s outside option chain, and Lsl
k the set of solid links in k’s

outside option chain.20 The outside option chains for the network in Figure 3a are shown

in Figure 5a.

We now show how agents’ outside option chains determine the value of their outside

options. Suppose k’s trade partner (µ∗(k)) is removed from the network. The gains

from trade being generated by k and µ∗(k), αkµ∗(k), will then be lost but a rematching

may recover some of these losses. Lemma 1 shows that the optimal rematching, which

maximizes the gains from trade generated on the network without µ∗(k), occurs along

20 Outside option chains, although defined and motivated in a different way, are similar to the opportunity
paths identified by Kranton and Minehart (2000a) for networks with homogeneous gains from trade.
Outside option chains can be viewed as a generalization of opportunity paths. However, there is no
counterpart to Theorem 1 in Kranton and Minehart (2000a). In concurrent independent work, Caplin
and Leahy (2014, 2010) have identified similar mathematical structures using a different methodology.
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k’s outside option chain: k rematches to his outside trade partner η(k), which leaves

η(k)’s trade partner unmatched, so he rematches to his outside trade partner, and so on.

Whenever an agent is rematched in any optimal rematching, he rematches to the same

person.

Denote the set of links that are no longer matched over in an optimal rematching following

the removal of µ∗(k) by L−µ∗(k), and the set of links that are newly matched over by L+
µ∗(k),

and recall that the links in Ldl
k are the dashed links in k’s outside option chain, while the

links in Lsl
k are the solid links in k’s outside option chain.

Lemma 1.

(i) If an agent is removed from the network, every agent displaced as part of the sub-

sequent optimal rematching is rematched to his outside trade partner—the same

agent he would rematch to if his trade partner were directly removed from the

network:

L+
µ∗(k) = Ldl

k and L−µ∗(k) = Lsl
k ∪ {lkµ∗(k)} k ∈ P ∪Q.

(ii) Outside option chains are always finite; they never cycle.

The proof of Lemma 1 and subsequent proofs are in Appendix B. To gain intuition for

Lemma 1, consider the simple three-buyer and three-seller network shown in Figure 4a.

The dashed ovals represent the optimal match on this network. Now suppose that s1 is

removed from the network and in the optimal rematching b2 rematches to s3, as shown

in Figure 4b. One implication of Lemma 1 is that b2 must also rematch to s3 if s2 were

removed from the network instead of s1; thus the rematching shown in Figure 4c cannot

be optimal.

s1 s2 s3 

b1 b2 b3 

(a) Formed network

s1 s2 s3 

b1 b2 b3 

(b) Removing s1

s1 s2 s3 

b1 b2 b3 

(c) Removing s2

Figure 4. Inconsistent optimal rematchings which violate Lemma 1

To see why the rematchings in Figure 4 are inconsistent, note that the following two

equations must hold:
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α11 + α22 + α33 > α12 + α21 + α33, (2)

α12 + α23 > α22 + α33. (3)

Equation 2 holds from the optimal match being the one shown in Figure 4a, and Equation

3 holds from the optimal match shown in Figure 4b. Summing these inequalities:

α11 + α23 > α21 + α33. (4)

It follows immediately that the rematching shown in Figure 4c does not maximize the

gains from trade and cannot be optimal. The proof of Lemma 1 generalizes this intuition,

showing that on any finite network no players rematch to anyone other than their outside

trade partner. Lemma 1 provides the key step in proving Theorem 1, which shows how

agents’ outside options can be found from the directed network decomposition.

Theorem 1. Each agent’s outside option can be found by alternatively adding and then

subtracting the values of the links in his outside option chain:

ui =
∑
l∈Ldli

αl −
∑
l∈Lsli

αl, vj =
∑
l∈Ldlj

αl −
∑
l∈Lslj

αl.

Whenever an agent’s trade partner (µ∗(i)) is removed from the network, by Lemma 1 the

optimal rematching occurs along i’s outside option chain. The change in total surplus

after µ∗(i) is removed can be found by adding the new links matched over and subtracting

the old links no longer matched over. This change in total surplus is µ∗(i)’s marginal

contribution to total surplus. Using a result from Démange (1982) and Leonard (1983),

this is also µ∗(i)’s maximum possible pairwise stable payoff. As i and µ∗(i) must split the

surplus they generate, and by the lattice structure of the pairwise stable payoffs, αiµ∗(i)

less µ∗(i)’s marginal contribution to total surplus is i’s outside option.

Outside option chains for the network given in Figure 3 are illustrated in Figure 5a. Each

agent’s outside option is then found by alternately adding and subtracting the values of

these links. For example, b1’s outside option chain consists of the sequence of links

{lb1s2 , lb2s2 , lb2s3 , lb3s3} and so his outside option is given by αb1s2 − αb2s2 + αb2s3 − αb3s3 ,
as shown in Figure 5b.
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b3b2b1

s1 s2 s3

10 15 10 14 10

(a) Outside Option Chains

Agent

b1

b2

b3

s1

s2

s3

Outside Option

15 – 10 + 14 – 10 = 9

14 – 10 = 4

0

0

15 – 10 = 5

14 – 10 + 15 – 10 = 9

(b) Outside Options

Figure 5. Directed network decomposition

There is a strong relationship between the outside trade partners identified in the network

decomposition algorithm and players’ profitable pairwise deviations.21

Corollary 1. Consider any stable outcome. Suppose agent k’s terms of trade are now

weakened to the extent that he receives a payoff below his outside option. Agent k will

then have a profitable deviation by trading with his outside trade partner η(k).

Corollary 1 shows that it is the potential for an agent to trade with his outside trade

partner that generates a binding constraint on his minimum possible stable payoff and

establishes his outside option.

Stability implies that for all buyers i, ui ∈ [ui, αiµ∗(i;α)− vµ∗(i;α)], with analogous bounds

on sellers’ payoffs.22 The value of the network decomposition and Theorem 1 is that it

identifies how the structure of the network affects agents’ outside options and informs

us about their incentives to invest in specific links. In the next section we will analyze

these investment incentives and show that inefficiencies in investments can be large.

Without any further restrictions on the mapping from formed networks to bargained

outcomes, such a result would not be too surprising—a mapping from formed networks

to stable payoffs could be picked to create bad incentives to form links. To demonstrate

the possibility of inefficiencies more forcefully, we will tie our hands and look at point

predictions rather than set-valued predictions. Pairwise stability ensures that agents

receive at least their outside option from a trade, but their investment incentives will

21 Recall that outside trade partners are identified by removing an agent’s trade partners from the
network and seeing who he rematches to. If instead an agent’s link to his trade partner is removed from
the network and the subsequent rematching is used to identify outside trade partners, it is possible to
construct examples in which an agent has an outside trade partner but can still receive a payoff of 0
without having a profitable pairwise deviation. See Section SA-4 of the supplementary appendix.
22 In the example of Figure 3a, ub1 ∈ [9, 10], ub2 ∈ [4, 5], ub3 ∈ [0, 1], vs1 ∈ [0, 1], vs1 ∈ [5, 6] and
vs3 ∈ [9, 10].
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depend crucially on how the remaining surplus is split. To capture this, we generalize

the parametrization of stable outcomes found for the network in Figure 2.

Suppose that i is matched to j on the network α: µ∗(i;α) = j. Consider terms of trade

in which i and j receive their outside options for sure, and then the remaining gains from

trade are split according to an exogenous parameter β ∈ [0, 1], which can be interpreted

as buyers’ relative bargaining power:

ui = ui + β(αij − ui − vj), (5)

vj = vj + (1− β)(αij − ui − vj). (6)

Focusing on these terms of trade, with an exogenously specified bargaining-power pa-

rameter, emphasizes the role of the network in providing outside options. In Corominas-

Bosch (2004), players are selected at random and then make offers simultaneously to all

of their possible trade partners. The terms of trade in equations 5 and 6 are the same as

those found in Corominas-Bosch (2004), although she analyzes only environments with

homogeneous gains from trade.23

As in all stable payoffs in which i and j are matched, ui + vj = αij, ui = αij − vj.

Equations 5 and 6 can therefore be rewritten as:

ui = βui + (1− β)ui, (7)

vj = (1− β)vj + βvj. (8)

These payoffs are a convex combination of agents’ maximum and minimum possible stable

payoffs. When β = 1, all buyers receive their maximum possible payoffs, while sellers

receive their minimum possible payoffs; and when β = 0, all buyers receive their minimum

possible payoffs, while sellers receive their maximum possible payoffs. At both these

payoff vectors, no buyer i and seller j has a profitable pairwise deviation, so ui+vj ≥ αij

and ui + vj ≥ αij. It follows immediately that for any β ∈ [0, 1], β(ui + vj) + (1−β)(ui +

vj) ≥ αij, so the payoffs from equations 5 and 6 are stable.24

23 It is not straightforward to directly extend Corominas-Bosch’s model to include heterogeneous gains
from trade. Indeed, she concludes that although it is “natural to ask for the introduction of a little bit
of heterogeneity in the model [. . . ] [w]e believe that this line of research is unlikely to lead to fruitful
results.” Section SA-3 of the supplementary appendix shows the equivalence of the Corominas-Bosch
(2004) outcomes and the terms of trade in equations 5 and 6.
24 These terms of trade are generally only a subset of the stable terms of trade. Were individualized
pairwise bargaining powers βij modeled, all pairwise outcomes would be included but also some non-
stable outcomes. For a complete characterization of pairwise stable outcomes see Quint (1991).
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With the above parametrization of agents’ payoffs, the network decomposition algorithm

identifies who has incentives to form which links. It is straightforward to substitute the

result from Theorem 1 into the agents’ payoff functions (equations 5 and 6) to find how

the value of each link affects each agent’s payoff at the margin. This will be very helpful

when considering the network formation problem in Section 6. For example, if a link

would be redundant, there will be no incentives to invest in it; despite lb1s3 being the

highest-value link in Figure 3a, neither b1 nor s3 will be willing to invest in it if the other

links are formed.

5. Efficiency Losses

Using the simple mapping from formed networked markets into bargaining outcomes pro-

vided by combining Theorem 1 with equations 5 and 6, investment inefficiencies in the

network formation stage will be analyzed. Ideally, statements would be made about how

efficiency losses change with the potential gains from trade between different buyers and

sellers, the relative bargaining power of buyers to that of sellers and how the costs of

forming links is split. However, a number of difficulties inhibit such statements. There

are typically multiple stable networks, and so comparisons across sets of networks are

required. Moreover, the set of stable networks does not have a simple mathematical struc-

ture that could facilitate set-based statements.25 And even when there is a unique stable

network, efficiency losses can be non-monotonic in the model’s parameters.26 Despite

these problems, some progress will be possible by identifying upper and lower bounds on

inefficiency that apply to all stable networks.

5.1. The efficient network. The efficient network maximizes the net gains from trade

(NGT (L))—the gains generated from trade less the costs of forming the links in L:

Le := max
L∈L

NGT (L) = max
L∈L

{∑
i∈P

αiµ∗(i,α(L)) − c|L|

}
, (9)

where αii = 0 for each buyer i ∈ P, |L| is the number of links in network L, and L is the

set of all possible bipartite networks.

25 More specifically, the set of stable networks does not form a complete lattice or semi-lattice when
partially ordered by set inclusion of links, inhibiting comparisons that might otherwise be made in the
strong set order.
26 See Section SA-9 of the supplementary appendix.
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5.2. Measuring inefficiencies. The efficiency loss EL(L) of a network L will be mea-

sured as the percentage of the possible net gains from trade that are lost: EL =

(NGT (Le) − NGT (L))/NGT (Le) ∈ [0, 1]. There are then two subtleties to deal with.

First, when the supremum of possible efficiency losses for all potential gains from trade

is 1, it will be said that the efficiency losses are 100%. Second, when there are multiple

stable networks, a conservative approach will be taken, and only results that apply to all

stable networks will be stated.27

5.3. Types of inefficiency. Overinvestment inefficiency OII(L) on a network L is the

efficiency loss due to the formation of links that are not used for trade. Denoting the

links in a network L used for trade by K ⊆ L, the efficiency loss due to overinvestment

in non-trade links is28

OII(L) :=
(|L| − |K|)c

NGT (L) + (|L| − |K|)c
∈ [0, 1]. (10)

Overinvestment inefficiency occurs when a link that is not used for trade is formed. An

agent might want to form such a link to establish an outside option and affect his terms

of trade with his trade partner.

Underinvestment inefficiency (UII(L)) on a network L is the efficiency loss due to forgone

net gains from trade that could be realized by forming links between unmatched buyers

and unmatched sellers.29 Consider a network L such that buyers P̂ ⊆ P and sellers

Q̂ ⊆ Q will end up unmatched in stable outcomes. For this subset of buyers and sellers,

denote the efficient network by L̂e := maxL′∈L̂NGT (L′), where L̂ is the set of all possible

bipartite networks between the buyers P̂ and sellers Q̂. Underinvestment inefficiency on

L is then30

UII(L) :=
NGT (L̂e)

NGT (L) +NGT (L̂e)
∈ [0, 1]. (11)

27 Equivalently, we use the “price of anarchy” and “cost of anarchy” (Koutsoupias and Papadimitriou,
2009; Roughgarden and Tardos, 2004), by considering the worst stable network when bounding the
efficiency losses from above and the best stable network when bounding inefficiency losses from below.
28 All results go through, with the same proofs, if the denominator in equation 10 is changed to NGT (Le).
29 While it may also be possible to increase the net gains from trade by forming links involving either
a matched buyer and/or a matched seller, this will necessarily result in a link currently matched over
becoming redundant. Inefficiencies of this type are attributed to coordination problems.
30 All results go through, with the same proofs, if the denominator in equation 11 is changed to NGT (Le).
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Underinvestment inefficiency can occur due to a hold-up problem. Unmatched buyers and

sellers may have positive net gains from trade but remain unlinked on a stable network,

anticipating that they will be held up once they have sunk their investment costs.31

6. Inefficiencies in Stable Networks

In this section we compare stable (equilibrium) networks to the efficient network.

6.1. Protocol A. We first assume that cost shares are exogenous, so that buyers and

sellers must make separate, non-substitutable investments to enable trade: For a link

to be formed, the buyer must pay γc while the seller pays (1 − γ)c, where c > 0 and

γ ∈ [0, 1].

The simultaneous link formation game is a simultaneous move game with complete infor-

mation. Buyers and sellers are the players. Each player chooses a subset of the players

on the other side of the market to attempt to form a link to. Buyers invest γc in each

link they select, while sellers invest (1 − γ)c in each link they select. A buyer i ∈ P

therefore has a strategy set {0, 1}n, while a seller j ∈ Q has a strategy set {0, 1}m. A

link is formed if and only if a total investment of c is made in it. Links therefore require

investment from both the buyer and seller to be formed, except when γ ∈ {0, 1}. Payoffs

are players’ payoffs from trade on the formed network less their investment costs.

If stable networks were defined to be a pure strategy Nash equilibrium of the simultaneous

link formation game, there would be stable networks where a buyer and a seller fail to

coordinate on forming a link that would benefit them both. Furthermore, the empty

network would be stable for all γ ∈ (0, 1). To eliminate these types of networks from the

set of stable networks, buyers and sellers will be allowed to coordinate on forming a link

that benefits them both.

A network will be considered stable when it is pairwise Nash stable. A network L

is pairwise Nash stable32 if and only if it is a pure strategy Nash equilibrium of the

simultaneous link formation game and pairwise stable, so that no unformed link would

benefit both the buyer and seller were it formed. Formally, pairwise stability requires

that, for all i, j such that lij 6∈ L, the following conditions hold:33

31 There may be positive levels of inefficiency remaining once overinvestment and underinvestment
inefficiency have been taken into account. This inefficiency can be attributed to coordination problems.
32 Jackson and Wolinsky (1996) introduced the concept of pairwise stability and suggested pairwise Nash
stability as a refinement.
33 For all potential gains from trade (a), for all levels of bargaining power (β) and for cost shares γ ∈ (0, 1)
there exists a pairwise Nash stable network where all inefficiency can be attributed to underinvestment
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(i) If ui(L ∪ lij)− γc > ui(L), then vj(L ∪ lij)− (1− γ)c < vj(L).

(ii) If vj(L ∪ lij)− (1− γ)c > vj(L), then ui(L ∪ lij)− γc < ui(L).

Unlike pairwise stability alone, pairwise Nash stability ensures that agents’ “individual

rationality” constraints are met because agents always have the option of deleting all

their links and receiving a payoff of 0. Networks that are pairwise stable but not a

Nash equilibrium of the simultaneous link formation game can involve agents receiving

negative payoffs without having a profitable deviation, because the only deviations they

are able to consider are those that delete or add one link at a time. Although stronger

than pairwise stability, pairwise Nash stability is a relatively weak stability criterion. A

network can be pairwise Nash stable even if a buyer and a seller could profit from forming

a link between themselves while simultaneously deleting some other links. However, as

discussed below, our results that use pairwise Nash stability are robust to other, stronger

stability requirements.

Proposition 1. Under investment protocol A, the following hold:

(i) For all gains from trade a, all cost shares γ ∈ (0, 1), and all levels of buyer

bargaining power β ∈ [0, 1], overinvestment inefficiency on all stable networks is

bounded by a function h(γ, β,m, n) ∈ [0%, 50%], and this bound is tight.

(ii) For all non-empty sets P, Q of buyers and sellers, respectively, and all β 6= γ,

there exist gains from trade a with underinvestment inefficiency of 100% on all

stable networks.

Proposition 1 is proved in Appendix B. The second part is proved by constructing an

example in which there is a unique stable network that has 100% efficiency loss for any

β 6= γ and any m,n ≥ 1. The proof of the first part of Proposition 1 is more involved

and relies heavily on the network decomposition algorithm. Without restricting the

possible gains from trade a, it is possible to place an upper bound (which is at most

50%) on overinvestment inefficiency in the worst stable network. The upper bound of

50% is obtained only for β = γ = 1
2
. For all other parameter values, the overinvestment

bound is tighter. Indeed, as all the bargaining power is concentrated at either the buyers

(β → 1) or the sellers (β → 0), the upper bound on overinvestment inefficiency goes to 0.

To illustrate this, the function h(γ, β,m, n) is shown for m = n = 10 in Figure 6. There

are similar bounds for other values of m and n.

and overinvestment. This helps motivate the focus on underinvestment and overinvestment inefficiency
rather than coordination problems. See Section SA-5 of the supplementary appendix.
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Buyer cost 

share (γ) Buyer bargaining power (β)

Figure 6. Overinvestment inefficiency bound for m = n = 10, γ ∈ (0, 1),
and β ∈ (0, 1)

To gain intuition for the efficiency bound in Figure 6, consider the incentives of a matched

buyer and matched seller to form an outside option link with each other. For interior cost

shares (γ ∈ (0, 1)), both the buyer and seller must invest in the outside option link for it

to be formed. When the buyer’s bargaining power is high (β high), he has little incentive

to make this investment; the buyer already receives most of the surplus an outside option

would guarantee him. The outside option link will not be formed if the buyer has high

bargaining power and has to pay at least some moderate cost towards forming the link.

Similarly, the seller will not be willing to invest much in an outside option when his

bargaining power is high (β low). This explains why the inefficiency bound goes to 0 as

β → 0 and as β → 1.

We now provide some intuition for why the bound is never more than 50%. Consider a

matched buyer–seller pair (i, j), where both the buyer i and seller j have no other links,

and consider the maximum amount that i and j would each be willing to invest in an

outside option. For i and j to still trade once they have invested in their outside options,

the combined value of their outside options must be weakly less than their gains from

trade (αij). We will consider the overinvestment possible when both i and j invest in an

outside option. Suppose then that both i and j have the opportunity to form an outside

option link that will guarantee each of them half of the gains from trade. As between

them i and j were already splitting the surplus, the creation of these two outside options

can lead to a reallocation of at most half the surplus, and so overinvestment cannot

exceed 50%.34

34 Buyer i’s payoff without his outside option is β(αij − vj), and his payoff with his outside option is
αij

2 + β(αij − αij

2 − vj). Thus i is willing to pay at most (1 − β)
αij

2 for his outside option (an amount

independent of vj). A similar calculation reveals that j is willing to pay at most β
αij

2 . Summing these

amounts, overinvestment can be at most
αij

2 .
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Stability concepts can be categorized by the deviations that they permit. Pairwise Nash

stability permits two types of deviations we view as desirable: (i) An agent can adjust

his investment in any set of links, ensuring that agents can always delete all their links,

thereby guaranteeing that they receive weakly positive payoffs on stable networks, and

(ii) any pair of agents can form a new link that would benefit them both, preventing

the empty network from being stable. However, there are many stronger definitions of

stability that might be used and would permit additional deviations.

Permitting additional deviations can only make fewer networks stable and strengthen

the bound on overinvestment inefficiency. Moreover, the constructive proof that 100%

underinvestment is possible whenever β 6= γ is robust to permitting many more devia-

tions. As long as agents’ strategy sets remain the set of links they can invest in (so that

transfers are still not permitted and the mapping from formed networks to payoffs cannot

be manipulated), there are no profitable coalitional deviations. More precisely, for the

constructive proof in which the empty network is the unique stable network, the empty

network is also the unique strong Nash equilibrium of the simultaneous link formation

game.35 Proposition 1 therefore extends to several stronger definitions of stability.

6.2. Protocol B. A critical assumption underlying Proposition 1 is that buyers and

sellers cannot negotiate their investment shares. Underinvestment occurs when a buyer

and a seller have positive net gains from trade by forming a link, but either the buyer

or seller would extract more than these net gains from trade, thereby leaving the other

worse off. If buyers and sellers could negotiate how much they each contribute towards

forming a link, they would be able to find a split of the investment costs for which they

are both better off. Underinvestment would then be eliminated. This intuition is now

made precise.

Suppose now that a link is formed whenever the sum of the increases in a buyer and

a seller’s utilities is greater than the cost of forming the link. This assumption can be

motivated in a couple of ways. Most simply, buyers and sellers just have to make a joint

investment where investment by one of them is perfectly substitutable with investment

by the other. Alternatively, buyers and sellers may be able to make transfers to one

another based on the (non-substitutable) investments they make.

To accommodate negotiated cost shares, we adjust the definition of a stable network.

First, the strategy space of the simultaneous link formation game is expanded. Each

35 A strong Nash equilibrium (Aumann, 1959) requires every coalition to play a best response. For a
formal definition, and a proof of the statment, see Corollary 5 in Appendix B.
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agent k can now invest Ikk′ ∈ [0, c] in a link to each potential trade partner k′. A buyer’s

strategy space is [0, c]n, while a seller’s strategy space is [0, c]m. Again, a link is formed if

and only if a joint investment of at least c is made in it. A network is a Nash equilibrium

of the expanded simultaneous link formation game if all agents’ investments are mutual

best responses. As in all pure strategy Nash equilibria joint investments of either 0 or

c must be made in each link, agents’ strategy spaces can be restricted, without loss of

generality, to choosing investment shares (γij, γji) such that γij + γji ∈ {0, 1}.

A network L is pairwise Nash stable with transfers36 if and only if it is a pure strategy Nash

equilibrium of the expanded simultaneous link formation game and unformed links would

not jointly benefit the unconnected agents: ui(L)+vj(L) ≥ ui(L∪{lij})+vj(L∪{lij})−c
for all lij 6∈ L. The Nash equilibrium requirement again ensures that agents’ individual

rationality constraints are satisfied, while pairwise stability again prevents the empty

network from always being stable.

It is assumed that if an additional link l′ 6∈ L were added to L, the cost shares over each

link l ∈ L would remain the same on the network L ∪ l′ as they were on L.37 Necessary

and sufficient conditions for the efficient network to be pairwise Nash stable with transfers

are identified and discussed in the supplementary appendix.38 Of particular interest is

that a sufficient condition for the efficient network to be stable is that agents have anti-

assortative preferences.39 For β ∈ (0, 1) and c sufficiently small, this condition is also

necessary.

Proposition 2. Under investment protocol B, the following hold:

(i) There is no underinvestment inefficiency in any stable network.

(ii) For all levels of buyer bargaining power β ∈ [0, 1], and all set of P,Q of m ≥ 2

buyers and n ≥ 2 sellers, respectively, there exist gains from trade a with overin-

vestment inefficiency of 100% on all stable networks.

36 This terminology is from Bloch and Jackson (2006). The definition we use differs slightly because
investments (transfers) are (implicitly) restricted to be weakly less than the cost of link formation (c),
although this upper bound never binds.
37 While this condition restricts the scope of possible profitable deviations (i.e., a link cannot be added
and the cost shares of different links simultaneously changed), it is in the same spirit as pairwise Nash
stability, which considers a network to be stable even if it is profitable for a link to be jointly formed
while other links are simultaneously deleted. In this respect, pairwise Nash stability with transfers is a
relatively minimal requirement.
38 See Section SA-6 of the supplementary appendix.
39 This requires that no two buyers’ most preferred seller is the same when prices are 0 and no two
sellers’ most preferred buyer is the same when sellers can extract all their potential gains from trade
from each buyer.
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The proof of Proposition 2 is in Appendix B. Under protocol B, a buyer–seller pair

can always agree to set the buyer’s investment cost share equal to his bargaining power

(γij = β). Underinvestment inefficiency is then eliminated. In contrast, gains from trade

can always be found in which the agents on the side of the market with lower bargaining

power unilaterally establish outside option links to someone on the other side of the

market who would otherwise be unmatched. Extending the example from Section 2, for

any parameter values β,m, n such that there are at least two buyers and two sellers,

these outside options can be made just valuable enough for the side of the market with

lower bargaining power to invest to the extent that all net gains from trade are lost.40

6.3. Discussion of Results. Propositions 1 and 2 show that extreme inefficiency is pos-

sible under both protocol A and protocol B, although the protocol does affect what causes

it.41 Removing underinvestment inefficiency problems by permitting buyers and sellers to

endogenously negotiate their investment shares exacerbates overinvestment inefficiency

problems insofar as they can no longer be bounded below 100%.

It is interesting to contrast Propositions 1 and 2 with the efficiency results from the

previous literature. Kranton and Minehart (2001) show that when buyers have all the

bargaining power (β = 1) and have to pay all the costs of link formation (γ = 1) the

efficient network is stable for any potential gains from trade a.42 It is already well

known that this result is sensitive to small changes in assumptions (Jackson, 2008).

However, Propositions 1 and 2 identify something further. There is a discontinuity in

the inefficiency bound at this point, so that the possible efficiency losses go from being

bounded at 0% to potentially consuming all the gains from trade.

Corollary 2. When buyers have all the bargaining power (β = 1) and have to pay all

the costs of link formation (γ = 1) the efficient network is stable for any potential gains

from trade a. Furthermore, there does not exist a stable network with any inefficiency

due to overinvestment in non-trade links or underinvestment in trade links. However, if

β < 1 or γ < 1, or if investments are made under protocol B, there exist potential gains

40 A stronger stability requirement in which any coalition could realize a profitable deviation would
sometimes (but not always) reduce overinvestment inefficiency. The key constraint that prevents effi-
ciency from always being achieved when all coalitional deviations are possible is that transfers between
two agents are limited by their joint investment costs. For a case in which all gains from trade are still
lost to overinvestment even when all coalitional deviations are possible, consider the example in Section
2. The assumptions underlying the overinvestment result in Proposition 2 are discussed in Section 7.4.
41 Section SA-6 of the supplementary appendix identifies conditions under which the stable network is
efficient, and Section SA-8 shows how these conditions simplify in a vertically differentiated market.
42 Kranton and Minehart (2001) also have uncertainty in their model.



INEFFICIENCIES IN NETWORKED MARKETS 24

from trade a where, on even the most efficient stable network, all the gains from trade

are lost to inefficiencies.

7. Applications

7.1. High-Skill Labor Markets. There is an extensive “directed search” literature

that models workers targeting their search towards certain firms. For the most part, this

literature models firms posting non-negotiable wages, and finds that labor market search

is efficient in many dimensions.43 However, while firms post wages in some markets,

in other markets wages are negotiated. Hall and Krueger (2009) survey workers about

the wage determination process for their most recent jobs. They find that somewhere

between one-third and two-thirds of workers bargain over their wages, and that wage

negotiations are more prevalent in high-skill markets.

A couple of recent papers model simultaneous bargaining between workers and firms

following application and interview decisions. These papers typically avoid the techni-

cal difficulties generated by modeling multilateral bargaining in the resulting networked

market. Gautier and Holzner (2013) is an exception. However, they assume that all po-

tential worker–firm pairs generate a surplus of either 1 or 0. The approach taken in this

paper permits search inefficiencies to be explored in a model with heterogeneous gains

from trade, which are a prominent feature of high-skill labor markets.44

Suppose that a firm and worker must invest in an interview before the worker can be

employed by that firm. Preparing for and then conducting the interview can be costly

for the firm, especially in high-skill labor markets, where time may have to be invested

by senior management. Interview preparation can also be costly for workers, but to a

first approximation, firms seem likely to bear the majority of these costs. There are

limited ways in which firms can pass interview costs onto workers, and investments by

the worker into the interview process cannot (effectively) substitute for effort by the firm.

We therefore apply investment protocol A to these markets.

How valuable outside options are to agents depends on their bargaining powers.

Remark 1. When firms (respectively, workers) have all the bargaining power (β = 1,

respectively, β = 0), their payoffs are independent of their outside options. Moreover,

43 See, for example, Acemoglu and Shimer (1999), where investments can be made prior to matching to
increase the available gains from trade.
44 Elliott (2014) also uses the second-stage model developed here to determine matches and the terms of
trade in networked labor markets. The paper investigates the fragility of labor markets in the presence of
shocks. Workers and firms pay only entry costs to search, and so investments are not relationship-specific.
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how sensitive an agent’s payoff is to his outside option is decreasing in his bargaining

power—whenever there is a unique efficient match, for a firm i, ∂ui/∂ui = 1 − β; and

for a worker j, ∂vj/∂vj = β.

Casual observation of high-skill labor markets suggests that workers value their outside

options more than firms. While it is common for workers to use alternative employment

opportunities to improve their terms of employment, it is harder to find examples of

firms using their alternative employment opportunities to affect their terms of trade with

workers. This is suggestive of firms’ having most of the bargaining power, which also

accords with the observation that firms tend to make offers to workers more frequently

than workers make offers (or counteroffers) to firms. We therefore assume that β is high.

So far, we have argued that firm bargaining power (β) is typically high and the firm’s

cost share when establishing a link (γ) is also typically high. From Section 6.2, we know

that when β = γ there is no underinvestment. While Proposition 1 shows that large

inefficiencies are possible for all γ 6= β, the possible gains from trade for which this will

happen get smaller as β and γ get closer.

Corollary 3. For any γ 6= β, there is 100% underinvestment inefficiency in a stable

network if and only if

c < max
i,j

aij < max

{
γ

β
c,

1− γ
1− β

c

}
.

For any γ and any β, define γ′ = λγ + (1 − λ)β, where λ is a parameter. Corollary 3

implies that, for any λ ∈ (0, 1), if there is 100% underinvestment inefficiency in a stable

network for a market (a, γ′, β), then there is also 100% underinvestment inefficiency in a

stable network for the market (a, γ, β). As γ gets further away from β, the set of potential

surpluses for which there is 100% inefficiency in a stable network weakly increases in the

strong set order. Appendix A characterizes the underinvestment inefficiency bound for a

simple example and illustrates this implication of Corollary 3.

Corollary 3 also shows that the possibility of underinvestment depends on market thick-

ness. Suppose that the potential surplus any worker–firm pair can generate is drawn

independently at random before the game begins. The expected number of surplus draws

over the threshold max{γc/β, (1−γ)c/(1−β)}, is then a constant fraction of the number

of potential worker–firm pairs. If, for example, there are n = m workers and firms, the

expected number of such draws is proportional to n2. In thicker markets, workers and

firms will, on average, have opportunities for better matches, reducing the possibility of

underinvestment. Underinvestment is more likely in thin markets, although for any fixed



INEFFICIENCIES IN NETWORKED MARKETS 26

level of market thickness, the possibility of underinvestment goes to zero as β approaches

γ.

We now consider overinvestment. Recall that the function h(γ, β,m, n) provides a tight

bound on overinvestment inefficiency for γ ∈ (0, 1) and β ∈ (0, 1).45

Corollary 4. For a fixed β ∈ (0, 1), it is precisely when γ = β that overinvestment is

most severe: β = argmax
γ∈(0,1)

h(γ, β,m, n).

The proof of Corollary 4 is in Appendix B, and the result is illustrated in Figure 6.

Although Corollary 4 shows that for a fixed β, overinvestment is potentially worst when

β = γ, the bound on overinvestment is still quite tight when β is high (and γ = β).

For example, if β = γ = 0.9 and m = n = 20, then h(0.9, 0.9, 20, 20) = 0.12 and

overinvestment is at most 12% of the potential gains from trade.

This analysis suggests that we should not expect to see too much evidence of underinvest-

ment, especially when markets are fairly thick, but we might see some overinvestment.

It also provides a reason to exercise caution when considering labor market interventions

that would subsidize interview costs.

7.2. Industry consolidation. When one firm wants to take over another, substantial

relationship-specific investments are required. Due diligence costs are directly paid to

lawyers, fees are paid to investment banks, and senior executives’ time is forgone. Poten-

tial acquirers are typically not willing to make unconditional offers prior to due diligence,

and while offers conditional on successful due diligence are often made, in practice what

constitutes successful due diligence is non-contractible.46 As such agreements are typi-

cally non-binding and can be renegotiated, to a first approximation the market behaves

as if investments in due diligence precede negotiations to determine the terms of an

acquisition.

In the case of acquisitions, there is evidence that industries undergo periods of con-

solidation and many mergers occur in waves clustered by industry. This suggests that

acquisition decisions are often made in a market context.47 Links are formed by po-

tential acquirers undertaking a costly due diligence process. Target firms also have to

45 A closed-form expression for h(γ, β,m, n) is provided in Lemma 2 in Appendix B.
46 The following is a quote from Howson (2003): “Not surprisingly, therefore, the buyer will want to
retain its freedom to renegotiate some of the fundamental issues [...] such as the price. [...] In common
law countries [...] the document is little more than a non-binding agreement to negotiate.”
47 See Mitchell and Mulherin (1996) and Andrade, Mitchell, and Stafford (2001).
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agree to this process, and it may be costly for them to do so—revealing private infor-

mation, particularly to a competitor, can reduce the value of the firm to other potential

acquirers. When mergers occur, there is evidence that the network structure affects the

acquisition price. Jarrell and Poulsen (1989) find that competition to acquire a target

firm redistributes rents to the target from the acquirer, while James and Wier (1987)

study bank acquisitions and show that competition matters on both sides of the market.

An acquirer’s takeover gains are increasing in the number of alternative target firms and

decreasing in the number of other potential acquirers.

Although, on the face of it, investments in due diligence are non-substitutable, Officer

(2003) reports that almost two-thirds of the merger agreements announced between 1997

and 1999 included a target termination fee clause. These clauses require the target to

pay a fixed fee to the acquirer if the taget does not consummate the proposed merger.48

Given these termination fees, protocol B is a better fit than protocol A.

Under protocol B, the theory predicts that there will be no underinvestment but that

overinvestment can be severe. Indeed, the practice of finding alternative acquirers to get

the acquisition price bid up is common. An example from 2006 is when Arcelor found

itself the target of a hostile takeover bid by its competitor Mittal Steel. Arcelor searched

for a white knight and persuaded Severstal to enter the bidding. Mittal Steel eventually

acquired Arcelor with an improved bid, and Arcelor paid Severstal a $177 million “fine”

for the failure of Severstal’s bid (New York Times, 07/21/06).49 Brandenburger and

Nalebuff (1996) provide another example. Paraphrasing:

By 1989 Craig McCaw had acquired cellular phone licenses covering 50 million potential

customers, but he wanted a national network which he could obtain by acquiring LIN

Broadcasting Corporation. Although there were many potential acquirers of LIN, McCaw

valued LIN much more than any of them. As with any takeover there were substantial

costs associated with the due diligence process—advisory fees would have to be paid and

managerial time forgone. Aware that they would likely be outbid by McCaw, no other

potential acquirers entered the bidding. LIN responded by agreeing to compensate Bell

South for bidding, paying them about $75 million. Bell South is estimated to have bid up

the acquisition price McCaw paid for LIN by about $1 billion to about $6.5 billion.

48 Termination fees can be large. In 2005 Guidant paid a termination fee of $705 million to Johnson &
Johnson after accepting a competing offer.
49 Congruent with the model, Officer (2003) finds that termination fee use by targets is beneficial to
their shareholders.
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One way in which overinvestment might be limited is by exclusivity agreements between

a target and an acquirer. Such agreements can commit the target to not form links

with alternative acquirers, thereby avoiding overinvestment.50 While exclusive-dealing

contracts can have efficiency benefits, the Delaware Supreme Court has ruled against the

use of such takeover defenses in Omnicare, Inc. v. NCS Healthcare, Inc.51

In 2002 NCS Healthcare was insolvent. After Genesis showed interest in an acquisition,

NCS agreed to use takeover defenses, including an exclusive-dealing contract, to prevent

it from considering alternative offers. In effect, NCS agreed to bind their hands and to not

use an alternative acquirer to bid up their price. However, NCS’s competitor, Omnicare,

did make an alternative bid for NCS (conditional on due diligence). NCS did not fully

consider this bid and did not reveal their books to Omnicare. Omnicare (and some NCS

stockholders) then took NCS to court, claiming that NCS had neglected their fiduciary

responsibilities to stockholders. The case, Omnicare, Inc. v. NCS Healthcare, Inc., ended

up in the Delaware Supreme Court, which reached a 3:2 majority decision against NCS.

This undermines the role defensive measures might otherwise play in preventing future

overinvestments. In accordance with this view, the Omnicare, Inc. v. NCS Healthcare,

Inc. decision has been critiqued by Chief Justice Veasey.52

7.3. Gas pipelines. When investments are made in the construction of pipelines, there

is not a clear delineation between the investments the buying country and the selling

country should make. Indeed, both countries need to contribute to the same invest-

ment, the construction of a pipeline between them. Moreover, there is direct evidence of

negotiations over construction costs.53 We therefore apply protocol B.

Our model abstracts from a couple of potentially important features of the natural gas

market. First, it is assumed that the network is bipartite, eliminating the scope for

intermediation. Second, not all buyers have the same demand and not all suppliers have

the same supply. While the model is quite far removed from the natural gas market

application, the contention of this section is that it can nevertheless yield some insights.

50 Shleifer and Vishney (1986) consider how takeover defenses can benefit a target firm’s shareholders.
Segal and Whinston (2000) and McAfee and Schwartz (1994) both also recognize potential efficiency
benefits from exclusive-dealing contracts.
51 Delaware courts are influential in corporation law, and the precedent set by the case might dissuade
the boards of other takeover targets from taking defensive measures in the future, although subsequent
cases such as Orman v. Cullen have helped to limit the scope of the Omnicare decision.
52 See Oravetz (2004).
53 One example is the pipeline between between Turkmenistan and China. Negotiations over how to split
the construction costs began in April 2006, and in July 2007 the Chinese National Petroleum Company
and Turkmengaz reached an agreement.
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Under protocol B there should be no underinvestment, but substantial overinvestment

is possible. There are many examples of possible overinvestments. Before the pipeline

between Turkmenistan and China was built, Turkmenistan relied largely on exporting to

Russia. One motive for building the pipeline with China, in accordance with the forces

studied in this paper, appears to be so that Turkmenistan could improve its terms of

trade with Russia.54

Europe relies heavily on gas supplies from Russia. Moreover, it appears that Russia has

much of the bargaining power and is able to extract most of the gains from trade. It is

politically infeasible for Europe to not import sufficient gas to heat homes in the winter.

Thus, buyer bargaining power β is likely low, increasing the incentives for Europe to

invest in alternative sources of supply (see Remark 1).

The proposed 3, 300 km Nabucco pipeline would connect Europe to gas supplies in the

Middle East. One reason for the EU’s potential investment in Nabucco, estimated to

eventually cost $12.3 billion (Reuters, 05/29/08), is likely to be to improve their terms

of trade with Russia.55 Alternative pipelines that would connect Europe with Middle

Eastern gas supplies, such as the Trans Adriatic Pipeline, have also been proposed.

While it might be argued that higher import capacity is necessary to meet rising demand

in Europe, it would most likely be cheaper to increase the capacity of existing pipelines.

In addition, Russia has proposed building additional pipelines, Nord Stream and South

Stream, into Europe.56

7.4. Assumptions. The model relies on a couple of important assumptions. First, it

is assumed that buyer–seller pairs cannot write long-term enforceable contracts that

specify their future terms of trade. If it were possible to write such contracts, the in-

centives for overinvestment would be directly removed, and terms of trade that ensure

there is no underinvestment could be negotiated. Whether such contracts are used is

an application-specific question. When international pipelines are built to enable the

trade of natural resources, there is typically no effective court to enforce contracted fu-

ture terms of trade and changing political climates can undermine agreements made by

54 “After a number of high-profile moves in recent months to raise the price of Turkmen natural gas
for Russia, Ukraine, and Iran, [Turkmen president] Niyazov has now signed a deal with China to build
an export pipeline to the east that would break Russia’s monopoly on export routes for Turkmen gas”
(Cutler, 2010).
55 There are likely to be many other important factors also at play.
56 At present, gas from Russia has to travel through either Ukraine or Belarus, with 80% coming through
Ukraine, to reach Europe. This has led to hold-up problems and disputes. The planned Nord Stream
and South Stream pipelines would transport natural gas directly into Europe.
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current leaders. There are several examples of ex-post renegotiation (Walde, 2008). Re-

garding industry consolidation, as already argued, contracts conditional on due diligence

are typically unenforceable. In high-skill labor markets there is also little evidence of

contracts being signed prior to interviews.

A second important feature of the model is that transfers are restricted. An agent k

cannot make any transfers when cost shares are exogenous, and when cost shares are

endogenous the transfers k can make are limited to those which compensate other agents

for their investment in forming links to k. This means that transfers from a buyer i to a

seller j cannot be made conditional on the other links j forms, and no transfer is possible

between i and j if the link lij is not formed. Finally, the size of transfers is capped at the

cost of link formation c. These transfers are sufficient for preventing underinvestment

but not overinvestment. If unrestricted transfers from one agent to another could be

made contingent on all the links formed by the other agent, the efficient network would

always be stable (Bloch and Jackson, 2007).

There are mechanisms through which more general transfers than we consider may be

possible in practice. In the industry consolidation application, we discussed the potential

of exclusivity agreements to make a transfer from i to j conditional on j not forming any

other links, thereby reducing overinvestment. Also, in a dynamic version of the model,

the threat of overinvestment could be sufficient to affect the terms of trade. The instances

of overinvestment discussed in relation to the applications in Section 7 suggest that at

least some of the time such threats alone are not enough. Finally, in some applications,

not only are interactions dynamic the costs associated with maintaining links overshadow

the costs of establishing links.57 In these cases, dynamic game effects are likely to be more

important.

8. Conclusions

In many markets a buyer and a seller must make a relationship-specific investment be-

fore they can trade. We study inefficiencies in these markets by building on the work

of Kranton and Minehart (2000a, 2000b, 2001). We extend their model to consider

different levels of bargaining power, different costs shares, negotiated investments, and

ex-ante heterogeneous gains from trade. These generalizations are important for fitting

the model to different applications: Both whether there is scope for intervention to avoid

inefficiencies, and what this intervention should look like, depend on this fit. We also ask

57 Lee and Fong (2013) have a dynamic model that takes an approach along these lines.
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new questions: How inefficient can these investments be? How can these inefficiencies be

categorized? This requires new tools. To reveal agents’ incentives to invest in different

links, we develop an algorithm that identifies how the structure of a networked market

influences payoffs. To analyze the size of inefficiencies, we use the cost of anarchy and

price of anarchy from the computer science literature and explore the bounds on ineffi-

ciency across all stable networks. To investigate the size of different types of inefficiency,

we define measures of overinvestment inefficiency and underinvestment inefficiency by

adapting the cost of anarchy and price of anarchy to these specific types of inefficiency.

We find that when investments are fixed and made separately, overinvestment is lim-

ited but—except in a knife-edge case—underinvestment due to hold-up problems can

eliminate all the gains from trade. In contrast, when buyers and sellers can negotiate

their investment shares, underinvestment inefficiency is eliminated but overinvestment

inefficiency can consume all the gains from trade.

We apply the model to three applications: high-skill labor markets, industry consolida-

tion, and the international trade of natural gas. While the model abstracts from details

that could be important in all these markets, it nevertheless provides insights into the

frictions present. The model can also help shed light on policy questions. For example,

it provides an efficiency rationale for exclusivity agreements in networked markets and

a framework for evaluating the potential of subsidizing interview costs to improve the

functioning of high-skill labor markets. Although beyond the scope of the current pa-

per, there are also modifications that could be made to tailor the model to additional

applications. One limitation of the current approach is the unit demand and unit supply

assumption. There are several examples of networked markets where this assumption

does not fit well: Traders of agricultural produce in Madagascar trade via multiple re-

lationships (Fafchamps and Minten, 1999), corporate lawyers are instructed by multiple

businesses (Lancaster and Uzzi, 2012), suppliers trade with more than one manufacturer

(Uzzi, 1997) and restaurateurs buy from more than one vendor at fish markets (Kirman

and Vriend, 2000). Recent theoretical work has shown that with multi-unit demands

and supplies, the set of competitive equilibria58 has the same lattice structure as with

unit demand and supply (Milgrom, 2009; Jaume, Massó, and Neme 2012). These results

provide a platform for the approach taken in this paper to be extended to include buyers

with heterogeneous demands and suppliers with heterogeneous supplies.

58 With unit demand and unit supply, pairwise stable outcomes, core outcomes, and the competitive
equilibria all coinside. This is not true generally. In competitive equilibria a seller must offer the same
price to all buyers. While this non-discrimination constraint never binds in the unit demand and unit
supply case, it can bind more generally.
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Appendix A. Size of inefficiencies

This section considers the size of inefficiencies, rather than just bounds on the size of inefficien-

cies, for a simple example: buyer bargaining power β = 1
2 where there is one buyer and two

sellers with potential gains from trade a11 and a12, respectively. All values of a11 and a12 are

considered (c is normalized to 1). Under investment protocol A, the size of underinvestment

inefficiency is shown in Figure 7a for different values of γ and max(a11, a12). There is no over-

investment inefficiency for γ ∈ (0, 1). Under investment protcol B, the size of overinvestment

inefficiency is shown in Figure 7b for different values of a11 and a12.

buyer cost 

share (γ)
maximum possible gains 

from trade (max{a11,a12})

(a) Underinvestment inefficiency

b1 s2 potential 

gains from trade 

(a12)
b1 s1 potential gains from trade (a11)

(b) Overinvestment inefficiency

Figure 7. The size of inefficiencies with exogenous and endogenous cost shares

Underinvestment inefficiency of 100% under protocol A is more pervasive than 100% overinvest-

ment inefficiency under protocol B. However, when underinvestment inefficiency is not 100% it

is 0%, while for a wide range of parameters there is some overinvestment inefficiency.

Appendix B. Proofs

B.1. Proof of Lemma 1.

Proof. It will be assumed that a seller j′ is removed from the network. The proof for removing a

buyer is symmetric. We also assume, for simplicity, that there is a unique match that maximizes

the gains from trade following the removal of any agent. This is generically true. The result

and proof can be extended to include the non-generic case by comparing the sets of links that

might be rematched over following the removal of an agent to the set of possible network

decompositions.

Two definitions will be helpful. A chain is a sequence of different links of the following form:

li1j2 , lj2i2 , li2j3 , lj3i3 , . . . , likjk

.
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A chain may end at any time as long as preceding links have been in a sequence of this form.

A cycle is a sequence of links of the following form:

li1j2 , lj2i2 , li2j3 , lj3i3 , . . . , likjk , ljki1

Now it will be shown that no subset of links from L+
j′ ∪ L−j′ can be arranged into a cycle.

Suppose, towards a contradiction, that links L̃+
j′ ⊆ L+

j′ and L̃−j′ ⊆ L−j′ can be arranged into a

cycle. Consider the initial (optimal) matching in L, before j′ was removed. As the links in

L̃+
j′∪L̃

−
j′ can be arranged into a cycle, it is feasible to instead match over the links in L̃+

j′ while no

longer matching over the links L̃−j′ , without removing j′ from the network and without any other

rematching. For the initial match to maximize the gains from trade,
∑

l∈L̃+
j′
αl <

∑
l∈L̃−

j′
αl.

Consider now the optimal matching in L\{j′}. Relative to the initial matching, in this optimal

match the links in L+
j′ are matched over and the links in L−j′ are no longer matched over.

However, as the links in L̃+
j′ ∪ L̃−j′ can be arranged into a cycle, it is feasible to instead match

over the links in L̃−j′ while no longer matching over the links in L̃+
j′ , without affecting any of the

other matches. It then follows that
∑

l∈L̃+
j′
αl >

∑
l∈L̃−

j′
αl. This is a contradiction. We have

proved that no subset of links in L+
j′ ∪ L−j′ can be arranged into a cycle.

The same logic establishes that a buyer i′ cannot rematch when j′ is removed from L unless

i’s trade partner in L (µ∗(i′;α(L))) is also rematched (or has been removed). Suppose that

µ∗(i′;α(L)) is neither rematched nor removed from the network, but i′ is rematched. Consider

the rematching chain starting from i′. For the network L\{j′}, this rematching could be undone

and every person in the chain instead matched to their trade partner in L, without affecting

any of the other rematchings. As it was not optimal to implement the rematching starting at

i′ in the network L, it cannot be optimal to implement it in the network L \ {j′} either. This

is now shown more formally: Suppose, towards a contradiction, that a link li′j ∈ L+
j′ but that

for all i, liµ∗(i′) /∈ L+
j′ , so that µ∗(i′) is not rematched. Denote by L̂+

j′ ⊆ L+
j′ and L̂−j′ ⊆ L−j′

the links in the maximum-length chain that can be constructed starting at link li′j using links

l ∈ L+
j′ ∪ L−j′ . As µ∗(i′) is not rematched, the buyers in this maximum-length chain need not

rematch—all other rematches not involving them would still be possible if they did not rematch.

Rematching over these links following the removal of j′ must maximize the gains from trade,

and so
∑

l∈L̂+
j′
αl >

∑
l∈L̂−

j′
αl. However, this rematch was possible in the initial network but

not implemented and so:
∑

l∈L̂+
j′
αl <

∑
l∈L̂−

j′
αl. This is a contradiction.

It follows that the links l ∈ L+
j′ ∪ L−j′ can be arranged into a chain starting with link lj′µ∗(j′).

Relabeling buyers and sellers, set j1 = j′ and denote this chain by

S(j1) := (lj1i1 , li1j2 , lj2i2 , li2j3 , . . . ).

It is helpful to introduce some notation for ‘subchains.’ Let Sjk(j1) denote the subsequence of

S(j1) containing all links up to but not including ljkik , and let Sjk(j1) denote the subsequence

of S(j1) containing the link ljkik and all links after it. Thus S(j1) = (Sjk(j1),S
jk(j1)). The

remainder of the proof will establish that, if a seller jk is rematched following the removal of

j1, then S(jk) = Sjk(j1).

Define the gains from rematching over the sequence S(j) if j is removed from L by
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GR(S(j)) :=
∑

l∈L+
j
αl −

∑
l∈L−j /lµ∗(j)j

αl.

It will now be shown that if seller jk rematches in S(j1), then j1 cannot rematch in S(jk).

Suppose, toward a contradiction, that ljkik ∈ S(j1), so that jk is rematched when j1 is removed,

and that lj1i1 ∈ S(jk), so that j1 is rematched when jk is removed. As j1 is rematched when jk

is removed, the subsequence of rematchings Sj1(jk) is a possible rematching when j1 is removed.

However, this rematching must generate weakly lower gains from rematching than the optimal

rematch:

GR(Sj1(jk)) ≤ GR(S(j1)) = GR(Sjk(j1)) +GR(Sjk(j1)) (12)

Similarly, as jk is rematched when j1 is removed, the subsequence of rematchings Sjk(j1) is a

possible rematching when jk is removed. However, this rematching must generate weakly lower

gains from rematching than the optimal rematch:

GR(Sjk(j1)) ≤ GR(S(jk)) = GR(Sj1(jk)) +GR(Sj1(jk)) (13)

Combining equations 12 and 13: GR(Sjk(j1)) + GR(Sj1(jk)) ≥ 0. However, the sequence of

links (Sjk(j1),Sj1(jk)) is a cycle. As the gains from rematching over this cycle are positive and

this rematching is feasible in the initial network, the initial match cannot have maximized the

gains from trade. This is a contradiction.

Thus j1 cannot rematch in S(jk) if seller jk rematches in S(j1). An equivalent argument

establishes that for all k′ < k, jk′ cannot rematch in S(jk) if seller k rematches in S(j1).

This result will now be used to show that if jk is rematched following the removal of j1, then

the same subsequent rematching would be optimal if jk were removed instead of j1. In other

words, S(jk) = Sjk(j1). As the rematch following the removal of jk is optimal, GR(S(jk)) ≥
GR(Sjk(j1)). However, as there is no k′ < k such that jk′ can rematch in S(jk), the rematch

(Sjk(j1),S(jk)) following the removal of j1 is feasible. By the optimality of the rematch following

the removal of j1, GR(Sjk(j1)) + GR(Sjk(j1)) ≥ GR(Sjk(j1) + GR(S(jk)). Combining the

inequalities, GR(S(jk)) = GR(Sjk(j1)) and S(jk) = Sjk(j1).

Using the symmetry of buyers and sellers and the fact that each agent is rematched (by def-

inition) to his outside trade partner when his trade partner is removed from the network,

L+
µ∗(k) = Ldlk and L−µ∗(k) = Lslk ∪ {lkµ∗(k)}. Furthermore, it has already been shown that the

links in L+
µ∗(k) ∪ L−µ∗(k) can be arranged into a chain (and do not cycle). It now follows that

outside option chains do not cycle either. �

B.2. Proof of Theorem 1.

Proof. Let j = µ∗(i).

ui = αij − vj = αij −

∑
l∈L−j

αl −
∑
l∈L+

j

αl

 =
∑
l∈Ldli

αl −
∑
l∈Lsli

αl. (14)
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The first equality in equation 14 follows from the lattice structure of core payoffs—buyer i

receives his outside option (his minimum core payoff) when j receives his maximum core payoff—

-as matched buyer–seller pairs split their gains from trade. The second equality follows from

Demange (1982) and Leonard (1983), who show that in this environment an agent’s maximum

core payoff is equal to his marginal contribution to total surplus. The final equality follows

from Lemma 1. Equivalent calculations establish the result for sellers’ outside options.

�

B.3. Proof of Corollary 1.

Proof. From the lattice structure of the core, vη(i) = αµ∗(η(i))η(i) − uµ∗(η(i)). From Lemma 1,

µ∗(η(i))’s outside option chain will be a proper subset of i’s outside option chain. Theorem

1 can then be used to relate i’s and µ∗(η(i))’s outside option payoffs to each other: ui =

αiη(i)−αµ∗(η(i))η(i)+uµ∗(η(i)). Combining the above equalities, vη(i)+ui = αiη(i). As vη(i) ≥ vη(i)
whenever η(i) receives a core payoff, vη(i) + ui ≤ αiη(i). Thus if i ever received a payoff less

than ui, i and η(i) would have a profitable deviation by trading with each other. An equivalent

calculation can be shown for a seller j. �

B.4. Proof of Proposition 1. Proposition 1 will be proved through two lemmas. First, it

will be shown that efficiency losses due to overinvestment are bounded.

Lemma 2. For exogenous cost shares γ ∈ (0, 1) and homogeneous potential gains from trade a

where aij ∈ {0, 1}, there is no overinvestment inefficiency. For any (heterogeneous) potential

gains from trade a, overinvestment inefficiency is bounded by the amounts shown table 1, and

this bound is tight.

β γ Bound on overinvestment inefficiency

∈ (0, 1) ∈ (0, 1) h(K̃, γ, β)∗ ≤ 1
2

∈ {0, 1} ∈ (0, 1) 0∗∗

0 0 0

∈ (0, 0.5) 0 β
1−β

∈ [0.5, 1] 0 1

∈ [0, 0.5] 1 1

∈ (0.5, 1) 1 1−β
β

1 1 0
Table 1. Bounding overinvestment inefficiency.

* h(K̃, γ, β) := (K̃−1)
(

max
{

(K̃−1)+(1−γ)
1−β + (K̃−1)(1−γ)

β , (K̃−1)+(γ)
β + (K̃−1)(γ)

1−β

}
− K̃

)−1
, where

K̃ = min{m,n} is the number of agents on the short side of the market.

** The unique stable network is the empty network.
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Proof. This proof is undertaken in five parts. In Part (i) the homogeneous gains from trade

case is considered. Part (ii) corresponds to the first row in the above table, Part (iii) to the

second row, Part (iv) to rows five and six, and Part (v) to rows three, four, seven, and eight.

In each part the existence of the bound and its tightness is proved.

Part (i): When β ∈ (0, 1) and γ ∈ (0, 1), all non-trade links must benefit both parties and, as

outside option chains cannot cycle (Lemma 1), each component with any non-trade links must

take the form of a chain, as shown below for the case of four trade links.

b3b2b1

s1 s2 s3 s4

b4

Figure 8. Component structure: four trade links

With homogeneous gains from trade, Theorem 1 can be directly applied to show that ui = 0 for

all i ∈ P and vj = 0 for all j ∈ Q. Thus there are insufficient incentives for any outside option

links to be formed, and there is no outside overinvestment inefficiency in any stable network.

Part (ii): Label buyers and sellers as in Figure 8, but with K̃ buyers and K̃ sellers. Buyer bK̃
and seller s1 must have sufficient incentives to form their trade links:

v1 ≥
(1− γ)c

1− β
, uK̃ ≥

γc

β
. (15)

Applying Theorem 1:

v1 =

k=j∑
k=2

(αk−1,k−1 − αk−1,k) + vj ≥
(1− γ)c

(1− β)
, (16)

uK̃ =

k=K̃−1∑
k=i+1

(αk,k − αk−1,k) + ui ≥
γc

β
j ∈ {2, . . . , K̃}; i ∈ {1, . . . , K̃ − 1}. (17)

As neither bK̃ nor s1 has an outside trade partner, uK̃ = 0 and v1 = 0. All other buyers and

sellers must have sufficient incentives to form their outside option links. For the other sellers,

βvj ≥ (1− γ)c; and for the other buyers, (1− β)ui ≥ γc. Applying Theorem 1 again:

ui =
k=K̃−1∑
k=i+1

(αk−1,k − αk,k) ≥
γc

(1− β)
, (18)

vj =

k=j∑
k=2

(αk−1,k − αk−1,k−1) ≥
(1− γ)c

β
j ∈ {2, . . . , K̃}; i ∈ {1, . . . , K̃ − 1}. (19)

Combining equations 16, 17, 18, and 19:
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vj ≥ (1− γ)c

(1− β)
+

k=j∑
k=2

(αk−1,k − αk−1,k−1) ≥
(1− γ)c

(1− β)
+

(1− γ)c

β
, (20)

ui ≥ γc

β
+
k=K̃−1∑
k=i

(αk,k+1 − αk+1,k+1) ≥
γc

β
+

γc

(1− β)
. (21)

j ∈ {2, . . . , K̃}; i ∈ {1, . . . , K̃ − 1}

The gains from trade in a network are equal to the total payoffs received by all parties. Com-

bining equations 15, 18, and 20 and then equations 15, 19, and 21:

K̃∑
k=1

αk,k =

K̃∑
k=1

(uk + vk) ≥ (K̃ − 1)

(
1

(1− β)
+

1− γ
β

)
c+

1− γ
1− β

c := f1(K̃, γ, β)c,

K̃∑
k=1

αk,k =
K̃∑
k=1

(uk + vk) ≥ (K̃ − 1)

(
1

β
+

γ

(1− β)

)
c+

γ

β
c := f2(K̃, γ, β)c.

This provides a lower bound on the gains from trade reached with K̃ trade links and an upper

bound on the overinvestment inefficiency

h(K̃, γ, β) := (K̃ − 1)
(

max{f1(K̃, γ, β), f2(K̃, γ, β)} − K̃
)−1

.

Thus for all stable component with K̃ matches, all levels of buyer bargaining power β ∈ (0, 1),

and all buyer cost shares γ ∈ (0, 1), OII ≤ h(K̃, γ, β).

To show that OII is always less than 50% the bound derived above can be maximized over β

and γ: OII := maxβ,γ

{
h(K̃, γ, β)

}
= h(K̃, 12 ,

1
2) = 1

2 . This is independent of K̃.

It will now be shown that the bound derived above is tight. Consider a component with K̃

matches and β ≥ γ, which implies that f1 ≥ f2. Set α11 = c/(1−β), αk,k = c/(1−β)+(1−γ)c/β

for all k ∈ {2, K̃}, and αk−1,k = c/(1− β) + (1− γ)c/β for all k ∈ {2, . . . K̃}, and set the value

of all other links to 0. It can be verified that for these potential gains from trade, that the

chain network of Figure 8 is stable and overinvestment inefficiency achieves the upper bound.

Similar examples can be constructed when β ≤ γ, which implies that f2 ≥ f1.

So far, an OII bound has been found for formed components with K̃ matches, and it has

been shown that this bound is tight. To find the tight OII bound for any stable network

that m buyers and n sellers might form, the following possibilities need to be considered: (i)

multiple components being formed; or (ii) a single component being formed, but with only a

proper subset of the short side of the market matched. However, it will now be shown that

for any stable network m buyers and n sellers could form, the maximum possible level of OII

occurs when there is a single component with K̃ = min{m,n} matches—the maximum possible

number of matches. This is true for any β ∈ (0, 1) and any γ ∈ (0, 1).

If β > (≥)γ, then f1 > (≥)f2 and

∂ K̃−1
f1(K̃,γ,β)−K̃

∂K̃
> (≥)0.
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If β < (≤)γ, then f2 > (≥)f1 and

∂ K̃−1
f2(K̃,γ,β)−K̃

∂K̃
> (≥)0.

Thus h(K̃, γ, β) is increasing in K̃, and the OII bound for a network with m buyers and n

sellers is highest when there are as many matches as possible: K̃ = min{m,n}.

Part (iii): As γ ∈ (0, 1), the component structure of any non-empty network with overinvest-

ment inefficiency must be of the form shown in Figure 8. In any such component there exists

a seller and a buyer both of whom have no outside trade partner. If β = 1, then the seller

will have a profitable deviation to delete his trade link as he contributes towards the cost of

its formation but receives none of the gains from trade. If β = 0, then the buyer will not be

willing to form his trade link. The unique stable network is the empty network, and there is

never any overinvestment.

Part (iv): When (β ≥ 1
2 and γ = 0) or (β ≤ 1

2 and γ = 1), there exist potential gains from

trade for which the efficiency loss in all stable networks is 100%. This is shown for β ≤ 1/2 and

γ = 1 in Figure 9:

2c+2ε

s1

b1

s2

2c+ε

(a) Potential links

2c+2ε

s1

b1

s2

v1= (1-β)(2c+2ε) 

u1= β(2c+2ε)-c 

(b) Efficient network

2c+2ε

s1

b1

s2

v1= (1-β)ε

u1= (1+β)ε

v2= 0

2c+ε

(c) Stable network

Figure 9. Overinvestment inefficiency of 100%

The efficiency loss is c
2c+2ε−c → 1 as ε→ 0. A symmetric example can be constructed for β ≥ 1

2

and γ = 0, with the roles of buyers and sellers reversed.

Part (v): Let β < 1
2 and γ = 0. As γ = 0, only sellers can form outside option links.

By Theorem 1, seller sj ’s incentives to form an outside option link to buyer bi are given by

β(αη(j)j − uη(j)) ≤ βαη(j)j . Thus the maximum incentives to form outside option links can

always occur in networks where sellers’ outside trade partners do not trade with anyone and

β(αη(j)j − uη(j)) = βαη(j)j . Without loss of generality, therefore, and as sellers will form at

most one outside option link, inefficiency in network components consisting of two buyers and

one seller can be considered: If an overinvestment inefficiency bound for all stable networks is

found in these networks, it will apply to all networks.
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Consider then, without loss of generality,59 the network component shown in Figure 10. In

this network component, in order for there to be any efficiency loss due to overinvestment in

non-trade links, s1 must form links to both b1 and b2. To be incentivized to do this, s1’s payoff

in the network shown in Figure 10c must be greater than his payoff in the efficient network:

ζ + (1 − β)ε − 2c ≥ (1 − β)(ζ + ε) − c. This holds if and only if ζβ ≥ c. Let c = ζβ − ξ,
ξ ≥ 0, so that this constraint is satisfied. For this cost, and for the gains from trade above,

OII = ζβ−ξ
ζ(1−β)+ε+ξ . The efficiency loss in the worst stable network is maximized by setting

ξ = ε = 0. Thus overinvestment inefficiency must be less than or equal to β
1−β for any network

with β < 1
2 and γ = 0. This bound is achieved in the above example with ξ = ε = 0.

ζ+ε

s1

b1 b2

ζ

(a) Potential links

ζ+ε

s1

b1 b2

u1= β(ζ+ε)

v1= (1-β)(ζ+ε)-c 

(b) Efficient network

ζ+ε

s1

b1 b2

u2= 0 

ζ

u1= βε

v1= ζ+(1-β)(ε)-2c 

(c) Stable network

Figure 10. Bounded overinvestment inefficiency

�

It will now be shown that losses due to underinvestment inefficiency cannot be bounded below

100%.

Lemma 3. For exogenous cost shares, all non-empty sets P, Q of buyers and sellers, respec-

tively, and for all β 6= γ, there exist potential gains from trade a for which all the net gains

from trade generated by the efficient network are lost to underinvestment inefficiency in all sta-

ble networks. When β = γ, in contrast, there is no underinvestment inefficiency in any stable

network for any potential gains from trade a.

Proof. Suppose β = γ.60 For any potential gains from trade a, suppose, towards a contradiction,

that a link lij is inefficiently underinvested in, in a stable network L. From the definition of

underinvestment inefficiency, aij > c. However, this implies that i would benefit from forming

this link as βaij > γc, and j would also benefit from forming this link as (1− β)aij > (1− γ)c.

Network L is then not stable, which is a contradiction.

Suppose β 6= γ. Consider any gains from trade a with an associated non-empty efficient

network Le(a). Adjust the value of the links in a as follows (and denote these adjusted gains

from trade â). For α = a, find the matching µ∗(α) that maximizes the gains from trade.

59 Varying ε ≥ 0 and ζ > 0, this example accounts for all possible two-buyers one-seller networks, for
any c.
60 A similar condition is found in Caballero and Hammour (1998).
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Set âiµ∗(i) ∈ (c,max {γc/β, (1− γ)c/(1− β)}) for all i ∈ P. Finally, set âij < c for all other

links (for all j 6= µ∗(i)). As β 6= γ, max {γc/β, (1− γ)c/(1− β)} > c. The efficient network is

therefore the non-empty network Le(â) = Le(a).

Suppose link liµ∗(i) is formed. As it will never be profitable for a buyer and seller to form a link

that generates less surplus than it costs, this will be i’s only link and µ∗(i)’s only link. From

Theorem 1 and equation 5, buyer i’s payoff will be βâiµ∗(i) − γc, while seller µ∗(i)’s payoff will

be (1− β)âiµ∗(i) < (1− γ)c. It is easily verified that if aiµ∗(i) < max {γc/β, (1− γ)c/(1− β)},
either i or µ∗(i) will receive a negative payoff and have a profitable deviation to not invest in

liµ∗(i). The link liµ∗(i) can then never be formed in a stable network, and the unique stable

network is the empty network.

We now show that the empty network satisfies stronger stability requirements than pairwise

Nash stability. A strong Nash equilibrium of a game G played by players N is a strategy profile

σ such that there is no coalition M ⊆ N and no other strategy profile σ′ in which

(i) σ′i = σi for all i /∈M ;

(ii) each i ∈M strictly prefers σ′ to σ.

Note that in a strong Nash equilibrium a buyer i still chooses which links to invest in (his

strategy set is still {0, 1}n), and his payoff from a formed network is still given by equation 5

less his costs of link formation. �

Corollary 5. For gains from trade â and γ 6= β, the unique strong Nash equilibrium of the

simultaneous link formation game is the empty network.

Proof. Any network in which a link lij 6= liµ∗(i) is formed cannot be a strong Nash equilibrium.

Either i or j will have an individual profitable deviation deleting it. Given this, a network in

which link liµ∗(i) is formed cannot be a strong Nash equilibrium either. As argued above, either

i or µ∗(i) will have an individual profitable deviation deleting it. However, the empty network

is a strong Nash equilibrium. Although there are net gains from trade that can be realized by

forming links i and µ(i), all such deviations leave either i or µ(i) with a negative payoff. As

agents choose only the set of links to invest in (and not how much to invest), there is no way

that the agent who receives the negative payoff can be compensated for his negative payoff. �

B.5. Proof of Proposition 2.

Proof. Part (i): Suppose that there is underinvestment in link lij , so that aij > c. Buyer i

and seller j will then have a profitable pairwise deviation to form link lij and pay investment

shares γij = β.

Part (ii): This proof is by counterexample. Consider gains from trade a such that if the

complete network is formed (α = a), buyers i ∈ P′ ⊆ P will be matched and for each i ∈ P′,

aiµ∗(i) = 1, aiη(i) = 1− ε, and akη(i) = akµ∗(i) = 0 for all k 6= i. Set the value of all other gains

from trade to 0. Let c = 1
2 − ε and consider first β ∈ [0, 12 ]. The efficient network, consisting of

the links {liµ(i)}i∈P′ , will not be stable for any such β: i will increase his share of the surplus

from trade with µ∗(i) by (1− β)aiµ∗(i) = (1− β)(1− ε), at a cost of c = 1
2 − ε, if he forms the

link to η(i). This increases i’s net payoff if and only if (1 − β)(1 − ε) > 1
2 − ε (equivalently
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β < 1/(2 − 2ε) ≤ 1/2). It is then straightforward to show that in the unique stable network,

i pays the entire cost of forming the link liη(i) and pays between 1/2 − (2 − β)ε and 1/2 − ε
towards the formation of link liµ(i). The efficiency loss in the unique stable network is therefore

(0.5 − ε)/(0.5 + ε), and as ε → 0 the efficiency loss goes to 100%. To show that the efficiency

loss can go to 100% in all stable networks with β ∈ [12 , 1], relabel i ∈ P as j ∈ Q, µ∗(i) as µ∗(j),

and η(i) as η(j). �

B.6. Proof of Corollary 3.

Proof. If

max
i,j

αij < max

{
γ

β
c,

1− γ
1− β

c

}
,

then for all i, j pairs, either βαij < γc and i does not want to form a link to j, or (1− β)αij <

(1− γ)c and j does not want to form a link to i. The empty network will be stable, and there

will be 100% underinvestment inefficiency. If instead there exist i and j such that βαij ≥ γc and

(1− β)αij ≥ (1− γ)c, then the empty network cannot be stable: i and j will have a profitable

deviation by forming a link to each other. Together, these conditions imply that there cannot

be 100% underinvestment inefficiency if

max
i,j

αij ≥ max

{
γ

β
c,

1− γ
1− β

c

}
.

�

B.7. Proof of Corollary 4.

Proof. Let K̃ = min{m,n},

f(γ, β, K̃) =
(K̃ − 1) + 1− γ

1− β
+

(K̃ − 1)(1− γ)

β
, and g(γ, β, K̃) =

(K̃ − 1) + γ

β
+

(K̃ − 1)γ

1− β
.

By definition, h(γ, β,m, n) = (K̃ − 1)/(max{f(γ, β, K̃), g(γ, β, K̃)}− K̃). Note that f(γ, β, K̃)

is decreasing in γ, while g(γ, β, K̃) is increasing in γ, so it is when f(γ, β, K̃) = g(γ, β, K̃) that γ

minimizes max{f(γ, β, K̃), g(γ, β, K̃)} (and hence maximizes h(γ, β,m, n)). Also, f(γ, β, K̃) =

g(γ, β, K̃) when γ = β. �
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