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Added mass characterises the additional force required to accelerate a body when
immersed in an ideal fluid. It originates from an asymmetric change to the surrounding
pressure field so the fluid velocity satisfies the no through flow condition. This is
intrinsically linked with the production of boundary vorticity. A body in potential flow
may be represented by an inviscid vortex sheet and added mass forces determined using
impulse methods. However, most fluids are not inviscid. It has been theorised that
viscosity causes the ‘added mass vorticity’ to form in an intensely concentrated boundary
layer region, equivalent to the inviscid distribution. Experimentally this is difficult to
confirm due to limited measurement resolution and the presence of additional boundary
layer vorticity, some the result of induced velocities from free vorticity in the flow field.
The aim of this paper is to propose a methodology to isolate the added mass vorticity
experimentally with Particle Image Velocimetry, and confirm that it agrees with potential
flow theory even in separated flows. Experiments on a flat plate wing undergoing linear
and angular acceleration show close agreement between the theoretical and measured
added mass vorticity distributions. This is demonstrated to be independent of changes to
flow topology due to flow separation. Flow field impulse and net force are also consistent
with theory. This paper provides missing experimental evidence coupling added mass and
the production of boundary layer vorticity, as well as confirmation that inviscid unsteady
flow theory describes the added mass effect correctly even in well-developed viscous flows.

Key words:

1. Introduction

Added or virtual mass is an unsteady fluid dynamic effect that has been discussed
in the literature for over a century (refer to Lamb 1895; Darwin 1953; Brennen 1982;
Benjamin 1986; Saffman 1992). It describes an increase in the force required to accelerate
a body at a given rate when immersed in a fluid compared to the equivalent kinematics
in a vacuum. While the mass of the body is unchanged whether surrounded by fluid
(or not), Darwin (1953) showed that a physical volume of fluid is ‘carried’ by a body
during its motion in potential flow. This is the so called ‘drift volume’, the mass of which
corresponds to the added mass. Take for example an infinitely thin two-dimensional
flat plate in an inviscid, incompressible and irrotational fluid. If the fluid and plate are
both initially at rest, and the plate is accelerated in either a translational or angular
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Figure 1. Streamlines for a flat plate with chord length c in potential flow; (a) translation with
velocity Un; (b) rotation with angular velocity Ω about the mid-chord. Streamlines are shown
for the moving body reference frame.

manner, then the surrounding fluid must also accelerate to accommodate the changing
velocity of the plate. This gives rise to the flow fields shown in figure 1. The acceleration
is actioned by pressure waves that propagate from the plate surface, at infinite speed
for an incompressible fluid. A difference in surface pressures across the thickness of the
plate generates a net force (or moment) on the plate. The flow field experiences a net
change in momentum to match the impulse (in the classical mechanics sense) applied to
the plate; equivalently the kinetic energy of the flow is changed to match the work done.
The additional force required to accelerate the plate is proportional to the rate of linear
or angular acceleration. For the translating plate shown in figure 1(a) the proportionality
constant (added mass), is equal to the mass per unit length of a cylindrical volume of
fluid with a diameter equal to the chord.

An alternative representation of the added mass effect can be made by considering
flow field vorticity. In potential flow theory a body may be represented by an inviscid
and infinitely thin vortex sheet on its surface, in an otherwise irrotational flow (Saffman
1992). As illustrated in figure 2(a) for the case of a translating plate, the strength of the
vortex sheet is given by the discontinuous ‘slip’ in velocity either side of the plate. By
application of the Biot-Savart law, the velocity of the flow field, momentum and force can
be determined uniquely by this distribution of vorticity. The resulting impulse-derived
force (see Wu (1981) or appendix A), is identical to the added mass force obtained
directly from the pressure field.

For applications of practical interest, however, the working fluid is not inviscid and
as shown in figure 2(b), the flow field can be significantly different to that of potential
flow. Diffusion causes vorticity to be transmitted from the surface of a body into the
adjacent fluid. When subjected to a strong adverse pressure gradient, such as that about
sharp edges, the resulting boundary layer can separate. Vorticity is thus shed into the
bulk flow, giving a rotational, non-potential, field. An additional problem arises when
applying the inviscid interpretation for added mass to a viscous flow field. The no-slip
condition means that the aforementioned surface slip velocity cannot occur; rather
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(a) (b)

Figure 2. Schematic comparing vorticity distributions between potential flow (a) and a viscous
flow field (b). In the viscous fluid vorticity is diffused and advected from the plate surface,
whereas vorticity is contained in an infinitely thin layer for the inviscid fluid. Red and blue
colours correspond with positive and negative vorticity respectively.

when a body accelerates vorticity must diffuse into the lower region of the boundary
layer. Leonard & Roshko (2001) and Eldredge (2010) have argued that the added mass
force on a body is proportional to the rate new vorticity is generated on the body
surface, with an identical singular distribution to that given by inviscid theory. This is
regardless of viscous effects and consequential changes to flow topology. Graham et al.
(2017) assumed a similar process to identify the added-mass contribution to the forces
derived from experimental data. This ‘added mass vorticity’ diffuses from the surface
and into the surrounding flow over time periods of order Reynolds number greater than
the convective time scale. In practice, it is therefore confined to an intensely spatially
concentrated region.

This leads to the motivation behind the present work. While the existence of the added
mass vorticity has been theorised, there are no experimental flow field measurements
confirming its presence and demonstrating its independence of the bulk rotational flow.
The wealth of measurements taken in the literature utilising Particle Image Velocimetry
(PIV) to resolve the flow field around an accelerating body, such as that about pitching,
plunging, or rotating aerofoils, has spatial resolutions of order of a boundary layer
thickness (see Poelma et al. 2006; Rival et al. 2009; Buchner et al. 2012; Pitt Ford &
Babinsky 2013; Polet et al. 2015). The intention of such investigations is to capture wide
regions of the flow field including starting vortices, which reduces spatial resolution. It is
questionable whether with such measurements the distribution of added mass attributed
vorticity can be resolved and isolated from changes made to the flow field resulting from
other viscous effects.

In this paper a methodology to isolate the added mass vorticity experimentally (with
PIV) is proposed. Measurements are taken for a flat plate wing undergoing translation
and rotation. These test cases are used because any planar kinematics may be decom-
posed into a combination of such motions. From the resulting data the added mass
attributed component of vorticity, located within the boundary layer, is quantified. This
is compared with the vortex sheet predicted using potential flow theory to demonstrate
that the potential solution is valid, even for cases with significant flow separation. Using
the measures of added mass attributed vorticity, flow field impulse and force on the
plate are calculated. These are also compared with the potential flow solutions for a
plate undergoing comparable kinematic motion, thereby investigating the effect of PIV
resolution on the determination of impulse and force quantities. The work therefore
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Figure 3. Problem geometry and coordinates frames: (a) global ‘fixed’ coordinate frame and
(b) plate frame.
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Figure 4. Representation of the plate as a vortex sheet γ(x), given by the difference in surface
slip velocities u1(x) and u2(x).

further develops understanding of unsteady incompressible flows, the limitations of a
common measurement technique, and may inform future reduced order models of such
flows.

2. Theoretical description of the vortex sheets

A potential flow model is used to determine the ‘theoretical’ added mass vortex sheet,
as well as the sheet attributable to velocities induced on the plate from vorticity in the
bulk flow field. The approach is based on the work of Graham et al. (2017), who derived
these quantities for a flat plate wing translating with constant angle of incidence. In this
work the method is extended to incorporate rotation about the mid chord.

2.1. Problem geometry

The geometry of the problem is shown in figure 3. The flow field is assumed to be
unbounded and at rest at an infinite distance from the globally ‘fixed’ XY coordinate
system origin. Positions in the flow field are given in complex vector notation Z = X+iY .
The plate, with chord length c, has the position Zc = Xc + iYc defined at the mid chord
and complex velocity U = dZc/dt. For many calculations it is simpler to work in a plate
reference frame xy. As shown in figure 3(b), this is centred at the mid-chord with x in
the plate tangential direction and y in the plate normal direction, oriented at an angle
β to the XY coordinate frame. Positions in the flow field relative to the plate frame are
given by the complex position z = x+ iy, related to the global frame by,

z = eiβ(Z − Zc). (2.1)

The plate velocity vector U can be resolved into a component normal to the plate
Un (y direction) and a tangential component Ut (x direction). Only the plate normal
velocity Un is of importance as the tangential component does not contribute to the
velocity difference across the plate. The angular velocity of the plate is Ω = −dβ/dt.
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2.2. Vortex sheet

In inviscid flow about an infinitely thin flat plate there is generally a discontinuity
in surface flow velocity across the plate. As defined by equation (2.2) and illustrated in
figure 4, the difference in this surface ‘slip’ velocity is equivalent to a vortex sheet. In this
context the vortex sheet represents the vorticity contained by boundary layers either side
of the plate. For a real flow boundary layer vorticity is spread across a finite thickness,
but as the viscosity of the fluid reduces to zero the vorticity becomes confined to an
infinitely thin layer. Eldredge (2010) and Graham et al. (2017) argued that the vortex
sheet has two constituent parts as given by equation (2.3). The first, γnc, is attributed
to body motion in an otherwise irrotational flow. This is the vortex sheet associated
with added mass. It has the defining characteristic of zero net circulation and is given
the superscript nc for ‘non-circulatory ’. The second constituent part, γc, is attributed to
vorticity located away from the plate in the bulk flow field, with the plate at rest. For
this component it is assumed that γc is of such strength that self induced velocities (in
the plate normal direction) are equal and opposite to those induced by the free vorticity,
so that the no-penetration condition is satisfied. It is allocated the superscript c for
‘circulatory ’ as it may often (but not necessarily) have net circulation.

γb(x) = u2(x)− u1(x) (2.2)

= γnc + γc (2.3)

2.2.1. Non-circulatory ‘added mass’ vortex sheet

The non-circulatory vortex sheet constituent, γnc, may be readily obtained from the
complex potential for a translating rotating ellipse given by Milne-Thomson (1986), by
setting the thickness of the minor axis to zero (stream- and potential-functions are also
given by Lamb (1895)). It is given by equation 2.4, whose derivation may be found in
appendix A. The sheet comprises a component due to translation in the direction normal
to the chord (γnct ) and a component due to rotation about the mid chord point (γncr ).
Each component is of such strength that the no-penetration condition is satisfied for the
respective kinematic motion in an otherwise quiescent potential flow. Hereafter equation
2.4 will be referred to as the ‘theoretical’ added mass vortex sheet. This theoretical added
mass vortex sheet will be later compared with an ‘experimental’ added mass vortex sheet
that is extracted from PIV data of a flow field.

γnc = −2Un
x√

(c/2)2 − x2︸ ︷︷ ︸
γnct

−Ω 2x2 − (c/2)2√
(c/2)2 − x2︸ ︷︷ ︸
γncr

. (2.4)

2.2.2. Circulatory ‘shed vorticity’ vortex sheet

The circulatory vortex sheet constituent, γc, is found using the potential flow model
described by Graham et al. (2017). External vortices are used to calculate the circulatory
vortex sheet by their mirror images in a circle frame mapping of the flow field. This model
is therefore ‘data-driven’, as the position and circulation of each external vortex will be
determined using PIV data of a physical flow field. For complex geometries a panel code
may be used to find the equivalent γc for a body subject to flow induced by external
vortices; however, for a simple flat plate the mapping method allows an exact analytical
expression to be derived. The plate is mapped to a circle with radius a = c/4 using the
relation,

z = ζ +
(c/4)2

ζ
, (2.5)
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Figure 5. Schematic of a vortex element with circulation Γk in the mapped circle frame,
showing the corresponding ‘mirror’ with circulation −Γk.

where ζ = ε+ iη, a position vector in the mapped frame. The mapped frame is illustrated
in figure 5. In the mapped frame the circle is subject to the same condition as the plate
(flow cannot pass through its surface and circulation is unchanged). As illustrated, a single
vortex with circulation Γk is located in the flow field at the position ζk. This represents a
single element from a field of vorticity. To satisfy the no-penetration condition, ‘mirror’
vortices must be placed inside the circle. This ensures that the circle circumference is a
streamline of the flow by balancing the radial velocity component that the free vortex
induces on the circle boundary. According to Saffman (1992) there are an infinite number
of mirror vortex combinations which satisfy this condition. The solution given by Graham
et al. (2017) satisfies conservation of global circulation and the circle boundary condition

with just a single mirror vortex of circulation −Γk at a location ζk,mir = a2

|ζk|e
iφk . The

free vortex and its mirror may be used to find γc by calculating the surface slip velocities
in the plate frame. These are obtained here using the complex potential method. The
complex potential, defined as Fk(ζ) = Φk + iΨk with Φk and Ψk being the potential and
stream-functions for the vortex pair, is:

Fk(ζ) = −iΓk
2π

ln
( ζ − ζk
ζ − ζk,mir

)
(2.6)

The flow velocity (uk, vk) in the plate frame is given by

uk − ivk =
dFk
dz

=
dFk
dζ

(dz
dζ

)−1
. (2.7)

Evaluating the derivatives yields

uk − ivk =
iΓk
2π

ζ2(ζk,mir − ζk)

(ζ2 − (c/4)2)(ζ − ζk,mir)(ζ − ζk)
. (2.8)

To calculate the strength of the vortex sheet, the velocity tangential to the surface of
the plate (uk) is required. The plate surface corresponds to the cylinder surface in the
complex frame, given by ζ = aeiθ. Therefore, at the plate surface equation (2.8) gives:

uk(θ) =
−Γk
πc sin θ

(c/4)2 − |ζk|2

|ζk|2 − 1
2 |ζk|c cos (θ − φk) + (c/4)2

. (2.9)

Here θ, the angle from the ε axis to a position on the cylinder surface (anticlockwise
positive), is related to the plate frame by x = (c/2) cos θ. The vortex sheet attributable
to the vortex pair is equal to the velocity difference either side of the plate,

γck(θ) = uk(−θ)− uk(θ), (2.10)

with 0 6 θ 6 π. Finally, an arbitrary number of vortices (n) will be measured in the flow
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Figure 6. Elements used for the calculation of the boundary-layer circulation: (a) overview
showing integration contour elements distributed across the plate chord; (b) schematic showing
a single integration element encompassing boundary layers.

field, so the total circulatory vortex sheet is found by linear superposition,

γc =

n∑
k=1

γck. (2.11)

Because the location of each vortex is to come from PIV data in the plate frame, a
conversion from the real to mapped frame is needed. Solving for the roots of equation
(2.5) gives the inverse mapping,

ζ =
z ±

√
z2 − 4(c/4)2

2
. (2.12)

As there are two solutions to equation (2.12), one inside the mapped circle and the other
outside, only the outer solution (|ζ| > a) is used.

2.3. Potential flow model summary

A potential model has been derived to obtain the distribution of boundary-layer
vorticity for a flat plate wing undergoing arbitrary translation and rotation kinematic
motions through a viscous and separated flow. The boundary layer is represented by a
vortex sheet of strength γb = γnc + γc. Through linear superposition the non-circulatory
term γnc consists of a component attributed to translation γnct , and another due to
rotation γncr . The circulatory term γc is due to vorticity in the bulk flow field. Using
PIV data it is possible to determine γc experimentally. It is apparent that, if the
boundary layer vortex sheet γb can also be quantified experimentally, then the component
directly attributable to added mass (γnc) may be isolated from flow field measurements.
Further limiting the kinematic motion to just translation or rotation enables independent
measurements of γnct and γncr to be obtained. These may then be compared to the
theoretical distributions given by equation (2.4), thereby testing the validity of the
potential flow solution for added mass in separated viscous flows.

3. Quantification of γb from PIV

In the introductory section it was observed that the difficulty with directly resolving
the vorticity in the boundary layer using PIV (to obtain a measure of γb), stems from
the requirement that typically large regions of the flow field must be captured to include
starting vortices. There is a compromise between field of view and spatial resolution,
the former often taking priority. Furthermore, the added mass attributed vorticity is
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generated in an ‘intensely concentrated’ region of the boundary layer adjacent to the wall.
In this region the scattering of laser light from the surface results in a loss of measurements
due to saturation of the camera sensor. With such an experimental setup it is unlikely
that velocity gradients within the boundary layer, and added mass attributed vorticity
in particular can be resolved directly. It is, however, possible to infer the boundary layer
vorticity by application of Stokes’ theorem (equation 3.1). The surface integral of vorticity
over an area A (circulation) is equal to the closed line integral of the velocities about the
circumference. Even for a near-singular and unmeasurable distribution of vorticity, the
circulation can be determined by the entirely measurable flow field velocities nearby.

Γ =

∫
A

ωdA =

∮
u · dl (3.1)

With the present problem the ‘singularity’ is not a point vortex free in the flow field,
but rather is in the form of a boundary layer over the surface of a plate. The question
is what happens to the integration contour that crosses over the surface? In this case
a body of finite cross-sectional area can be treated as an area of fluid with equivalent
kinematic and geometric properties. When undergoing pure translation the ‘body fluid’
is irrotational and when in pure rotation it has uniform vorticity with magnitude twice
the rate of angular rotation (Wu 1981). Applying this condition allows an integration
contour to cross over the body surface as if the flow field and body geometry were a
continuum. The circulation of a segment of the boundary layer can therefore be measured.
For the plate geometry, elements of circulation (δΓn) are calculated using the contours of
integration shown in figure 6(a). It is assumed here that the plate used for experiments
is infinitely thin and no correction for finite thickness has been made. The circulation
of vorticity contained in the boundary layer may then be equated to that of the vortex
sheet,

∫
A
ωdA =

∫
γdx, and a local estimate of a boundary layer equivalent vortex sheet

can be found by dividing the circulation of each element by the element width:

γbn ≈ δΓn/δxn (3.2)

For the boundary layers shown in figure 6(b), application of this method returns a
vortex sheet of strength γbn = u2−u1. A measure of the integral boundary-layer vorticity
can therefore be obtained without requiring measurement of velocity gradients within
the boundary layer. The spatial resolution (in the x direction) is, however, limited by the
underlying PIV grid resolution. For the current experiment the plate was discretised into
50 area elements, over a distance of 1.0c in the x direction (δx = 0.02c). This is similar
to the PIV resolution which is later described. Each element had a height of δy = 0.25c,
which was selected as it is sufficiently large to include the boundary layer, while largely
avoiding ‘free’ vorticity in the bulk flow field (shown later in figures 8 and 9). If any
free vorticity is encompassed by the contours of integration, it will be excluded from the
circulatory vortex sheet calculation γc, and is instead assigned as local boundary layer
vorticity. This is to be avoided where possible.

4. Description of the experiments

PIV and flow visualisation experiments were performed on a flat plate undergoing
linear acceleration at 90◦ incidence (surge) and on a plate rotated ‘impulsively’ about
the mid chord. These experiments were selected to isolate the translation and rotation
components of the non-circulatory vortex sheet, given by equation (2.4). Experiments
were performed in the water towing tank shown schematically in figure 7(a). The plate
has a chord of 120 mm, thickness of 4 mm and immersed span of 480 mm. While this
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Figure 7. Schematic of towing tank, PIV and flow visualisation configurations: (a) end view; (b)
top view showing the laser overlap plane and camera setup. Adapted from Stevens & Babinsky
(2017).

gives a physical aspect ratio of 4, a skim plate was used on the upper end at the waterline
to reduce free surface effects and give an effective aspect ratio of 8 due to the mirror
effect. A stepping motor is used for pitch actuation.

For both test cases the added mass force and flow field impulse acquired using PIV is
compared with the theoretical potential flow equivalent. This requires knowledge of the
kinematics of the plate in the measurement plane. For the surge case the instantaneous
acceleration was measured using an ADXL335 3-component micro-electromechanical ac-
celerometer embedded within the plate. Velocity was measured using a linear quadrature
encoder with step resolution of 1 mm. Data from each of these sensors is acquired at
5 kHz. For the rotation experiment the angular position is assumed to be equal to the
prescribed motion from the stepping motor. It should be noted that the plate is not
infinitely stiff, so the prescribed and actual motion at the measurement plane can differ
due to vibration. A more detailed analysis of vibration of the setup is given by Corkery
et al. (2018). The embedded accelerometer corrects for the vibration attributed difference
for the translation case; however, vibration and other discrepancies from the prescribed
motion are unaccounted for in the rotation case.

4.1. PIV and flow visualisation

PIV was taken using a commercial LaVision Flowmaster 2D PIV setup. For the surge
case a dual camera and a dual light sheet configuration as shown in figure 7(b) was
used. This enabled the acquisition of vectors across the full plane without camera view
obstruction or shadow region effects. A similar configuration was used for the rotating
plate experiment, however, now the laser centre axes coincide and a single camera was
used. Regions of the flow field obstructed from the field of view of a single camera were
masked and the flow field in regions measured by both cameras was averaged. All PIV
data was acquired at the physical mid-span of the wing and the flow is assumed to be
two-dimensional. Titanium dioxide seeding particles were illuminated using a Nd:YLF
527 nm wavelength laser and recorded with a Phantom M310 camera. For the surge
case the frame rate was 200 Hz, while 50 Hz was used for the rotation case. Vector
fields for the surge case were computed using sequential image frames with an initial
interrogation window of 64x64 pixels, followed by a nominal 16x16 pixel deformable



10 S. J. Corkery, H. Babinsky and W. R. Graham

Reynolds number 10,000

Acceleration distance (c) 0.25
Deceleration distance (c) 0.25
Total travel (c) 2
Peak velocity U0 (m/s) 0.104

Table 1. Surging plate kinematics

Reynolds number (edge vel.) 4,600

Acceleration distance (rad) π/200
Deceleration distance (rad) π/200
Maximum rotation angle β (c) π
Peak angular velocity Ω0 = −dβ/dt (rad/s) −π/4

Table 2. Rotating plate kinematics

interrogation window with 2 passes and 50% overlap. For the rotation case the vector
fields were computed using an initial window of 32x32 pixels, followed by 2 passes with a
nominally 12x12 pixel deformable interrogation window and also 50% overlap. Each PIV
measurement presented is an ensemble average of 5 test runs. Dye flow visualisation was
performed by injecting a milk-based dye mixture at points where flow is entrained into
the shear layer leaving the edges of the plate. For the surge case, the injection locations
were approximately 4 mm from each plate edge, on the leeward face. For the rotation case
dye was injected on the advancing faces at an equivalent location. Dye was illuminated
with the dual laser light sheet described above, albeit with a defocussed beam width of
approximately 20 mm to allow for illumination of dye that has advected slightly in the
span-wise direction.

4.2. Plate kinematics

General kinematic parameters for the surge and rotation cases are given in tables
1 and 2 respectively. For the surging profile the plate underwent nominally constant
acceleration over a distance of 0.25 chord lengths, travelled at constant velocity for 1.5
chord lengths and decelerated over a distance of 0.25 chords. The total travel distance is
thus 2 chords. Both the dye flow visualisation and PIV were carried out at a Reynolds
number of 10,000 as calculated from the peak velocity. For the rotation case, the plate was
nominally ‘impulsively’ rotated in the clockwise direction from rest to a constant angular
velocity (Ω = −π/4 rads−1) about an axis at the mid chord. Based on the plate chord and
edge velocity the Reynolds number is 4,600. After rotating 180◦ the plate was impulsively
decelerated to rest. It is recognised that a perfectly impulsive motion is impossible due to
both finite plate stiffness and torque limitations. For the calculations of pitching moment
using potential theory it is assumed that the angular acceleration is constant over a
time equal to the PIV sample period (0.02 s). Based on the stepping motor commanded
motion, the actual acceleration period is likely lower than 0.02 seconds, but PIV based
measures of impulse are limited by the camera frame rate so the same limitation is placed
on the potential theory based estimate.
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5. Results

5.1. Flow topology

Dye flow visualisation and PIV for the surging case are shown in figure 8, while figure
9 gives the corresponding measurements for the rotation case. The PIV data shows
contours of vorticity (red, anticlockwise positive; blue, negative) and arrows with flow
direction. For each data element, the vorticity was calculated by taking the trapezoidal
closed line integral of velocity through the centroid of each adjacent element (size
2∆l × 2∆l, where ∆l is the data point element width). This gives a circulation, which
divided by the area inclosed by the integration contour (4∆l2) gives the vorticity.

In the surge case the following can be observed:

• At Xc/c = −0.02: The plate undergoes maximum acceleration but still has low
velocity. The start of two vortices is visible in the flow field. PIV shows a (faint) region
of negative vorticity at the top half of the plate and positive vorticity on the lower half.
• At Xc/c = −1.00: The plate is translating at constant velocity. A pair of counterro-

tating vortices behind the upper and lower plate edges are visible in both the dye flow
and PIV. Clear regions of boundary layer vorticity are visible in the PIV, but cannot be
seen in the flow visualisation.
• At Xc/c = −1.98: The plate has decelerated to almost a complete stop. The pair

of vortices has moved downstream relative to the plate and the shear layers feeding
each vortex can be seen. Discrete blobs of dye are visible in the shear layer; these are
the result of the Kelvin-Helmholtz instability and show the accumulation of vorticity
from the shear layer into discrete rollers. Again there is a clear region of boundary layer
vorticity. This appears to be shedding off the plate edges as the plate is near rest and
flow induced by the primary vortices moves in the −X direction.

For the rotation case the following can be observed:

• At β ≈ 1◦: The plate has started motion and is rotating at constant angular velocity.
The dye flow visualisation does not show any vortices in the flow field. The PIV, however,
shows a strong distribution of positive vorticity at the plate edges and negative vorticity
toward the centre.
• At β = 90◦: The plate is mid-way through the rotation and is moving at constant

angular velocity. A positive vortex, fed by a visible shear layer, has shed at each plate
edge. Again a Kelvin-Helmholtz instability is seen. There are clearly defined regions of
negative boundary layer vorticity visible in the PIV, which are not seen in the dye flow
visualisation.
• At β = 180◦: The plate is travelling at constant angular velocity, but is about to

encounter the deceleration impulse. The pair of vortices has moved further ‘downstream’
relative to the circumferential path of the plate edges. The Kelvin-Helmholtz instability
is less coherent. This appears to be a result of secondary flow separation interacting
with the primary shear layer. The secondary separation can be seen by the thickening of
the negative boundary layer vorticity toward the plate edges.

Both the surge and rotation test cases have shown distributions of boundary layer
vorticity during their motions. It is this vorticity that is expected to have a compo-
nent attributable to the added mass effect. In the following sections this component is
quantified and compared with potential theory.
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Figure 8. Dye flow visualisation (a,b,c) and PIV flow field measurements (d,e,f ) for the surge
test case: (a,d) Xc/c = −0.02; (b,e) Xc/c = −1.00; (c,f ) Xc/c = −1.98. Only every fourth
velocity vector is shown. Re = 10,000.
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Figure 9. Dye flow visualisation (a,b,c) and PIV flow field measurements (d,e,f ) for the rotating
plate case: (a,d) β ≈ 1◦; (b,e) β = 90◦; (c,f ) β = 180◦. Only every fourth velocity vector is
shown. Re = 4,600.
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Figure 10. Sums of the boundary layer and bulk flow circulation elements: (a) surge case; (b)
rotation case.

5.2. Single sided flow field circulation

Separate sums of positive and negative elements of circulation in the flow field are
plotted in figure 10. The circulation elements are categorised as those that are ‘bound’,
which means they are included in the boundary layer areas of integration described in
section 3; and those that are ‘free’, i.e. in the bulk flow field. Both test cases show zero
total circulation throughout the measurement period, as expected. In figure 10(b) the
discontinuities in circulation components at the start and end of the angular motion
suggest that added mass attributable vorticity is captured by the PIV data bracketing
each acceleration period. After the deceleration impulse at |Ω0t| = π the gradual increase
in negative free circulation, and reduction in bound negative circulation results from the
formation of a stopping vortex shed at each edge of the plate.

5.3. Non-circulatory vortex sheets

The added mass vortex sheet γnc is obtained by taking direct measurements of
the boundary layer vortex sheet γb and subtracting the component attributed to free
vorticity in the flow field γc (refer to sections 2 and 3). In potential flow theory the
theoretical added mass vortex sheet is proportional to the respective translation or
angular velocities (see equation 2.4). Acceleration of the plate creates the vortex sheet,
but once constant velocity is reached it will persist unchanged. Therefore, by normalising
the added mass vortex sheet strength with the kinematic velocity it is possible to obtain
a universal distribution which is independent of both velocity and acceleration rate. This
is the ‘theory’ line given in figure 11. If, as expected, the experimental measurements of
the added mass vorticity are also independent of viscous effects such as separation, the
normalised measurements should also be constant. This is advantageous as a sequential
average may be taken to reduce random error attributable to measurement noise. For
the surge case the average of frames between Xc/c = −0.02 and Xc/c = −1.98 is
taken (530 measurements). The very start (−0.02 6 Xc/c 6 0) and end of motion
(−2 6 Xc/c 6 −1.98) is avoided to prevent normalising the measured added mass
vortex sheet by vanishingly small velocity values. For the rotating case frames between
β = 1◦ to β = 179◦ are used (approximately 100 measurements). The normalised,
experimentally attained, added mass vortex sheets are included in figure 11. This is in
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Figure 11. Comparison of measured and potential flow vortex sheets between potential
theory and experiment for the surge (a) and rotation (b) cases.

striking agreement with the theoretical distribution.

The agreement between measurement and theory shows that vorticity is generated in
the physical flow field when the plate is accelerated, with a distribution close (if not
identical) to that predicted with inviscid theory. It can further be deduced that the
distribution of this non-circulatory vortex sheet is unchanged by viscous effects and the
corresponding changes to flow topology because most of the measurements utilised in the
averaging process were taken when the flow was in a state of severe separation. This can
be shown more clearly by considering the instantaneous PIV.

5.4. Instantaneous non-circulatory vortex sheet

To demonstrate further that the inviscid added mass vortex sheet distribution is also
correct for a fully developed viscous flow field with significant separation, and hence
with considerable topological differences from the potential flow, the flow field over
the deceleration impulse for the rotation case is considered. Figure 12(a) shows the
flow field before the deceleration impulse (β = 180◦−) and figure 12(b) shows the flow
field immediately after (β = 180◦+). The flow fields are similar with the strengths and
position of each shed vortex practically unchanged, however, there is a slight difference
in the vorticity near the surface of the plate.

Obviously some change must have happened to the flow field when the plate is
suddenly brought to rest in order to satisfy the no-penetration condition. This change
can be identified by taking the difference in the flow field before and after the impulse.
The change to the flow field is shown in figure 12(c) and the corresponding change
to the boundary layer vortex sheet is given by figure 12(d). It is immediately visible
that the change made to the flow field is equivalent, albeit inverse, to that produced
during the starting motion shown previously in figure 9(d). Over the deceleration
period the topological change to the flow field has resulted in the creation of non-
circulatory boundary layer vorticity which exactly destroys that created during the
initial acceleration phase (see figures 9(d) and 11(b)). It can therefore be concluded that,
even in a highly separated viscous flow field, changes due to acceleration are equivalent
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Figure 12. PIV data of the flow field at β = 180◦: (a) before the deceleration impulse,
β = 180◦−; (b) after the impulse, β = 180◦+; (c) the change to the flow field for the rotation
test case; (d) the change to the bound vortex sheet across the deceleration impulse compared
with potential theory. Only every fourth PIV vector is shown.

to those of potential flow. The evidence thus confirms that the added mass force on the
plate (or flow field), is equivalent to the potential solution for all flows, whether inviscid
and attached, or viscous with significant separation.

The rotation case has also revealed a second method for quantifying the added mass
vorticity. Taking the difference between consecutive PIV frames isolates changes in
vorticity including those attributable to diffusion, advection, experimental noise and
added mass effects. For bodies undergoing high rates of acceleration the latter source
is dominant. The distribution of added mass attributed vorticity, generated due to a
change in velocity between consecutive measurement frames, may then be quantified
directly using the methodology described in section 3. This approach is less rigorous
than the potential flow based model described in section 2, but is significantly simpler
to implement and may be useful in situations where there are large accelerations.

5.5. Impulse and forces from PIV

Since it is possible to extract the added mass attributable vortex sheets for each
PIV frame, the added mass contribution to the flow field impulse and forces can be
quantified and compared with potential theory. Discretisation of the measured vortex
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sheet, however, can result in significant errors. As shown in figure 11, the measured
vortex sheet is truncated at the edges, whereas the theoretical distribution tends toward
infinity. As a result, an integration of the measured vortex sheet using the discrete
points can give errors up to 25%. To compensate, an analytical function is fit to the
experimental data which reduces the error to approximately 5%. Further details, and
the quantification of errors using an artificial flow field are given in appendix B.1.
The impulse for the ‘full’ flow field, that is the sum of the contributions of bound and
free vorticity, is found directly from the elemental vorticity as discretisation errors are
comparatively negligible. Theoretical impulse and force values are calculated using the
potential flow solution derived in appendix A. For the surge case, the kinematics are
based on sensor data. For the rotation case the kinematics are equal to the prescribed
plate motion, as a measure of actual kinematics is unavailable.

The impulse for the surge case is shown in figure 13(a). During the initial acceleration
period 0 6 −Xc/c 6 0.25, the impulse from all three methods matches relatively
well. This implies that added mass effects are dominant. The impulse based on PIV
shows some oscillations which are the result of wing vibration. During the constant
velocity phase 0.25 6 −Xc/c 6 1.75 the measure of the impulse from the PIV derived
non-circulatory vortex sheet (γnct -PIV) fits theory relatively well, albeit is slightly
lower in magnitude. Given the excellent fit initially, this may be the result of slight
three-dimensional effects. Over the deceleration region agreement between γnct -PIV and
theory is reasonable. The drag force coefficient attributed to added mass is given in figure
13(b). There is relatively good agreement across the range of the experiment, albeit the
PIV derived measurement is significantly lower than theory between 0.25 6 −Xc/c 6 0.5.

For the rotation case the first moment of impulse is given by figure 14(a). Considering
the full flow field, the regions of high angular acceleration at the start (|Ω0t| = 0)
and end of plate kinematic motion (|Ω0t| = π) are clearly evident as discontinuities in
the first moment of impulse. During the constant angular rotation phase, the evolution
of first moment of impulse is remarkably linear. Now considering the added mass only
components, there is excellent agreement between the theoretical first moment of impulse
and that derived from the measure of the non-circulatory vortex sheet (γncr -PIV). The
magnitude of the discontinuities at the start and end of kinematic motion are relatively
accurately captured by the measured vortex sheet. Furthermore, γncr -PIV deviates little
from theory over the constant angular velocity region. Further agreement between theory
and experiment for the added mass attributable pitching moment is shown in figure 14(b).
As predicted, the measured moment (γncr -PIV) is approximately zero for the entirety of
the motion, except during the acceleration impulses. The scattering of γncr -PIV after each
acceleration impulse decays asymptotically, which suggests that it is caused by damped
torsional vibration of the plate.

6. Lost circulation compensation

In this work, excellent agreement has been demonstrated between measures of the non-
circulatory vortex sheet, impulse and force with potential theory. This would not have
been the case if the circulation measured within the flow field were not conserved (see
section 5.2). The circulatory vortex sheet γc has a net circulation equal and opposite to
that of all the bulk flow vorticity. The methodology for determining γc described in section
2.2.2, is based on the premise that the position and circulation of each bulk flow vortex
element can be measured. Errors arise when a vortex element leaves the measurable field



18 S. J. Corkery, H. Babinsky and W. R. Graham

0 0.5 1 1.5 2
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

theory
full flow field

nc
t

theory
full flow field - PIV

nc
t - PIV

(a)

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

5

theory
nc
t

theory
nc
t - PIV

(b)

Figure 13. Surge case: (a) Impulse compared between potential theory, the experimentally
measured full flow field and the measured non-circulatory bound vortex sheet; (b) Comparison
of the added mass attributed drag force coefficient between theory and the measured
non-circulatory bound vortex sheet. For clarity drag force coefficients are filtered using a
bi-directional moving window average with a window period of 0.15 seconds.
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Figure 14. Rotation case: (a) First moment of impulse compared between potential theory, the
experimentally measured full flow field and the measured non-circulatory bound vortex sheet; (b)
Comparison of the added mass attributed pitching moment between theory and the measured
non-circulatory bound vortex sheet. No filtering is employed.

of view, which causes the circulation of γc to change in error by the circulation ‘lost’.
Fortunately it is possible to partially compensate for this effect. Consider a flow field
comprising of just the plate and a free vortex of circulation Γk, both within an area A
that represents the measurable field of view. The plate must have a circulation of −Γk.
If the total circulation within A (Γin) is found using a closed contour of integration

Γin =

∮
A

u · dl, (6.1)

then Γin will be zero. Now if the free vortex moves outside of A, calculation of Γin will
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return a non-zero result (the circulation of the plate). The net circulation outside of
the observable area A (Γout), must be equal and opposite to that measured within A to
conserve circulation across the whole flow field:

Γout = −Γin (6.2)

= −
∮
A

u · dl (6.3)

The circulation lost outside the measurement window is therefore determinable, however,
its position is unknown†. As described in section 2.2.2, the location of each external
vortex and the mirror vortices within the mapped circle must be known to calculate
the distribution of γc. However, it could be assumed that the vorticity outside the
measurement window is sufficiently far from the plate that it is effectively at infinity.
A single mirror vortex of circulation −Γout would therefore be placed at the circle origin.
This may not be unreasonable if there is a relatively large measurement field of view
either side of the plate. The vortex sheet γcm that arises due to the missing circulation
can be found from equation (2.10) with the condition that the position of the external
vortex ζk →∞ and replacing Γk with Γout. Equation (2.10) becomes,

γcm =
−Γout

π
√

( c2 )2 − x2
. (6.4)

The contribution to the circulatory vortex sheet of vortices that have drifted outside
the measurement window can therefore be approximated. More sophisticated corrections
might also be possible in specific cases, if the location of the lost vorticity is approximately
known.

7. Conclusion

Added mass is an unsteady fluid dynamic effect that has been discussed in the
literature for over a century. Despite being initially characterised for an inviscid fluid,
it is equally applicable for viscous and highly separated flows; a point which has been
theoretically argued, but never experimentally demonstrated. In this paper we propose
a method for isolating vorticity attributed to added mass using PIV. The technique
does not require impractically high resolution PIV data as velocity gradients within
the boundary layer need not be resolved. The method was applied to separate surging
and rotating flat plate wing kinematic cases. Excellent agreement between the PIV-
acquired and potential theory derived added mass attributed vorticity was shown. Fair
agreement was also found between the theoretical and measured impulse and force. The
measurements therefore demonstrate the applicability of the potential flow result for
viscous and highly separated flows. It may be concluded that viscous effects (diffusion
and consequently the advection of vorticity from the surface of a body) results in the
transport of vorticity into the wake. Viscous effects are therefore accounted for by the
‘circulatory’ terms; the measure of free vorticity and the calculated circulatory attached
vortex sheet. The added mass vortex sheets are dependent only on the body geometry
and kinematics, and may be recovered experimentally after accounting for the circulatory
terms.

† The lost circulation could be in the form of a single point vortex outside the observation
window, or arbitrarily distributed.
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While this work in part simply experimentally confirms existing theories, it also
represents a significant advance in our understanding of the capabilities of PIV to
quantify unsteady external flows. In particular, it shows that with careful experimental
design the added mass effect may be intentionally captured; or, equivalently, that
vorticity or circulation attributable to the added mass phenomenon may be a source of
‘contamination’ when determining the circulation of vortices shed into a flow field. For
the calculation of the circulation of a vortex close to the surface of a body using closed
contours of integration, contours that cross, or are interpolated over the boundaries of a
body will include added mass effects regardless of body-containing vector treatment.

With the availability of complete PIV velocity field information of unsteady
aerodynamic experiments, such as that described in this paper, it is suggested that
velocity vectors within a body in the flow field be prescribed a velocity equal to the
rigid body kinematics instead of simple masking. Vorticity subsequently calculated
will include a distribution attributable to the added mass mechanism, albeit spatially
averaged over each wall element. Measures of integral quantities such as impulse and
force derived from the flow field vorticity will incorporate added mass effects. Such
measures have surprisingly little error for reasonable PIV vector resolutions.

Complete velocity field information may, however, not be available. Many PIV data
sets have incomplete or spurious velocities near a body due to shadow effects and surface
reflections. Since added mass is an effect that is quantified by boundary vorticity, the
masking of vectors close to a body will remove its contribution to the impulse and forces
subsequently derived. For incomplete vector fields, this work therefore supports the
correction method developed by Graham et al. (2017) which utilises the potential flow
vortex sheet to augment a separated viscous flow field.
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Appendix A

The potential flow about an ellipse undergoing arbitrary translation and rotation
about the centroid is given in various forms by Milne-Thomson (1986) and Lamb (1895).
In this appendix we start from the complex potential given by Milne-Thomson (1986),
and take the limiting case where the ellipse thickness is zero to obtain flow velocities,
bound vortex sheet distributions as well as net flow field impulse and force for a flat plate.

A.1. General solution

In a manner similar to the derivation for flow about a plate due to an external point
vortex derived in section 2.2.2, conformal mapping will be used to find the flow field
about the plate. Positions in the circle plane are once again ζ = ε + iη, while positions
in the plate plane are z = x+ iy . The transform

z =
c

4
(ζ + 1/ζ) , (A 1)
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maps a circle with unit radius to a flat plate with chord c. The complex potential,
F (ζ) = φ+ iψ is:

F (ζ) = −Aζ−1 −Bζ−2, (A 2)

with

A = iUn
c

2
, B =

Ω

4

( c
2

)2
. (A 3)

The complex velocity about the plate, u − iv, is given by dF/dz. Using the chain rule,
and equations A 1, A 2, gives

u− iv =
Aζ + 2B
c
4ζ(ζ2 − 1)

. (A 4)

A.2. Surface velocity and bound vortex sheet

The surface of the plate corresponds to the circumference of the circle in the circle
plane, defined by

ζ = eiθ. (A 5)

Substituting equations (A 5) and (A 3) into (A 4), gives the velocity on the surface of the
plate as a function of the angle θ, angular velocity Ω and the plate normal velocity Un.
Separating into real and imaginary terms and simplifying yields

dF

dz
=

u︷ ︸︸ ︷
Un

cos θ

sin θ
+Ω

c

4

cos 2θ

sin θ
−i

v︷ ︸︸ ︷(
Un +Ω

c

2
cos θ

)
. (A 6)

Because the plate is orientated on the x axis, the vertical component v is equal to the
plate velocity while the horizontal component u is equal to the instantaneous surface
‘slip’ velocity. The vortex sheet, defined in section 2.2, is equal to the difference in the
horizontal velocity component either side of the plate

γnc(θ) = −2Un
cos θ

sin θ︸ ︷︷ ︸
translation

−Ω c
2

cos 2θ

sin θ︸ ︷︷ ︸
rotation

. (A 7)

This expression is valid for the range 0 6 θ 6 π. The sin θ terms in the denominators of
both the translation and rotation components indicate that the magnitude of the vortex
sheet is infinite at the plate edges.

To relate the polar-coordinates back to cartesian we use the mapping relation given
by equation (A 1). Substituting ζ = eiθ gives

z = x =
c

2
cos θ. (A 8)

The vortex sheet strength may be written in terms of the cartesian coordinate x,

γnc(x) = −2Un
x√

(c/2)2 − x2︸ ︷︷ ︸
translation

−Ω 2x2 − (c/2)2√
(c/2)2 − x2︸ ︷︷ ︸
rotation

. (A 9)
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A.3. Linear impulse and force

From the bound vortex sheet the flow field impulse (or ‘first moment of vorticity’)
and force may be found using the relations given by Wu (1981). For a continuous two-
dimensional vorticity distribution the relations are

Ix =

∫
A

yωdA, Iy = −
∫
A

xωdA. (A 10)

For a vortex sheet the impulse components become line integrals

Ix =

∫
yγ(x, y)dl, Iy = −

∫
xγ(x, y)dl, (A 11)

where l represents the distance along the sheet. Here, the sheet is restricted to the x axis,
dl = dx and Ix = 0. The integral for Iy can be evaluated by expressing the integral in
polar form. The result is

Iy = π
c2

4
Un. (A 12)

From equation (A 12) it can be seen that the flow field impulse is independent of the
angular velocity of the plate and is proportional to its normal velocity Un. The force on
the plate is

Fy = −ρdIy
dt

= −ρπ c
2

4

dUn
dt

. (A 13)

A.4. First moment of impulse and mid-chord moment

In a similar manner the pitching moment about the mid-chord of the plate can be
found. From Wu (1981), the second moment of vorticity, β, for a continuous vorticity
field in two-dimensions is

βz =

∫
A

(
x2 + y2

)
ωdA. (A 14)

Writing this as a line integral and substituting the polar forms of the integrand compo-
nents, we obtain

βz = −π
4

( c
2

)4
Ω. (A 15)

This is related to the first moment of impulse (Jz) by

Jz = −1

2
βz, (A 16)

and the moment acting on the wing is given by

M = −ρdJz
dt

= −ρπ
8

( c
2

)4 dΩ
dt
. (A 17)
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Appendix B

B.1. Vortex sheet discretisation error

PIV data is a discretised representation of a continuous flow field. Consequently, the
discretisation can be a source of error when it comes to extracting distributions of bound
vorticity, impulse and force quantities. Here this error is quantified by generating an
artificial flow field, from which the non-circulatory bound vortex sheet γnc is ‘measured’
using the methodology described in sections 2 and 3. Separate flow fields were generated
for both the translation and rotation motions using the potential flow solution given
in appendix A. Velocity vectors were calculated at points given by a high resolution
structured grid with approximately 600 vectors per chord (c/∆l, where ∆l is the distance
between adjacent vector elements). Secondary variable resolution vector grids were used
to represent PIV data points. These had vector resolutions of c/∆l = 25, 50 and 100
vectors per chord. For each secondary grid point the velocity was found by averaging the
velocities at the high resolution grid points over an area of 2∆l×2∆l, thereby replicating
the spatial averaging which arises during the calculation of PIV vectors using a cross
correlation of particle images†. For the calculation of bound circulation the plate was
divided into 50 integration contours, with a height of 0.25 chord lengths to match the
experimental processing configuration.

The flow field for the grid resolution of 25 vectors per chord is shown in figure 15(a).
The red boxes are the first and last integration contours used for the calculation of
bound circulation, the shaded background indicates vorticity calculated using the low
resolution vector field with the method described in section 5.1, and the contours show
the potential flow stream-function. The averaging process spreads vorticity past the
left and right boundaries of the integration contours; thus some of the vorticity will be
falsely allocated as ‘free’ in the flow field. Measurements of the non circulatory bound
vortex sheet, γncr , for each grid resolution are given in figure 15(b). Each measure of
the bound vortex sheet approximately follows the theoretical value, albeit the lower
resolutions show significant deviation from theory at the plate edges where there are
large gradients in vorticity.

The first moment of impulse, Jz, was calculated in three ways. One method uses all
vorticity in the flow field, as determined from the secondary vector field. In discretised
form, the second moment of vorticity given by equation (A 14) is

βz =

n∑
k=1

(x2k + y2k)ωk(∆l)2, (B 1)

where the subscript k is the index for each vortex element in the discretised flow field.
With equation (A 16), Jz can therefore be found from the measured vorticity elements.
This is the line identified by blue square markers shown in figure 15(c), scaled by
the theoretical potential flow value given by equation (A 16). Despite the significant
smoothing of vorticity around the plate surface, the resolution of the secondary grid has
negligible effect on the first moment of impulse. Given reasonable vector resolution, the
result suggests that, if vector elements contained by an arbitrary body are prescribed
velocities equal to the rigid body kinematics, subsequent calculation of vorticity from
the velocity field will result in surface vortex sheets being represented in a spatially

† The PIV data was processed with a 50% interrogation window overlap, therefore the cross
correlation area is four times that with no overlap.
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Figure 15. Quantification of discretisation errors using an artificially generated flow field for the
rotating plate case: (a) Artificial flow field for c/∆l = 25. Shaded areas show the vorticity field,
contours show the potential flow stream-function while the rectangles at each plate edge show the
first and last contours for the calculation of bound circulation; (b) the measured non-circulatory
vortex sheet compared with potential theory; (c) Ratio of the measured to theoretical first
moment of impulse. In the case of (c); blue squares - first moment of impulse calculated from
vorticity in the full flow field. Black triangles - non-circulatory vortex sheet as directly measured.
Red crosses - analytical function fit to the measured non-circulatory vortex sheet.

averaged form in the discretised vector field. Impulse and force quantities derived from
such a discretised flow field will therefore include added mass effects.

The problem with directly calculating impulse (and moments thereof) from flow
field vorticity is that the added mass contribution is superimposed with other vorticity
sources. To isolate the added mass component, impulse is calculated from the measure
of γnc acquired from the procedure outlined in section 2.3. For the rotation case, this is
given by the line identified by black triangles in figure 15(c). The significant error may
in part be attributed to relatively high measurement error at the plate edges.

For the purpose of extracting the portion of impulse (and moments thereof) attributed
to the non-circulatory vortex sheet, it is proposed that some of the discretisation error
may be corrected by fitting the analytical non-circulatory vortex sheet function given
by equation (2.4) to the measurements. For each kinematic case, rotation or translation,
the analytical function is a geometrical ‘mode shape’ that is scaled by the instantaneous
velocity. Provided the measures of the non-circulatory vortex sheet follow the geometric
shape (this was demonstrated in section 5.3), a measure of the plate kinematics Un
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Figure 16. Ratio of measured to theoretical impulse for the translation case. Blue square
markers - impulse derived from elemental vorticity over the entire flow field. Black triangles -
the non-circulatory vortex sheet as directly measured. Red crosses - analytical function fit to
the measured non-circulatory vortex sheet.

or Ω may be obtained by using a least squares fit or similar. Then impulse and force
may be directly calculated from the analytical solutions given in appendix A. This is
the line identified by red-cross markers in figure 15(c). For the lowest vector resolution
case the error is halved to 20%, whereas it is within ±5% for c/∆l = 50 and 100.
Each of the impulse measures for the translation case are given in figure 16. Once again
errors are negligible when impulse is calculated using all elemental vorticity. The error
is approximately half that of the rotation case for impulse calculated from the measured
non-circulatory vortex sheet, and is comparable to the rotation case for the fitted vortex
sheet.

B.2. PIV vector element error

The measurement error for each PIV vector point was estimated based on the work
of Raffel et al. (2007) and Nobach & Bodenschatz (2009), who quantified error sources
through simulations with synthetically generated particles. The error (in pixels) for each
cross correlated interrogation window may be expressed as,∑

εPIV = εbias + εrms0 + εrmsδ + εrmsρ + εrmsi . (B 2)

The root mean square (rms) error εrms0 is due to random variation in particle image
diameter, εrmsδ is attributed to image displacement, εrmsρ results from particle density in
each interrogation window and εrmsi from variation in particle intensity due to particle
motion in the direction perpendicular to the laser plane. The consistent bias error εbias
is attributed to in plane loss of particle pairs. An estimate for each parameter is given in
table 3. The peak particle displacement for the surge and rotation cases is approximately
4 and 6 pixels respectively. With a total random error of 0.145 pixel, for each case the
random error for an individual test run is 3.6% and 2.4%. Following batch averaging,
the sum of random errors reduce to 1.6% and 1.1% as random error scales with 1/

√
N ,

where N is the number of samples (Adrian & Westerweel 2011). The bias errors are
0.25% and 0.16% for the surge and rotation cases respectively. The total error in velocity
is estimated to be less than 2% for both the rotation and surge test cases.
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εbias εrms0 εrmsδ εrmsρ εrmsi

-0.01 0.01 0.01 0.025 0.10

Table 3. Contributions to PIV data error (pixels). Estimated from Raffel et al. (2007) and
Nobach & Bodenschatz (2009).

REFERENCES

Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry . Cambridge University
Press.

Benjamin, T. B. 1986 Note on added mass and drift. Journal of Fluid Mechanics 169, 251–256.
Brennen, C. E. 1982 A review of added mass and fluid inertial forces. Tech. Rep. CR 82.010.

Naval Civil Engineering Laboratory.
Buchner, A. J., Buchmann, N., Kilany, K., Atkinson, C. & Soria, J. 2012 Stereoscopic

and tomographic PIV of a pitching plate. Experiments in Fluids 52 (2), 299–314.
Corkery, S. J., Babinsky, H. & Harvey, J. K. 2018 On the development and early

observations from a towing tank-based transverse winggust encounter test rig. Experiments
in Fluids 59 (9), 135.

Darwin, C. 1953 Note on hydrodynamics. Mathematical Proceedings of the Cambridge
Philosophical Society 49 (2), 342–354.

Eldredge, J. D. 2010 A reconciliation of viscous and inviscid approaches to computing
locomotion of deforming bodies. Experimental Mechanics 50 (9), 1349–1353.

Graham, W. R., Pitt Ford, C. W. & Babinsky, H. 2017 An impulse-based approach to
estimating forces in unsteady flow. Journal of Fluid Mechanics 815, 60–76.

Lamb, H. 1895 Hydrodynamics. Cambridge University press.
Leonard, A. & Roshko, A. 2001 Aspects of flow-induced vibration. Journal of Fluids and

Structures 15 (3-4), 415–425.
Milne-Thomson, L. M. 1986 Theoretical Hydrodynamics, 5th edn. Macmillan.
Nobach, H. & Bodenschatz, E. 2009 Limitations of accuracy in PIV due to individual

variations of particle image intensities. Experiments in Fluids 47 (1), 27–38.
Pitt Ford, C. W. & Babinsky, H. 2013 Lift and the leading-edge vortex. Journal of Fluid

Mechanics 720, 280–313.
Poelma, C., Dickson, W. B. & Dickinson, M. H. 2006 Time-resolved reconstruction of

the full velocity field around a dynamically-scaled flapping wing. Experiments in Fluids
41 (2), 213–225.

Polet, D. T., Rival, D. E. & Weymouth, G. D. 2015 Unsteady dynamics of rapid perching
manoeuvres. Journal of Fluid Mechanics 767, 323–341.

Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Particle Image
Velocimetry: A Practical Guide, 2nd Edition. Springer.

Rival, D. E., Prangemeier, T. & Tropea, C. 2009 The influence of airfoil kinematics on
the formation of leading-edge vortices in bio-inspired flight. Experiments in Fluids 46 (5),
823–833.

Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Stevens, P. R. R. J. & Babinsky, H. 2017 Experiments to investigate lift production

mechanisms on pitching flat plates. Experiments in Fluids 58 (1).
Wu, J. C. 1981 Theory for Aerodynamic Force and Moment in Viscous Flows. AIAA Journal

19 (4), 432–441.


