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Abstract

Neoadjuvant chemotherapy has become standard practice in patients with high-risk early
breast cancer as it improves rates of breast conservation surgery and enables prediction of
recurrence and survival by using response to treatment as a surrogate. Previous studies have
focused on generating molecular datasets to develop prediction models of response, though
little is known on how tumours and their microenvironments are modulated by neoadjuvant
chemotherapy.

The thesis aims at molecularly characterising tumour changes during neoadjuvant chemother-
apy in a cohort of 168 patients. Serial tumour samples at diagnosis, and, when available,
midway through chemotherapy and on completion of treatment were profiled by shallow
whole genome sequencing, deep exome sequencing and transcriptome sequencing, resulting
in the generation of an unprecedented genomics dataset with tumours in situ while patients
received chemotherapy.

Molecular predictors of response to chemotherapy were inferred from the diagnostic biopsy.
Several novel observations were made, including previously undescribed associations be-
tween copy number alterations, mutational genotypes, neoantigen load, HLA genotypes and
intra-tumoural heterogeneity with chemosensitivity. Possible mechanisms of chemoresis-
tance included LOH at the MHC Class I locus, decreased expression of MHC Class I and II
genes and drug influx molecules, as well as increased expression of drug efflux pumps. A
complex relationship between proliferation, tumour microenvironment composition (TME)
and response to treatment was explored by deconvoluting bulk RNAseq data and performing
digital pathology orthogonal validation.

Clonal and microenvironment dynamic changes induced by/associated with chemotherapy
were then modelled. Two types of genomic responses were identified, one in which the
clonal composition was stable throughout treatment and another where clonal emergence
and/or extinction was evident. Validation by multi-region deep sequencing confirmed the
dynamics of the clonal landscape. Clonal emergence was shown to be associated with higher
proliferation and decreased immune infiltrate, with an increase in genomic instability and
homologous recombination deficiency during treatment. The immune TME composition
and activity mirrored response to treatment, with cytolytic activity and innate and adaptive
immune infiltrates linearly correlating with the degree of residual disease remaining after
chemotherapy.
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Finally, the circulating tumour DNA (ctDNA) genomic landscape was explored by using
shallow whole genome sequencing and targeted sequencing of plasma DNA. Tumour muta-
tions detected on exome sequencing were also detected in ctDNA in plasma, supporting the
use of liquid biopsies as a biomarker for monitoring response to therapy and detection of
minimal residual disease.
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2 Introduction

1.1 The dawn of adjuvant chemotherapy

Give up all hope oh ye who enter. Such was inscribed on the entrance to Paul Ehrlich’s labora-
tory, an eminent German chemist who is regarded by many to be the father of chemotherapy.
Choosing an inscription found at the entrance to Hell in Dante Alighieri’s Divina Comme-
dia ("Lasciate ogni speranza, voi ch’intrate") [13] to bear greeting to all who entered his
laboratory gives us a profound insight into the pessimism that prevailed in the 1900s: early
chemotherapeutic agents showed little promise in the treatment of cancer.

While the search for effective and safe chemotherapeutic options continued, surgery remained
the mainstay of breast cancer treatment. This was partly driven by the eminent American
surgeon William Halsted, who strongly advocated radical mutilating surgery in order to
increase chances of cure. Indeed, Halsted’s radical mastectomy involved extensive incisions
and tissue ablation to remove the affected breast, the underlying pectoral muscles and all
draining lymph nodes [112]. The popularity of this operation resulted in over 90% of
patients with breast cancer in the United States undergoing this operation until the 1970s and
subsequently suffering from debilitating co-morbidities including profound lymphoedema of
the arm and severe paraesthesia [212]. It was only in 1971 that Bernard Fisher revealed the
unnecessity of such radical surgery by publishing a trial comparing the survival following
the Halsted mastectomy to a more conservative modified radical mastectomy [80].

Despite improvements in surgical techniques and radiotherapy regimens, it rapidly became
apparent that cure rates were limited by micro-metastatic disease and that cytotoxic agents
would be necessary to eradicate distant deposits. In 1976, the combination of cyclophos-
phamide, methotrexate and 5-fluorouracil (CMF) given over 12 two-weekly cycles, was the
first chemotherapy regimen to show a statistically significant reduction in recurrence rates
after radical mastectomy, leading to the birth of the adjuvant post-surgical setting [35]. The
motivation to develop a treatment given over a shorter period that was less emetogenic led to
the investigation of a regimen consisting of doxorubicin and cyclophosphamide (AC), given
over two months. The results of this trial were published in 1990, and showed an identical
outcome for AC and CMF chemotherapy, with significantly less nausea and a shorter duration
of treatment [81].

In the next few years, various permutations of these two keystone regimens were developed
in order to improve efficacy. The most notable change involved substituting methotrexate in
the CMF regimen with an anthracycline (doxorubicin/epirubicin), giving rise to FAC [187]
and FEC [89]. Both of these regimens showed a superior disease-free survival however this
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came at a cost of increased clinical toxicity. In another study, four cycles of epirubicin were
given prior to four cycles of CMF (rather than replacing methotrexate, as had been done
previously). Patients treated with E!CMF had a significantly higher relapse-free and overall
survival (OS) compared to the CMF group, once again at the cost of a higher incidence of
adverse events [227].

The discovery of taxanes in the 1970s, together with their introduction in metastatic and
early-stage breast cancer regimens, proved to be an important advance. In the United States,
AC!T was shown to be more effective than the standard AC protocol, with modest additional
toxicities [120, 184]. Meanwhile, in Europe, taxanes were added sequentially to the already
established FEC regimen: FEC!T showed a 5% additional increase in five-year disease-free
survival (DFS) [238] and is now the mainstay of treatment in node-positive breast cancer in
the UK [210].

Patients with tumours exhibiting amplification of the ERBB2 gene (described as HER2+

tumours) often had a much poorer prognosis, with significantly shorter overall survival
and time to relapse despite adjuvant therapies [267]. The development of trastuzumab, a
monoclonal antibody targeting the extracellular domain of the HER2 protein, revolutionised
the way HER2+ tumours were treated, with impressive results seen in the metastatic setting,
including longer time to disease progression (7.4 vs. 4.6 months), higher rate of objective
response (50% vs. 32%), longer duration of response (9.1 vs. 6.1 months) and longer overall
survival (25.1 vs. 20.3 months) [268]. Adjuvant trials were rapidly designed to determine
whether such a benefit would also be seen in the adjuvant setting. In 2000, within the space
of a few months, two very similar trials were launched: the National Surgical Adjuvant
Breast and Bowel Project (NSABP) B-31 trial and North Central Cancer Treatment Group
(NCCTG) N9831 trial, both of which assessed the improvement in survival gained by adding
trastuzumab to adjuvant AC!T. A combined analysis of both of these trials [239] showed
a great benefit in adding trastuzumab to chemotherapy regimens in HER2+ disease, with
an absolute difference in DFS of 12% in the trastuzumab group and a corresponding 33%
decrease in the risk of death.

As the early clinical studies had shown that both trastuzumab and anthracyclines were
cardiotoxic, the efficacy and safety of non-anthracycline regimens with trastuzumab was
evaluated in the Breast Cancer International Research Group (BCIRG) 006 clinical trial
[266], where 3,222 women with HER2+ early-stage breast cancer were randomised to receive
either AC!T, AC!T+trastuzumab or docetaxel, carboplatin and trastuzumab (TCH). The
addition of one year of adjuvant trastuzumab confirmed the significantly improved DFS and
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OS observed in the previous trials, though no difference in DFS or OS was detected between
the two trastuzumab regimens, indicating equal efficiency. The non-anthracycline regimen,
however, had a lower incidence of adverse events, with significantly lower rates of congestive
heart failure and cardiac dysfunction.

Clearly, treatment with trastuzumab conferred an unprecedented survival benefit. However,
until the late 2000s, the optimum duration of therapy was still a subject of great debate. The
HERA (BIG 1-01) trial [269] sought to answer this by assigning 5,102 women to receive
either adjuvant trastuzumab for 1 year, trastuzumab for 2 years or no anti-HER2 therapy
at all. After a median follow-up of 11 years, the addition of trastuzumab was shown to
significantly increase DFS and reduce the risk of death (hazard ratio: 0.74). There was no
difference between the two-year and one-year arms of the study [45], and subsequently, one
year of adjuvant trastuzumab became standard of care [209]. Clinical trials, including the
Persephone trial [124], have now been set up to determine whether adjuvant exposure to
trastuzumab can be reduced to six months, rather than a year.

In the post-trastuzumab era various efforts were made to create compounds that synergistically
blocked the HER2 pathway. Pertuzumab, a recently introduced anti-HER2 agent which
inhibits HER2 heterodimerisation with other HER receptors was shown to improve survival
in the metastatic setting when administered with trastuzumab and chemotherapy [275].
The APHINITY trial [302] sought to determine whether adjuvant pertuzumab could also
improve DFS, and randomised 4,805 patients to receiving trastuzumab and chemotherapy
with or without pertuzumab. The addition of pertuzumab minimally improved the DFS rates
among patients with HER2+ tumours, with three-year rates of invasive DFS of 94.1% in the
pertuzumab group and 93.2% in the non-pertuzumab cohort.
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1.2 Downstaging with neoadjuvant chemotherapy

Following the successes described in the adjuvant post-surgical setting, efforts were under-
taken in the 1980s to determine whether radiotherapy and chemotherapy could be adminis-
tered to downstage locally advanced breast cancer, thereby rendering inoperable tumours
operable. In one of the first published studies [244], 24 patients were assigned to receiving
one of two chemo-radiotherapy regimens, with high objective regression rates (83% and
92%) but high subsequent relapse rates (50% and 58%). Both chemotherapy and radiotherapy
allowed the downstaging of these previously inoperable tumours and were shown to provide
excellent local control [129, 130, 188]. Previously inoperable tumours were now becoming
operable: this was seen as a great triumph in the field.

These successes prompted the usage of pre-surgical (or neoadjuvant) chemotherapy regimens
in the earlier breast cancer setting. Rather than limiting its use to patients with inoperable
tumours, physicians sought to determine whether neoadjuvant chemotherapy could be used
to downstage larger operable tumours. Perhaps, by administering pre-surgical chemotherapy
to patients with larger tumours, less radical surgery might be required. Agents and regimens
that had been explored in the adjuvant setting were rapidly investigated in the neoadjuvant
setting, including CMF [232], VTMF [143], FAC [253, 254], AVCFM [27] and high dose
FEC [54]. The results seen in the inoperable setting were reproduced in patients with larger
operable tumours: neoadjuvant chemotherapy downstaged tumours and allowed for higher
rates of breast conservation surgery.

However, neoadjuvant chemotherapy remained an experimental form of therapy until the
mid-1990s [36]. The fact that neoadjuvant therapies caused a decrease in tumour bulk
and allowed more breast-conserving surgery was incontrovertible, however there was no
solid evidence to support the claim that primary chemotherapy was not inferior to adjuvant
chemotherapy.

The publication of the NSABP-18 trial in 1998 [82] paved the way to increased usage of
neoadjuvant therapies. In this trial, 1,523 women were assigned to preoperative or postoper-
ative AC therapy, and clinical tumour response graded as complete, partial or no response.
No difference was observed in DFS and OS between the adjuvant and neoadjuvant cohorts,
however breast conservation surgery was more frequently performed in the neoadjuvant
group. The trial also reported similar rates of ipsilateral breast tumour recurrence (7.9% in
neoadjuvant cohort and 5.8% in adjuvant cohort) and showed that response to chemotherapy
could be used as a surrogate for overall outcome: women who attained pathological complete
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response (pCR), that is, absence of any residual tumour cells, had relapse-free survival
rates of 85.7%, compared to those with a partial clinical response (68.1%) and no response
(63.9%). For all intents and purposes, the neoadjuvant setting provided many benefits, with
no evidence of decreased efficacy compared to the adjuvant regimens.

Following the publication of this milestone trial, the European EORTC 10902 trial [295]
randomised 698 breast cancer patients to receive FEC either before or after surgery. After 56
months of follow-up there was no statistically significant difference in OS, progression-free
survival (PFS) and time to loco-regional recurrence. Once again, neoadjuvant chemotherapy
was shown to significantly increase the rate of breast conservation surgery. The publication
of these landmark trials resulted in widespread acceptance of the benefits that neoadjuvant
therapies conferred, and became standard of care for downstaging inoperable tumours in
order to increase rates of breast-conserving surgery [210].

Neoadjuvant regimens combining both taxanes and anthracyclines rapidly became standard
of care following the publication of the NSABP B-27 clinical trial, which randomised 2,411
patients to receive either neoadjuvant AC, neoadjuvant AC!T, or four cycles of neoadjuvant
AC and four cycles of adjuvant docetaxel [23, 24]. The results from this trial showed that the
addition of a taxane greatly increased both clinical complete response rate (63.6% AC!T vs.
40.1% AC) and pCR rate (26.1% AC!T vs. 13.7% AC). Hence, combination chemotherapy
with both a taxane and anthracycline conferred a synergistic benefit.

While the standard of care rapidly became treatment with anthracyclines and taxanes, the
optimum sequencing of these therapies was unknown. In the Neo-tAnGo trial [73], 831
women were assigned to receive either epirubicin and cyclophosphamide then paclitaxel
(with or without gemcitabine) or paclitaxel (with or without gemcitabine) then epirubicin
and cyclophosphamide. Treatment with a taxane prior to an anthracycline was shown to
be superior to the reversed regimen, with more patients attaining pCR if a taxane was
administered first (20% vs. 15%). A subsequent meta-analysis confirmed this observation
[32]. Hence not only did the agents that were delivered mattered but so did the sequence in
which they were administered.

It is worth noting that, as the response to chemotherapy was often dramatic with no residual
tumour detectable macroscopically, localisation at the time of surgery or during imaging was
frequently difficult or even impossible. Fiduciary radio-opaque markers were developed for
insertion into a tumour prior to commencing chemotherapy, making localisation at the time
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of surgery much easier, especially if pCR had occurred with no evidence of any residual
disease [21, 62, 109]. This has now become standard practice.

As the benefits of neoadjuvant chemotherapy were being explored in clinical trials, it rapidly
became apparent that the degree of response to chemotherapy differed across breast tumours.
Various meta-analyses concluded that tumours that showed high expression of the oestrogen
receptor (ER+) had very low pCR rates whilst those with low or no expression (ER�) were
12 times more likely to attain pCR [57, 58]. Classification using the intrinsic subtypes [221]
showed that basal-like and HER2+ subgroups were associated with the highest rates of pCR
(45% in both), whilst luminal tumours had a pCR rate of only 6% [243]. Additionally, a meta-
analysis of 9,020 breast cancer patients from nine German neoadjuvant trials showed that
patients with invasive lobular carcinoma had significantly lower rates of pCR (6.2% vs. 17.4%
in all other histologies) with higher mastectomy rates [177]. Markers of high proliferation,
including high histological grade, lymph node positive disease and lymphovascular invasion,
were also associated with increased rates of pCR [84, 91, 136, 172, 243]. Younger age, as
well as lower body mass index, were correlated with higher probabilities of attaining pCR
[85].

Treatment optimisation for triple negative tumours

As discussed above, patients with triple negative breast cancer (TNBC, defined as having low
or no expression of oestrogen and progesterone receptors (ER�, PR�), and lack of HER2
amplification (HER2�)) have consistently showed higher rates of pCR following neoadjuvant
treatment with anthracyclines, cyclophosphamide and taxanes, compared to patients with
ER+ tumours. As shown by the GeparTrio study that recruited 2,072 patients to evaluate
treatment with six to eight cycles of TAC or two cycles of TAC followed by four cycles of
vinorelbine and capecitabine, the highest pCR rate (57%) was observed in patients below the
age of 40 with TNBC or grade 3 tumours [136].

Following the observation from preclinical data that triple negative tumours were increas-
ingly sensitive to interstrand cross-linking agents such as platinum salts due to deficiencies
in BRCA-associated DNA repair mechanisms, the GeparSixto (GBG 66) trial [303] was
designed to assess whether the addition of neoadjuvant carboplatin to a regimen containing an
anthracycline, a taxane, and targeted therapy improved rates of complete response in patients
with TNBC and HER2+ tumours. 588 patients were recruited to the study and the addition of
carboplatin was shown to improve pCR rates in the TNBC cohort (53.2% vs. 36.9% without
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carboplatin), but not in the HER2+ group (32.8% vs. 36.8% without carboplatin). Long-term
follow-up in the GeparSixto study also showed an increased event-free survival in TNBC
patients treated with carboplatin [111].

The Alliance (CALGB 40603) trial [263] further confirmed the GeparSixto findings. 443
patients with TNBC were randomised to receive paclitaxel and dose dense AC with or without
concurrent carboplatin, and the addition of carboplatin was shown to increase the rates of
pCR in the breast and axilla (54% vs. 41% without carboplatin), but was associated with
increased grade 3 and 4 adverse events, such as neutropenia and thrombocytopenia.

I-SPY 2 [245] assessed the benefit of adding carboplatin and the PARP inhibitor veliparib to
standard of care chemotherapy (T!AC). The estimated rates of pCR in the TNBC cohort
were 51% in the veliparib-carboplatin group and 26% in the control group, though significant
additional toxicities were observed in the PARP/platinum group, confirming the toxicity
findings observed in the GeparSixto and Alliance trials. However, it was uncertain whether
the benefit observed was specifically from the PARP inhibitor or the platinum agent, and
therefore the BrighTNess trial [176] was subsequently designed to further investigate this.
634 patients were randomly assigned to one of three groups: paclitaxel+carboplatin+veliparib,
paclitaxel+carboplatin or paclitaxel only. Patients receiving paclitaxel and carboplatin had the
highest pCR rate (58%), with patients receiving paclitaxel, carboplatin, and veliparib having
a pCR rate of 53%, and those receiving paclitaxel alone having a pCR rate of 31%. Hence
there was no superior benefit gained by the addition of veliparib to platinum-based therapies.
Further trials, such as Partner, are now investigating whether other PARP inhibitors are more
effective in this setting.

Treatment optimisation for HER2+ tumours

As was repeatedly shown in the metastatic and adjuvant settings, trastuzumab revolutionised
the prognosis of patients with HER2+ tumours. In order to assess the efficacy of trastuzumab
in the neoadjuvant setting, the NOAH trial [99] recruited 235 patients with HER2+ breast can-
cer and randomised them to receive neoadjuvant doxorubicin, paclitaxel, cyclophosphamide,
methotrexate, and fluorouracil with or without trastuzumab. The addition of trastuzumab was
shown to significantly improve three-year event-free survival (71% in the trastuzumab group
vs. 56% in the non-trastuzumab group). 38% of patients receiving trastuzumab attained pCR,
compared to 19% without trastuzumab, with a similar degree of adverse events. The addition
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of trastuzumab to neoadjuvant regimens rapidly became standard of care for HER2+ disease
[210].

Following the approval of pertuzumab in the metastatic setting [275], the NeoSphere trial
[100, 101] randomised 417 HER2+ patients between 2007-2009 to receive either trastuzumab
+ docetaxel (group A), pertuzumab + trastuzumab + docetaxel (group B), pertuzumab +
trastuzumab (group C) or pertuzumab + docetaxel (group D). Patients in group B had a
significantly improved pCR rate (45.8%), compared to those in group A (29.0%), group C
(16.8%) and group D (24.0%), showing that the addition of pertuzumab to these neoadjuvant
regimens did increase pCR rate considerably. Five-year follow-up data showed that patients
allocated to group B had the highest five-year PFS (86%) and DFS (84%), whilst those in
group A had a PFS of 81% and a DFS of 81%. Similar findings were reported a year later
by the TRYPHAENA trial [252]: a high proportion of patients attained pCR (57.3–66.2%)
when pertuzumab and trastuzumab were added to neoadjuvant chemotherapy. The impressive
performance of combined pertuzumab and trastuzumab regimens rapidly led to their adoption
by NICE in 2016.

Since the inclusion of anti-HER2 agents within neoadjuvant regimens showed a dramatic im-
provement in pCR rates, various groups hypothesised that the main benefit was derived from
the targeted therapy, rather than the cytotoxic backbone. The phase III KRISTINE trial [137]
sought to determine whether neoadjuvant chemotherapy could be replaced by neoadjuvant
targeted therapy only. 444 women with HER2+ cancer were randomised to receive either
neoadjuvant docetaxel, carboplatin, trastuzumab and pertuzumab or trastuzumab emtansine
and pertuzumab. A higher rate of pCR was seen in the docetaxel, carboplatin, trastuzumab
and pertuzumab group (56%) compared to the trastuzumab emtansine plus pertuzumab group
(44%), suggesting that cytotoxic chemotherapy should continue to play a key role in the
treatment of HER2+ disease.

Long-term follow-up

Clearly the neoadjuvant setting offers many advantages. Neoadjuvant chemotherapy can (1)
render inoperable tumours operable, (2) allow conservative surgery through down-staging of
the disease [163, 183], (3) improve overall survival by eradicating micrometastatic disease
and (4) allow the in vivo assessment of tumour response to chemotherapy allowing speculation
of prognosis.
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Many trials showed very few or no drawbacks to neoadjuvant therapies when compared
to adjuvant therapies, though these conclusions were made in the absence of mature long-
term follow-up data. A very recent landmark meta-analysis released by the Early Breast
Cancer Trialists’ Collaborative Group (EBCTCG) [74] combined clinical trial data from
4,756 women with breast cancer recruited to ten randomised trials between 1983 to 2002,
with a median follow-up of 9 years, and compared neoadjuvant chemotherapy regimens with
identical regimens administered after surgery. It is worth noting, however, that none of the
recruited patients received anti-HER2 therapies.

28% of the patients analysed within the EBCTCG study had a complete response, 41%
had a partial response, whilst 31% had stable or progressive disease. Using neoadjuvant
treatment increased rates of breast conservation surgery (65% in the neoadjuvant group vs.
49% in the adjuvant chemotherapy group), and treatment with combined anthracyclines
and taxanes was also associated with greater probability of less radical surgery, compared
to other chemotherapy regimens. There was no statistically significant difference between
neoadjuvant and adjuvant treatment in 15-year distant recurrence (38.2% vs. 38.0%), breast
cancer death (34.4% vs. 33.7%) or death from any cause (40.9% vs. 41.2%), showing that
neoadjuvant chemotherapy was not inferior to adjuvant treatment.

Notwithstanding these benefits, neoadjuvant chemotherapy was associated with a moderately
greater incidence of local recurrence when compared to similar sized tumours treated with
adjuvant treatment, which persisted for at least 10 years. The authors observed that this was
due to an increased use of breast-conserving therapy in women who would have otherwise
had mastectomy in the absence of a good response, and suggested that difficult tumour
localisation, with lack of clearly palpable margins, as well as heterogeneous response
increased the technical difficulty of surgery, making complete tumour removal challenging.
Reassuringly, the authors noted that the increase in local recurrence was not associated with
an increase in distant recurrence or breast cancer mortality.
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1.3 Assessment of response to neoadjuvant therapies

Response to neoadjuvant chemotherapy following its introduction was often assessed clini-
cally or by serial ultrasound assessments, with most trials classifying pathological response
as a dichotomous metric, that is, complete histological response or remaining residual in-
vasive carcinoma, with no quantification of the degree of residual disease (RD) remaining
[24, 37, 54, 82, 126, 153]. The different histological appearances of response have been well
described, with two general morphologies: concentric shrinkage of the tumour mass or scat-
tered foci over an ill-defined tumour bed [40, 246]. Despite these very obvious post-therapy
appearances, early classifications were agnostic to the degree of remaining RD.

Various efforts were made to develop new classification systems of histological RD and
these were often based on the cellularity of a tumour at the time of biopsy. The Miller and
Payne system [217], for example, graded tumours into 5 categories, with Grade 1 tumours
showing no alteration in overall cellularity, and Grade 5 tumours defined as pCR, however
this classification did not take into account the primary tumour bulk. Sataloff and colleagues
[249] developed a histological classification with four response categories: total/near total
therapeutic effect, greater than 50% therapeutic effect, less than 50% therapeutic effect and
little or no effect. In the Honkoop classification [127], two categories of response were de-
scribed, minimal residual disease and gross residual disease. The Kuerer classification [160]
described three categories of response based on volume: pCR, less than 1 cm3 of residual
tumour macroscopically and more than 1 cm3 of residual tumour. These classifications were
alternative methods of trying to model response as a continuum, rather than a dichotomous
variable, but were never formally universally adopted, with most centres preferring to use the
simplistic classification adopted by the NSABP B-18 trial described previously [82].

The Residual Cancer Burden (RCB) score was published in 2007 [279] and harmonised the
way the degree of residual cancer post-therapy was categorised. This classification brought
together approaches used by other efforts, such as tumour area and cellularity, and added in
other previously unappreciated variables such as the total lymph node disease burden.

The numeric RCB score was defined as the sum of primary tumour bed variables as well as
lymph node variables, as shown in equation 1.1:

RCB = 1.4(dprim ⇥ finv)
0.17 + [4(dmet ⇥ (1�0.75LN)]0.17 (1.1)
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where dprim (area of the tumour bed) and finv (overall cancer cellularity as a percentage of
area) were tumour variables and dmet (diameter of the largest lymph node metastasis) and
LN (number of axillary lymph nodes containing carcinoma) were lymph node variables.

The tumour bed area (dprim) was defined as the geometric mean of the largest bidimensional
measurements of the residual primary tumour bed (Equation 1.2):

dprim =
p

d1 ⇥d2 (1.2)

Whilst the percentage area with invasive cancer ( finv) was defined as shown in Equation 1.3:

finv =

✓
1� % In situ cancer

100

◆
⇥
✓

% Tumour cellularity
100

◆
(1.3)

The numeric RCB score ranged from 0 (pCR) with no upper bounds. Cut-off points were
selected by maximizing the profile log-likelihood of a multivariate Cox model [279]. Tumours
with a score less than 1.36 (but higher than 0) were classified as having RCB-I (minimal)
RD, tumours with scores between 1.36 and 3.28 were classified as having RCB-II (moderate)
RD and tumours with scores above 3.28 were classified as RCB-III (extensive) RD. By
providing a continuous variable, the RCB score moved away from the dichotomization
of response and was able to model a broad range of actual responses from near pCR to
frank resistance to therapy. Tumours attaining pCR or RCB-I disease after neoadjuvant
chemotherapy were subsequently classified as chemosensitive, tumours with RCB-II and
RCB-III disease classified as non-chemosensitive, and tumours with RCB-III RD classified
as chemoresistant [117].

The reproducibility of the score was recently shown in a study performed by the MD
Anderson Cancer Center, where five pathologists were asked to review 100 random cases
and assign an RCB score without any prior coaching [224]. The overall concordance of
agreement in RCB score among all five pathologists was 0.93, with an overall accuracy of
0.989, indicating high reproducibility. Since publication, the RCB score has been adopted as
a primary or secondary endpoint of chemotherapy response in several major trials, including
I-SPY 1 [76, 77, 46], I-SPY 2 [19], GEICAM [258], CALGB 40601 [47], CALGB 40603
[263] and NSABP B41 [25].

Increasing RCB score was shown to correlate with poor prognosis and increased probability
of distant relapse [279]. Patients with RCB-I RD had the same 5-year prognosis as those
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with pCR, whilst extensive RD (RCB-III) was associated with poor prognosis. In a study
by Symmans et al. [279], all patients with RCB-III disease after neoadjuvant chemotherapy
who did not receive adjuvant hormonal therapy were noted to relapse within 3 years. 13% of
patients with ER+ tumours had RCB-III RD after chemotherapy and had a 5-year distant
relapse rate of 40% despite receiving adjuvant hormonal therapies [279].

In a recent update by Symmans et al. [280], 1,158 patients treated with chemotherapy
(T!FAC, FAC and trastuzumab+T!FAC) were recruited to five prospective breast cancer
studies designed to assess the long-term prognostic relevance of the RCB score. The reported
distribution of cases within each RCB class are shown in Table 1.1, with ER�HER2� or
HER2+ tumours most likely to attain pCR on therapy. As had been shown in the original
reporting publication [279], the RCB score was prognostic across different ER and HER2
subsets, with 10-year relapse-free survival rates in the four response/disease burden categories
across different phenotypes as shown in Table 1.2. Patients with ER�HER2� or HER2+

tumours had a very poor 10-year relapse-free survival (23% and 21% respectively) if extensive
residual disease was present at the time of surgery despite neoadjuvant chemotherapy, with
all groups having excellent 10-year relapse-free survival if pCR was attained.

Table 1.1: Proportion of patients within each RCB category across ER/HER2 groups, as published by
Symmans et al. [280]

pCR RCB-I RCB-II RCB-III

ER� HER2� 35% 15% 33% 17%
ER+ HER2� 10% 13% 60% 17%
HER2+ 45% 19% 29% 7%

Table 1.2: 10-year relapse-free survival rates stratified by RCB category and ER/HER2 status, as
published by Symmans et al. [280]

pCR RCB-I RCB-II RCB-III

ER� HER2� 86% 81% 55% 23%
ER+ HER2� 83% 97% 74% 52%
HER2+ 95% 77% 47% 21%
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As shown in Figure 1.1 the RCB classification was prognostic in all treatment cohorts and
ER/HER2 classes [280]. The rate of pCR was highest in HER2+ patients treated with
trastuzumab and chemotherapy (Figure 1.1D), where 45% attained a pCR. Patients with
ER�HER2� disease (Figure 1.1A) had the second highest rate of pCR (35% pCR), and only
10% of ER+HER2� patients (Figure 1.1B) attained pCR, showing that ER+ tumours were
the least chemosensitive.

Additionally, lower RCB categories were associated with longer relapse-free survival and
overall survival across all ER/HER2 subgroups. The hazard ratio (HR) for overall sur-
vival in patients who attained pCR was 0.72 in HER2+ disease (95% CI, 0.63–0.82), 0.76
in ER�HER2� disease (95% CI, 0.70–0.82) and 0.73 in ER+HER2� disease (95% CI,
0.67–0.78). Patients who attained pCR had excellent long-term prognoses: this was particu-
larly evident in the ER�HER2� and HER2+ cohorts, where the presence of RCB-III disease
was associated with a significantly reduced relapse-free survival.
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Figure 1.1: Kaplan-Meier plots of relapse-free survival according to RCB categories in (A) triple-
negative, (B) ER+HER2�, (C) HER2+, not treated with trastuzumab, (D) HER2+ treated with
trastuzumab. Reprinted with permission. © 2017 American Society of Clinical Oncology. All rights
reserved. Symmans, W et al. J Clin Oncol, 35 (10), 2017: 1049-1060 [280].
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1.4 Prediction of response to neoadjuvant therapies

Shortly following the introduction of neoadjuvant therapies, efforts were made to identify
molecular predictors of response. Such predictors would allow the stratification of patients
into subsets that would derive the most benefit and others that would not. Patients with
chemoresistant tumours would therefore be spared neoadjuvant therapy and the adverse
reactions associated with it and instead proceed with primary surgery.

1.4.1 Genomic predictors

TP53 mutations correlate with response

Sensitivity assays done on cell lines in the late 1990s showed that treatment with taxanes
was more effective than treatment with anthracyclines on breast cancer cells with mutated
TP53 than in those with wild-type TP53 [216, 304]. Reduced TP53 was shown to correlate
with increased G2/M cell cycle arrest and apoptosis during treatment with taxanes. This
hypothesis was tested in the EORTC 10994/BIG00-01 trial [38], which randomised 1,856
patients between 2001 and 2006 to receive either 6 cycles of FEC or 6 cycles of T!ET.
While the study showed that TP53 mutation status was prognostic for overall survival, it
did not identify patients most likely to benefit from taxane-based chemotherapy regimens.
Indeed, treatment with taxanes (T!ET) did not result in an increase in 5-year PFS in women
with TP53 mutated tumours, compared to treatment with no taxanes (FEC). In an effort to
generate signatures predictive of response in these cohorts, RNA from 125 ER� tumours (66
tumours in the FEC group and 59 tumours in the T!ET group) was extracted and analysed
on Affymetrix X3P microarrays. The analysis resulted in the generation of gene expression
signatures predictive of response to chemotherapy however this was later retracted. The
dataset, however, remains available for mining (Gene Expression Omnibus accession number
GSE6861) and has been used in various analyses described later on in this chapter.

Various other studies were set up to ascertain whether TP53 status correlated with prognosis
(discussed in Chen et al. [52]), with a meta-analysis of 26 published studies encompassing a
total of 3,476 patients showing that TP53 mutations or overexpression were associated with
pCR (RR 1.37). These findings were further validated by a recent study by Wang et al. [307]
in which TP53 mutation status in 351 patients who received neoadjuvant chemotherapy was
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assessed. 41% of the patients studied harboured a mutation in TP53, with a pCR rate of
28.6% in TP53 mutant tumours and 7.1% in TP53 wild-type tumours.

PIK3CA mutations correlate with resistance to therapy

In a prospective study, Yuan et al. [319] obtained tumour biopsies from 729 patients who
received neoadjuvant chemotherapy and profiled PIK3CA mutations by cDNA polymerase
chain reaction (PCR) amplification. 28.3% of patients harboured a PIK3CA mutation and
presence of a mutation within this oncogene was associated with a lower rate of pCR (14.6%
vs. 21.4%). Patients with PIK3CA hotspot mutations (E542, E545 and H1047) had a lower
pCR rate than patients with wild-type PIK3CA (13.5% vs. 21.4%), whilst there was no
difference in pCR rate between patients with non-hotspot mutations and wild-type PIK3CA.
Of note, 9 patients with detectable PIK3CA mutations prior to commencing chemotherapy
were noted to have absence of the corresponding mutation after neoadjuvant chemotherapy.

In order to assess the association between mutations within the PIK3CA oncogene and
response, Loibl et al. [175] analysed PIK3CA mutations in 967 patients with HER2+ tumours
recruited to five neoadjuvant studies (GeparQuattro [293], GeparQuinto [292], GeparSixto
[303], NeoALTTO [22] and CHERLOB [107]). The analysis showed that pCR rates were
lower in the PIK3CA mutant cohort (16.2%), compared with to the wild-type cohort (29.6%),
however in a subgroup analysis this was only confined to ER+ tumours (mutant vs. wild-type
pCR rate: 7.6% vs. 24.2%), and was not observed in ER� tumours. Additionally, PIK3CA
mutations did not confer any alteration to survival.

1.4.2 Transcriptomic predictors

TOP2A: Predicting response to anthracycline therapy

As anthracyclines formed the backbone of most neoadjuvant regimens, efforts were made to
determine biomarkers associated with response to this class of cytotoxics. The prospective
multi-centre neoadjuvant Trial of Principle (TOP) study was the first amongst such studies
and enrolled 149 patients with ER� tumours between January 2003 and June 2008. All
patients were treated with single agent epirubicin monotherapy and the study set out to define
gene expression signatures that predicted chemoresistance to anthracycline therapy [67].
Accrual into the study was stopped prematurely because of low recruitment as well as concern
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by several investigators that the study did not contain multi-agent chemotherapy: indeed the
pCR rate in this study was only 13.7% compared to 45% expected in triple negative breast
cancers treated with multiple agents [243].

In the study, TOP2A amplification was significantly associated with pCR (OR: 18.75), and
a TOP2A biomarker signature was defined as the averaged sum of the expression of genes
in the vicinity of TOP2A (including: PSMD3, CSF3, MED24, THRA, NR1D1, CASC3,
RAPGEFL1, WIPF2, CDC6, RARA, GJD3, TOP2A, IGFBP4, TNS4, CCR7 and SMARCE1).
The expression of this signature was shown to be associated with pCR in the ER�HER2+

subgroup, but not in ER�HER2� tumours. Of note, none of the patients recruited to the
study received trastuzumab. In order to further refine the metagene, previously published
stromal and immune metagenes [68] were combined with the TOP2A metagene score to
derive an A-score for HER2+ tumours. In view of the observed lack of relationship between
TOP2A metagene score and pCR, the A-score for ER�HER2� cases did not include TOP2A
metagene expression, but only contained the immune and stromal metagene scores. The
A-Score was characterized by a high negative predictive value (98%) and was significantly
associated with pCR status in the TOP trial, as well as the anthracycline-based arms (but
not in the taxane/anthracycline arms) of the EORTC 10994/BIG00-01 and MDACC 2003-
0321 study. Data from this study was deposited at the Gene Expression Omnibus with ID
GSE16446.

MDA-1: Predicting response to T!FAC

Following the publication of the NSABP B-27 clinical trial, which showed increased benefit
of adding taxanes to anthracycline-based therapies [23, 24], efforts were made to characterise
molecular predictors of response to T!FAC chemotherapy. Ayers and colleagues [16]
prospectively enrolled 42 patients receiving neoadjuvant T!FAC chemotherapy to develop
a multigene predictor to predict response to chemotherapy. Fine needle aspiration of the
tumour was undertaken prior to starting chemotherapy and expression quantified using
microarrays. The cohort was split into discovery (24 patients) and validation (18 patients)
sets, and machine learning algorithms applied to the discovery set in order to identify a
multi-gene model that was associated with response. By training a support vector machine
and combining with a k nearest neighbours (k-NN) class prediction algorithm, a 74-gene
model was derived, which had an accuracy of 78% of predicting pCR, a positive predictive
value (PPV) of 100%, a negative predictive value (NPV) of 73%, sensitivity of 43% and
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specificity of 100%. It is worth noting, however, that only 3 patients had attained pCR in the
validation dataset.

In order to further expand this study, a further 91 patients were added to the first cohort
of patients by Hess et al. [122], and a similar analysis was done: pre-treatment gene ex-
pression profiling was done using oligonucleotide microarrays on tumour samples obtained
by fine-needle aspiration and predictors of pCR were derived from 82 cases and assessed
on a validation set of 51 cases. 20 classifier algorithms were assessed: a Diagonal Linear
Discriminant Analysis (DLDA) classifier trained on a 30-probe set gave the highest area
under curve, and was validated in the dataset (accuracy: 0.76, sensitivity: 0.92, specificity:
0.71, PPV: 0.52, NPV: 0.96). Data from this study was deposited at the Gene Expression
Omnibus with ID GSE20194.

Subsequently, between October 2003 and October 2006, the same group further assessed
the utility of this DLDA30 classification prospectively in a clinical study that randomised
patients to receive either T!FAC chemotherapy or FACx6 [282]. Two hundred and seventy-
three patients were enrolled and the pCR rates were significantly higher in the T!FAC
arm compared with the FAC arm (19% vs. 9%, p<0.05). Interestingly, the DLDA30
predictor appeared to exhibit regimen specificity, as it performed reasonably well (though
less impressively compared to the original study) in predicting pCR in the T!FAC arm
(PPV 38%, NPV 88%, sensitivity 63%, specificity 72%, area under curve (AUC) 0.71), and
less accurately in the FAC-only arm (PPV 9%, NPV 92%, sensitivity 29%, specificity 75%,
AUC 0.58), cementing the fact that metagene derivation algorithms are very specific to the
chemotherapy regimens they are trained on.

I-SPY 1: Predicting response to AC±T

The I-SPY 1 trial [76, 77] recruited 237 patients between May 2002 and March 2006, with 221
patients receiving neoadjuvant anthracycline chemotherapy and 210 subsequently receiving
a taxane pre-surgery. 149 of these patients were profiled with microarrays, 171 had TP53
mutation chip data and 153 had copy number alteration data obtained by molecular inversion
probe arrays. The trial showed that pCR rates were lowest for luminal A (3%) and highest
for HER2-enriched tumours (50%). TP53 mutations and amplification at 17q also were
associated with increased pCR (47% and 45% respectively). Various previously derived
gene signatures that were related to aggressive disease were assessed in the dataset, and rates
of pCR were higher for poor prognosis signatures, including a 70-gene high-risk signature
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for relapse derived in 98 primary breast tumours (24% vs. 0%) [297], an activated wound
healing signature (26% vs. 7%) [50] and a TP53 mutation predicted by expression profiling
(34% vs. 9%) [288]. Hence, more aggressive and proliferative tumours were more likely to
attain pCR. Data from this study was deposited at the Gene Expression Omnibus with ID
GSE25066.

DFCI study: Predicting response to Cisplatin

So as to identify biomarkers associated with response to cisplatin, investigators from the Dana
Faber Cancer Institute (DFCI) recruited 28 women with ER�HER2� tumours into a study
that administered four cycles of preoperative cisplatin [264]. 22% of patients attained pCR,
and it was noted that low BRCA1 expression was associated with pCR. BRCA1 promoter
methylation was also statistically significantly correlated with response to platinum and
inversely correlated to BRCA1 mRNA expression. In addition, a significant association was
observed between TP53 truncating mutations as well as E2F3 oncogenic pathway activation
with response. Data from this microarray experiment was deposited at the Gene Expression
Omnibus with ID GSE18864.

Predicting response to Ixabepilone

The epothilone agent ixabepilone was initially licensed for use in taxane-resistant breast
cancer [285], and several biomarkers were initially proposed to predict response, including
b III-tubulin protein and mRNA expression, TACC3 and CAPG gene expression as well as
the expression of two metagenes containing 20 and 26 genes respectively [128]. In view
of this Horak et al. [128] designed a clinical study to assess whether predictive markers for
ixabepilone could be discovered in the neoadjuvant setting. 295 patients were randomised
to receive either AC!paclitaxel or AC!ixabepilone and the expression levels of TACC3
and CAPG, as well as the two multi-gene models were measured using an Affymetrix
gene expression profiling approach (deposited at the Gene Expression Omnibus with ID
GSE41998). The pCR rate was similar in both arms of the study (ixabepilone: 24.3% vs.
paclitaxel: 25.2%) and none of the predicted models were predictive of pCR between both
treatment arms. No further metagenes of response to treatment were derived.
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Predicting response to anti-HER2 therapies

The NeoALTTO neoadjuvant trial [22] randomised 455 women with HER2+ cancer to
receiving paclitaxel with trastuzumab or lapatinib, or both. 254 women had available
RNA-seq data, and the expression of ERBB2 was noted to be the most significant predictor
of pCR (OR 3.1), followed by ESR1 expression (OR 0.53) [90]. The Genomic Grade
Index proliferation metagene was also shown to be correlated with response (OR 1.5). An
immune metagene was statistically significant in a univariate model (OR 1.3), but lost
significance in a model adjusted for clinicopathological parameters and treatment arm.
Stromal signatures, AKT/mTOR signatures as well as an AURKA signature lost significance
on multiple correction [90]. Hence proliferation metagenes continued to dominate the
predictive landscape, with evidence of possible contribution from immune signatures.

Predicting response using the Oncotype DX® and MammaPrint® assays

FFPE samples from 95 women with breast cancer treated with doxorubicin and paclitaxel
were obtained by Gianni et al. [102] and 384 candidate genes linked to various biologi-
cal processes (including proliferation, invasion, apoptosis, metastasis, immune pathways,
metabolism, drug resistance and DNA repair) were profiled. This was also coupled with
measurement of the expression of 21 genes used in the Breast Cancer Oncotype DX® assay.
86 of the 384 genes were found to correlate with pCR, and included genes regulating pro-
liferation (such as CDC20, E2F1, MYBL2, TOPO2A), immune response (including MCP1,
CD68, CTSB, CD18, ILT-2 and HLA-DPB1), and ER status (ESR1, SCUBE2 and GATA3).
Additionally, the Oncotype DX® Recurrence Score was positively associated with the likeli-
hood of pCR (p=0.005), suggesting that the patients at greatest risk of recurrence were more
likely to benefit from chemotherapy.

The predictive power of the 70-gene MammaPrint® assay was subsequently studied in a
cohort of 167 patients recruited into two trials at the Netherlands Cancer Institute between
2000 and 2008 [273]. 14% of patients had a good prognosis signature and none of them
attained pCR. 20% of patients in the poor prognosis signature group attained pCR, and all
triple-negative tumours had a poor prognosis signature. As shown by the Oncotype DX®

assay, tumours that were more aggressive were more likely to benefit from treatment with
chemotherapy. These results were independently confirmed in a second combined analysis
in 2013 [103].
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Harmonising microarray analysis - the MAQC-II study

The MicroArray Quality control (MAQC)-II study was published in 2010 and aimed to
robustly assess methods of generation of predictive models in classifying lung or liver
toxicity in rodents, as well as various clinical endpoints in breast cancer, multiple myeloma
and neuroblastomas in humans [260].

Rather than aiming at accruing new knowledge, the MAQC-II study was a survey of the then
current practices, however it did provide the community with larger datasets that could be
further analysed. The breast cancer cohort, for example, contained the dataset generated by
Hess et al. [122] as a discovery set and a further 100 preoperative samples that were treated
with T!FEC chemotherapy, with all the microarray data generated deposited in the Gene
Expression Omnibus with ID GSE20194. Indeed this dataset has been mined by multiple
groups in order to further improve machine learning methods and determine novel predictors
of response to treatment [174].

Microarray dataset integration and mining

Following the publication of these individual datasets, efforts were made to integrate the data
generated and harness the power of greater numbers to derive response metagenes that were
closer approximations to the truth.

Hatzis et al. [117] merged data from 508 patients included within the I-SPY 1, the US
Oncology Protocol 02103 study [259], the MDACC 2003-0321 trial [230] and the LAB-03-
432 study, and used the collated normalised data to generate a genomic predictor of response
and survival following taxane and anthracycline-based chemotherapies. 310 patients were
used in a training set, with data from the remaining 198 patients used for validation. 39
microarray probe sets were associated with chemosensitivity in ER+ tumours and 55 probe
sets in ER� tumours: the derived metagene had a PPV of 56% and an NPV of 73% for
prediction of pCR or RCB-I RD.

Callari et al. [44] integrated expression data from 4 different gene expression sets with
clinical data [67, 108, 117, 128] to generate metagenes predictive of response. The work
identified a T-cell metagene (including CXCL13, PRF1, IRF1, IKZF1, GZMB and HLA-E),
which was predictive of pCR in ER�HER2� tumours only. Indeed tumours with high,
intermediate and low expression of this metagene were associated with pCR rates of 33.7%,
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35.2% and 11.6% respectively. Interestingly, the intermediate expression group had a slightly
higher pCR rate than that seen in the high expression group. In ER+HER2� tumours, a
proliferation metagene (comprising: NCAPG, BUB1B, PRC1, CCNB2, RAD51AP1, ORC6,
FANCI, UBE2C, AURKA, KIF20A) and an ER-related metagene (comprising: ABAT, CA12,
MCCC2, SCUBE2, LRIG1, FAM63A, CCDC176, MYB, CACNA1D, GATA3) were associated
with response, with the high-risk group (proliferation high, ER low) having a pCR rate of
18.9% and the low-risk group (proliferation low, ER high) having a pCR rate of 4.4%.

Iwamoto et al. [142] integrated expression data from the MAQC-II [260] and USO-02103
(GSE23988) studies and derived gene sets associated with response. ER+ tumours had
significant enrichment of cell cycle and proliferation Gene Ontology terms, as well as various
immune GO terms, including signalling from chemokine receptors 3 and 5 and interleukin-8
in tumours that were chemosensitive. A lack of association between immune system and
proliferation GO terms was noted in the ER� cohort, with enrichment of gene sets were
involved in glycolipid, sphingolipid, and fucose metabolism pathways moderately associated
with pCR.

Ignatiadis et al. [139] evaluated expression data from 8 major studies (comprising 996 pa-
tients) (TOP [67], EORTC 10994 [38], MDACC [282], MAQC-II [260], I-SPY 1, LBJ/INEN/
GEICAM, MAQC-III [117] and USO-02103 [142]) so as to determine whether response to
anthracycline (with or without a taxane) was based on activation of different pathways. As
opposed to observations made by Callari et al. [44] and Iwamoto et al. [142], high immune
module scores were associated with increased rates of pCR in all ER and HER2 subtypes,
with chromosomal instability and PTEN loss associated with increased pCR probability in
HER2� but not HER2+ tumours. Increased activation of the insulin-like growth factor 1
module was associated with increased pCR probability only in HER2� tumours.

Hence, all these integrative studies showed that proliferation and immune activation both
played a role, to a degree, in determining response to neoadjuvant therapies. However,
the analyses were confounded by different chemotherapy agents used, different exposures
to chemotherapy and different data generation technologies, explaining the contradictory
findings observed between studies.

Unlike previous approaches, which mined expression data for biomarker discovery and
validation, Juul et al. [147] derived a metagene for response to paclitaxel in ER� tumours
by using a functional genomics approach informed by previous RNA interference screen-
ing experiments on cell lines exposed to paclitaxel. These experiments had revealed two
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distinct gene sets that modulated resistance to taxanes: one involved in mitosis and mitotic
spindle assembly checkpoint and another involved in the metabolism of the pro-apoptotic
lipid ceramide [277]. By building on the observations of this work through using gene
expression data from five neoadjuvant clinical studies, a paclitaxel sensitivity metagene was
developed, composed of four genes (BUB1B, CDK1, AURKB and TTK) in a mitotic module
and two genes in a ceramide module (UGCG, COL4A3BP) [147]. Overexpression of the
mitotic module conferred sensitivity to paclitaxel, whilst overexpression of the ceramide
module related to increased metabolism of ceramide to sphingomyelin (via COL4A3BP)
and glucosylceramide (via UGCG) and increased resistance to taxane therapy, as shown
by the above-mentioned work by Iwamoto et al. [142]. The paclitaxel response metagene
was defined as the difference between the mean of the expression of the mitotic module and
the ceramide module, with higher scores associated with increased response to paclitaxel
treatment. To interrogate this metagene, microarray data was integrated from five studies
(MDA1 [122], MDA/MAQC-II [260], TOP [67], EORTC 10994 [38] and a DFCI cohort [264].
In the T!FAC treated triple-negative cohort the response metagene was highly predictive of
pCR (p=0.0039, OR 19.92), with an AUC ranging between 0.72 and 0.79.

Identification of resistance mechanisms

The neoadjuvant setting provides an unparalleled in vivo physiological system to study
mechanisms of resistance to therapies. ATP-binding cassette (ABC) transporters have
been long been attributed with chemoresistance [281], with ABCB1, ABCC1 and ABCG2
associated with resistance to taxanes, anthracyclines and topoisomerase inhibitors [220]. In
an effort to molecularly characterise ABC mediated resistance to neoadjuvant chemotherapy,
Park et al. [220] obtained tumour tissue via a core needle biopsy from 21 patients undergoing
primary chemotherapy with FEC!T and profiled the expression of ABC mRNA. Tumours
that attained pCR had high expression of ABCB3, ABCC7 and ABCF2, whilst those with RD
had a significantly higher expression of ABCC5, ABCA12, ABCA1, ABCC13 and ABCC11.

In a study by Balko et al. [18], 49 triple negative tumours following neoadjuvant chemother-
apy were profiled using the NanoString™ platform. DUSP4, a negative regulator of
extracellular-regulated kinase (ERK), was shown to be a potential mediator of chemore-
sistance, as well as a probable tumour suppressor in these tumours. High expression of
DUSP4 was noted to increase chemotherapy-induced apoptosis, whilst low expression was
associated with activation of the Ras-ERK pathway with post-therapy high Ki-67 scores and
chemoresistance.
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1.5 Characterising tumour changes during chemotherapy

In sharp contradistinction to the large volume of literature discussing predictive biomarkers
and response to neoadjuvant chemotherapy, fewer studies have concentrated on serial analyses
of tumour tissue throughout chemotherapy.

Analysis of pre and post-treatment samples

Some work has been done to describe how post-treatment tumours differ from treatment
naïve tumours. Gonzalez-Angulo et al. [104] examined gene expression differences between
pre- and post-neoadjuvant therapy samples in 21 patients after 4 to 6 months of chemotherapy,
with solely cases that had evidence of RD analysed. Different pathways were preferentially
perturbed in ER� versus ER+ breast cancers, with the former having increased expression
of PI3K, G protein and energy metabolism pathways, and the latter having increased notch
signalling and energy metabolism (including fatty acid synthesis). Immune cell signatures
were decreased in both types of tumours in the residual tumour samples.

Hannemann et al. [113] compared the gene expression profile before and after chemotherapy
in 48 patients and the main conclusion of the study was that chemosensitive tumours showed
significant changes in the expression landscape, while chemoresistant tumours had a more
stable expression landscape during treatment.

Vera-Ramirez et al. [299] performed expression analysis on 56 matched pre- and post-
chemotherapy samples from 28 patients treated with anthracycline and taxane-based chemother-
apy and stratified response using the Miller and Payne grading system [217]. The expression
of 65 genes was significantly up-regulated after treatment with chemotherapy, with a Gene
Ontology analysis revealing enrichment over extracellular matrix pathways, cell proliferation
and adhesion, oxidative stress and angiogenesis. A comparison of pre and post-therapy
samples showed that tumours that attained a good response (defined as grades 4 and 5 and
pCR) showed changes in differential gene expression during therapy, whilst those with a poor
response (grades 1 and 2) did not have any differentially expressed genes, indicating that
chemoresistant tumours had a highly stable transcriptome during chemotherapy. Microarray
data from this study was deposited at the Gene Expression Omnibus under accession number
GSE28844.
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Analysis of pre and early-treatment samples

Modlich et al. [199] analysed the expression landscape in tumour samples obtained from 25
patients taken prior to the commencement of chemotherapy and after 24 hours of treatment.
The analysis showed that two genes (CDKN1A and GDF15) were up-regulated in post-
treatment samples, with few other inferences made. In a similar study, Buchholz et al. [42]
analysed global gene expression changes in serial tumour core biopsy specimens obtained
before treatment and within 24-28 hours of the first cycle of chemotherapy in five patients:
no genes were found to be differentially expressed before and during therapy, though global
alterations in transcriptomic expression were noted.

Sotiriou et al. [270] analysed the correlation between tumour expression profiles of 9 patients,
with samples taken via fine needle aspiration prior to commencing chemotherapy, and a
second sample taken on day 21 after the first cycle of chemotherapy. Tumours exhibiting
better responses had more transcriptomic changes than those with a poorer response, with 16
genes identified as being differentially expressed in good versus poor responders.

Analysis of pre, midway and post-treatment samples

As part of an effort to molecularly characterise tumours during therapy, serial tumour biopsies
were obtained from a selection of patients recruited to the I-SPY 1 trial [76] before treatment,
24–96 hours after the first dose of chemotherapy, and at the time of surgery [182]. 36 cases
had matched pairs of the first two tumour biopsies, with 39 cases having matched pairs of
the first and last biopsy. Expression levels were determined at all time points: an analysis
comparing diagnostic and early biopsies showed profound down-regulation of proliferation
and immune-related genes during anthracycline chemotherapy, with decreased expression of
cell cycle inhibitors associated with poor response. Following completion of chemotherapy,
increased interferon signalling (through IFIT2, IFIT1, IFITM1, IFIH1 and EML2), as well as
increased expression of cell proliferation genes in any remaining RD was associated with
reduced recurrence-free survival [182]. Data from this study was deposited in the Gene
Expression Omnibus database with ID GSE32603.

A recent study [155] described the evolution of triple negative breast cancer in patients
undergoing neoadjuvant chemotherapy by using single-cell DNA and RNA sequencing as
well as bulk exome sequencing. 20 patients were recruited and tumour sampling performed
at three time points: pre-treatment, after two cycles of therapy (mid-treatment), and after
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six cycles of chemotherapy. Whole exome sequencing showed that TP53 mutations were
identified in 60% of cases. Two types of response were described, as defined by Kim
et al. [155]: clonal extinction, wherein previously observed tumour clones were completely
eliminated by chemotherapy and clonal persistence, where clonal frequencies shifted but
all tumour populations identified in the diagnostic sample remained present in the post-
treatment samples. Using a combination of deep sequencing (mean depth 1,671,000⇥) and
single-cell sequencing of 8 cases, the authors showed that the new tumour clones observed
at the end of treatment were pre-existing and selected by chemotherapy, consistent with a
punctuated model of evolution [94]. In the tumours that showed evidence of clonal extinction,
chemotherapy-induced pCR, with normal diploid cell types including fibroblasts and immune
cells dominating the stroma.

Further evidence of such clonal dynamics using bulk exome sequencing data was also
shown by Miller et al. [197] in a cohort of patients with breast cancer receiving neoadjuvant
aromatase inhibitors.

41 patients with ER+HER2� tumours recruited to the NeoPalAna phase II trial [181], were
included in a translational study wherein, when possible, tumour biopsies were taken at four
time points during neoadjuvant treatment with palbociclib and anastrozole and at the time
of surgery. Limited targeted sequencing, as well as microarray gene expression analysis,
were performed on the tissues obtained. The expression of CCND3, CCNE1, and CDKN2D
was noted to be persistently high in resistant cases, while the PAM50 proliferation score
significantly reduced at each time point. Luminal A and B subtypes were sensitive to
treatment, while non-luminal subtypes were associated with resistance and persistent E2F-
target gene expression. Mutations within PIK3CA, CDH1, PTEN, TP53, TBX3, and MAP3K1
predominated the somatic landscape, and there was evidence of RB1 mutation loss in some
cases, with the authors suggesting that this could be due to intra-tumoural heterogeneity,
clonal evolution or sequencing artefact.

Hence all these analyses have shown that the tumour genomic and transcriptomic landscape is
indeed dynamic during chemotherapy, with greater shifts seen in sensitive tumours compared
to chemoresistant subtypes.
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1.6 Scope of this thesis

The large number of trials performed in the neoadjuvant setting have clearly shown the
benefits of pre-operative chemotherapy, ranging from enabling the downstaging of advanced
disease and increasing rates of breast conservation surgery to allowing the prediction of
relapse-free and overall-survival by using response to chemotherapy as a surrogate.

Despite the importance of this setting, few studies that have generated a thoroughly mined
dataset comprising serial DNA and RNA sequencing data of a large cohort of patients
receiving neoadjuvant chemotherapy. Most studies are either small case-series, do not have
serial tumour sampling, or have limited amount of genomic or transcriptomic data. Meta-
analyses have combined series with differing chemotherapy regimens, differing chemotherapy
exposures, tumour samples obtained by different methodologies and sequencing or expression
data acquired in non-standardised ways. Additionally, most patients with HER2+ tumours
were not exposed to trastuzumab.

The work described in this thesis strives to generate a robust molecular dataset comprising
serial tumour sampling from a prospective neoadjuvant clinical study, with tumour biopsies
obtained prior to starting therapy, midway through chemotherapy, and at the time of surgery.
By doing so, the main aims of this work are to:

1. Describe genomic and transcriptomic features predictive of response or resistance to
neoadjuvant chemotherapy in breast cancer patients

2. Describe changes in the tumour architecture and tumour microenvironment during
chemotherapy and assess dynamics associated with response

3. Determine whether circulating tumour DNA can be detected both before and during
neoadjuvant chemotherapy

The key strengths of this work include:

1. The use of standardised chemotherapy regimens as recommended by national guide-
lines, with very few local protocol deviations

2. The availability of a high quality detailed clinical database capturing patient and tumour
phenotypes, chemotherapy schedules and imaging data

3. The use of standardised operating procedures to guide tissue sampling and processing
in order to mitigate batch effects
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4. The involvement of experienced breast radiologists and experts in breast cancer neoad-
juvant pathology to ensure accurate datasets

5. The integration with a Diffusion Contrast Enhanced Magnetic Resonance Imaging
(MRI) study, allowing the integration of genomic and transcriptomic data with imaging
data

6. The integration with digital pathology analysis, allowing orthogonal validation of
various findings discovered through the mining of the RNA-seq data

The neoadjuvant dataset generated is described in Chapter 2, which details the trial protocol,
the patient population recruited, as well as the experimental and bioinformatic methods used
in this thesis. Following this, molecular predictors of response and resistance to chemotherapy
are described in Chapter 3, with an in-depth analysis of DNA and RNA sequencing data
obtained prior to commencing chemotherapy. Chapter 4 investigates the changes that occur
within the tumour clonal architecture during chemotherapy and illustrates the different
manners in which chemotherapy alters tumour subclonal populations. The changes in
the transcriptomic landscape are subsequently described in Chapter 5, where the tumour
microenvironment is shown to be dynamic and correspond to response to chemotherapy.
Finally, Chapter 6 explores the detection of circulating tumour DNA, as well as its dynamics
during therapy.
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2.1 Introduction

2.1.1 Establishing a neoadjuvant molecular study

The TransNEO translational study (Research Ethics Council (REC) registration number:
12/EE/0484) was set up at Cambridge University Hospitals, Cambridge in 2013 by Dr Sarah-
Jane Dawson and Prof Carlos Caldas to prospectively profile tumour tissues and circulating
nucleic acids in patients receiving neoadjuvant chemotherapy for early breast cancer.

The study objectives of TransNEO included:

1. The characterisation of expression and genome-based molecular profiles of breast
cancer, with subsequent association of these profiles with clinical outcomes

2. The analysis of tumour specific circulating nucleic acids levels during neoadjuvant
therapy and association of levels with clinical outcomes

Within the study protocol, tumour tissue and blood were collected serially at defined time
points during neoadjuvant therapy (Figure 2.1), these being:

1. Tumour tissue collection:
(a) At diagnosis
(b) Midway through treatment
(c) On completion of chemotherapy

2. Plasma sample collection:
(a) At diagnosis
(b) After one cycle of chemotherapy
(c) Midway through treatment
(d) On completion of chemotherapy

3. Peripheral blood mononucleated cells collection:
(a) At diagnosis
(b) At any other time point, when possible

Tumour biopsies at diagnosis were mandatory and were obtained at the time of fiduciary
marker insertion. Midway biopsies were obtained if patient consent was given and there was
evidence of remaining residual disease on ultrasound. Samples from the surgical resection
specimen were taken if the residual tumour mass was still evident. Biopsies were always
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Figure 2.1: Schematic representation of the TransNEO trial schema detailing tumour biopsy time
points, as well as plasma sampling time points (marked with *). Following completion of chemother-
apy, assessment of response was performed by an experienced histopathologist in breast cancer
neoadjuvant chemotherapy.

obtained at the site of the fiduciary marker in order to mitigate, as much as possible, intra-
tumoural heterogeneity.

Key criteria for inclusion within the study included:

1. Histological diagnosis of invasive breast cancer
2. Planned administration of neoadjuvant therapy
3. Ability to give written informed consent
4. Eastern Cooperative Oncology Group Performance status 0 to 2
5. Absence of metastatic disease at diagnosis

The study did not impose restrictions on cytotoxic agent regimens, and therefore the decision
as to which chemotherapy regimen to administer was left to the attending oncologist in
order to mirror standard of care practice. All chemotherapy regimens within the Oncology
Department at Cambridge University Hospitals are protocolised with regular auditing, and
it is of no surprise that most patients with good performance status received one of two
standard therapies (FEC!T+anti-HER2 if HER2+ or T!FEC if HER2�). Further details of
all cytotoxic agents administered will be discussed further on in this chapter, and are detailed
in Appendix 1, Table A.2.

Serial ultrasounds and Magnetic Resonance Imaging (MRI) scans were used to monitor
disease response: these were performed by experienced breast radiologists in the Breast
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Cancer Unit at Cambridge University Hospitals. In addition, as part of an effort to characterise
the biology of tumours throughout neoadjuvant chemotherapy, patients recruited to the
TransNEO trial were also encouraged to participate in companion translational studies. One
such study was the TRICKS radiology study (REC: 13/LO/0411) led by Prof Fiona Gilbert in
the Department of Radiology at Cambridge University Hospitals. Within this study, patients
were asked to undergo Dynamic Contrast Enhanced MRI (DCE MRI) and tumour biopsies
were obtained concurrently to facilitate the integration of genomic data with radiological
features. 81 patients within the TransNEO study were also included within the TRICKS
study.

Response to chemotherapy was assessed on the surgical resection tissue by an experienced
breast pathologist and graded using the Residual Cancer Burden (RCB) scoring system
described in Chapter 1 [279].

2.1.2 Patient demography

By July 2017, 180 patients were recruited to the study and had completed neoadjuvant
chemotherapy, with an estimated recruitment rate of circa 45 patients per year. Twelve
patients were withdrawn from the study, as detailed in Figure 2.2: a pre-therapy tumour
biopsy was not obtained in six patients, three patients were diagnosed with metastatic
disease shortly after recruitment, two patients were recruited to phase II trials and received
experimental therapies and one patient developed severe complications during treatment and
died early on during treatment.

Hence, the neoadjuvant cohort studied in this thesis comprised of 168 patients. RCB
assessment was not available for seven cases: two had incomplete surgeries so full staging
was not possible, two were not operated (one refused surgery, the other was too unwell to
undergo treatment), one patient transferred her care to another centre, one patient developed
metastatic disease late during therapy, and one died at the end of neoadjuvant therapy.

Clinical features of recruited cohort

A summary of clinical features at diagnosis is presented in Table 2.1, with a detailed table
showing all features for each case in Appendix 1, Table A.1. The median age of the 168
patients recruited to the study was 51 years (range: 20-81 years), which was significantly
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180 patients recruited

168 cases sequenced

12 cases removed from cohort
6 missing baseline biopsy

3 diagnosed with metastatic disease
2 recruited to phase II/III trials

1 died during treatment

2 cases: chemotherapy stopped,
surgery not undertaken

1 developed metastatic disease
1 died during NA therapy

161 cases with sequencing 
data and RCB assessment

5 cases: chemotherapy completed,
no RCB assessment
2 incomplete surgery

2 not operated
1 external surgery

Figure 2.2: 180 patients completed treatment within the study by July 2017. 168 cases were
sequenced and 161 cases had RCB assessment available
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Figure 2.3: Difference in age and tumour size distribution between the METABRIC (no neoadjuvant
therapies delivered) and the TransNEO neoadjuvant study

younger than the median age at which breast cancer is diagnosed in the general population,
where more than 80% of breast cancer diagnoses occur in women over the age of 50
(Cancer Research UK, 2018). A comparison with the METABRIC cohort [60, 225], which
recruited patients who were not treated with neoadjuvant chemotherapy, also highlighted
this difference: the median age at presentation in METABRIC was 62 years (Figure 2.3).
The difference in demography is perhaps unsurprising. Younger women often presented
with more aggressive tumours than older women and benefited the most from down-staging
surgery, with breast-conserving surgery often preferable to mastectomies.

The patients recruited to the TransNEO study presented with larger tumours (median size:
3.8cm, range 1.1-12.0cm) compared to those treated with adjuvant intent (METABRIC
median tumour size 2.3cm). 61% of tumours were poorly differentiated (Grade 3) with a
noticeable absence of Grade 1 tumours. Conversely, in the METABRIC study 48% of patients
were diagnosed with Grade 3 tumours and 9% diagnosed with Grade 1 tumours. Hence the
neoadjuvant cohort enriched for larger, higher grade tumours diagnosed in younger women.

The prevailing histology was invasive ductal (85.7%), with 4.3% of patients having an
invasive lobular carcinoma and 3.6% having mixed histologies. 69% of patients had ER+

tumours and 29% had evidence of HER2 amplification on IHC or FISH (Table 2.1). 51% of
patients had histologically confirmed axillary lymph node involvement at diagnosis.

Classification of tumours into the intrinsic subtypes [221] was possible for 97% of tumours.
45.8% of all tumours were classified as Luminal (12.5% Luminal A, 33.3% Luminal B),
23.2% were Basal, 26.6% HER2 enriched and 5.4% falling within the Normal-like category.
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Table 2.1: Distribution of clinical features across 168 patients at diagnosis

% of Cases (n)

Age
20 - 40 22.0% (37)
41 - 50 27.4% (46)
51 - 60 29.8% (50)
60 - 80 20.2% (34)

Tumour size
T1 (2cm) 4.8% (8)
T2 (>2 - 5cm) 63.1% (106)
T3 (>5cm) 26.2% (44)
T4d 5.3% (9)
Unevaluable 0.6% (1)

Tumour histology
Invasive ductal 85.7% (144)
Invasive lobular 4.2% (7)
Mixed 3.6% (6)
Micropapillary 3.0% (5)
Apocrine 1.8% (3)
Medullary 1.8% (3)

ER/HER2 status
ER� HER2� 22.6% (38)
ER� HER2+ 8.3% (14)
ER+ HER2� 38.7% (65)
ER+ HER2+ 30.4% (51)

Tumour grade
2, moderately differentiated 38.7% (65)
3, poorly differentiated 61.3% (103)

Lymph node involvement
N0 48.2% (81)
N1+ 51.8% (87)

PAM50 subtype
Luminal A 12.5% (21)
Luminal B 33.3% (56)
Basal 23.2% (39)
HER2 enriched 22.6% (38)
Normal-like 5.4% (9)
Not evaluated 3.0% (5)
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Chemotherapy regimens administered

The chemotherapy regimens administered were in line with current NICE guidance [210],
with anthracycline and/or taxane administration (Table 2.2, Appendix 1: Table A.2). 81%
of all HER2� patients received a taxane (docetaxel or paclitaxel) for three cycles, followed
by three cycles of FEC (Fluorouracil, Epirubicin, Cyclophosphamide). 79% of all HER2+

patients received upfront FEC for 3 cycles, followed by three cycles of docetaxel and
trastuzumab pre-operatively. 5 HER2� patients also received pertuzumab following its
introduction in 2016. Choice of chemotherapy was not restricted within the study and despite
this there were very few variations within local protocols (Table 2.2).

Of the 168 cases that were sequenced:

• 2 cases did not complete chemotherapy and did not have surgery
– T088: died after 4 cycles of Docetaxel, Cyclophosphamide (TC) chemotherapy

and 2 cycles of trastuzumab
– T106: diagnosed with bone-only metastatic disease after 2 cycles of docetaxel

• 5 cases completed chemotherapy but did not have a formal surgical RCB assessment
– T027: had external surgery and RCB assessment was not performed
– T018: was not fit for surgery
– T157: declined surgery
– T158 and T165 had incomplete surgery due to intra-operative complications

• 3 cases received fewer than three cycles of neoadjuvant chemotherapy but had surgery
and an RCB assessment

– T042: developed severe peritonitis and bowel perforation after 2 cycles of doc-
etaxel which necessitated a prolonged stay in intensive care. (RCB-I)

– T102: diagnosed with metastatic visceral disease during treatment, chemother-
apy stopped after 1 cycle and switched to letrozole. The primary tumour was
subsequently removed (RCB-III)

– T167: was unable to tolerate docetaxel, and the decision was taken to proceed
straight to surgery after 1 cycle of treatment (RCB-III)

• 4 HER2+ cases received one, rather than three, preoperative cycles of trastuzumab
(T069, T077, T122, T144)

Patients with suboptimal chemotherapy exposure or who did not have a comprehensive
pathological assessment of their residual disease following surgery were not included within
any analyses that utilised RCB or dichotomous response (pCR/RD) as a response variable.
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Table 2.2: Neoadjuvant regimens administered

% of Cases (n)

HER2� chemotherapy regimens
Taxane ! Anthracycline 48.8% (82)
Taxane + Cyclophosphamide 5.4% (9)
Anthracycline ! Taxane 4.2% (7)
Taxane + Platinum 1.8% (3)

HER2+ chemotherapy regimens
Anthracycline ! Taxane + anti-HER2 31.5% (53)
Taxane + anti-HER2 5.4% (9)
Taxane + anti-HER2 ! Anthracycline 1.8% (3)
Taxane + Platinum + anti-HER2 0.6% (1)
Anthracycline + anti-HER2 0.6% (1)

Number of cycles administered
7 8.3% (14)
6 79.2% (133)
5 1.8% (3)
4 8.3% (14)
3 0.6% (1)
2 or less 1.8% (3)

Regimen delays/changes
Dose delay only 6.0% (10)
Dose reduction/omission only 22.6% (38)
Dose delay and reduction 8.3% (14)
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Assessment of post-therapy tumour pathology

Following completion of chemotherapy, pathological assessment of the surgical tissue was
performed by Dr Elena Provenzano (Tables 2.3, 2.4). This included a measure of tumour
diameter, tumour cellularity, percentage of in situ component, number of lymph nodes
infiltrated with metastatic disease, as well the diameter of the largest metastasis, which were
all used to compute the RCB score.

26.1% (42/161) of all cases that had RCB scoring performed attained pCR: this was higher
than the reported 18.9% (range 6.6–21.5%) in pooled meta-analyses, indicating more discern-
ing selection by physicians in selecting the patient population that would benefit most from
neoadjuvant chemotherapy [131]. High rates of pCR predominated in the ER�HER2� and
HER2+ subgroups (Table 2.3), in keeping with the published literature discussed in Chapter
1. The PAM50 intrinsic subtypes classification also reflected this, with Basal and HER2
enriched tumours also attaining high rates of complete response. Analyses of associations
with response to neoadjuvant chemotherapy will be discussed in Chapter 3.

Table 2.3: Proportion of patients within each RCB class across different ER/HER2 and intrinsic
PAM50 subtypes

pCR RCB-I RCB-II RCB-III

ER/HER status
ER� HER2� 43.2% 5.4% 45.9% 5.4%
ER+ HER2� 9.5% 6.3% 49.2% 34.9%
HER2+ 32.8% 31.1% 29.5% 6.6%

Intrinsic subtypes
Luminal A 0.0% 15.8% 42.1% 42.1%
Luminal B 9.3% 13.0% 51.9% 25.9%
Basal 52.6% 5.3% 39.5% 2.6%
HER2 41.7% 30.6% 19.4% 8.3%
Normal 0.0% 14.3% 87.5% 0.0%
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Table 2.4: Tumour pathology following neoadjuvant chemotherapy

% of Cases (n)

Tumour size
pCR 27.4% (46)
ypT1 (2cm) 39.3% (66)
ypT2 (2 - 5cm) 17.2% (29)
ypT3 (>5cm) 12.5% (21)
Not assessed 3.6% (6)

Tumour cellularity
No tumour 27.4% (46)
1 - 10% 34.5% (58)
11 - 50% 21.4% (36)
>50% 13.1% (22)
Not assessed 3.6% (6)

Number of positive lymph nodes
0 54.8% (92)
1 - 10 36.3% (61)
>10 4.7% (8)
Not assessed 4.2% (7)

Number of fibrotic lymph nodes
0 70.8% (119)
1 - 10 25.0% (42)
Not assessed 4.2% (7)

Largest lymph node deposit
0cm 54.7% (92)
<2cm 39.3% (66)
2 - 5cm 1.2% (2)
>5cm 0.6% (1)
Not assessed 4.2% (7)

% TILS
0% 8.9% (15)
1 - 10% 47.6% (80)
11 - 50% 7.7% (13)
>51% 5.4% (9)

RCB category
pCR 25.0% (42)
RCB-I 14.9% (25)
RCB-II 39.3% (66)
RCB-III 16.6% (28)
Not assessed 4.2% (7)
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2.2 Tissue collection and processing

2.2.1 Plasma and buffy coat collection and processing

Whole blood from patients recruited in the TransNEO study was collected at the Oncology
Department at Addenbrooke’s Hospital, Cambridge in S-Monovette 7.5mL Haematology
EDTA tubes, and centrifuged by the Cambridge Breast Unit research team within one hour
of collection at 820⇥g for 10 minutes at room temperature to partition plasma, buffy coat
and erythrocytes. The plasma fraction was then removed, centrifuged at 14,000 RPM for 10
minutes to pellet any remaining cellular debris and the supernatant frozen in 1ml aliquots.
The buffy coat fraction obtained following the first centrifugation was resuspended in 10ml
of red cell lysis buffer (comprising of 155mM NH4Cl, 10mM KHCO3, 0.1mM EDTA pH
7.4), split into two 5ml aliquots and left standing at room temperature for 10 minutes. The
two aliquots were centrifuged at 3,600⇥g for 10 minutes at room temperature, the resultant
pellets resuspended in 5ml of red cell lysis buffer, and centrifuged at 3,600⇥g for a further 10
minutes at room temperature. Each cell pellet was resuspended in 1ml of phosphate buffered
saline, split into two 500µL aliquots and centrifuged at 10,000 RPM for 5 minutes. Two of
the final four white cell pellets were suspended in 700µL of Qiazol lysis reagent each for
eventual RNA extraction, and two pellets were frozen without the addition of lysis buffer for
eventual DNA extraction.

2.2.2 Tumour tissue collection and processing

Tumour tissue was collected prior to the initiation of neoadjuvant chemotherapy, midway
through treatment, and at the time of surgery. Biopsies at the diagnostic and midway
time point were obtained by the radiology staff, whilst tissue at surgery was obtained by
the operating surgeon. All samples were flash frozen in liquid nitrogen and stored at -
80°C. Sectioning of the samples was performed on a cryostat (CM1520; Leica Biosystems,
Germany) by Helen Bardwell in the Histopathology Core. Following an initial 6µm section
taken for haematoxylin and eosin (H&E) staining, twenty 30µm sections were taken and ten
sections placed in each of two tubes containing either 180µL ATL buffer or 700µL of Qiazol
for DNA or RNA extraction respectively. This process was repeated if enough tissue was
available, and a final 6µm section for H&E staining was taken. All sample were stored at
-80°C until required for extraction. Any remaining tumour tissue was banked in a Human
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Tissue Act compliant freezer. The histology slides containing the initial, midway and final
tumour sections were stained with H&E, and tumour, stromal, and immune infiltrate scoring
was performed by Dr Elena Provenzano.

For a select number of cases, if fresh frozen tumours were not available, Formalin Fixed and
Paraffin Embedded (FFPE) blocks were obtained from the Department of Pathology, sec-
tioned by Helen Bardwell and areas suitable for coring identified by Dr Elena Provenzano.
1.5mm punches were then taken using the Manual Tissue Arrayer MTA-1 (AlphaMetrix
Biotech) and stored in a desiccator until required.
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2.3 Nucleic acid processing

2.3.1 Tumour and buffy coat DNA extraction

Isolation of DNA from a total of 502 buffy coat and sectioned tumour tissue samples was
performed using the QIAGEN DNeasy Blood and Tissue Kit (Cat No: 69506). DNA from
tumour tissue was extracted using the manufacturer recommended protocol. Briefly, tissue
sections suspended in 180µL ATL buffer were thawed and 20µL of proteinase K added and
incubated overnight at 56°C on a thermal shaker at 650 RPM. Following this, RNA digestion
was performed by adding 4µL of RNase A. 200µL of Buffer AL and 200µL of ethanol were
added to each sample and the mixture pipetted to a spin column, which was spun at 6,000⇥g
in a bench centrifuge. Two washes of the column membrane were subsequently performed,
the first with 500µL of Buffer AW1 (with a 1 minute 6,000⇥g spin) and a second with
500µL of Buffer AW2 (with a 3 minute 20,000⇥g spin). Elution of DNA from the column
membrane was performed using two 50µL Buffer AE washes, each with a 1 minute 6,000⇥g
spin.

In view of an expected high DNA yield from each buffy coat sample, which would saturate
the DNA spin column membrane and result in an inefficient extraction, each white cell pellet
was suspended in 400µL PBS, and digested with 80µL proteinase K (at >600 mAU/ml), 8µL
RNAse A (at 100 mg/ml) and 400µL AL lysis buffer for 12 hours at 56°C. Following this,
the lysate was divided equally into two volumes and DNA extraction performed as described
above.

DNA quantification was performed using the Qubit Fluorometer (Invitrogen). The median
DNA concentration obtained from the buffy coat samples was 75ng/µL (range: 7-328ng/µL),
whilst the median concentration obtained from the tumour tissues was 20ng/µL (range: 1-
120ng/µL, Figure 2.4A). Tumour samples obtained prior to the commencement of chemother-
apy had higher concentrations of DNA compared to those obtained at the midway and surgical
time points (median DNA concentrations: diagnosis 29ng/µL, midway 12ng/µL, surgical
13ng/µL). The decrease in extracted DNA yield could be explained by a decrease in viable
cellular content and an increase in necrotic tissue secondary to chemotherapy. Thus, as
cytotoxic therapies were administered increasing amounts of necrotic tissue were sampled,
and therefore less DNA was available for extraction.
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Figure 2.4: Nucleic acid quantification and assessment. (A) Box plots showing DNA concentrations
obtained from normal and tumour samples. (B) Density plots showing distribution of 260/280 ratios
as obtained by NanoDrop 8000. (C) Box plots showing RNA concentrations obtained from tumour
samples. (D) Box plots showing RIN distribution across sampling time points.
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Assessment of 260/280 fluorometric ratios was performed using the NanoDrop 8000 (Ther-
moFisher scientific) to assess the purity of the nucleic acids. 260/280 ratios of around 1.8
were accepted as “pure” for DNA. The median 260/280 ratio for the extracted DNA samples
was 1.87 (Figure 2.4B), both showing a very low presence of any contaminants which would
impede downstream genomic applications. There was no difference in median ratio across
tumour samples obtained from serial time points.

DNA from FFPE tissues was extracted using the QIAGEN QIAamp DNA FFPE Tissue
Kit (Cat No: 56404) using the manufacturer’s recommended protocol. Briefly, 320µL of
QIAGEN deparaffinization solution was added to the paraffin embedded cores and incubated
at 56°C for 3 minutes. Following this, 180 µL of buffer Buffer ATL was added to each
sample, mixed by vortexing and centrifuged for 1 minute at 11,000⇥g. Subsequently, 20µL
of proteinase K was added, and the samples incubated at 56°C overnight. A final incubation
at 90°C for 1 hour ensured that Buffer ATL partially reversed formaldehyde modification.
DNA extraction was then performed as follows:

1. addition of 200µL Buffer AL and 200µL of 100% ethanol, transfer to a spin column,
followed by a 6,000⇥g 1-minute spin

2. addition of 500µL Buffer AW1 followed by a 6,000⇥g 1-minute spin
3. addition of 500µL Buffer AW2 followed by a 6,000⇥g 1-minute spin
4. a 20,000⇥g 3-minute spin to dry the spin column membrane and prevent carry over of

buffer
5. elution with 50µL of Buffer ATE and a 20,000⇥g 1 minute spin

DNA quantification and contaminant estimation were performed using the Qubit Fluorometer
(Invitrogen) and NanoDrop 8000 (ThermoFisher scientific).

2.3.2 Tumour RNA extraction

Isolation of RNA from 329 tumour tissue samples was performed using the QIAGEN
miRNeasy Mini Kit (Cat No: 217004) which purified both microRNA and total RNA. Tissue
sections suspended in 700µL of Qiazol were thawed and mixed by vortexing. 140µL of
chloroform was added to each sample, vortexed and transferred to a heavy phase lock tube
(QIAGEN MaXtract, cat no: 129056). The samples were then spun at 12,000⇥g for 15
minutes at 4°C, following which the upper clear phase containing RNA was transferred
to a 2ml Eppendorf tube. Subsequent extraction was then performed using the QIAGEN
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QIAsymphony in order to limit batch effect across all samples. Within the QIAsymphony,
further washes were done as follows:

1. addition of 525µL 100% ethanol followed by an 8,000⇥g 15-second spin
2. addition of 700µL Buffer RWT followed by an 8,000⇥g 15-second spin
3. addition of 500µL Buffer RPE followed by an 8,000⇥g 15-second spin
4. addition of 500µL Buffer RPE followed by an 8,000⇥g 2-minute spin
5. elution with 60µL of RNase free water and an 8,000⇥g 1-minute spin

RNA quantification was performed using the Qubit Fluorometer (Invitrogen). As observed
previously for DNA, RNA yields were lower at later time points. Indeed, the median
RNA concentration prior to the commencement of chemotherapy was 113ng/µL, which was
significantly higher than those obtained at the midway time point (40ng/µL) and following
the completion of treatment (24ng/µL) (Welch Two Sample t-test p < 2.2e-16, Figure 2.4C).

Assessment of the RNA integrity number (RIN) was performed using the High Sensitivity
RNA assays on either the Agilent 4200 TapeStation Instrument or Agilent 2100 Bioanalyzer.
The RIN is a ratio of the area of the 18S and 28S rRNA peaks to the total area under the
electropherogram, with higher ratios indicative of very little degradation. The median RIN
for the RNA samples was 8 (Figure 2.4D), showing that the RNA extracted was of a high
quality and sequencing libraries could be generated from it.

2.3.3 Cell-free DNA processing

DNA extraction from 305 plasma samples for the first 80 recruited patients was performed
at the Cancer Molecular Diagnostics Laboratory at Cambridge using the QIAsymphony
DSP Circulating DNA Kit (Cat No: 937556). The automated recovery method ensured a
high-efficiency extraction using magnetic beads. Briefly circulating DNA was extracted using
the default 4ml extraction protocol: following the addition of 220µL proteinase K, binding
buffer and magnetic beads to the samples, the samples were transferred to the QIAsymphony
machine, wherein magnetic separation was performed and automated wash steps undergone
in order to remove non-nucleic acid contaminants. Following this, the DNA bound to the
magnetic beads was eluted into 60µL of buffer. Quantification of the total concentration of
DNA eluted was obtained using the Qubit Fluorometer (Invitrogen).
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The median concentration of circulating DNA following extraction was 0.58ng/µL (range:
0-10.4ng/µL). The median concentration of all plasma samples at the different sampling
time points was 0.46ng/µL prior to commencing treatment, 0.74ng/µL after the first cycle
of treatment, 0.69ng/µL midway through the treatment cycle and 0.52ng/µL at the end of
treatment.
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2.4 Genomic and transcriptomic library preparation

2.4.1 Whole genome and whole exome library generation

DNA samples were normalised to a concentration of 5ng/µL through a series of serial dilutions
and quantifications using the Qubit Fluorometer (Invitrogen). Samples with concentrations
less than 5ng/µL were concentrated using a SpeedVac (Thermo Fischer Scientific). All
normalised samples were transferred to 96 well plates: the location of each patient’s samples
was randomised based on ER, HER2 and pathological response (pCR vs. RD) in order
to ensure that these clinical variables would not confound downstream analyses. Samples
obtained to the same individual were pipetted into adjacent wells across the same row in
order to ensure that they would be captured together in the same pool in later stages of the
protocol, limiting intra-patient variability.

Exome libraries were prepared by the Genomics Core at the Cancer Research (UK) Cancer
Institute using the Illumina Nextera Rapid Capture Exome Library Preparation kit according
to the manufacturer’s protocol (Illumina document number: 15037436). This kit was selected
as it was able to generate whole exome libraries from as little as 50ng of DNA: this was
specifically important as some of the post-chemotherapy samples had lower quantities of
DNA extracted. The protocol contained three main steps: (1) Tagmentation of DNA, in
which a Tn5 transposase performs simultaneous fragmentation and tagging of DNA [6], (2)
amplification and addition of unique indexes and (3) exome probe hybridisation and target
enrichment, as described below.

1. Tagmentation

25µL Tagment DNA Buffer (TD) and 15µL Tagment DNA Enzyme 1 (TDE1) were added
to 10µL of DNA at 5ng/µL and incubated at 58°C for 10 minutes. Following this 15µL of
Stop Tagmentation (ST) buffer was added to stop the tagmentation reaction. The tagmented
DNA was purified by the addition of 65µL of Sample Purification Beads (SPB) and magnetic
separation on a magnetic stand. The beads were then washed twice with 200µL of freshly
prepared 80% ethanol and the purified tagmented DNA eluted in 22.5µL of Resuspension
Buffer (RSB).
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2. Amplification and index addition to generate a whole genome library

5µL of unique Index 1 (i7) and Index 2 (i5) adapters were added to 20µL of each purified
tagmented DNA sample, such that each sample on the 96 well plate had a different com-
bination of i7 and i5 indexes. 20µL of Library Amplification Mix (NLM) were added and
a limited cycle polymerase chain reaction (PCR) performed using the following thermal
cycling protocol:

• 72°C for 3 minutes
• 98°C for 30 seconds
• 10 cycles of:

– 98°C for 10 seconds
– 60°C for 30 seconds
– 72°C for 30 seconds
– 72°C for 5 minutes

• Hold at 10°C

The amplified DNA was purified by adding 90µL of SPB followed by magnetic separation
and two washes with freshly prepared 80% ethanol. The amplified library was eluted in 27µL
of Buffer RSB, and the DNA concentration measured using the Qubit Fluorometer. Fragment
size distribution was assessed using the Agilent 4200 TapeStation Instrument.

The amplified library produced was, in essence, a whole genome library, and all samples per
plate were pooled together at 5nM and sequenced on two lanes of an Illumina HiSeq 4000
sequencer in 50 base pair single read mode to obtain copy number profiles.

3. Exome probe hybridisation and target enrichment

500ng of library were pooled into 6-plex reactions, ensuring that all samples belonging to
the same patient were always within the same capture pool. The volume of each pool of
DNA was adjusted to 40µL and 50µL of Enrichment Hybridisation Buffer (EHB) and 10µL
of biotinylated Rapid Capture Oligos added. Hybridisation was performed on a thermocycler
programmed to cycle as follows: 95°C for 10 minutes, followed by 18 one minute cycles,
starting at 94°C, then decreasing 2°C per cycle. The PCR product was incubated overnight
at 58°C, and the next day the amplified product was purified by adding 250µL Streptavidin
Magnetic Beads and incubated at room temperature for 25 minutes. Following magnetic
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bead separation, bead washing was performed twice using 200µL of Enrichment Wash
Solution (EWS). The purified enriched library was eluted in 23µL of elution buffer (28.5µL
Enrichment Elution Buffer 1 and 1.5ulµL HP3), as well as 4µL Elute Target Buffer 2 (ET2).

These libraries then underwent a second hybridisation with the same capture probe set in
order to increase the specificity of the captured regions and decrease off-target fragments.
The final enriched libraries were amplified using 20µL of Enrichment Amplification Mix and
5µL of PCR Primer Cocktail, and a polymerase chain reaction performed using the following
thermal cycling protocol:

• 98°C for 30 seconds
• 12 cycles of:

– 98°C for 10 seconds
– 60°C for 30 seconds
– 72°C for 30 seconds

• 72°C for 5 minutes
• Hold at 10°C

The amplified enriched libraries were purified by adding 90µL of SPB and performing a
magnetic separation, followed by two washes with freshly prepared 80% ethanol. The
libraries were then eluted in 32µL of Buffer RSB. The DNA concentration of each sample
was measured using the Qubit Fluorometer and the fragment size distribution assessed using
the high sensitivity assay on the Agilent 4200 TapeStation Instrument. Five nanomolars of
each library was prepared and 48 samples pooled per lane of sequencing on an Illumina
HiSeq4000 system, with sequencing performed at 75 base pair paired-end mode.

2.4.2 Targeted sequencing library generation

Targeted sequencing was performed using the Raindance Thunderbolts NGS Target Enrich-
ment System (Raindance Technologies). This technology enabled single molecule PCR
within oil droplets, with up to 8 million PCR droplets synthesised per sample and as little as
5ng of DNA required as input. Library preparation involved the initial generation of droplets
and a first round of PCR within the oil emulsion, followed by the addition of adaptor and
index sequences in preparation for clustering and sequencing.
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Droplet generation and amplification

A premix containing the reagents listed in Table 2.5 was assembled per sample and loaded into
the Raindance Thunderbolts system. Following this, the reaction mixtures were partitioned
in oil droplets, such that each droplet contained one or no DNA molecules, ensuring single
molecule PCR.

Table 2.5: PCR 1 reagent components

Reagent Volume (µL)

TaqMan Genotyping Master Mix (Life Technologies: 4371355) 20
25⇥ (12.5%) Droplet Stabilizer 1.6
Custom Primers 4
DNA (5-75ng) up to 14.4
Water variable

On completion of the run, the emulsions were collected and placed on a thermocycler, and
an in-droplet PCR reaction initiated using the following cycling settings:

• 94°C for 2 minutes
• 55 cycles of:

– Ramp 1°C/second to 94°C
– 94°C for 30 seconds
– Ramp 1°C/second to 54°C
– 54°C for 30 seconds
– Ramp 1°C/second to 68°C
– 68°C for 1 minute

• 68°C for 10 minutes
• Hold at 12°C

Following PCR amplification, the droplet emulsions were destabilised using 50µL of Droplet
Destabiliser, and the aqueous layer containing the amplified product retained. A bead clean
up using 2⇥ AMPure XP beads was performed: this was followed by two washes with 180µL
of freshly-made 80% ethanol and a final elution in 20µL of 10nM Tris HCl pH8.0.
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Adapter and index addition

A second PCR premix containing the components listed in Table 2.6 was assembled for
each reaction: this allowed the addition of Illumina P5 and P7 adapters, as well as unique
barcodes that would enable the identification of each individual sample following sequencing
demultiplexing.

Table 2.6: PCR 2 reagent components

Reagent Volume (µL)

Platinum Taq DNA Polymerase High Fidelity Buffer 3.25
50 mM MgSO4 (included in Life Technologies 11304-029) 0.875
dNTP mix (10mM) (Integrated DNA Technologies) 1.125
DMSO (Sigma D8418-100ML) 1.25
10⇥ Barcoded Illumina Primers (5µM) 2.5
10⇥ Platinum Taq DNA Polymerase High Fidelity 0.5
1st PCR Template DNA 13

A barcoding PCR was then performed using the following settings on a thermocycler:

• 94°C for 2 minutes
• 11 cycles of:

– Ramp 1°C/second to 94°C
– 94°C for 30 seconds
– Ramp 1°C/second to 56°C
– 56°C for 30 seconds
– Ramp 1°C/second to 68°C
– 68°C for 1 minute

• 68°C for 10 minutes
• Hold at 12°C

The amplified products were then purified using 1.2⇥ AMPure XP beads and washed twice
using 180µL of freshly prepared 80% ethanol. 20µL of 10nM Tris HCl pH8.0 were used to
elute the final products from the beads. Fragment length determination was performed using
the Agilent Tapestation and quantification performed using qPCR. Following quantification
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and pooling, sequencing was performed on one lane of a MiSeq sequencer, with a maximum
of 24 samples sequenced per lane.

Primer selection and optimisation

Customised primers for specific regions containing mutations of interest detected on exome
sequencing were designed and multiplexed together. The Raindance Manufacturer’s protocol
suggested using 0.8µM of primers along with up to 75ng of DNA, however at lower DNA
concentrations this resulted in an abundance of primer dimers. To determine the optimal
concentration of primer mix and DNA, a serial dilution experiment was designed. Library
preparation was performed using four reactions in which the primer concentration was
0.04nmol and another four in which the primer concentration was lowered to 0.008nmol. For
each of these two sets of reactions, input DNA quantities were varied: 25ng, 10ng, 5ng and
1ng. Following completion of library preparation, the products were analysed on an Agilent
Tapestation in order to assess the product/primer dimer ratio. Of all the combinations tested,
a primer concentration of 0.008nmol, together with an input DNA concentration of 25ng
were shown to give rise to the least amount of primer dimers and were therefore used in this
protocol.

2.4.3 Whole transcriptome library generation

RNA samples were normalised to a concentration of 10ng/µL through a series of serial
dilutions and quantifications using the Qubit Fluorometer (Invitrogen). All normalised
samples were transferred to 96 well plates using a randomisation methodology similar to the
one described previously: the location of each patient’s samples on a plate was randomised
based on ER status, HER2 status and response to chemotherapy in order to ensure that these
clinical variables did not confound downstream analyses.

Transcriptomic libraries were prepared using the Illumina TruSeq Stranded mRNA Library
Preparation kit (Cat No: 20020595) by the Genomics Core at the Cancer Research (UK)
Cancer Institute, according to the manufacturer’s protocol (Illumina document number:
1000000040498). Briefly, the protocol consisted of six main steps:
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1. mRNA purification and fragmentation, in which Poly-A containing mRNA molecules
were purified using magnetic beads with Poly-T oligos and the isolated mRNA was
fragmented using divalent cations at elevated temperatures.

2. First and second strand complementary DNA (cDNA) synthesis, where cleaved RNA
fragments were converted to first strand cDNA using reverse transcriptase and the
second cDNA strand was synthesised using DNA Polymerase I and RNase H.

3. 3’ Adenylation and adapter ligation, where an adenine was added to the 3’ ends of
the blunt fragments to prevent the molecules from ligating to each other, and P5/P7
adapters and barcodes were added to each sample to allow hybridization onto a flowcell.

4. DNA enrichment and purification.

1. mRNA purification and fragmentation

50µL of RNA Purification Beads (RPB) were added to each well containing 50µL of RNA at
10ng/µL and mRNA denaturation induced by incubating at 65°C for 5 minutes. Magnetic
separation was performed, the supernatant discarded and the beads washed with 200µL of
Bead Washing Buffer (BWB). 50µL of Elution Buffer were added and the solution incubated
at 80°C on a thermal cycler for 2 minutes, followed by a 25°C hold. Following this, the beads
were washed with 50µL of Bead Binding Buffer. 200µL of BWB and 19.5µL of Fragment,
Prime, Finish Mix were added to each well and the plates incubated at 94°C for 8 minutes to
induce mRNA fragmentation. Following a magnetic bead separation, 17µL of the supernatant
were retained for each sample.

2. First and second strand cDNA synthesis

8µL of a mixture of SuperScript II and First Strand Synthesis Act D Mix were added to each
sample and the first strand cDNA synthesis performed by means of a PCR with the following
temperature settings:

• 25°C for 10 minutes
• 42°C for 15 minutes
• 70°C for 15 minutes
• Hold at 4°C
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The second cDNA strand was then synthesised by adding 5µL of End Repair Control solution
(CTE) diluted in 1:50 RSB and 20µL of Second Strand Marking Master Mix to each well and
incubating at 16°C for 1 hour. Following this the cDNA was purified using 90µL AMPure
XP beads and incubated at room temperature for 15 minutes. Magnetic separation was
performed, the beads washed twice with 200µL of freshly prepared 80% ethanol and the
purified tagmented RNA eluted in 17.5µL of Resuspension Buffer (RSB).

3. 3’ Adenylation and adapter ligation

2.5µL of A-Tailing control buffer (CTA) and 12.5µL A-Tailing Mix were added to each well
and incubated at 37°C for 30 minutes and 70°C for 5 minutes.

Adapter ligation was performed by adding 2.5µL of Ligation Control Mix, 2.5µL of Ligation
Mix and 2.5µL of RNA adapters to each well, and incubated at 30°C for 10 minutes. 5µL of
Stop Ligation Buffer were added to halt the reaction. A clean up of the ligated fragments was
done using 42µL of AMPure XP beads and two 200µL 80% ethanol washes. The fragments
were eluted using 52.5µL of RSB. A second clean up was performed using 50µL of AMPure
XP beads and two 200µL 80% ethanol washes and the fragments eluted in 22.5µL of RSB.

4. DNA enrichment and purification

25µL PCR Master Mix were added to each well and a PCR performed on a thermocycler
using the following settings:

• 98°C for 30seconds
• 15 cycles of:

– 98°C for 10 seconds
– 60°C for 30 seconds
– 72°C for 30 seconds

• 72°C for 5 minutes
• Hold at 4°C

A final clean-up was performed using 50µL of AMPure XP beads and two washes of 200µL
fresh 80% ethanol. The fragments were eluted in 32.5µL of RSB and the DNA concentration
of each sample quantified using qPCR. 5nM of each library was prepared and 94 samples
pooled per lane of sequencing on an Illumina HiSeq4000 system (75bp paired-end mode).
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2.5 Bioinformatic analysis

2.5.1 Exome and shallow whole genome analysis

Alignment and preprocessing

The GRCh37 decoy (b37) assembly of the human genome used by the 1000 Genomes
Project Consortium was selected as the reference genome of choice [1, 2, 97]. This assembly
contained chromosomal sequences present in the initial GRCh37 release as well as:

1. the Revised Cambridge Reference Sequence of the human mitochondrial DNA genome
(NCBI Accession: NC_012920)

2. the Human herpes virus 4 type 1 genome (NCBI Accession: NC_007605)
3. decoy sequences missing from the GRCh37 assembly derived from HuRef, Human

BAC and Fosmid clones and the ALLPATH-LG assembly of the Illumina NA12878
platinum genome.

The additional sequences added to the assembly have been shown to improve aligner effi-
ciency, as reads derived from sequences present in regions captured by the decoy would
be rapidly aligned confidently and therefore result in more accurate alignments as the de-
coy would absorb reads that would otherwise map with low quality and mismatches to the
reference.

For each exome paired FASTQ file, sequencing quality metrics were generated using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Alignment was performed
using Novoalign version 3.2.13 (http://www.novocraft.com) in paired-end mode with the
following parameters enabled: (1) base quality recalibration, (2) trimming of Nextera adap-
tor sequence CTGTCTCTTATA, (3) hard clipping of trailing bases with quality  20. Shal-
low whole genome sequencing (sWGS) data was processed in a similar manner, however
Novoalign was run in single read mode. Novoalign was used as the aligner of choice as it
has been shown to make the fewest mapping mistakes (0.019%) compared to BWA-MEM
(0.777% of reads incorrectly mapped) and Bowtie2 (3.72% of reads incorrectly mapped)
[123].

Binary aligned sequencing (BAM) file merging, coordinate sorting and PCR and opti-
cal duplicate marking were performed using Novosort. Local realignment around inser-
tions and deletions was performed using the Genome Analysis Toolkit (GATK) programs
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RealignerTargetCreator and IndelRealigner, using a calibration set derived from the
1000 Genomes project that has been validated to a high degree of confidence for increased
accuracy [65, 198, 294].

Quality assessment

In order to assess the performance of the library preparation as well as the quality of the
sequencing data, target coverage metrics within exonic regions specified by the Nextera
target BED file obtained from Illumina (Manifest version 1.2) were generated using Picard
(version 2.17.0) CalculateHSMetrics, whilst fragment insert size metrics were computed
using Picard CollectInsertSizeMetrics.

All DNA samples that were sequenced generated usable exome data, with no failures across
the cohort. The median number of paired-end sequencing reads per sample was 192 million
(range: 73 - 481 million, Figure 2.5A). A median of 86.3% of sequenced reads aligned to
the reference genome and 53.5% of these reads aligned to within the exome target regions
(Figures 2.5B and C). The median PCR duplication rate was 32%: the number of PCR
duplicates per sample correlated with the number of total reads in the sample and followed
the law of diminishing returns (Figures 2.5D and E). The median insert size of the libraries
generated was 145 bases (Figure 2.5F) and therefore there was minimal overlap between the
paired-end reads, which were each at 75 base pairs. These metrics confirmed the high quality
of the libraries generated.

In order to assess the performance of the exome enrichment protocol, the probe bait statistics
were then analysed. The median target coverage across all samples was 160⇥ (range: 67 -
369⇥, Figure 2.6A), with less than 2% of all bases within the target region having no coverage
(Figure 2.6B). The exome sequencing data was therefore deep enough to enable rarer variant
detection, which was especially important as somatic mutation allelic frequencies decreased
during neoadjuvant therapy.

Germline variant calling and sample genotyping

Germline variants were identified using GATK HaplotypeCaller (version 4.0.2.1). Briefly,
HaplotypeCaller identified regions within the genome that had significant evidence of
variation and built a De Bruijn-like graph on each region so as to identify potential haplotypes.
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Figure 2.5: Distribution of exome sequencing metrics across all samples showing the distribution of
(A) total reads per sample, (B) % of reads aligned per sample, (C) % of bases on target, (D) % of
PCR duplication, (E) correlation between number of sequenced fragments and PCR duplication rate
and (F) median insert size.
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(A) mean target coverage, (B) % of targets with no coverage, (C) % of bases covered at a minimum of
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A pairwise alignment of each read was then performed against each haplotype using the
PairHMM algorithm, producing a likelihood matrix of haplotypes. Bayesian modelling was
subsequently used to calculate the likelihoods of each genotype per sample given the read
data observed and the most likely genotype assigned.

In order to leverage the large number of samples within the cohort, rather than running
HaplotypeCaller on each sample independently and then filtering based on hard thresholds,
the variant caller was run in GVCF mode, wherein variant calling was performed across all
samples at the same time. This resulted in a combined Variant Calling Format (VCF) file
comprising all variants present across all samples and was subsequently filtered using GATK
VariantRecalibrator, which used machine learning algorithms to identify true variants
from sequencing artefact. By providing VariantRecalibrator with highly validated
training sets, including variant resources from the 1000 Genomes project and the HapMap
project, the algorithm learned what the metrics for true variants were across the whole dataset
and then used these to identify signal from noise. This varied significantly from the traditional
way of performing variant filtration, wherein a predefined set of thresholds and hard filters
(including mean depth at variant site, allelic fraction, mapping quality, strand bias) would be
applied to a dataset without any machine learning. The key disadvantage of these traditional
methods is that many true positives often fall below filtering thresholds and are discarded.

Following variant filtration, germline variants that were only called within tumour samples
only were discarded (as these were likely to be somatic). Mutations that deviated significantly
from the expected allelic fraction of 0 (homozygous reference), 0.5 (heterozygous) or 1
(homozygous alternative) were identified by using the equation:

IA
(x) =

8
<

:
1 x 2 A

0 x /2 A
(2.1)

Ân
i=1 I (BAFi)

(0.1,0.32)
S

(0.68,0.9)

Ân
i=1 I (BAFi)

(0.9,1]
S

[0,0.1)

> 0.25 (2.2)

This resulted in the removal of 2,156 noisy variants, with a distribution of B-allele frequency
(BAF) as shown in Figure 2.7.

A median of 26,249 germline variants were called across all cases (range: 21,044 - 32,393).
In order to identify potential sampling errors or sample swaps during the library preparation
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Figure 2.7: Removal of variants likely to be sequencing artefacts or due to misalignment

process, single nucleotide polymorphism (SNP) genotyping was performed across all tumour
and normal samples. Homozygous SNPs were selected for comparisons in order to increase
the accuracy of genotyping, as heterozygous variants can become homozygous in tumours
within areas of loss of heterozygosity (LOH). The percentage of homozygous SNPs shared
between a tumour and all normal samples within the cohort was subsequently computed.
The percentage median concordance across samples derived from each patient was 99.9%.
Unrelated samples had a median shared homozygous SNP concordance of 59.1% (Figure
2.8).

Apart from confirming the robustness of the sequencing data and pairing of samples, the
genotyping analysis also showed two unexpected relationships. The tumours and normals
from two sets of two cases (T004 and T118, as well as T031 and T054) showed a higher rate
of concordance (75-80%) compared to the background concordance rate. This prompted
a closer look at the clinical records of these four patients, which revealed two unexpected
relationships: T004 and T118 were sisters while T031 and T054 were fraternal twins,
explaining the greater than expected concordance in genotypes between these four cases.

All germline variants identified were then annotated using Ensembl Variant Effect
Predictor, using Ensembl version 87 [8, 194].
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Figure 2.8: SNP genotyping across all homozygous germline mutations. Tumour and normal samples
matched with over 99.9% concordance, compared to unrelated comparisons.

Somatic variant calling, filtering and annotation

Somatic variant calling was performed using Mutect2 from the GATK4 suite. Before com-
mencing variant calling, a panel of normals was created by running Mutect2 in tumour only
mode on all normal samples. The resulting VCF files which contained germline variants, as
well as sequence artefacts, were merged using CreateSomaticPanelOfNormals, retaining
only sites with variants present in more than one sample.

Mutect2 was then run on each tumour/matched normal sample pair: in order to aid germline
variant identification and decrease the false positive rate, the previously generated panel
of normals, as well as germline variants present within the gnomAD resource, were also
supplied to the variant calling engine.

Filtration for confident somatic calls was performed using FilterMutectCalls which
applied pre-set thresholds tuned for human somatic analyses in order to separate signal from
noise. FilterMutectCalls removed any mutations that were:

1. present in matched normal sample
2. present in panel of normals
3. present in germline resource (gnomAD)
4. of low median base quality (median quality <20)
5. of low mapping quality (median quality <30)
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6. present on shorter reads (and were more likely to be due to misalignment after clipping)
7. mostly found on PCR duplicates
8. present on reads in one sequencing direction only
9. present at a very low variant allelic fraction (VAF) and likely due to be due to contami-

nation (VAF < contamination estimation)
10. present close to other mutations (clustered events)
11. present towards the end of a read (within 5 bases of read ends)
12. below the Mutect2 statistical likelihood threshold for calling (t_lod, default threshold:

5.3)

After completion of variant filtering, all tumour VCF files belonging to the same patient were
concatenated into one master VCF. Haplotypecaller was run in joint genotyping mode
across all samples derived from the same patient, using as a guide the master VCF generated
previously. Hence by doing so, Haplotypecaller determined whether the mutations ob-
served in one sample could also be identified in another, even if that mutation had not been
detected by Mutect2. This variant rescuing pipeline developed was especially important as,
during chemotherapy, tumour purity was expected to decrease with subsequent decreases in
VAF. By using this method, variants that had been detected prior to starting chemotherapy,
but had not been called at later time points because of low VAF, would be ‘rescued’ and
retained.

In order to further fine-tune the variant call set, a compositional filter was developed to remove
variants falling within regions of low complexity within the human genome. Previous work
has shown that variants called within these regions often were secondary to misalignment
[170]. In order to generate such a filter, areas of low complexity regions were identified by:

1. selecting regions within Low_complexity, Satellite and Simple_repeat regions
as annotated by Repeat Masker

2. selecting regions identified as having low complexity by the mDUST algorithm (hosted at:
ftp://occams.dfci.harvard.edu/pub/bio/tgi/software/seqclean/), which is a stand-alone
implementation of the DUST algorithm first used by BLAST

3. writing a custom high throughput C script that identifies homopolymeric regions,
defined as any region with 6 or more iterations of the same base.

Variants falling within these low complexity regions were removed and excluded from the
analysis.
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A final round of filtering was performed by trying to determine the false positive rate of the
dataset and identify any unique features. 29 samples that were exome sequenced did not have
any tumour cells within them on histopathological review and therefore these were used in
order to benchmark the false positive rate, as any mutations called within these samples are
artefacts. Indeed, without any further filtering, the false positive rate across the dataset was
0.39 mutations per megabase of exon: most of these mutations had allelic fractions of less
than 5%, with genotype quality scores less than 30 and coverage of less than 25⇥ (Figures
2.9A, B and C).

In view of this, samples were filtered further by applying additional hard thresholds. Variants
passing these criteria were retained:

1. Genotype quality > 30
2. Coverage > 25⇥
3. VAF in normal sample < 0.05
4. Minimum tumour VAF 0.05
5. Variants that are present in gnomAD in < 1% of the population
6. passed OxoG filtering

OxoG artefacts induced during the library preparation process were detected using the tool
FilterByOrientationBias. Oxidation of DNA, causing the conversion of guanine to
8-oxoG, which then pairs with both cytosine and adenosine during PCR leading to C>A/G>T
is commonly seen in sequencing data [59] and results in a high false positive rate. The
addition of these filters decreased the false positive rate to 0.08 mutations per megabase
of exon and increased specificity by an additional 80% (Figures 2.9D and E).

Variant annotation was performed using Ensembl Variant Effect Predictor, using
Ensembl version 87 [8, 194].

Copy number calling

Genome binning and segmentation on low pass shallow whole genome sequencing BAM
files was performed using the R package QDNAseq [251]. Binning was performed across
100kb windows and counts corrected for GC-rich regions as well as poorly mappable regions.
Normal sequencing data was used to correct for technical and germline artefacts. Segmenta-
tion was then performed using the Circular Binary Segmentation algorithm implemented in
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Figure 2.9: Identifying features of false positive calls. Artefacts had: (A) lower VAFs, (B) lower
genotype qualities, and (C) were often called in regions of lower coverage. Red dashed line indicates
filtering cut-offs selected. (D, E) Gain in specificity with additional hard threshold filtering
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the R package DNAcopy [218]. The output from this algorithm was the averaged log ratio of
each 100kb bin within the genome (Figure 2.10A).

Parental copy number quantification, as well as computational estimation of tumour purity
and ploidy were then performed using ASCAT version 2.5.1 [296], which performed joint
segmentation and copy number calling across related samples. Log ratios derived from
QDNAseq, as well as a common set of germline SNPs for all normal and tumour samples
obtained from the same patient were supplied to ASCAT. As recommended by the authors,
the technology parameter gamma was set to 1 for exome sequencing SNP data. Additionally,
the MAXPLOIDY parameter was increased to 8 (from 5.5), the MINRHO cellularity parameter
decreased to 0.05 (from 0.2) and the MINGOODNESSOFFIT parameter decreased to 60 (from
80). The tuning of parameters allowed ASCAT to estimate copy number at lower cellularities,
which was especially important as tumour purity often was less than 20% as response to
chemotherapy occurred. Hence, for each sample, the parental copy number was obtained per
segment of genome, allowing the identification of amplifications, gains, losses and loss of
heterozygosity (Figure 2.10B).

Clonal reconstruction

Clonal reconstruction was performed using the PyClone Bayesian clustering method [242].
PyClone utilised the allelic frequency and parental copy number of deeply sequenced somatic
mutations, together with tumour purity, to compute cancer cellular frequencies (CCF) and
subsequently cluster mutations with similar CCFs into clonal clusters. As PyClone performed
better on deeper sequencing data, all somatic mutations were filtered further in order to retain
high quality variants only. Only samples with a minimum median VAF of 2% were retained
for the analysis, and any samples with no mutations were excluded. Mutations with a
minimum coverage of at least 40⇥ across all related samples were retained.

As recommended by the authors for whole exome sequencing data, PyClone was run using
a beta-binomial statistical method. 200,000 iterations were used with a burnin of 100,000
iterations in order to ensure full convergence of the Markov Chain Monte Carlo (MCMC)
algorithm. Clonal clusters containing a minimum of 3 mutations were then retained for
further analyses. In cases where the CCF of the founding cluster was less than 1, scaling of
all clusters within that case was performed such that the upper CCF bound of the founding
cluster was 1.
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A

Figure 2.10: Copy number calling for case T004, post-chemotherapy tumour. (A) Copy number
segmentation and log ratio estimation using QDNAseq. (B) Corresponding parental copy number
calling using ASCAT
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Phylogenetic tree inference was performed on the mutational clonal clusters inferred by
PyClone by using LICHeE [228], which took as input the raw mutational clustering data
and constructed evolutionary constraint networks to identify trees that satisfied phylogenetic
constraints.

2.5.2 RNA analysis

Alignment and preprocessing

FASTQ files for each sample generated from multiple sequencing lanes were merged and
aligned using STAR version 2.5.2b [70], using an index generated from the GRCh37 decoy
assembly of the human genome previously described and a transcriptomic Gene Transfer
Format (GTF) guide obtained from Ensembl Release 87. STAR was run in ‘two-pass’ mode for
sensitive novel junction discovery, wherein the first pass performed a ‘default’ mapping, and
the second pass used the splice junctions detected in the first pass to perform a further round
of alignment enhancement. This STAR BAM file was subsequently used for the purposes of
differential expression and counting.

In order to allow for variant calling, the BAM files generated by STAR were subsequently
processed as per GATK best practices guidelines for RNA-seq variant calling. Firstly,
PCR and optical duplicates were marked using Picard MarkDuplicates. Following this,
the GATK tool SplitNCigarReads was used to split reads having N CIGAR elements in
separate sequence reads. Local realignment around insertions and deletions was performed
using RealignerTargetCreator and IndelRealigner, using a calibration set derived
from the 1000 Genomes project, as described previously [65, 294, 198]. Base quality
recalibration across all variant sites was then performed using BaseRecalibrator. This
GATK BAM file was subsequently used for variant calling.

Gene and transcript abundance estimation

Gene counting was performed on the STAR aligned BAM file using HTSeq [14] in read strand-
aware mode as the library preparation kit used retained strand information. Additionally,
gene counting was performed in ‘union’ overlap resolution mode, where a read would only
be assigned to a gene if it only overlapped within an exonic region of one gene, rather than
multiple genes. As HTSeq provided absolute counts per gene within the GTF file, transcript
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quantification was performed using Salmon version 0.9.1 [223] using default settings. The
median number of reads per sample was 85.9 million reads (range: 3-220 million).
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Figure 2.11: RNA sequencing metrics, showing distribution of counts across the dataset.

Counts across 57,906 regions present within the Ensembl 87 GTF in all samples were merged
into one counts matrix using R, and a trimmed mean of M-values (TMM) normalization
performed across all samples using the edgeR R package in order to correct for composition
biases and make the transcript counts comparable across all samples [190, 236]. The library
normalised counts were then transformed into Fragment Per Kilobase Millions (FPKMs) by
using the equation:

FPKMi =
Xi

li
103 ⇥ N

106

=
Xi

liN
⇥109 (2.3)

where X was the number of counts falling within a gene, l was the sum of the lengths
of all exons within a gene and N was the total number of reads sequenced. Effectively
FPKM transformation accounted for the length of the gene and made inter-gene comparisons
possible [202]. FPKM values were then scaled to a total of a million counts, changing the
unit of measure to Transcripts per Million (TPM) [169]:
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T PMi =
� FPKMi

Â j FPKMj

�
⇥106 (2.4)

Differential expression

In order to determine which set of genes were highly or lowly expressed given a set of
experimental conditions (such as pCR vs RD), differential expression was performed on the
gene raw counts data obtained as described above, using the edgeR R package [190, 236],
which modelled the dispersion of digital counts using a negative binomial model. Transcript
count normalisation was done using the TMM method described previously, and the statistical
method was run using various variations of design matrices depending on the experimental
set-up discussed: details of the linear model used for each experiment is provided in the text
describing each experimental variation. The output of each model was a list of differentially
expressed genes, as well as an expression-ranked list of genes.

Gene set enrichment analyses (GSEA)

Following the generation of a ranked list of differentially expressed genes for any comparison
of interest, gene set enrichment was performed using the camera statistical method in
edgeR: in brief, this method performed a competitive gene set test accounting for inter-
gene correlation and tested whether genes were highly ranked relative to other genes in
terms of differential expression [311]. As input to this GSEA method, the annotated gene
sets provided within the Molecular Signatures Database (MSigDB) version 6.1 were used
[171, 274]. In addition, further enrichment over the Reactome database [78] was performed
using the ReactomePA R package [317].

Immune microenvironment deconvolution from bulk RNA-seq data

Various methodologies have been employed to quantify cell populations from bulk RNA-
seq data, with most methods relying on ssGSEA or non-negative matrix factorisation to
deconstruct the transcriptomic data. The two key algorithms used in this work to deconvolute
various cell populations were MCPcounter [26], which was able to enrich for 10 cell types,
and CIBERSORT [208], which enriched for 22 cell types. The input to each method was a
matrix of normalised gene expression counts.
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iC10 Classification

Classification of all tumours into one of the ten iC10 clusters [60, 63] was performed using
the iC10 R package [12] (Figure 3.9C), which took, as input, (1) cellularity corrected copy
number log ratios (obtained by running QDNAseq on the shallow whole genome sequencing
files), as well as (2) voom normalised gene expression counts.

Quality assessment and sample genotyping

Germline variants identified on exome sequencing were filtered by removing multi-allelic
variants, indels, as well as mutations for which the minimum depth was less than 30⇥ across
all samples. The remaining 14,468 germline variants were subsequently genotyped across all
RNA samples and comparisons done across homozygous germline variants only. As shown
in Figure 2.12, the percentage median concordance across samples derived from a matched
patient was 100%, whereas unrelated samples had a median concordance of 60%.
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Figure 2.12: Concordance between DNA and RNA SNP mutations. Samples derived from the same
patient genotyped with > 99% concordance, compared to unrelated samples for which the concordance
rate was 60%

In order to ensure that the clinical ER and HER2 status matched with the RNA-seq expression
data, the log distributions of TMM normalised TPMs for ESR1 and ERBB2 were modelled
using mixed-effect Gaussian models via the R package MClust (Figure 2.13). For ESR1 a
mixture of two Gaussian distributions was observed to best model the data, compatible with
an ESR1 low (i.e. ER�) and ESR1 high (i.e. ER+) model, with a log TPM cut-off of 1.7.
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Correlation with the clinical data showed a tight correlation between ESR1 expression on
RNA-seq and ER status by IHC (Figure 2.13 E). Most ER� tumours did indeed have an
ESR1 expression of less than 1.7 TPM, whilst most ER+ tumours had an expression of more
than 1.7 TPM, with most weak positives (i.e. Allred 3-5) falling at the boundary of these two
classifications. Interestingly, 4 ER� tumours (T056, T065, T076, T118) on IHC had ESR1
expression higher than 1.7 TPM whilst three ER+ tumours (T002, T007, T073) had ESR1
expressions of less than 1.7 TPM. The discrepancy could be explained by the fact that these
two methods of quantification are different: IHC quantifies protein load whilst expression
quantifies RNA abundance. None of these cases had mutations within the ESR1 gene that
would result in a non-functional protein.

A similar approach was used to model ERBB2 expression. This time, however, the model
best suited to characterise the distribution comprised a mixture of four Gaussian distributions
(Figure 2.13C), with log TPM cut-offs of 3.83, 5.11 and 6.52. Once again, this classifier
correlated with the HER2 IHC/FISH status, where strong positive tumours had an ERBB2
expression greater than 6.52, negative tumours had an expression less than 3.83, and the
intermediary subgroup had expressions between 3.83 and 6.52 (Figure 2.13F).

Variant calling

Somatic variants detected on exome sequencing were genotyped in the RNA GATK BAM
by using HaplotypeCaller in GENOTYPE_GIVEN_ALLELES mode. Mutations present in
all samples for one patient were concatenated together, and a VCF generated to guide
HaplotypeCaller local reassembly and variant calling. 60% of coding exonic mutations
detected in all samples on exome sequencing were also identified within the RNA, and the
variant allelic fraction between both had a correlation of 0.58 (Figure 2.14).

2.5.3 Statistical testing

All statistical tests in this work have been conducted using R version 3.5.0. Multiple test
correction was applied whenever more than 20 comparisons were performed, using the
Benjamini–Hochberg procedure [29]. All statistical tests were two-sided unless otherwise
specified in the text.
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Figure 2.13: Distribution of ESR1 and ERBB2 expression in diagnostic samples and correlation
with IHC. (A, B) ESR1 expression was bimodal, with clear ER� and ER+ categories (blue and red
respectively in B) that also correlated with ER IHC (E). (C, D) ERBB2 expression was modelled as a
mixture of four Gaussian distributions (low (blue), intermediate (red and green) and high (purple)),
and also correlated with clinical phenotype (F).
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Figure 2.14: Relationship between somatic variants identified in DNA, and those identified in corre-
sponding RNA samples. (A) Scatterplot showing number of mutations detected in both DNA and RNA
sequencing data per sample. 60% of mutations found in coding regions by exome sequencing were
also detected on RNA-seq, with high concordance. (B) VAF of all somatic coding mutations detected
on exome sequencing and corresponding VAF seen on RNA sequencing. Note the significantly higher
expression of a cohort of somatic mutations (RNA VAF of 100%)

The following convention for symbols indicating statistical significance was used in this
work:

• ns: p > 0.05
• *: p  0.05
• **: p  0.01
• ***: p  0.001
• ****: p  0.0001

Whenever comparing variables associated with response, two main statistical comparisons
were made:

1. A comparison across all RCB categories to pCR, using either Wilcoxon rank sum
tests or logistic regression models. Therefore each of the RCB groups was compared
to pCR individually.

2. Comparisons using ordered RCB categories, where the change of a variable was
modelled across increments (or decrements) in the degree of response (i.e. pCR >

RCB-I > RCB-II > RCB-III) using ordinal logistic regression models.
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2.6 Dataset summary

Figure 2.15 shows a summary of all samples that were exome/shallow whole genome and
RNA-sequenced in this dataset.

In total, 502 samples were exome sequenced, with 168 cases having germline exome se-
quencing data (and 5 having multiple germline samples sequenced). A total of 329 tumour
samples were DNA sequenced. 29 cases were found not to contain any tumour cells on
histological analysis and were therefore removed from the analysis but used to fine tune the
exome variant pipeline as described previously. This left a total of 168 cases with a tumour
biopsy pre-therapy, 75 cases with a midway biopsy, 51 cases with a post-therapy biopsy,
and 6 relapse tissue samples from 5 patients. Additionally, in 14 cases that did not have
fresh tissue at the time of surgery, FFPE blocks were retrieved and shallow whole genome
sequencing libraries generated.

Out of the 329 tumour samples that were RNA sequenced, only 314 generated usable
sequencing data. This was due to (1) poor RNA extraction yield and (2) poor RIN, resulting
in failure of library preparation. 24 of these cases were not taken from the tumour site and
were therefore removed from the analysis but used as a source of matched normal tissue.
This left a total of 163 cases with a tumour biopsy pre-therapy, 72 cases with a midway
biopsy, 49 cases with a post-therapy biopsy, and 6 relapse tissue samples from 5 patients.

Circulating tumour DNA was extracted from 305 plasma samples from the first 80 recruited
patients. Shallow whole genome sequencing data was generated for 96 of these samples (24
cases with four sequential time-points), whilst deep targeted sequencing data was generated
for 4 cases (15 plasma samples).

Deep sequencing was also performed on the tumour tissue in four cases to validate the
mutation calls as well as the clonal phylogenies observed. In one case, discussed in Chapter
4, multi-region sequencing data generated from deep sequencing of cores taken from FFPE
blocks.



78 Generation of a comprehensive neoadjuvant dataset

502 samples
exome sequenced

173 germline samples

29 cases: no evidence
of tumour bed

6 relapse

329 tumours

51 post therapy75 midway168 pre therapy

Pre and midway through chemotherapy:  75 cases
Pre and post chemotherapy:   50 cases
Pre, mid and post chemotherapy:  27 cases

A

314 tumour samples
RNA sequenced

24 cases: no evidence
of tumour bed 

6 relapse49 post therapy72 midway163 pre therapy

Pre and midway through chemotherapy:  70 cases
Pre and post chemotherapy:   45 cases
Pre, mid and post chemotherapy:  25 cases

B

Figure 2.15: Summary of all samples with exome and RNA sequencing data used in this work
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3.1 Introduction

The neoadjuvant setting provides an opportunity to study tumour biology in vivo and identify
mechanisms of resistance and response to therapy. Indeed, many neoadjuvant studies have
been conducted to identify biomarkers of response to chemotherapy, with genomic and
transcriptomic data being made publicly available for most datasets. Efforts have been made
to integrate these datasets and use the power of larger numbers to attain closer approximations
of the ground truth. However, these integrative studies have been fraught with limitations.
Notably, these included: (1) merging studies with very different treatment regimens and
unequal lengths of chemotherapy exposure, (2) absence of trastuzumab treatment in most
HER2+ patients, (3) differing source tissues analysed, with data generated from a mixture
of high quality fresh tissue and lower quality FFPE tissue (4) differing methods of tumour
sampling (eg needle versus core biopsies, with the former capturing tumour but not mi-
croenvironment) and (5) differing technologies and analytical methods used to generate the
individual datasets, which unavoidably resulted in biases due to batch effects.

This chapter aims to describe predictors of response to chemotherapy at diagnosis in the
TransNEO cohort by using high depth exome sequencing and transcriptomic profiling. The
key strengths of this dataset which allowed this type of analysis included: (1) treatment with
standard of care chemotherapy regimens, with strict adherence to local protocols and NICE
guidance, (2) high quality clinical metadata which captured, amongst other variables, the
degree of response to chemotherapy as assessed by an expert in neoadjuvant breast pathology
allowing accurate assessment of biomarkers associated with response, (3) data generation
using standardised state of the art sequencing technologies and analysis using a standardised
set of bioinformatics pipelines to limit batch effect and generate a robust and accurate dataset.

In the first half of the chapter, genomic predictors of response to chemotherapy were assessed,
including (1) total somatic mutation burden, (2) the mutational landscape, (3) mutational
signatures, (4) intra-tumoural heterogeneity, (5) copy number alterations and instability, (6)
HLA genotypes and (7) neoantigen load.

In the second half of the chapter, transcriptomic associations with response were investigated,
with an emphasis on (1) identifying differentially expressed genes and pathways that confer
increasing probability of response to neoadjuvant treatment, (2) the identification of potential
mechanisms of chemoresistance and (3) the interplay between proliferation and immune
activation. Finally, two published metagenes were evaluated and a novel metagene predictive
of response was established using machine learning methods.
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3.2 Clinical phenotypes and association with response

Phenotypes associated with response to neoadjuvant chemotherapy are well described in the
literature, with features predictive of pathological complete response including ER� status,
ERBB2 amplification, high histological grade, lymph node positive disease, lymphovascular
invasion, lower body mass index and younger age, all of which are associated with a more
aggressive phenotype [84, 85, 91, 136, 172, 243].

To identify clinical variables associated with response in the TransNEO cohort, the effect of
lymph node status, histology, ER and HER2 status, grade, tumour size and age on response
was estimated using logistic regression models. Three different response groups were defined
using published definitions [117]:

1. pCR: comprising tumours that attained pCR, as opposed to all other tumours with
remaining residual disease (RD)

2. Chemosensitive tumours: comprising tumours that attained pCR or RCB-I RD on
completion of chemotherapy

3. Chemoresistant tumours: comprising tumours with RCB-III RD on completion of
chemotherapy

A simple univariable logistic regression model showed that higher grade, ER� status, younger
age and lymph node positive disease were positively associated with pCR. In addition to
these four variables, HER2+ status and invasive ductal histology were associated with
increased chemosensitivity (Figure 3.1A). Conversely, ER+ status, low grade, HER2� status,
non-invasive ductal histology, and increasing age were associated with chemoresistance, in
keeping with the low proliferation ER+ luminal A phenotype seen in older women. The
clinical phenotypes corresponding with response were identical to those reported within the
literature, indicating that the recruited cohort was similar to the patient population studied in
other trials and was not biased towards a particular subgroup.

To correct for related phenotypic effects (such as that often seen between ER� tumours and
higher grade), a multiple logistic regression model was constructed that modelled the effects
of all the above-mentioned clinical phenotypes into one linear model (Figure 3.1A). The
association with pCR was maintained in ER� tumours and younger age at presentation, with
these two variables and HER2+ status strongly associated with chemosensitivity. Lower
grade was the only variable associated with chemoresistance and was in keeping with the
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strong body of published evidence that has found a positive correlation between increased
grade and response to chemotherapy [84, 172, 243].

So as to assess the performance of the multiple logistic regression model built on seven
clinical variables, a Receiver Operating Characteristic (ROC) analysis was performed using
the three different response groups as response variables (Figure 3.1B and C). The clinical
model was able to predict pCR with an AUC of 0.82, chemosensitivity with an AUC of
0.84 and chemoresistance with an AUC of 0.92. Indeed, the clinical classifier was able to
predict pCR with a reasonably high NPV (93.5%, CI: 88.4-97.7%), but lower PPV (53.6%,
CI: 45.3-66.0%), with a specificity of 74.1% (CI: 64.2-85.7%) and a sensitivity of 84.6%
(CI: 71.8-94.9), showing that the clinical features oncologists use to predict sensitivity to
chemotherapy are robust.

These analyses confirmed that the patient cohort recruited to the TransNEO trial was very
similar to that seen routinely in neoadjuvant clinics, with concordance to the published
phenotypes associated with varying degrees of response. The statistics mentioned in this
section should serve as a baseline to which the molecular metagenes predictive of response
described later on in this work can be compared to.
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Figure 3.1: Associations between clinical phenotypes and response. (A) Clinical predictors of
response on simple and multiple logistic regression, red indicates significantly increased log odds
ratio, blue indicates significantly decreased log odds ratio. (B) ROC curve analysis for the ability of
the multiple logistic models shown in (A) to accurately model response. (C) Sensitivity, specificity,
accuracy, NPV and PPV of the multiple logistic clinical model to predict varying degrees of response.
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3.3 Genomic predictors of response

3.3.1 Mutational landscape

Across the 168 patients sequenced within the cohort, a total of 12,662 somatic mutations
were identified in the diagnostic tumour exome sequencing data using the bioinformatic
pipeline discussed in Chapter 2. These included a total of 6,566 missense mutations, 2,383
silent mutations, 486 frameshift insertions and deletions, 476 nonsense mutations, 158 splice
site mutations, 101 inframe insertions and deletions, 7 nonstop mutations and an additional
2,485 non-coding mutations falling within 3’/5’ flanks, 3’/5’ UTRs, intergenic regions and
introns.

The median diagnostic sample mutation rate per megabase of region sequenced was 1.34
Mb-1 (range: 0.02-9.67 Mb-1, Figure 3.2A). This was higher than reported by the TCGA (1
Mb-1), however the overall distribution of mutational burden across the TransNEO cohort was
not statistically significantly different from that in the TCGA (p=0.12, Kolmogorov–Smirnov
test, Figure 3.2B). ER�HER2� tumours had a higher mutation rate than ER+HER2� tumours
(1.70 vs. 0.96 Mb-1, p=0.001 Wilcoxon rank sum test), though there was no significant
difference in mutation burden between ER+HER2� and HER2+ tumours (0.96 vs. 1.4 Mb-1,
p=0.086) and between ER�HER2� and HER2+ tumours (1.7 vs. 1.4 Mb-1, p=0.127).

The total mutation burden (TMB), defined as the total number of mutations per megabase
(Mb) of region sequenced correlated with response to chemotherapy (Figure 3.3A): tumours
that attained pCR had significantly more mutations than those with RD post-chemotherapy
(2.1 vs. 1.5 Mb-1, p= 0.0002 Wilcoxon rank sum test). Tumours with higher RCB scores
had lower mutational burdens at diagnosis than those with less RD (p=0.004, ordinal logistic
regression). On dividing the cohort by ER and HER2 status, the strongest association between
TMB and response was seen in ER+HER2� tumours (p=0.0007 Wilcoxon rank sum test),
with a non-statistically significant trend in ER�HER2� cases (p=0.054, Wilcoxon rank sum
test, Figure 3.3B). There was no association between response and TMB in HER2+ tumours
(ER+HER2+ and ER�HER2+ analysed independently and when grouped) in this cohort
(p=0.76), though this was probably due to the fact that most HER2+ cases (63.9%, Table 2.3)
attained pCR or very minimal RD (RCB-I) after neoadjuvant therapy.

Not all mutations fall within coding regions or are eventually transcribed into RNA molecules.
In view of this, the expressed TMB was computed by retaining mutations identified on
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Figure 3.2: Distribution of tumour somatic mutation burden per megabase across all 168 cases in
the TransNEO cohort. (A) The median mutation burden was 1.3 mutations Mb-1, with missense
mutations predominating the somatic landscape. (B) Distribution of tumour mutation burden across
the TransNEO (blue) and the TCGA (red) studies.

exome sequencing that were also present in the RNA sequencing data (Section 2.5.2). The
association between expressed TMB load and response was also significant (Figure 3.3D):
tumours that attained pCR had a higher number of expressed mutations than those with
remaining RD (0.73 vs. 0.47 expressed mutations Mb-1, p=1.18e-05, Wilcoxon rank sum
test), with this association being statistically significant in ER+HER2� (0.93 vs. 0.29 Mb-1,
p=0.0003) and ER�HER2� (0.71 vs. 0.47 Mb-1, p=0.03) tumours, but not HER2+ tumours
(Figure 3.3D).

As TMB was shown to associate not only with pCR but also with the degree of RD after
treatment, an ordered ordinal regression model was constructed using the polr function from
the MASS R package [298] to linearly predict the probability of response to chemotherapy
based on the diagnostic TMB (Figure 3.3E). As expected, the resulting prediction model
consistently predicted a higher probability of attaining pCR as TMB increased, with a TMB
cut-off of 3 mutations Mb-1 determined to be the point at which the likelihood of attaining
pCR post-chemotherapy was higher than the likelihood of having remaining RD. At TMBs
less than 3 Mb-1 it was more likely for any degree of RD to be present after neoadjuvant
chemotherapy.
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Figure 3.3: Association of diagnostic TMB with response. (A) TMB was associated with response to
neoadjuvant chemotherapy: tumours that attained pCR had more mutations than those with remaining
RD. (B) Sub-classification of TMB and response across ER+/ER� and HER2+/HER2� subtypes:
ER+HER2� tumours showed a strong association between TMB and response: this association
was not observed in ER�HER2� and HER2+ tumours. (C,D) Expressed TMB was also associated
with response to chemotherapy, though this association was not observed in HER2+ tumours. (E)
Probability of response as mutation burden increased, as modelled by an ordinal logistic regression
model.
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Driver gene landscape

The somatic mutation landscape in breast cancer often comprises a few frequently mutated
genes in a large number of samples, with a long tail of genes that are infrequently mutated
and present in fewer tumour samples [96, 308]. In keeping with this known observation,
the most commonly mutated genes within this dataset were driver genes, formally defined
as genes in which the presence of a mutation or alteration increased net cell growth [287].
Specifically, the driver genes detected were those frequently implicated in breast cancer
[225] and included, amongst others, TP53, PIK3CA, GATA3 and MAP3K1 (Figure 3.4A).
Mutations in breast cancer driver genes were identified in 149 cases (89%), and the ability
to robustly call a mutation within these genes was not correlated with the degree of tumour
purity within the samples (tumour purity 45% in samples with no detectable driver mutation
vs. 50% in samples with driver mutations, p=0.06, Welch Two Sample t-test). 67% of all
cases had more than one detectable driver gene mutation (Figure 3.5).

TP53, a tumour suppressor gene, was the most commonly mutated breast cancer driver gene
observed and a somatic mutation was present in 57% of cases sequenced (Figures 3.4A
and 3.5). The prevalence of TP53 mutations was higher than that seen in the METABRIC
and TCGA studies (35.4% and 33% respectively, p=4.29e-07, Fisher’s Exact Test with
FDR correction, Figure 3.4C) [225]. This is perhaps, unsurprising: TP53 regulates the
control of the G1 checkpoint in the cell cycle and can induce cycle arrest and apoptosis
in cases of extensive DNA damage [309], and mutations within this driver gene have been
associated with more aggressive disease. Within the METABRIC study, mutations in this
driver gene were associated with higher histological grade in both ER+ (OR=3.3) and ER�

(OR=3.6) tumours, as well as worse outcome in ER+ (HR=1.6) tumours [225]. As the
neoadjuvant setting enriches for more aggressive tumours it is therefore of no surprise that
TP53 mutations would predominate within the cohort. Indeed, the presence of a high number
of tumours harbouring somatic TP53 mutations is, perhaps, a testament to the diagnostic
skills of the recruiting oncologists in selecting appropriate patients who would benefit most
from neoadjuvant treatment. Of note, case T156 had a germline heterozgous deletion of
TP53 exons 2 to 6, compatible with a diagnosis of Li Fraumeni Syndrome.
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Figure 3.4: Mutations within breast cancer driver genes identified in the dataset. (A) Frequently
mutated driver genes (observed in more than 1 tumour). TP53 was the most frequently mutated
gene, followed by PIK3CA, GATA3 and MAP3K1. (B) Recurrently mutated sites within previously
described hotspot locations in PIK3CA, GATA3, FOXA2 and AKT1. (C) TP53 (highlighted in red)
mutations were more prevalent within the TransNEO cohort, compared to the TCGA (57% vs. 33%),
in keeping with the selection of a more aggressive cohort.
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PIK3CA was the second most commonly mutated driver gene, with 26% of tumours har-
bouring a mutation within this oncogene. The prevalence of mutations within PIK3CA
was slightly less than that seen in other studies (32% in the TCGA), though this was not
statistically significant (p=0.75, Fisher’s Exact Test with FDR correction). As described
within the literature, most of the mutations within PIK3CA fell in ‘hotspot’ locations (Figure
3.4B), and included the activating mutations p.H1047R, p.E545K and p.E542K [17]. 80% of
all PIK3CA mutations were harboured by ER+ tumours.

Somatic and germline mutations within the tumour suppressor genes BRCA1 and BRCA2
somatic mutations were also present within the dataset. Five patients harboured a delete-
rious BRCA1 mutation or alteration (T013: p.V757Ffs*8, T040: exon 20 deletion, T071:
p.Q1777Pfs*74, T081: p.X1799_splice, T082: exon 1-17 deletion) and 2 patients harboured
deleterious germline BRCA2 mutations (T017: p.K2162Nfs*5, T160: p.X173_splice).

Other frequently mutated gene drivers included the tumour suppressor genes GATA3, MAP3K1
and PTEN, which, as expected, often harboured inactivating mutations (Figure 3.4A). The
prevalence of all other driver genes within this dataset did not differ when compared to the
TCGA and METABRIC.

Mutations associated with response to treatment

Binomial logistic regression models were used to explore associations between all non-
silent somatic mutations and response to chemotherapy, correcting for ER and HER2 status.
Response was classified into three categories: pCR, chemosensitivity (pCR and RCB-I) and
chemoresistance (RCB-III), as described by Hatzis et al. [117].

In the ER/HER2-corrected logistic regression model, non-silent mutations within TP53 were
strongly associated with response (Figure 3.6A). TP53 mutations were associated with a
greater likelihood of pCR (OR: 2.95, CI: 1.36-6.86, p=0.008) and chemosensitivity (OR: 3.58,
CI: 1.80-7.38, p=0.0004), and a lesser likelihood of chemoresistance (OR: 0.21, CI 0.08-0.53,
p=0.001). As mutations within this tumour suppressor gene resulted in more aggressive
and rapidly proliferating disease, it was unsurprising that cells harbouring these mutations
were more rapidly eliminated by cytotoxic chemotherapies. The association between TP53
mutations and response to chemotherapy has already been reported in two neoadjuvant
meta-analyses [52, 307] and it is reassuring that the same observation also holds true in this
dataset.
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Non-silent mutations within PIK3CA exhibited an opposite effect in the ER/HER2-corrected
model and were more likely to be associated with increased chemoresistance (OR: 2.93,
CI: 1.21-7.05, p=0.016) and decreased chemosensitivity (OR: 0.37, CI: 0.16-0.79, p=0.014).
The association between PIK3CA mutation status and pCR was previously described in
a study with 729 patients with breast cancer treated with neoadjuvant intent [319] and in
a meta-analysis of five clinical trials with a pooled total of 967 HER2+ patients [175].
However, in both studies, there were no formal associations made with chemoresistance.
In colorectal cancer, the presence of PIK3CA mutations was associated with resistance to
first-line chemotherapy through augmented PI3K/Akt signalling and a subsequent increase
in LGR5+ stem cell survival and proliferation [305].

Tumours harbouring GATA3 mutations also showed decreased chemosensitivity (OR: 0.20,
CI: 0.03-0.75, p=0.04) and a non-statistically significant trend for increased chemoresistance,
an observation that has not been made in the literature to date. It is worth noting, however,
that all GATA3 mutations were present in ER+ tumours.

Amongst the non-silent mutations within non-driver genes, AKAP6, KDM5C, MYH8 and
ZC3H6 mutations were associated with pCR across the whole cohort (Figure 3.6A). KDM5C
(Lysine Demethylase 5C) has been attributed to playing a role in chromatin remodelling and
transcription regulation and over-expression has been shown to increase proliferation and
invasion in gastric cancer via a decrease in TP53 expression [312]. There were no previously
published associations between mutations within AKAP6, MYH8 and ZC3H6 and response
to neoadjuvant chemotherapy.

Mutations within C3, CBFB, DNAH7, MAP2K4 and RP1 were associated with chemoresis-
tance: none of these mutations, to date, have been associated with response to neoadjuvant
chemotherapy in the literature.

In order to determine specific associations between response and ER/HER2 subtype, a
similar analysis was done but applied to the ER+HER2�, ER�HER2� and HER2+ co-
horts individually (Figure 3.6B). There were no mutations predictive of response in the
ER�HER2� subgroup, though there was a trend for significance for TP53 mutations and
pCR/chemosensitivity. In the HER2+ subgroup, NF1 mutations were associated with
chemoresistance. In ER+ tumours, mutations within DNAH8, which is involved in an-
drogen receptor signalling, MYO3A, SDK1, TGFBR3 and TP53 were all associated with
pCR, while non-silent mutations in ANK2 and DNAH8 were associated with chemosensitivity
(Figure 3.6B).
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Figure 3.6: Associations between non-silent mutations within commonly mutated genes and pCR,
chemosensitivity, and chemoresistance. Red indicates increased log odds, blue indicates decreased
log odds. (A) Log odds ratios shown across entire cohort, model corrected for ER and HER2 status.
(B) Cohort split by ER and HER2 status.
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Mutational signature landscape

The somatic mutational landscape of a tumour is fashioned by processes that induce and
maintain mutations within specific trinucleotide sequence contexts [9, 10, 213]. A method
involving signature extraction by non-negative matrix factorisation was described in 2013 and
more than 20 distinct signatures were defined using a cohort of 4,938,362 mutations derived
from 7,042 cancers. These signatures included, amongst others, DNA repair deficiency,
ageing, APOBEC activity signatures as well as genomic scars secondary to exposure to
genotoxins [9].

In order to determine the mutational signatures landscape present in the dataset, signature
decomposition from the bulk exome sequencing mutation data was performed using the
DeconstructSigs R package [241]. This statistical method uses the Wellcome Trust
Sanger Institute Mutational Signature Framework as a reference and determines the linear
combination of 30 pre-defined signatures by using a multiple logistic regression model with
constraints to reconstruct the mutational profile of each tumour. 160 tumour samples with at
least 10 mutations were used for this analysis.

As reported in the original paper describing the mutational signatures, Signature 1, which is
the result of mutational process initiated by spontaneous deamination of 5-methylcytosine
and correlates with age at cancer diagnosis, was present in nearly 100% of cases at diagnosis
(Figure 3.7A). Signature 3 (BRCA associated, failure of DNA double-strand break repair by
homologous recombination) was the second most prevalent signature and present in more
than 25% of cases. This was closely followed by two APOBEC signatures (Signatures 2
and 13) and a defective DNA repair signature (Signature 15, associated with high numbers
of small insertions and deletions at homopolymeric sites). The enrichment of BRCA and
APOBEC signatures could explain the higher mutation rate in this cohort when compared to
the TCGA, as activation of these processes is known to contribute to an increased mutation
rate [235].

An inherent limitation of these mutational signatures lies in the way they are computed. By
default, the sum of the contributions of all signatures is constrained to a total of 1 (i.e. 100%),
making inter-sample comparisons very challenging as the contribution of one signature is
highly dependent on the contribution from all other signatures operating in a tumour. Hence
estimates of the effect of each signature on response cannot be defined using this method,
as adding one unit causes a relative decrease in some of the other signatures. In order
to circumvent this, each signature was normalised to the presence of a signature that was
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Figure 3.7: Mutational signature landscape within the cohort. (A) Prevalence of mutational signatures,
with marked dominance of BRCA and APOBEC signatures. (B) The BRCA signature (Signature 3)
was predictive of response across the whole cohort. (C) Association between response and mutational
signatures, stratifying by ER and HER2 status.
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universally present in nearly all cases, in this case, Signature 1 (Age), as shown in Equation
3.1:

normalised SigN =
log2 (SigN +0.001)
log2 (Sig1 +0.001)

(3.1)

By using this approach, the signature contribution was freed from the 0-1 constraints set upon
it by the method that computed it and allowed formal comparisons of normalised signature
contributions to overall response to chemotherapy.

The BRCA signature (Signature 3) was the only mutational process that was associated with
pCR across the entire cohort (OR: 1.10, CI: 1.10-1.20, p=0.02, Figure 3.7B). On subdividing
the cohort by ER and HER2 status, the BRCA association with pCR was maintained in the
ER+HER2� cohort, whilst an association between APOBEC activity and pCR was observed
in the ER+HER2� and HER2+ cohorts. A carcinogenic signature (Signature 4, tobacco),
which shows transcriptional strand bias for C>A mutations, was associated with pCR in
ER+HER2� tumours.

Intra tumoural heterogeneity

Tumours are genomically heterogeneous secondary to evolutionary pressures and stochas-
ticity, with heterogeneity being a key driver of resistance to both cytotoxic and targeted
therapies [61, 193, 215, 276]. Genomic alterations present in all cancer cells (i.e. having a
cancer cell fraction (CCF) of 100%) are considered to be truncal as they would have been
established within the very early stages of the tumour’s evolutionary history and passed on to
subsequent descendent cells. Conversely, mutations present in a subset of cancer cells (i.e.
with CCFs of less than 100%) are considered to be subclonal and established later on during
the tumour’s evolutionary history. Indeed clonal mutations have often been likened to the
trunk of a tree, with subclonal mutations forming its branches [276, 314].

Various methods have been proposed to compute CCF [15, 66, 169, 191, 242], with most
relying on adjusting mutation allelic frequencies to the tumour purity and local copy number
alterations. Following the computation of CCFs for each mutation, mixture models with
differing density functions allow the inference of mutational clusters [169, 228, 242]. For
example, PyClone [242] uses beta-binomial distributions while LICHeE [228] and CHAT
[169] use Gaussian distributions.
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The clonal composition of all tumours was established by running PyClone on the mutational
and copy number data (Section 2.5.1). Tumours that had RD following chemotherapy had
a higher number of predicted mutational clusters at diagnosis, compared to those that had
complete response (2.25 vs. 1.79 mutational clusters, p=0.02, Wilcoxon rank sum test, Figure
3.8A), in keeping with observations that clonally diverse tumours are more likely to harbour
a clone with a resistant phenotype, and therefore more likely to have a poorer response to
chemotherapy. A similar observation was also made in oesophageal adenocarcinoma treated
with neoadjuvant chemotherapy [206].

In order to provide further evidence that heterogeneity was associated with response, the
CCF for each mutation was computed using the mathematical framework shown in Equation
3.2, derived by McGranahan et al. [191]:

CCF =
VAF

p
⇥
⇣
(1� p)CNnormal + pCNtumour

⌘
(3.2)

where VAF was the variant allele fraction for each mutation determined by exome sequencing,
p was the tumour purity (computed using ASCAT), CNnormal was the germline copy number
state (which was universally 2 (diploid) in this dataset) and CNtumour the total copy number
state at the mutant locus in the tumour (computed using ASCAT). Point estimates for CCF
and confidence intervals were computed using a binomial distribution modelled by the
binconf function from the Hmisc R package and a mutation classified as clonal if the
CCF 95% confidence interval overlapped 1, with all other mutations classified as subclonal.
As emphasised by McGranahan et al. [191], this was a conservative classification which
was dependent on sequencing read depth, in keeping with other methods that assessed
subclonality.

This second method of computing CCF revealed that tumours that attained pCR had more
clonal mutations compared to those with RD post-chemotherapy (median 76.4 vs. 49.8
mutations, p=0.00001, Wilcoxon rank sum test), however there was no statistically significant
difference in the number of subclonal mutations in both response groups (Figure 3.8B).
Tumours with RD post-chemotherapy had an overall higher percentage of subclonal mutations
than those that attained pCR (27.0% vs. 16.2%, p=0.004 Wilcoxon rank sum test, Figure
3.8C). This indicated that tumours attaining pCR had less clonally complex architectures,
with most mutations being clonal, whilst tumours with RD post-chemotherapy had fewer
clonal mutations, but more subclonal mutations and therefore more clonal diversity, in
keeping with the findings from the PyClone analysis described previously.
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Figure 3.8: Tumour heterogeneity and resistance to treatment. (A) Tumours that attained pCR had
fewer PyClone predicted mutational clusters compared to those with RD. (B) CCF computation
using the method described by McGranahan et al. [191] shows that tumours that attained pCR had a
higher number of clonal mutations than those with RD, but no difference in the number of subclonal
mutations. (C) Conversely, tumours with RD post-chemotherapy had a larger proportion of subclonal
mutations.

3.3.2 Copy number landscape

The iC10 classification

Breast cancer is predominantly driven by copy number rather than mutational events [56, 60].
As observed with mutation load, the degree of chromosomal instability at diagnosis also
correlated with response to treatment: tumours with increasing chromosomal instability
and genomic rearrangements were more likely to attain pCR (Figure 3.9A): this association
was strongest in ER+HER2� tumours (p=0.003), but was not statistically significant in
ER�HER2� and HER2+ tumours (Figure 3.9B).

In 2012, a classification based on copy number changes was proposed through the integration
of genomic and transcriptomic data from 2,000 breast tumours [60, 63]. This classification,
entitled IntClust, identified 10 different subgroups, each with distinct copy number alterations
and distinguishable clinical outcomes. The key strength of this classifier, amongst others,
was the ability to split seemingly similar breast cancer intrinsic subtypes (as classified by the
PAM50 classification [221]) into ones with very different clinical outcomes [12].

IntClust classification was performed using the iC10 R package [12] (Figure 3.9C), using
as input: (1) cellularity corrected copy number log ratios (obtained by running QDNAseq on
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response to chemotherapy.
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the shallow whole genome sequencing files (Section 2.5.1), as well as (2) voom normalised
gene expression counts. Most tumours fell into iC 9 (mostly ER+ luminal B), 10 (mostly
TNBC) and 5 (HER2-enriched) each with distinct copy number alterations (iC9: 8q gain, 20q
amplification, iC10: 5q loss, 8q gain, 10p gain, 12p gain, iC5: ERBB2 amplification) [63].

Associations with pCR, chemosensitivity and chemoresistance were performed using a
logistic regression model accounting for ER and HER2 status (Figure 3.9D). Tumours
classified in the iC10 group were most associated with obtaining pCR and RCB-I following
neoadjuvant chemotherapy. iC10 tumours are mostly triple negative tumours from the
PAM50 basal-like subtype, with enrichment of TP53 mutations, intermediate levels of
genomic instability and copy number alterations involving 5q loss (harbouring many DNA
damage repair and apoptosis genes) and gains at 8q, 10p and 12p [60, 63].

The iC5 subgroup encompassed tumours with ERBB2 amplification at 17q12, intermediate
levels of genomic instability and a high proportion of TP53 mutations, and tumours falling
into this category were associated with increased chemosensitivity (pCR and RCB-I). This
was unsurprising, given the clinical efficacy of trastuzumab.

iC3 tumours, which were often low proliferation, luminal A tumours with low genomic
instability and paucity of copy number changes, as well as low prevalence of TP53 mutations
and high frequency of PIK3CA, CDH1 and RUNX1 mutations were associated with decreased
chemosensitivity (i.e. more likely to result in RCB-II or III disease). Once again, the
decreased proliferation, as well as negative association with TP53 mutations and positive
association with PIK3CA mutations explained the decreased chemosensitivity.

Tumours classified in the iC7 group, which were characterised by 16p gain, 16q loss and 8q
amplification, were associated with chemoresistance (RCB-III). As with iC3 tumours, iC7
tumours were predominately ER+, low proliferation, well-differentiated luminal A tumours,
albeit with more genomic instability than iC3 tumours.

Finally, tumours in iC2, characterised by 11q13/14 amplification (in which the driver genes
CCND1, EMSY and PAK1 reside) and high levels of genomic instability were also associated
with chemoresistance, as previously shown by Ali et al. [12]. This group comprised of
luminal A and B tumours which paradoxically had the worst prognosis of all ER+ tumours,
with intrinsic chemoresistance despite being highly proliferative.

Hence the iC10 classification, to an extent, mirrored the observations previously made in
the earlier parts of this chapter. Copy number groups associated with TP53 mutations with
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higher levels of proliferation were more likely to attain pCR or be chemosensitive, whilst
iC10 groups enriching for PIK3CA mutations and which had decreased genomic instability
were associated with chemoresistance.

GISTIC copy number analysis

Pinpointing specific regions of copy number alterations (CNA) within the genome that
are associated with response is challenging in view of the breadth of the genome and the
large number of samples required in order to obtain genome-wide significance. In order to
overcome this, genomic regions were condensed into minimum common regions by using
GISTIC version 2 [196] across three cohorts:

1. Response - pCR: GISTIC run separately on tumours that attained pCR and those with
residual disease.

2. Response - Chemosensitivity: GISTIC run separately on chemosensitive tumours
(pCR and RCB-I) and non-chemosensitive tumours (RCB-II and RCB-III).

3. Response - Chemoresistance: GISTIC run separately on chemoresistant tumours
RCB-III) and non-chemoresistant tumours (pCR, RCB-I and RCB-II).

Regions of significant changes in each of these three comparative groups were merged,
resulting in a candidate list of regions that were more statistically significantly altered than
expected by chance. Associations between response and each of these genomic regions
was assessed by using a logistic regression model. The analysis identified 9 regions associ-
ated with pCR, 13 regions associated with chemosensitivity and 3 regions associated with
chemoresistance at an FDR of < 0.05 (Table 3.1).

Oncogene amplification was often associated with chemosensitivity, whilst tumour suppressor
gene loss was associated with chemoresistance.

Amplification of 1q41-1q44, which codes for the DNA repair protein PARP1 that is involved
in the base excision repair pathway, was positively associated with pCR and negatively
associated with chemoresistance, in keeping with previous findings [322]. Likewise, amplifi-
cation of PIK3CA and TBL1XR1 on 3q26, MYC on 8q22-8q24, RPS6K and AML1 on 21q22
were associated with pCR. Deletion of FBXW7 on 4q31-4q35, which participates within the
molecular complex involved in the ubiquitination of cyclin-E, JUN, MYC and NOTCH1
[115] was associated with pCR.
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Table 3.1: CNAs associated with response to neoadjuvant therapy.

Response CNA Cytoband FDR Odds Ratio CI (Odds Ratio)

1q41 - 1q44 0.0000000 1.84 1.54-2.26

3q25.31 - 3q29 0.0000001 1.60 1.39-1.91

8q22.3 - 8q24.22 0.0000000 1.34 1.22-1.48

14q21.3 - 14q22.3 0.0223600 1.32 1.14-1.65

17q22 - 17q24.1 0.0370086 1.18 1.09-1.37

17q24.3 - 17q25.3 0.0032401 1.41 1.23-1.77

Amplification

21q22.12 - 21q22.3 0.0000001 1.83 1.53-2.3

4q31.23 - 4q35.2 0.0306197 5.21 1.66-16.14

pCR

Deletion
16q12.2 - 16q21 0.0013203 0.05 0.01-0.18

1p12 - 1q24.1 0.0034722 1.52 1.29-2.03

1q31.2 - 1q44 0.0000001 1.70 1.45-2.05

3p26.3 - 3p22.3 0.0004380 1.42 1.24-1.76

3q25.32 - 3q29 0.0000091 1.50 1.3-1.78

8p12 - 8p11.22 0.0379688 0.82 0.7-0.93

8q21.3 - 8q22.2 0.0276927 1.16 1.05-1.29

13q33.3 - 13q34 0.0247815 1.16 1.08-1.34

14q11.2 - 14q22.3 0.0001925 1.45 1.27-1.83

17q12 - 17q21.1 0.0028822 1.10 1.05-1.17

17q25.3 0.0126556 1.26 1.12-1.51

19p13.12 - 19p13.11 0.0185112 1.37 1.17-1.8

19q13.42 - 19q13.43 0.0004380 1.37 1.2-1.63

Amplification

21q22.2 - 21q22.3 0.0000208 1.61 1.35-1.99

Chemosensitivity

Deletion 13q11 - 13q21.31 0.0126556 0.19 0.06-0.55

Amplification 1q41 - 1q44 0.0401158 0.68 0.52-0.85

11q14.2 - 11q25 0.0401158 7.59 2.16-26.98
Chemoresistance

Deletion
16q22.2 - 16q24.3 0.0401158 4.24 1.67-10.73
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Chemosensitive tumours had amplification of breast cancer drivers NOTCH2, TBL1XR1,
PIK3CA, ZNF703, FGFR1, FOXA1, ERBB2 and CNOT3, and deletion of BRCA2 and RB1.

Tumour suppressor genes were predominantly present within genomic regions associated
with chemoresistance. Loss of the FRA16D common chromosomal fragile site at 16q
was associated with chemoresistance (OR: 4.24). This region also codes for four tumour
suppressor genes: ZFHX3, WWOX, CBFA2T3 and FBXO31, with WWOX being a key player
in maintaining genomic stability and regulating DNA repair by modulating the activity of
ATM [3]. The second site associated with chemoresistance was deletion of 11q, which
contains the tumour suppressor protein YAP1, as well as two genes involved in checkpoint
mediated cell cycle arrest in response to DNA damage: CHEK1 and ATM. Through the
loss of key molecules involved in inducing apoptosis secondary to cytotoxic damage, these
tumours were more likely to become chemoresistant.

3.3.3 Genomic immune landscape

The contribution of the immune system to the tumour ecosystem is being increasingly
appreciated, with evidence rapidly accumulating that immune-mediated cell kill regulates
tumour evolution [233, 234, 240, 286]. Indeed, the latest generation of anti-tumour agents
are increasingly immunomodulatory, with PD-L1 inhibitors (including atezolizumab and
avelumab), PD1 inhibitors (including pembrolizumab and nivolumab) and CTLA4 inhibitors
(such as ipilimumab) already being used in clinic in a variety of tumour sites following
impressive results in phase III clinical trials [39, 119, 125].

The foundation of the immune system is built on the ability of discriminating between
‘self’ and ‘non-self’: during the early stages of development, immune system cells that
recognise self molecules as foreign are eliminated and the remaining immune cell repertoire
is competent at discriminating self from non-self, thereby becoming effective in recognising
and eliminating pathogens [145].

Tumour cells translate and transcribe mutant DNA sequences producing non-self peptide
sequences that, if bound to MHC class I molecules (including HLA-A, HLA-B and HLA-C)
and displayed on the cell surface, have the potential of being antigenic and inducing an
immune response [41, 240, 315]. As the number of expressed coding mutations correlated
with response to chemotherapy, the subsequent hypothesis was that this could be due to an
increased number of neoantigens presented to the scanning immune cells.
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In order to characterise the neoantigenic landscape of these tumours, HLA typing was per-
formed on the matched normal tissue sequencing data using the Polysolver (POLYmorphic
loci reSOLVER) tool [261], which inferred the 4-digit HLA type for each sample by using a
Bayesian classifier to determine genotype. 182 different HLA genes across all cases were
genotyped (HLA-A: 54, HLA-B: 82, HLA-C: 46, Figure 3.10A).

HLA genotypes HLA-B*38:01 and HLA-A*23:01 were strongly associated with pCR
(Figure 3.10B, HLA-B*38:01: OR 34.94, CI: 4.16-786.77, p=0.004, HLA-A*23:01: OR:
9.99, CI: 1.35-92.83, p=0.030). The association with HLA-B*38:01 was maintained in
the chemosensitive subtypes (OR:16.82, CI: 2.17-355.59, p=0.017), with genotype HLA-
C*14:02 also conferring chemosensitivity (OR: 13.42, CI: 1.35-302.15, p=0.038). Genotypes
HLA-B*18:01 and HLA-C*07:18 were both associated with chemoresistant tumours (HLA-
B*18:01: OR:6.18, CI: 1.44-27.71, p=0.014, HLA-C*07:18: OR: 9.63, CI: 1.50-59.74,
p=0.013).

Of note, three of these HLA alleles have been described in playing a role in autoimmunity or
HIV infection:

1. The HLA-B*38:01 allele, which was associated with pCR and chemosensitivity and
was present in 3.6% of the cases included within this cohort, has been shown to be the
most protective MHC Class I allele against the development of type 1 diabetes, though
the mechanism by which this happens has not been elucidated [132, 262].

2. HLA-C*14:02, which was associated with chemosensitivity and was present in 3.5%
of cases has been shown to be significantly associated with an increased risk of severe
acute graft-versus-host disease after unrelated donor bone marrow transplantation, as
well as increased transplant-related mortality [201].

3. HLA-B*18:01, present in 4.4% of cases, was associated with chemoresistance and
has been shown to be associated with high HIV viral replicative capacity in adults
[7, 48, 168].

As LOH over the HLA class I locus has recently been described as a potential means of
immuno-evasion (as it results in fewer neoantigens presented), the prevalence of LOH over
the HLA class I locus was determined by using the LOHHLA tool [192], which took as input
tumour purity from ASCAT [296] as well as HLA genotyping data from PolySolver [261].
Statistically significant HLA alleles with a copy number of less than 0.5 were assumed to
be undergoing LOH. 29 cases (16%) had evidence of LOH across at least one MHC class
I locus. 15 cases had LOH over one MHC Class I locus, 8 cases had LOH over two HLA
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genes and 6 cases had loss of 3 genes. HLA LOH was strongly associated with RD (OR: 0.28
CI: 0.07-0.88, p=0.04, logistic regression model factoring in ER and HER2 status, Figure
3.10C), in keeping with the hypothesis that tumours that present fewer neoantigens are less
likely to elicit an immune-mediated response.

Having genotyped the HLA class I molecules and determined associations with response,
putative neoantigen calling was performed by using the pVAC-tools cancer immunotherapy
suite [135]. Mutations identified on exome sequencing were translated into corresponding
mutant proteins and a list of potential neoantigenic fragments containing the mutant protein
generated by using a sliding window approach across the mutated locus, retaining epitopes of
lengths 8-11 amino acids. These potentially antigenic fragments were analysed for binding
affinity to the HLA class I molecules using the prediction software NetMHCPan version
3 [211], NetMHC version 4 [179] and PickPocket version 1.1 [323] bundled within the
Immune Epitope Database resource (IEDB) [300]. Neoantigens with a binding affinity score
of less than 500nM and which had a higher binding affinity than the corresponding wild-type
sequences were retained. Further downstream filtering was done by retaining neo-epitopes
generated by transcripts that had an expression greater than 1 TPM.

After filtering, a total of 4,134 neoantigens were retained, with a median of 20 neoantigens
per case (range: 0-149). 19.6% of all coding non-silent mutations generated an expressed
neoantigen. The total neoantigen burden strongly correlated with the total mutation count
(R=0.76, p=4e-32), Figure 3.11A. 1.4% of neoantigenic sequences were present in multiple
unrelated cases and were due to identical mutations in GATA3, MAP3K1, MT-ND4, PIK3CA,
SF3B1 and TP53. There was no association between the presence of a particular neoantigenic
sequence and response to therapy.

Tumours that attained pCR post-chemotherapy had higher neoantigen burdens at diagnosis
than those with RD (31 vs. 22 neoantigens, p=0.0004, Wilcoxon rank sum test, Figure 3.11C),
and there was a clear statistically significant separation of neoantigen burden distributions be-
tween chemoresistant tumours and those that attained pCR (p=0.001, Kolmogorov-Smirnov
Test, Figure 3.11D). The association between neoantigen burden and response was statis-
tically significant in ER+HER2� and ER�HER2� tumours, but not in HER2+ tumours.
(ER�HER2� p=0.009, ER+HER� p=0.011, HER2+ p=0.219, Figure 3.11E).

Clonal neoantigens were more prevalent in tumours that attained pCR (p=0.001, Wilcoxon
rank sum test), and there was no association between the number of sub-clonal neoantigens
and response to treatment (p=0.640, Wilcoxon rank sum test).
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92.8% of all expressed neoantigens bound to a single MHC molecule, and tumours that had
increasing numbers of neoantigens that bound to more than one MHC class I molecule were
more likely to attain pCR (OR: 1.28 CI 1.07-1.55, p=0.009, logistic regression).

The effect of HLA LOH on the number of presented neoantigens across all 29 cases har-
bouring LOH was then determined. In total, these 29 cases had 419 neoantigenic peptides,
out of which 233 (56%) were presented by the HLA molecule undergoing LOH. Hence, by
developing HLA LOH, the tumours effectively prevented more than half of the neoepitopes
generated from being presented. 73% of LOH events resulted in the loss of a molecule
that presented an equal or greater number of neoepitopes than its retained alternative allele
(Figure 3.11F)). Consequently, only 27% of LOH events resulted in the loss of an allele that
presented fewer neoepitopes that its alternative haplotype. The distribution of neoantigen loss
was significantly above 50% (p=0.003, Wilcoxon signed rank test), indicating that tumours
actively lost the HLA locus that was able to present the greater number of neoantigens to the
T cell receptors, and consequently were more likely to have RD post-chemotherapy.
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3.4 Transcriptomic predictors of response

3.4.1 Differential gene expression analysis

An analysis of genomic predictors of response showed many important observations, in-
cluding the association of CNAs and mutations in cancer driver genes with response to
treatment, as well as the probable involvement of the immune system through recognition
of neoantigenic peptides. The transcriptomic landscape and its association with response to
chemotherapy has been explored in the literature, with various indices, including proliferation
and immune infiltrate, associated with response [68, 140, 172, 182].

So as to identify genes associated with increasing probability of response, unprocessed
RNA-seq counts obtained as discussed in Section 2.5.2 were normalised using trimmed
mean of M-values (TMM) normalisation to mitigate sample-specific effects due to differing
sequencing depths of each RNA sample as well as batch effects [237]. Differential expression
using a negative binomial model was performed using the edgeR R package [190, 236] using
the linear model:

⇠ ERstatus +HER2status +Batch+Treatment +RCBscore (3.3)

where ERstatus, HER2status, Batch and Treatment were categorical variables, and RCBscore

the numeric RCB score (with 0 being pCR). Rather than modelling response as a binary
variable (i.e. pCR and RD), the response variable in the differential expression model was
preferentially selected to be the continuous RCB score. Indeed, as the genomic analysis
data has shown, most genomic predictors of response can be modelled on a continuous
scale, rather than a discrete scale (eg TMB, mutational signature contribution, neoantigen
load) and correlate monotonically with degrees of response. So, for example, an increasing
contribution of a factor might result in an increased degree of response: such an association
would not be picked up if binary classifications were used. Hence this differential expression
model was able to detect gradual gene expression changes across the four response groups,
and reveal transcriptomic variables associated with improved response. By including ER,
HER2, treatment and batch within the model, the resulting effect observed was adjusted for
these variables.
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The differential analysis based on the model described in Equation 3.3 revealed 871 lowly
expressed and 1,202 highly expressed genes in patients that were more likely to attain a better
response with chemotherapy (Figure 3.12A).

Chemotherapy metabolising drugs and adenosine triphosphate (ATP) binding cassette multi-
drug transporters featured within the differentially expressed gene list, shedding light into
mechanisms of resistance to treatment (Figure 3.12B). The lowliest expressed gene in
tumours attaining a better response (and conversely the highest expressed in those with
higher residual cancer burden) was CYP2A7 which encodes a member of the cytochrome
P450 super family of enzymes involved in xenobiotic metabolism, though the substrate of this
enzyme is currently unknown. CYP2C8, which is involved in taxane and cyclophosphamide
metabolism and elimination [227] was also lowly expressed in tumours attaining a better
response. Hence, high expression of these xenobiotic enzymes presumably resulted in faster
elimination of the cytotoxic drugs administered and therefore a lesser probability of attaining
pCR.

ABCG2, an ATP binding cassette multi-drug transporter which is known to pump out various
chemotherapeutic agents such as 5FU, anthracyclines and taxanes, and is associated with
drug resistance [134, 320] was also highly expressed in tumours that did not respond to
treatment. Indeed, high expression of this gene has already been implicated in resistance to
treatment in breast cancer [320]. Similarly, SLC29A1, a solute carrier which is involved in
the uptake of 5FU from the basolateral membrane is highly expressed in patients with pCR:
a similar association was seen in pancreatic cancer [291].

Hence, the pre-treatment expression landscape showed that tumour cells were already
equipped with mechanisms conferring resistance to therapy. By increased expression
of xenometabolising enzymes and chemotherapy efflux molecular pumps, as well as de-
creased expression of chemotherapy drug influx molecular transporters, tumours were already
equipped with a resistance toolkit to circumvent the cytotoxic effects of these treatments.

Breast cancer driver genes that were highly expressed in tumours attaining a better response
to treatment (Figure 3.12A) included: BRCA2, BUB1B, CBFB, CCND3, CCNE1, CDKN2A,
DNMT3A, EGFR, NOTCH1 and PIK3CA. Interestingly, as discussed previously, PIK3CA,
ERBB2 and BRCA2 copy number gains were also very strongly associated with chemosensi-
tivity, and it is reassuring that the corresponding expression of these three breast cancer driver
genes was also increased, thereby validating observations made in the copy number landscape
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analysis. Higher expression of cell cycle driver genes was associated with chemosensitivity,
confirming observations that increased proliferation was associated with response to therapy.

Unsurprisingly, BCL2, ESR1, IGF1R, PREX2 and STK11 were highly expressed in tumours
with poor response to treatment: strongly expressing ESR1 luminal A tumours in iCs 3, 7
and 8 were less likely to be chemoresponsive as they were of lower grade. Additionally, the
increased expression of BCL2, a negative regulator of apoptosis, would result in the evasion
of cytotoxic cell death and explain the increased expression in poor responders.

The transcriptomic landscape differences were not only limited to xenobiotic and driver gene
expression. Various immune system genes were also highly expressed in tumours attaining
pCR, most notably perforin (PRF1), a key mediator of lymphocyte mediated cytolysis [167]
which forms channels in the target cell membrane and allows the influx of cytotoxic molecules
such as granzyme into target cells. Indeed, perforin is a key component of the cytolytic
activity score that is a surrogate for the degree of T cell killing [240]. Additionally, tumours
attaining a better response after neoadjuvant therapy had higher expression of IL12RB2,
which induces proliferation of T-cells and NK cells, thereby enhancing IFN-g production. In
keeping with this, IFNG was also strongly co-highly expressed in the microenvironment of
these tumours. The differential analysis also revealed high expression of the cytotoxic T cell
marker CD8, as well as HLA-A, PDL1 and PDCD1 in tumours that attained pCR, confirming
the presence of increased immune cell infiltrate.

To identify transcriptomic pathways associated with better response to chemotherapy, gene
set enrichment (GSEA) on the differentially expressed list of genes was performed using the
camera statistical method in edgeR: in brief, this method performed a competitive gene set
test accounting for inter-gene correlation and tested whether genes were highly ranked relative
to other genes in terms of differential expression [311]. As input to the GSEA method, the
annotated gene sets provided within the Molecular Signatures Database (MSigDB) version
6.1 were used [171, 274], specifically the Hallmark (H) gene set, Computational (C4) gene
set and Gene Ontology (GO, C5) gene set.

Enrichment over the Hallmarks gene set (Figure 3.12C) showed that two key pathways
were enriched: cell division/proliferation (including: E2F targets, mitotic spindle, G2M
checkpoint) and immune system pathways (interferon alpha/gamma response, allograft
rejection, inflammatory response, IL6 JAK STAT3 signalling). STAT3 signalling is a major
pathway that induces cancer inflammation and is associated with increased proliferation,
angiogenesis and metastasis, while also inhibiting anti-tumour immunity [159, 219, 248].
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Figure 3.13: Expression of Cancer/Testis Antigens and stem cell markers at diagnosis. (A) Box plot
showing difference in total CTA expression between tumours that attain pCR and those with RD. Red
indicates highly expressed in pCR, blue indicates lowly expressed in pCR. (B) CTA expression was
associated with response to chemotherapy. (C) Expression of a stem cell metagene was associated
with response, with correlations seen in ER+ and ER� disease, but not HER2+ tumours (D).
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Indeed, STAT3 decreases anti-tumour immune responses by antagonising NF-kB and STAT1
expression of TH1 cytokines (such as IL-12 and IFN-g) which are necessary for innate and
T cell-mediated anti-tumour immunity [318]. Perhaps the heightened expression of STAT3
(and consequent immuno-inhibition) was a direct consequence of the increased anti-tumour
immune response and complemented the increased PD1 and PDL1 expression observed in
tumours that attain pCR. Furthermore, as revealed by the differential expression analysis and
copy number analysis, GSEA confirmed decreased ESR1 signalling in tumours that attained
pCR and increased PIK3CA, AKT and MTOR signalling.

GSEA on the C5 GO set revealed enrichment over 328 processes. Once again, most of the
GO terms that were identified pertained to proliferation and immune activation pathways.
An enrichment over the Computational C4 gene set also demonstrated a strong correlation
between response and genes around the vicinity of CCNA2, CDC20, CDK1, CENPF, PCNA
and RRM1, all of which were strongly associated with cell cycle and division.

Finally, to validate these observations using an independent pathway database, enrichment
over the Reactome database [78] was performed using the ReactomePA R package [317].
This enrichment validated the previous observations on a different curated dataset: tumours
that were likely to respond better had higher proliferation and greater immune activation
(Figure 3.12D).

The genomic analyses showed that increased neoantigen load corresponded with response
to chemotherapy, with tumours having greater neoantigen burdens more likely to attain
pCR. Expression of Cancer/Testis Antigens (CTAs) is restricted to male germ cells, however
their expression is often reactivated in cancer and can be immunogenic if processed peptide
sequences are presented on HLA Class I molecules [250]. The expression of 59 CTA genes
[240] was examined (Figures 3.13A, B): of these, 10 genes (CAGE1, FTHL17, MAGEA10,
MAGEA3, MAGEA4, MAGEA5, MAGEA6, MAGEB1, MAGEC1, TMPRSS12) were strongly
associated with pCR if expressed, while the expression of CCDC83 was associated with RD
(OR: 0.5, CI: 0.3-0.9, p=0.04). The combined expression of these 59 CTA genes correlated
with the degree of response: high expression of CTA genes was more likely to result in
pCR (OR: 1.31, CI: 1.05-1.65, p=0.02). Since CTAs are expressed as tumours become
more de-differentiated, the expression of an established adult stem cell metagene [310] was
assessed in the dataset (Figures 3.13C, D). Tumours that attained pCR had higher enrichment
of this stem cell metagene (p=0.02, Wilcoxon rank sum test).
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3.4.2 Tumour proliferation

As the GSEA showed that tumour proliferation was a key pathway that determined response
to chemotherapy, the contribution of proliferation signatures to response was explored in
further detail. Gene set variation analysis (GSVA) was performed on the Genomic Grade
Index (GGI) gene set [271], comprising 97 genes associated with tumour histological grade,
by using the GSVA R package [114]. GSVA was chosen to obtain a pathway activation score
ranging from -1 (inactive) to 1 (highly active). As seen in Figure 3.14A, the distribution
of GGI was distinctly bimodal, with high and low proliferation groups. To determine
the optimum cut off score, the distribution of scores was modelled into a mixture of two
Gaussian distributions by using a mixed effect model provided by the MClust R package
[255]. A threshold score of -0.14 was used to define the cut-off point between high and low
proliferation groups.

80% of tumours that attained pCR had a high proliferation score, compared to 77% of RCB-I
tumours, 51% of RCB-II tumours and 29% of RCB-III tumours (Figure 3.14B). The gradual
decrease in proliferation activation across the four response groups is shown in Figure 3.14C:
as the degree of residual cancer increased, proliferation activation at diagnosis decreased.
Similar findings have been previously reported [172]. The association between GGI and
pCR was strongest in ER+HER2� (p=0.006) and ER�HER2� (p=0.004) tumours, but not
HER2+ tumours (p=0.964, Wilcoxon rank sum test), Figure 3.14D. Splitting the HER2+

group into ER+ and ER� subtypes did not reveal any distinctive findings. An ordinal model
(Figure 3.14E) confirmed the relationship between GGI GSVA score and increasing RD and
predicted that at activation scores of 0.4, it was far more likely for a tumour to attain pCR
than have RD after chemotherapy (p=2.04e-05).

Interestingly, 64% of cases with high proliferation did not attain pCR, whilst 13% of cases
with low proliferation still attained pCR, showing that proliferation, by itself, was not the
sole factor that determined response to chemotherapy and that other pathways were also
contributing to response. To explore this further, the dataset was split into two groups:
one in which tumours with high proliferation that attained pCR were compared to those
with RD and a second group in which tumours with low proliferation that attained pCR
were compared to those with RD. Hence, by doing so, mechanisms responsible for pCR
in both highly proliferative and lowly proliferative tumours could be ascertained. In both
cases, tumours that attained pCR in both proliferation high and low subgroups had highly
significant enrichment over GO immune response pathways (Figure 3.15), more so in the
high proliferation group than the low proliferation group, suggesting that proliferation was



3.4 Transcriptomic predictors of response 115

0.00

0.25

0.50

0.75

−1.5 −1.0 −0.5 0.0 0.5 1.0

GGI activation score

D
en

si
ty

A

0

20

40

60

80

pCR RCB−I RCB−II RCB−III

RCB category

%
 T

um
ou

rs
 w

ith
 h

ig
h 

G
G

I

B

RCB−III

RCB−II

RCB−I

pCR

−1.0 −0.5 0.0 0.5 1.0
GGI activation score

R
C

B
 c

at
eg

or
y

C

** **  
ER−HER2− ER+HER2− HER2+

pCR RD pCR RD pCR RD

−0.8

−0.4

0.0

0.4

Response

G
G

I S
co

re
D

0.00

0.25

0.50

0.75

−2 −1 0 1 2

GGI activation score

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Response

pCR

RCB−I

RCB−II

RCB−III

E

Figure 3.14: GGI score and association with response. (A) GSVA on GGI gene set over all samples
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significant in HER2�, but not HER2+ cohorts. (E) Ordinal prediction model of response given a
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not the sole mediator of response and attaining pCR also required an immuno-competent
tumour microenvironment. Interestingly, low proliferation tumours that attained pCR also
had an increased enrichment over extracellular matrix gene sets, indicating that the non
immune tumour microenvironment also played a role in fashioning response to therapy.
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Figure 3.15: GSEA on highly proliferative (top) and lowly proliferative (bottom) tumours, pCR vs.
RD. Tumours that attained pCR in both groups had higher expression of immune system pathways,
compared to those that had RD post treatment, showing that chemotherapy requires a competent
immune system for maximum effect.
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3.4.3 Tumour immune microenvironment

In view of the key findings of the previous differential expression analysis (Section 3.4.1), as
well GSEA enrichment over the GO and Reactome pathways showing a strong association
between immune pathways and response to chemotherapy, the contribution of the immune
system was analysed further.

The cytolytic activity (CYT) score is considered to be a surrogate measure of T-cell mediated
cytolysis [240] and is defined as the geometric mean of the expression of granzyme A (GZMA)
and perforin (PRF1). In view of this, the CYT score at diagnosis was computed in order to
gain an understanding of the degree of immune-mediated cytolysis across the whole cohort.
The previous differential expression analysis had already suggested that the expression
of PRF1 was higher in tumours that attained a better response to chemotherapy, and a
comparison of CYT score across all response groups (Figure 3.16A) confirmed the association
between increased immune-mediated cytolysis and improved response to chemotherapy.
Tumours that attained pCR on chemotherapy had higher CYT scores at diagnosis than those
with RD (median: 3.1 vs. 2.6, p=0.007, Welch Two Sample t-test), indicating higher T-cell
activity in these treatment naive tumours.

ER� tumours had higher CYT scores than ER+ tumours (mean 3.0 vs. 2.6 p=0.02, Welch
Two Sample t-test). The association between CYT score and response was only observed
in ER+HER2� and HER2+ tumours (Figure 3.16B). ER�HER2� tumours, despite having
higher CYT scores compared to all other subgroups, did not have a statistically significant
relationship between CYT score and response.

In order to validate the CYT score findings, the ESTIMATE R package [316], which used
single-sample GSEA to compute the fraction of stromal and immune cells in tumour samples,
was run on voom transformed RNA-seq counts. As part of its computation to infer tumour
purity, ESTIMATE used a 141 gene immune signature to compute an ImmuneScore. Tumours
that attained pCR had higher ESTIMATE ImmuneScores compared to those with RD (median
score 807 vs. 186, p=0.005, Wilcoxon rank sum test, Figure 3.16C). This was statistically
significant in HER2+ tumours (p=0.02), with a trend for significance in ER+HER2� tumours
(p=0.059), but not ER�HER2� tumours (p=0.8, Wilcoxon rank sum test), as shown in Figure
3.16D. The findings were similar to those seen between CYT score and response, although
this was unsurprising, given the high correlation between CYT score and ImmuneScore
(R=0.85, p=3e-43, Figure 3.16H).
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Figure 3.16: Association between metrics of immune infiltration/activation and response. (A)
Box plots showing distribution of CYT score across different response categories. (B) CYT score
distribution by ER and HER2 status. (C,D) ESTIMATE ImmuneScore and correlation with response.
(E,F) Orthogonal validation using distribution of lymphocytic density across response groups. (G)
Correlation between CYT and Lymphocyte density. (H) Correlation between CYT and ImmuneScore.
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To validate these observations in an orthogonal way that was independent of RNA-seq
enrichment strategies, lymphocyte density of the H&E sections taken from the fresh frozen
biopsies that were subsequently sequenced was computed by Dr Ali Dariush using the
method described by Ali et al. [11] The distance between the region analysed by digital
pathology and that sequenced varied only by a few microns and hence was a reasonable
approximation of the cellular populations sequenced. Lymphocyte density was higher in
treatment naive tumours that attained pCR (p=0.0003, Wilcoxon rank sum test, Figure
3.16E). Once again, this observation was statistically significant in HER2+ tumours, with a
trend for significance in ER+HER2� tumours (Figure 3.16F). Additionally, as seen with the
ImmuneScore, there was a strong correlation between CYT score and lymphocyte density
(Figure 3.16G), showing that most of the lymphocytes in these cases were cytotoxic CD8 T
cells.

So as to define the interplay between proliferation, immunity and the four response subgroups,
the STAT1 immune signature [68] was chosen as a representative signature of immune
activation. STAT1 is responsible for IFN-g activation, which inhibits proliferation of tumour
cells, and enhances their immunogenicity by increasing STAT1-dependent expression of
MHC molecules [204]. GSVA scores were computed for the STAT1 immunity signature, and
the correlation between GGI score and STAT1 score computed across all types of responses.
The 2D density plot in Figure 3.17A shows the result of this analysis. Tumours that attained
pCR had high proliferation and immune activation, with the maxima of both in the right
upper proliferationhigh/immunehigh quadrant. As the degree of RD increased, the maxima
of the density plot moved towards the lower left proliferationlow/immunelow quadrant, with
tumours attaining pCR and those with RCB-III RD being diagrammatic opposites. The 2D
density plot showed that the transition occurred in the RCB-II category, with some tumours
in the proliferationhigh/immunehigh category and others in the proliferationlow/immunelow

category. In order to determine whether there were different degrees of response in the
RCB-II category that would explain this observation, the individual components of the RCB
score were computed [279]: an association was observed between the diameter of the tumour
bed at surgery and proliferation/immune interplay. RCB-II proliferationhigh/immunehigh

tumours (29% of all cases) had smaller tumours at the time of surgery, whilst RCB-II
proliferationlow/immunelow tumours (30% of all cases) were larger in size (Figure 3.17B).

To elucidate which cellular populations were responsible for the increased immune activation
at diagnosis, immune and stromal cell populations were quantified from the bulk RNA-
seq data using the R package MCPcounter [26] (Figure 3.18). The deconvolution method
revealed increased T cells, NK cells, monocytes and myeloid dendritic cells in tumours
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Figure 3.17: Association between proliferation (GGI) and immune (STAT1) pathways at diagnosis
and response to chemotherapy. (A) Tumours that attained pCR had high levels of proliferation and
immune activation, as opposed to tumours with higher burdens of RD. The yellow maxima can be
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that attained pCR. None of these associations were seen in ER� tumours, while all were
statistically significant in HER2+ tumours, with a trend for statistical significance in the
ER+ subgroup. To provide a more granular understanding of a larger number of immune
cell populations, single sample GSEA was performed over the LM22 immune gene set [208]
(Figure 3.19).The analysis confirmed enrichment of multiple immune cell types, including B
cells, T cells, macrophages, neutrophils and NK cells, suggesting that most subtypes were
up-regulated in tumours that attain pCR, including both immuno inhibitory and immune
activating cells.

ER� tumours in all analyses did not show any differences in immune cell populations within
the response groups, a finding corroborated by the lymphocyte density analysis. In order to
assess whether immunoexhaustion correlated with response, a recently published signature
[324] derived from deep single-cell RNA sequencing on 5,063 T cells isolated from blood,
tumour, and normal tissues, was used to determine the degree of immunoexhaustion within
the dataset (Figure 3.20). Tumours that attained pCR across the whole cohort had higher
immunoexhaustion, probably secondary to the increased immune activation. A similar result
was obtained using the immunoinhibitory STAT3 signature and immuno activatory STAT5
signature. Of note, ER� tumours did not show any difference in immunoinhibitory and
immunoexhaustion signatures, suggesting that this does not play a role in explaining the
absence of a relationship between immune activation and response at diagnosis.

3.4.4 Mapping transcriptomic differences across ER / HER2 subtypes

The analyses performed over the whole sample cohort revealed key differences between
the different ER/HER2 subtypes. As a case in point, proliferation appeared to play a key
role in response in HER2�, but not HER2+ tumours (Figure 3.14D). The degree of immune
infiltrate correlated with response in ER+HER2� and HER2+ tumours, but not ER�HER2�

tumours (Figure 3.16B, D and F).

In order to delineate subtype specific predictors of response, differential analyses were
performed separately for each of the three ER/HER2 groups.

In ER+HER2� tumours, low expression of driver genes BCL2, FOXA1, FOXP1, IGF1R,
RB1, RET, SPOP, XBP1 and ZNF703 and high expression of AMER1, AXIN1, B2M, BUB1B,
CARD11, CCNE1, CDK6, CDKN2A, DNMT1, DNMT3A, EGFR, EZH2, IDH2, IKZF1,
JAK3, MSH2, MSH6, MYC, MYCL, MYCN, NOTCH1, PRDM1, PTCH1, SKP2, SMARCA4,
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Figure 3.18: Deconvolution of immune cell populations using the MCPcounter R package. (A)
Across the whole cohort tumours that attained pCR had higher T cells, NK cells, monocytes and
myeloid dendritic cells. (B) Cohort split across ER and HER2 subtypes, showing the strongest
association in HER2+ tumours, and no association in ER�HER2� tumours.
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Figure 3.19: Deconvolution of immune cell populations using the LM22 gene signature set. Most im-
mune cell populations were up-regulated in tumours that attained pCR, with a monotonic relationship
observed across RCB categories.
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Figure 3.20: Single sample gene set enrichment over immunoexhaustive, immunoinhibitory (STAT3)
and immunoactivating (STAT1) signatures across (A) whole cohort and (B) cohort subset by ER and
HER2 status. ER� tumours did not have a significant difference across the two response groups,
unlike ER+ and HER2+ tumours
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SMARCB1, SMO and SOCS1 were associated with better response (Figure 3.21A). Addition-
ally, ER+HER2� chemo-responsive tumours showed high expression of various immune
genes, including both components of the cytolytic activity score (GZMA and PRF1), and
increased expression of most MHC Class I and MHC Class II molecules (HLA-A, HLA-B,
HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-
DPB2, HLA-DQA2, HLA-DQB2, HLA-DRA, HLA-E, HLA-F, HLA-H, HLA-K, HLA-L and
HLA-V, Figure 3.21B).

A GSEA run over the MSigDB GO (C5) and Hallmarks (H) gene lists revealed a strong
correlation between immune pathways and response, more so that between proliferation and
response (Figure 3.21C, D), indicating that in the ER+HER2� tumours in this cohort, the
immune system played a stronger role than proliferation in determining response to treatment.
A Reactome pathway enrichment (Figure 3.21E) confirmed these results, showing a very
strong association between immune pathways and response.

In ER�HER2� disease, tumours that attained a better response had 43 highly expressed
genes and 64 lowly expressed genes (Figure 3.22A), none of which were breast cancer driver
genes. A Reactome GSEA (Figure 3.22B) showed significant enrichment over proliferative
pathways, with a lesser degree of immune cell pathway activation. Enrichment over the
Hallmarks and GO MSigDB datasets (Figure 3.22C and D) showed similar results. Hence,
unlike ER+HER2� tumours, in ER�HER2� tumours proliferation mostly played a key role
in response.

In HER2+ disease, tumours that attained a better response had 13 highly expressed genes
and 29 lowly expressed genes. LIN28A, a stem cell regulator, was strongly highly expressed
in tumours that attained pCR (logFC: 3.04, FDR: 0.007). LIN28A is known to be highly
expressed in HER2+ breast cancer [226] and its RNA-binding protein product binds to HER2
mRNA, leading to enhanced HER2 protein expression [79]. Hence, expression of LIN28A
increases the amount of HER2 available on the cell surface, making tumours more sensitive
to anti-HER2 therapies. A gene set enrichment analysis over the Hallmarks MSigDB dataset
showed a very strong association between response and increased Interferon-a response
(FDR=0.0027). In keeping with the enhanced immune response described earlier, a published
T cell metagene comprising 6 immune genes [44] (HLA-E, IRF1, CXCL13, GZMB, IKZF1
and PRF1) that has been shown to increase likelihood of attaining pCR also associated with
response to treatment (p=0.006, Wilcoxon rank sum test).
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Figure 3.21: Transcriptomic differential expression in ER+HER2� tumours. Red indicates highly
expressed in pCR, blue indicates lowly expressed in pCR. (A)Volcano plot showing genes that were
highly or lowly expressed in tumours that were more likely to attain a better response to chemotherapy.
(B) HLA class I and II molecules were highly up-regulated in tumours that responded better to
chemotherapy (C) GSEA over the GO MSigDB dataset, showing strong enrichment over immune
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statistically significantly up-regulated pathways in tumours that attained pCR.
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Figure 3.22: Transcriptomic differential expression in ER�HER2� tumours. Red indicates highly
expressed in pCR, blue indicates lowly expressed in pCR. (A)Volcano plot showing genes that are
highly or lowly expressed in tumours that are more likely to attain a better response to chemotherapy.
(B) Reactome GSEA, showing predominant enrichment over proliferation and TP53 pathways. (C)
GSEA over the Hallmarks MSigDB dataset, showing strong enrichment over proliferative pathways.
(D) GSEA over the GO MSigDB dataset, showing strong enrichment over proliferative pathways.
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3.4.5 Validation of established metagenes

As discussed in Chapter 1, various efforts have been made to identify metagenes predictive
of response over the past decade. For example, based on RNAi screening experiments
on cell lines exposed to paclitaxel, two gene sets were identified by Swanton et al. [278]
that modulated resistance to taxanes: one involved in mitosis and mitotic spindle assembly
checkpoint and another involved in the the metabolism of the pro-apoptotic lipid ceramide.
This resulted in the development of a taxane response metagene, combining four genes
(BUB1B, CDK1, AURKB and TTK) in a mitotic module and two genes in a ceramide module
(UGCG, COL4A3BP) [148]. Overexpression of the mitotic module conferred sensitivity to
paclitaxel, whilst overexpression of the ceramide module related to increased resistance to
taxane therapy.

In order to assess whether the paclitaxel response metagene at diagnosis correlated to
response, the metagene was derived using an approach similar to the one described in the
original publication [148], where the geometric mean of the log2 expression of BUB1B,
CDK1, AURKB and TTK was used to obtain a mitotic score, and the geometric mean
of the log2 expression of UGCG and COL4A3BP used to obtain a ceramide score. The
final response metagene was computed as the difference between both scores. In order to
describe the predictive power of this metagene, the dataset was split into two groups: one in
which patients received an anthracycline-based backbone in the first block of chemotherapy,
followed by a taxane, and a second group which received taxanes first, followed by a switch
to an anthracycline-based backbone. Any cases that did not receive block sequential treatment
with an anthracycline and a taxane in any order were removed.

As shown in Figure 3.23A, expression of the ceramide, mitotic and taxane scores corre-
lated with response in the subgroup treated with taxanes first, but not in those treated with
anthracycline-based chemotherapy first. Indeed tumours treated with a taxane first that
attained pCR had a much higher expression of the taxane sensitivity metagene, compared to
those with RD post-chemotherapy (Figure 3.23B). A ROC analysis showed that the metagene
predicted pCR with a specificity of 76%, sensitivity of 90%, accuracy of 80%, NPV of 96%
and a PPV of 58% in tumours treated with a taxane first (Figure 3.23C), with a significant dif-
ference seen between tumours treated with taxanes first vs. those treated with anthracyclines
first (p=0.001, DeLong’s test).

The neoadjuvant Trial of Principle (TOP) [67] was designed to discover biomarkers of
anthracycline response and resistance and used RNA expression data from 139 patients
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Figure 3.23: Assessment of the taxane sensitivity metagene in the TransNEO study. (A, B) Ceramide,
mitotic and taxane score all correlated with response in tumours treated with upfront taxanes, but
not in tumours treated with upfront anthracyclines. (C, D) ROC analysis showing the ability of the
metagene to predict pCR in taxane-first and taxane-second treated tumours.
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treated with epirubicin monotherapy to derive an anthracycline metagene score (TOP2A-
score). This score was computed as the averaged sum of the genes on chromosome 17 from
35.37Mb to 36.06Mb (hg18 assembly), including Topoisomerase IIa , and was found to
correlate with pCR in HER2+ tumours. In order to assess the performance of this metagene
in this dataset, the TOP2A-score was computed as described in the original publication: no
association was found between TOP2A score and response. This is perhaps, unsurprising.
In the TOP study patients received anthracyclines only, whilst in the TransNEO cohort
most patients who received anthracyclines first had HER2+ disease and therefore received
sequential trastuzumab: this was not administered to patients in the TOP study. In addition,
patients within the TOP trial only received single agent anthracycline, whilst none of the
patients recruited to this study received single agent chemotherapy regimens.

3.4.6 Derivation of a response metagene

In order to identify a metagene that was predictive of treatment with T!FEC chemother-
apy, the raw RNA-seq counts were normalised using a voom transformation and modelled
using a nearest shrunken centroids (NSC) approach using the voomDDA R package [321].
Until recently, microarray technologies predominated the RNA field and most of the ma-
chine learning classifications were built to deal with the continuous data generated by these
technologies. However, RNA-seq datasets are distinctly different from those generated by
microarrays: counts are positive integers and should be modelled with different distributions.
Hence microarray based classifiers do not perform as well on RNA-seq datasets. Various
efforts have been made to develop comparable statistical methods to counteract this challenge
[71, 93, 166, 325]. The voom normalisation method has been shown to have a better perfor-
mance compared to count based methods, with classifiers using this normalisation method
having a lower type-I error rate and low false discovery rate [166]. By using a sparse NSC
classifier on voom normalised RNA-seq counts, [321] generated a statistical framework that
has been shown to predict putative biomarkers given a set of conditions and a normalised
counts expression dataset.

By using this approach, four putative biomarker genes associated with response across the
whole cohort (Figure 3.24A) were identified, including:

1. CA12 (Carbonic anhydrase XII), which encodes a zinc metalloenzyme responsible
for acidification of the microenvironment of cancer cells and has been shown to
correlate with ER expression [20]. Indeed, by regulating microenvironment pH, CA12
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Figure 3.24: Evaluating a 4 gene metagene derived using an NSC classifier. (A) Expression of the
four identified genes was consistently higher in the pCR groups. Validation of the classifier in (B) the
TransNEO cohort, (C) ARTemis cohort and (D) MAQC-II microarray study.
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enables tumour cell survival in hypoxic environments and inhibition results in increased
apoptosis [178].

2. GATA3, a well characterised breast tumour suppressor gene, involved in ER signalling,
although increased expression has also been observed in 43% of ER� tumours [55].

3. GFRA1 (GDNF Family Receptor Alpha 1), which mediates activation of the RET
tyrosine kinase receptor and is often highly expressed in luminal A breast tumours
[31]. Recent work has shown that it is responsible for resistance to aromatase inhibitor
therapies in breast cancer [200] and to cisplatin chemotherapy in osteosarcoma [157].

4. SCUBE2 (Signal Peptide, CUB Domain And EGF Like Domain Containing 2) is a
tumour suppressor gene that inhibits tumour migration and invasion [173] and is part
of the 21-gene OncotypeDX assay[272].

Within the TransNEO dataset, the metagene was able to predict pCR with a specificity of
89%, a sensitivity of 100%, an NPV of 100% and a PPV of 76% (Figure 3.24B).

Validation of the metagene in the ARTemis [72] neoadjuvant trial RNA-seq dataset (data
generated during this doctoral work, but not shown), showed a specificity of 79%, a sensitivity
of 87%, an NPV of 96% and a PPV of 47% (Figure 3.24B). Validation in a microarray dataset,
the MAQC-II (GSE20194), showed a specificity of 81%, a sensitivity of 78%, an NPV of
95% and a PPV of 43% (Figure 3.24C), showing sustained high specificity and negative
predictive value of the metagene in predicting response to neoadjuvant chemotherapy in a
mixed population.
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3.5 An integrated approach to predicting response

The work described in this chapter has identified multiple predictors of response, ranging
from established clinicopathological features classically used in routine practice, to genomic
and expression-based features.

While each of the identified molecular features could independently model different degrees
of response, further work was undertaken to determine whether a combination of multiple
features could be integrated into a model that outperformed individual predictors. All
identified features associated with response were combined into one generalised linear model
which was tuned over 10,000 iterations to minimise the Akaike information criterion (AIC)
and thereby identify the optimum combination of features that strongly associated with
response.

The model selection identified two clinical variables (age at diagnosis and number of positive
lymph nodes), two genomic variables (expressed TMB and HLA-LOH) and five expression
variables (GGI metagene expression, CYT score and ESR1, ERBB2 and LIN28A expression)
that, when combined together, were highly associated with response (Figure 3.25). The
combination of these features outperformed any other combination. The choice of selected
predictors was, perhaps, unsurprising. The contribution of the immune system in fashioning
response to therapy was repeatedly referred to in this chapter and the inclusion of a T cell-
mediated cytolysis metagene (CYT), HLA-LOH and expressed TMB in the final model
reflected the importance immuno-activation and immuno-evasion played. The inclusion
of a proliferation gene set (GGI) within the model was also to be expected, given that the
cytotoxic agents used preferentially killed cells that were actively dividing. Additionally,
ESR1 and ERBB2 expression was also very closely associated with response, in keeping
with better responses observed in ER� and HER2+ tumours and greater degrees of RD
post-therapy in ER+HER2� tumours. The unsupervised selection of LIN28A as a key marker
of response within the model was unsurprising given the role it plays in inducing a stem-like
phenotype and its role in stabilising HER2 mRNA, thereby playing a role in determining
response to trastuzumab (Section 3.4.4).

The results of the ROC curve analysis for the derived model is shown in Figure 3.25. For
each of the three response groups (pCR, chemosensitive and chemoresistant tumours) an
analysis was performed initially on all tumours and subsequently across the three ER and
HER2 subgroups. The model showed very good performance across the entire cohort and in
the ER/HER2 stratified cohorts and outperformed the clinical model (Section 3.2). While
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Figure 3.25: Combining clinical, genomic and expression variables predictive of response to predict
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Figure 3.26: Performance metrics of the combined clinical and molecular model in predicting
response to neoadjuvant therapy.

the AUC of 1 seen in the pCR ER+HER2� model, as well as chemoresistant ER�HER2�

and HER2+ models could be due to over-fitting secondary to the smaller number of samples
in these categories, very good performance was observed in all other subgroups. Indeed, as
shown in Figure 3.26, the predictor could predict pCR in the entire cohort with a sensitivity
of 86.5%, specificity of 81.5% and an NPV of 93.4%, whilst it could predict chemoresistance
with a sensitivity of 95.7%, specificity of 91.0% and an NPV of 97.0%.

Hence the combined predictor derived in this work was shown to be superior to the clini-
copathological model described in the literature and allowed the classification of patients
into those that would derive the most, as well as the least, benefit from neoadjuvant therapy.
Undoubtedly, validation of this predictive model will be required: the Personalised Breast
Cancer Programme currently being run in Cambridge and which aims to whole genome and
transcriptome sequence tumours from every consenting breast cancer patient will provide the
optimum dataset to test this predictor.
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3.6 Discussion

As Louis Pasteur elegantly said: "Dans les champs de l’observation le hasard ne favorise que
les esprits préparés". Fortune does indeed favour the prepared mind: a better understanding
of the biology of tumour response to chemotherapy and the identification of surrogates to
predict chemosensitivity and chemoresistance allows the identification of patients who stand
to benefit most, or indeed least, from treatment. Hence, subgroups that will not respond
well to chemotherapy should be spared the morbidities induced by treatment if little benefit
is to be gained. Additionally, knowledge acquired in the neoadjuvant setting is directly
translatable to the adjuvant and metastatic settings.

The work done in this chapter adds to our understanding of the factors that are associated with
response to neoadjuvant chemotherapy. In the first half of the chapter, key genes associated
with response were identified. TP53 driver mutations were not only the most prevalent across
the cohort, but were also associated with increased chemosensitivity and decreased chemore-
sistance. An opposite relationship was seen with PIK3CA, where activating mutations were
more likely to be associated with chemoresistance. Mutational signatures fashion the somatic
landscape of tumours, and in this dataset there was significant enrichment of BRCA and
APOBEC mutational signatures, with the BRCA signature predictive of response in the
whole cohort analysis and ER+ HER2� subset, and APOBEC signatures predictive in the
ER+ HER2� and HER2+ cohorts.

The mutational landscape, however, was not the only genomic feature that correlated with
response. Breast cancer is predominantly a copy number driven disease, and newer integrated
classification systems predominantly use gene expression and copy number alteration patterns.
One of these classifications, iC10, has been shown to associate very closely with overall
prognosis. Tumours classified within cluster 10, typically characterised by ER� tumours
with 5q loss and gains in 8q, 10p and 12p, as well as high degrees of chromosomal instability,
were more likely to attain pCR. iC5 tumours, with ERBB2 amplification, were associated
with increased chemosensitivity. Low proliferation tumours in the iC7 subtype characterised
by 16p gain, 16q loss and 8q amplification were highly chemoresistant. Paradoxically, the
aggressive highly proliferative ER+ iC2 tumours harbouring amplification of 11q13 and
11q14 were associated with chemoresistance.

A targeted GISTIC analysis showed very clearly that amplification of oncogenes was associ-
ated with pCR, whilst loss of tumour suppressor genes and corresponding cell cycle arrest
molecular machinery was associated with a higher likelihood of chemoresistance. MYC,
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TBL1XR1, PARP1 and PIK3CA amplification were associated with pCR. It was perhaps
surprising that PIK3CA amplification was associated with response, given that activating
mutations within the gene were associated with chemoresistance. This finding was vali-
dated on transcriptomic analysis: PIK3CA overexpression was associated with increased
chemosensitivity. Loss of tumour suppressor genes was associated with chemoresistance: this
was typified by loss of FRA16D fragility site which encodes four tumour suppressor genes,
including WWOX on which regulates the cell cycle checkpoint protein ATM. Additionally,
loss of ATM and CHEK1 on 11q also correlated strongly with chemoresistance.

By combining mutation data with copy number data, the degree of intra-tumoural hetero-
geneity could be determined. Increased intra-tumoural heterogeneity was noted to correlate
with increasing chemoresistance: the greater the diversity of the clonal landscape, the greater
the probability of a subclone harbouring a resistant phenotype. Tumours that attained pCR
had more clonal mutations compared to those that had RD post-chemotherapy, but a lower
percentage of subclonal mutations.

Early on within the chapter it was noted that increased tumour mutation burden was associated
with response: the greater the number of mutations a tumour harboured, the more likely it
was that less residual disease would be present at the time of surgery and at TMBs above
3 Mb-1 it was highly probable that a tumour would attain pCR. Two possible observations
could explain this effect. Firstly, more proliferative tumours were more likely to have a
greater number of mutations due to a higher rate of cell division and a greater chance of
replication errors. As shown, highly proliferative tumours were more likely to be killed
by cytotoxic chemotherapy and therefore the effect observed could be secondary to TMB
being an indirect surrogate for proliferation. Secondly, an increased TMB translated into
an increased neoantigen load. Indeed, there was a positive association between expressed
TMB and response, as well as neoantigen load and response. The greater the number of
neoantigens presented on the cell surface, the greater the probability of an immune response
being mounted. In keeping with this observation, tumours that had more clonal neoantigens,
as well as tumours that had neoepitopes that bound to more than one HLA allele were more
likely to attain pCR. Additionally, the work done here provides evidence that LOH over the
HLA locus confers resistance to treatment in breast cancer, an observation that has not, to
date, been made yet. Indeed, it was very intriguing that tumours predominantly lost HLA
loci that presented more neo-epitopes than the alternate allele retained. Furthermore, six
HLA loci were also associated with response, with one of the HLAs associated with with
chemoresistance (HLA-B*18:01) also associated with high HIV viral replicative capacity in
adults and poorer overall prognosis.
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The transcriptomic analysis showed distinct differences in the pathways activated as the
degree of response to treatment increased. Tumours that were more likely to attain a
better response had higher activation of proliferation and immune signatures, however the
combination of both was required for a higher probability of attaining pCR. Indeed, high
proliferation tumours that did not attain pCR often had lower degrees of immune activation,
showing that an immuno-competent tumour microenvironment was required for maximum
chemotherapy benefit. A detailed analysis of the immune component revealed that the
cytolytic index was higher in tumours that attained pCR, and linearly decreased as the degree
of RD increased. This observation was orthogonally validated by computing lymphocyte
density scores using digital pathology analysis of the fresh frozen histological slides. Further
deconvolution of the tumour microenvironment into constituent immune cell types showed
a greater degree of T cell, B cell, NK cell and macrophage infiltration, amongst others, in
tumours that eventually attained pCR, indicating that immune infiltrate at diagnosis was
highly correlated with eventual response.

Following the observation that increased immune infiltrate and neoantigenic load at diagnosis
correlated with therapy outcome, the expression of antigenic CTAs was explored. The
expression of 11 CTAs was associated with response to treatment and the sum of all CTA
gene expression strongly associated with the degree of response. As CTAs are expressed
as part of a de-differentiation programme, a metagene associated with adult stem cells was
assessed: once again, tumours that had a more stem-like phenotype were more likely to attain
pCR during chemotherapy.

The expression data also allowed for the elucidation of mechanisms of resistance to treatment.
Tumours with higher burdens of RD post-chemotherapy had higher expression of chemother-
apy metabolising enzymes, as well as increased expression of drug efflux pumps and de-
creased expression of drug influx pumps before the commencement of any chemotherapeutic
agent. Similarly, in ER+ HER2� tumours, chemoresistance was associated with profound
down regulation of most MHC class I and class II molecules, suggesting immuno-evasion as a
potential mechanism of chemoresistance. In HER2+ tumours, LIN28A expression was found
to be a key mediator of chemosensitivity, with increased expression of this stem cell regulator,
that binds to and stabilises HER2 mRNA, associated with decreased chemosensitivity.

An assessment of two published metagenes was undertaken. Previous work showed that
ceramide metabolism played a key role in taxane resistance, and a metagene identified
that correlated with response to taxane treatment. Indeed, assessment of this metagene
reaffirmed its utility in predicting response to treatment, but only if taxanes were given prior
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to anthracycline chemotherapy. Finally, using a machine learning approach, a four gene
metagene comprising GATA3, CA12, GFRA1 and SCUBE2, which was independent of ER
status or proliferation and predictive of response to T!FEC treatment with a specificity of
89%, a sensitivity of 100% was derived.

Hence the work done in this chapter has described novel and established features associated
with pCR and various degrees of chemosensitivity/resistance. As shown by an integrated
classifier built based on all the predictive features described, the key components that were
shown to accurately model response were immune-based (CYT, HLA-LOH, expressed
TMB), proliferation-based (GGI) and, as expected given the body of literature, ER and
HER2-based. Fitting these parameters to a generalised linear model resulted in the generation
of a predictor that could accurately model response to chemotherapy: prospective validation
will be required, though datasets that will allow this are already being generated through the
Personalised Breast Cancer Programme being run in Cambridge.
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4.1 Introduction

The somatic genomic landscape of breast cancer has been shown to be altered by neoadjuvant
chemotherapy [18, 155] as well as hormonal therapy [197], with evidence of new mutations
being detected during therapy, as well as the apparent loss of others.

The emergence of chemoresistant subclones and the appearance of new mutations has long
been a debated subject, with studies reporting either acquired [69, 222] or adaptive [164]
resistance to chemotherapy, albeit in differing types of tumours. In ovarian cancer, for
example, platinum-based chemotherapy was shown to induce new somatic mutations with
a distinct mutational signature and this was associated with acquired resistance [222]. On
the other hand, in bladder cancer, resistance was attributed to the selection of pre-existing
resistant clones [164]. A recent study [155] which described the evolution of triple negative
breast cancer in patients undergoing neoadjuvant chemotherapy by using single-cell DNA
and RNA sequencing showed that the newly-detected population of cells observed at the end
of treatment was pre-existing and selected by chemotherapy, consistent with a punctuated
model of evolution [94].

Despite the interest in the field, few studies have sought to describe, in detail, the genomic
and transcriptomic landscape of breast cancer during neoadjuvant chemotherapy. The main
published studies either concentrated on one subtype of breast cancer [18, 155], lacked a
midway biopsy [18, 197], analysed a very small cohort of samples [155, 197], or did not have
any integrated transcriptomic data [18]. Without a midway biopsy, formal characterisation
of the gradual changes that occur during therapy is challenging, especially for tumours that
attain pCR, wherein by the time tissue is taken at the time of surgery there is no evidence of
any remaining tumour tissue, making the recapitulation of the events leading up to complete
tumour death impossible. Secondly, the analysis of small cohorts makes large-scale inference
of evolutionary change difficult.

The work in this chapter aims to describe, at great depth, the evolution of tumours during
neoadjuvant chemotherapy through the use of sequential tumour biopsies taken prior to
commencing therapy, midway through therapy, as well as on completion of chemotherapy. By
integrating data from MRI imaging and digital pathology assessment, as well as through the
deconvolution of tumour clonal architecture from bulk sequencing data and the construction
of evolutionary phylogenies, the work in this chapter aims to recapitulate in detail the way
chemotherapy sculpts the tumour’s genomic architecture.



4.2 Quantification of response to treatment 143

4.2 Quantification of response to treatment

Quantification of response to neoadjuvant chemotherapy is typically performed twice during
treatment by means of ultrasound and/or MRI. Formal assessment of the degree of any
remaining residual disease (RD) is performed on the surgical resection specimen using the
RCB score (Section 1.3).

As chemotherapy was administered, a decrease in tumour bulk was to be expected as response
ensued, with the degree of volume change correlating to chemosensitivity. All patients
recruited to the TransNEO study had ultrasound imaging performed as part of their standard
of care treatment, however tumour measurements were performed in one or two dimensions,
rendering 3D volumetric analysis impossible to perform. 81 patients (45%) in the TransNEO
study were also recruited to the TRICKS study led by Prof. Fiona Gilbert at the Department
of Radiology, Cambridge, wherein Dynamic Contrast Enhanced (DCE) MRI of the breast
tumour was performed at the same time biopsies were taken to facilitate the integration of
genomic data with radiological features. For these 81 patients, three-dimensional tumour
volumetric measurements at diagnosis, midway through treatment, and on completion of
neoadjuvant chemotherapy were computed by Dr Ramona Woitek.

By modelling three-dimensional tumour volumes on MRI, the effect of chemotherapy
on breast tumour bulk could be visualised. As shown in Figure 4.1A, administration of
chemotherapy resulted in a gradual decrease in breast tumour bulk, with a median volume of
3,960mm3 at diagnosis (range: 927-48,512mm3), down to a median volume of 1,025mm3 at
the midway time point (range: 0-26,507mm3) and a median volume of 308mm3 on comple-
tion of chemotherapy (range: 0-4,321mm3). As confirmed multiple times by the numerous
trials supporting the use of neoadjuvant therapy, treatment before surgery was indeed effective
at reducing tumour bulk pre-operatively, though the degree of response varied greatly.

Most tumours attained a minimum volume decrease of 50% midway through treatment
(Figure 4.1B), with significant shrinkage seen on completion of chemotherapy. Four tumours
increased in volume shortly after commencing chemotherapy. Three of these (T072, T076
and T095) were small at diagnosis, and an increase in volume resulted in a relatively
large percentage of volume gained. T068 increased in size by 2,450mm3 after 9 weeks
of chemotherapy, and on completion of treatment RCB-III RD was present, denoting a
significant degree of chemoresistance.
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Figure 4.1: Response to chemotherapy as assessed by serial MRI scans in 81 patients. (A) Distribution
of tumour volumes during chemotherapy. (B) Density plots showing percentage change in tumour
volumes at the midway and pre-surgical time points. (C) Box plots showing distribution of tumour
volumes at diagnosis and eventual response - no correlation observed. (D) Correlation between rate of
volume change and pathological response to treatment in both the midway and surgical MRI scans.
(E) The association between change in volume and pCR was seen in HER2� but not HER2+ tumours.
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The diagnostic tumour volume was not predictive of the degree of RD at surgery (Figure
4.1C), though by the midway MRI scan the rate of volume loss correlated with response to
therapy (Figure 4.1D). Chemosensitive tumours attained a larger degree of volume loss than
chemoresistant tumours: tumours that would eventually attain pCR decreased in volume by a
median of 87%, as compared to: RCB-I (74%), RCB-II (68%) and RCB-III (56%) tumours.
A similar trend was seen on the pre-surgical MRI scan. As the diagnostic tumour volume did
not correlate with response, the effect seen was not confounded by initial tumour volume.
Interestingly, the association between response and volume decrease was only observed in
HER2� tumours. HER2+ tumours decreased in bulk during chemotherapy, but those that
attained pCR did not decrease in volume faster than those with RD at the time of surgery
(Figure 4.1E), hinting that anthracycline use, and the associated absence of trastuzumab in
the first part of the regimen, did not result in changes that were predictive of response in
HER2+ tumours by the midway time point.

Tumour purity provided an alternate method of assessing response to neoadjuvant chemother-
apy, with decreasing purity a feature of increasing response to therapy (Figure 4.2A). Indeed,
some of the earlier classifications of response, such as the Miller and Payne system [217]
solely relied on tumour purity to grade response. 75 cases sequenced in the TransNEO cohort
had a biopsy taken from the tumour bed halfway during chemotherapy and a further 51 cases
had tissue taken from the tumour bed at the time of surgery. The median tumour purity of
the sequenced samples at diagnosis, as assessed by a pathologist, was 50% (range 5-95%)
and did not correlate with response to treatment. As chemotherapy was administered, by the
midway time point, a global decrease in tumour purity was observed (median purity 30%),
which decreased even further by the end of treatment (median purity 20% excluding samples
with pCR). At the midway biopsy time point, 9 cases had tumour purities that were below
0.05: 3 of these cases eventually attained pCR (T022, T037 and T144), 2 cases attained
RCB-I RD (T170 and T175), and 4 cases were low cellularity RCB-II tumours (T056, T091,
T137 and T173), thereby indicating that the decrease in purity was a function of response.

As observed with the MRI volumetric analysis, the greater the decrease in tumour purity
by the midway and surgical time points, the lesser the degree of RD at the time of surgery
(Figure 4.2B). This was statistically significant both by histopathological assessment (midway:
p=0.028, surgical: p=0.011, ordinal logistic regression model) and digital pathology analysis
of histological slides taken microns apart from the region that was sequenced (midway:
p=0.017, surgical: p=0.02, ordinal logistic regression model).
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These results showed that changes in tumour volume and purity at the midway and surgical
time points both correlated with eventual RCB score. Hence, the RCB score was not merely a
final snapshot of RD remaining after treatment but was also correlated with overall response
to chemotherapy. Tumours with higher RCB scores were more likely to have less volume
loss during treatment, an important observation that needs to be kept in mind throughout this
work.
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Figure 4.2: Tumour purity across the sequenced cases. (A) Tumour purity at all three sampling time
points, as assessed by a histopathologist. (B, C) Change in tumour purity during treatment as assessed
by an expert histopathologist and digital pathology analysis.
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4.3 Early genomic landscape alterations

4.3.1 Mutation dynamics

Paired exome sequencing data at the diagnostic and midway time points were available for
75 cases. 13 of these had low cellularity at the midway time point, with median mutation
allelic fractions less than 2%. 7 of these 13 cases (T014, T022, T024, T028, T037, T104,
T144) attained pCR by the end of treatment and the decrease in tumour purity was attributed
to early response to treatment. The remaining 6 cases had RCB-I (T170, T175) and RCB-II
(T056, T091, T137, T173) RD post-treatment.

The tumour mutational profile was strikingly different midway through chemotherapy com-
pared to that seen at diagnosis and showed great dynamicity, as shown in Figure 4.3. Across
the 75 cases, 1,904 mutations that were present in the tumour exome sequencing data at
diagnosis were no longer detectable at the midway time point (blue bars in Figure 4.3).
Similarly, 499 previously unobserved mutations were detected at the midway time point (red
bars) and 3,579 mutations persisted (green bars). Such variation could be due to (1) sampling
bias due to tumour heterogeneity, resulting in spatially different clones being sampled at both
time points [206], (2) death of chemosensitive cells carrying passenger mutations and altered
selection pressures resulting in clonal expansion and increased prevalence of a pre-existing
non dominant resistant clone [155] and (3) chemotherapy-induced mutagenesis [98].

The number of mutations that were present in the diagnostic biopsy but not detected at the
midway time point correlated with the total mutation count at diagnosis (R=0.69, p=2.4e-11,
Figure 4.4B), therefore the greater the number of mutations a tumour initially harboured, the
greater the likelihood that an increased number of these mutations would not be detected at
the second sampling, thereby indicating that these were probably subclonal.

In sharp contrast to chemoresistant tumours, tumours that attained pCR by the end of
treatment had significantly fewer mutations detected by the midway time point (Figure 4.4A).
46% of all mutations detected at diagnosis were not detected by the midway time point in
tumours that would eventually attain pCR, compared to 34% of mutations in RCB-I tumours,
22% of mutations in RCB-II tumours and 8.5% of mutations in RCB-III tumours.

The decrease in the number of mutations detected across the response subgroups could be
attributed to tumour purity, as increasingly chemosensitive tumours were more likely to have
a rapid decrease in tumour cellularity, and therefore as fewer tumour cells were sequenced
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Figure 4.3: Somatic mutation landscape dynamics during chemotherapy. Tumours sequenced at the
midway time point showed evidence of persisting mutations (green bars), mutations that had been
detected in the diagnostic biopsy but were no longer detectable (blue bars), as well as mutations that
had not been previously observed (red bars). The yellow bar plots show the distribution of the number
of tumour cells sequenced at the midway time point, as computed by digital pathology analysis.
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the ability to detect a mutation decreased. In order to explore this hypothesis further, the total
number of tumour cells present within the sequenced samples was computed by digitally
analysing the H&E slides taken a few microns adjacent to the tumour region sequenced [11]
to determine whether the number of tumour cells sequenced correlated with the total number
of mutations detected. The 13 cases with known low purity were removed for the purposes
of this analysis. As shown in Figure 4.4D, there was no overall correlation between the
number of tumour cells sequenced at the midway time point, and the number of persisting,
new and undetectable mutations (R= 0.05, 0.07, 0.07 respectively). Additionally, there was
no association between the number of tumour cells sequenced at diagnosis and the total
mutation count (R=0.17 p=0.14, Figure 4.4C), indicating that the ability to detect a mutation
was not always related to the number of cancer cells sequenced.

These results, while surprising, could be explained by a number of observations. Firstly, the
exome sequencing data was relatively deep (>160⇥) and therefore rarer variants were more
likely to be detected. Secondly, the variant rescue pipeline developed retained mutations with
very low allelic fractions if they were convincingly detected at other time points. Hence, if a
mutation was robustly called in the diagnostic sample and was present at very low AFs (< 1%)
at another time point, that variant would be retained in both samples. Hence the detectable
mutation load was not directly influenced by the number of cancer cells sequenced. Indeed, a
closer look at Figure 4.3 shows that in some cases, such as T014, hundreds of mutations were
lost and few mutations persisted, despite a large number of tumour cells being sequenced
(top yellow bar graph). In some cases, such as T005, a large number of new mutations could
be observed despite a lower number of cells sequenced: this might have been secondary to
clonal replacement, with most of the sensitive cells eradicated by the midway time point,
and the minor clone comprising chemoresistant cells increasing in number. Indeed, T005
had a poor response to chemotherapy (RCB-II). In other cases, there was evidence of a large
number of mutations lost despite a high number of cancer cells sequenced (eg T011, RCB-I).

The Jaccard coefficient was subsequently computed to determine the degree of genetic
similarity between diagnostic and midway tumours. In keeping with Figure 4.3, tumours
that attained better degrees of response were less similar to the originating pre-treatment
tumour due to more rapid clonal eradication, whilst chemoresistant tumours remained more
mutationally stable (Figure 4.4E).

While there was an association between the number of mutations lost and response to
treatment, there was no statistically significant difference between the number of new somatic
mutations gained and eventual response to treatment. Hence new mutations were observed at
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Figure 4.4: Mutational dynamics during treatment. (A) Bar plot showing the percentage of mutations
that were not detected at the midway time point, compared to the diagnostic biopsy. The rate of
mutation loss monotonically correlated with RCB category. (B) Scatter plot showing correlation
between the total number of mutations at diagnosis, and the number of mutations that were no longer
detectable in the midway biopsy. (C) Lack of correlation between number of cancer cells sequenced
in diagnostic biopsy and total mutation load. (D) No correlation observed between number of tumour
cells sequenced in the midway biopsy and the number of new/persisting/undetectable mutations.
(E) Genetic similarity between serially sampled tumours as computed by using Jaccard coefficient.
Tumours with higher degrees of RD were more genetically stable than those with less RD at the time
of surgery.
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the midway time point in all response groups, including in tumours that would eventually
attain pCR, indicating that perhaps the chemoresistant cells harbouring these increasingly
prevalent mutations were eradicated following a chemotherapy backbone switch.

In conclusion, by the midway time point, the mutational landscape showed evidence of
differing dynamics that correlated with eventual response to therapy. The rate of mutation
loss within 9 weeks of neoadjuvant chemotherapy was predictive of final response, with
chemosensitive tumours having a greater percentage of undetectable mutations compared to
chemoresistant tumours.

Subclonal dynamics

Within the 62 higher cellularity samples, 10 non-silent driver gene mutations that had been
detected at diagnosis were no longer detected during therapy across 8 cases (Figure 4.5A). In
7 of these cases, the driver gene had a subclonal probability of greater than 50% (computed
as described in Section 3.3.1 [191]), indicating that these were indeed subclonal driver
mutations acquired later on during the tumour’s evolutionary history. In one case (T005), the
drivers were all predicted to be clonal on the diagnostic biopsy (subclonal probability < 50%).
All but one (T101) tumours that lost a subclonal mutation had evidence of a concurrent clonal
driver that was not eradicated by therapy (T001- ATM, BRCA1, TP53; T005- BRCA2, ESR1,
TP53 ; T009- BRCA1, NRAS, PIK3CA,TP53; T039- CBFB, GATA3, PIK3CA; T062- BRCA2;
T095- TP53; T152- TP53). Additionally, 5 tumours had at least one newly detectable driver
mutation appear during therapy (Figure 4.5B), with subclonal probabilities above 50% in 3
of these tumours, including case T101 which had eradication of the STAG2 subclonal driver
mutation (subclonal probability: 100%) and emergence of an ATM driver mutation (subclonal
probability: 100%). There was also evidence of the emergence of a previously unobserved
PIK3CA driver mutation in case T156 which was chemoresistant (RCB-III).

Similar dynamics were also observed within passenger mutations (Figures 4.5C and D). 72%
of all mutations that were no longer detected on therapy had a subclonal probability greater
than 50%, whilst 82% of all mutations that were newly-detected on therapy had a subclonal
probability greater than 50%, confirming the robustness of the mutation calling and copy
number pipelines, as well as the sampling techniques used.
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Figure 4.5: Driver and passenger mutation subclonal status. (A) Tumours with loss of non-silent
driver mutations midway during therapy, with subclonal probabilities derived from diagnostic sample
shown in tiles. (B) newly-detected driver mutations in 5 cases, with subclonal probabilities derived
from midway sample shown. (C, D) Distribution of subclonal probability across all mutations that
were no longer detected (C) or newly-detected (D) during therapy.
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In summary, driver and passenger mutations showing differing dynamics during therapy were
often subclonal. In all but one case, loss of a subclonal driver mutation was associated with
the persistence of a clonal driver mutation.

Pathway enrichment

To elucidate whether mutations that were newly-detected or undetectable during therapy
enriched for specific cellular pathways, an over-representation analysis of both gene sets was
performed using the ConsensusPathDB tool from the Max Plank Institute [149, 150]. An
enrichment analysis was done on Reactome, KEGG, PID and Biocarta, retaining pathways
that had a minimum of four mutated genes, with statistical significance ascertained below an
FDR cut-off of 0.05 to decrease the number of false positive hits.

An enrichment analysis over 222 non-silent coding mutations that were newly-detected at
the midway time point (comprising: 21 frame-shift insertions/deletions, 10 in-frame inser-
tions/deletions, 171 missense mutations, 15 nonsense mutations and 5 splice site mutations)
showed a statistically significant over-representation of 36 biological pathways (Table 4.1)
across three databases. The top pathway hits were high level immune system pathways
(eg TCR signalling in BioCarta, BCR and CXCR-4 signalling in PID), proliferation path-
ways (cell cycle, G2/M transition/mitosis in Reactome) as well as molecules involved in
solute transport (Transport of small molecules, Ion channel transport in PID). This was
very intriguing, considering that proliferation, immune pathways as well as ATP binding
cassette multi-drug transporter expression were all shown to play a key role at diagnosis in
ascertaining response to treatment (Chapter 3). For example, TAB1 (TGF-b Activated Kinase
1 Binding Protein 1), which harboured a newly-detected missense mutation during therapy,
mediates intracellular signalling pathways induced by TGF-b , IL-1, and WNT-1, and any
activating mutations would mimic the effect of increased IL-1, which is a pro-tumourigenic
cytokine that promotes angiogenesis and proliferation [75].

Enrichment was also noted over biological pathways involved in genes responsible for
cell motility and invasion, such as RAC1 cell motility signalling (BioCarta) and CDC42
signalling (PID). Both Rac1 and Cdc42 are Rho GTPases that participate in cell migration,
with filopodia formation regulated by Cdc42 and formation of lamellipodia regulated by Rac1
[165]. Hence, if the mutations observed were activating mutations (as seen with PIK3CA,
which was involved in both pathways) then this might suggest increased metastatic potential.
Additionally, the pathway analysis showed over-representation of the Angiopoietin receptor



154 Modulation of tumour clonal architecture by neoadjuvant chemotherapy

Table 4.1: Pathway enrichment on newly-detected mutations

Database Pathway FDR Overlapping Genes

T Cell receptor signalling pathway 0.003 ARHGAP4 ASAP1 MAPK8 PIK3CA
PIK3R1 PTPRC

RAC1 cell motility signalling pathway 0.003 ARHGAP4 ASAP1 PIK3CA PIK3R1
PPP1R12B

Phospholipids as signalling
intermediaries

0.011 PIK3C2G PIK3CA PIK3R1 SPHKAP
BioCarta

Actions of nitric oxide in the heart 0.016 PIK3CA PIK3R1 PRKAR2A RYR2

Ephrin B reverse signalling 0.005 FGR MAPK8 PIK3CA PIK3R1

Reelin signalling pathway 0.007 MAP3K11 MAPK8 PIK3CA PIK3R1

N-cadherin signalling events 0.012 GRIA2 MAPK8 PIK3CA PIK3R1

IL1-mediated signalling events 0.012 MAPK8 PIK3CA PIK3R1 TAB1

p75(NTR)-mediated signalling 0.016 MAPK8 PIK3CA PIK3R1 PLG TP53

Angiopoietin receptor Tie2-mediated
signalling

0.024 MAPK8 PIK3CA PIK3R1 PLG

CXCR4-mediated signalling events 0.026 FGR PIK3CA PIK3R1 PTPRC SSH1

Signalling events mediated by focal
adhesion kinase

0.029 ASAP1 MAPK8 PIK3CA PIK3R1

BCR signalling pathway 0.035 MAPK8 PIK3CA PIK3R1 PTPRC

PID

CDC42 signalling events 0.036 MAP3K11 MAPK8 PIK3CA PIK3R1

Transport of small molecules 0.029 ABCA8 ABCF1 ATP12A ATP1A2
ATP2C1 EIF2S1 FLVCR1 PRKAR2A
RYR2 SLC26A3 SLC6A15 SLC6A6
SPG7 TRPM3 TRPV3 TRPV4

Ion channel transport 0.029 ATP12A ATP1A2 ATP2C1 RYR2
TRPM3 TRPV3 TRPV4

Cell Cycle 0.029 CASC5 CCNA2 CKAP5 ESCO1 FBXO5
MZT1 PCNT PPP1R12B PRIM1 SGOL2
SPO11 TAOK1 TP53 TP53BP1

G2/M Transition 0.029 CCNA2 CKAP5 MZT1 PCNT
PPP1R12B TP53

Mitotic G2-G2/M phases 0.029 CCNA2 CKAP5 MZT1 PCNT
PPP1R12B TP53

Respiratory electron transport 0.030 MT-CO1 MT-CO3 MT-CYB MT-ND3
MT-ND4

Reactome

Cell Cycle, Mitotic 0.036 CASC5 CCNA2 CKAP5 ESCO1 FBXO5
MZT1 PCNT PPP1R12B PRIM1 SGOL2
TAOK1 TP53
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Tie2-mediated signalling pathway (PID), with missense mutations in MAPK8, PIK3CA and
PLG and an in-frame deletion of PIK3R1 responsible for this signal. All of these mutations
were predicted to alter protein function according to SIFT and PolyPhen. This pathway has
also been associated with increased breast cancer invasion [152] and will be further explored
in Chapter 5. Hence this analysis provided an insight into pathways that could potentially be
associated with chemoresistance during neoadjuvant therapy.

Enrichment over mutations that were no longer detected on therapy revealed 32 pathways,
although these were less specific. Pathways varied from muscle related pathways (such as
muscle contraction, dilated cardiomyopathy and hypertrophic cardiomyopathy), metabolism
of steroids and hormonal secretion. The lack of distinct enrichment could be attributed to
the fact that most of the mutations that were no longer detected were passenger mutations,
rather than oncogenic mutations, and therefore any signals originating from true pathways of
chemosensitivity would be masked by the even larger number of passenger mutations.

In summary, newly-detected mutations enriched for immune system, cell cycle, solute
transport and cellular motility pathways, suggesting that aberrations within these pathways
could play a role in inducing resistance to neoadjuvant therapy.

Mutational signature dynamics

To investigate whether the altered mutation dynamics were driven by specific mutational
signatures, the percentage change in mutational signature contribution was computed in
all samples at the diagnostic and midway time points (Figure 4.6A). Across the whole
cohort, there was no statistically significant change in mutational signature contribution
between the first and second time points. Hence the overall mutational signature landscape
remained stable. Signature 15, which was associated with defective DNA mismatch repair
and enrichment of short insertions and deletions at mono/polynucleotide repeats, was the
only signature that showed a trend for increased contribution during chemotherapy (p=0.06,
one side Student t-test to assess difference from 0). An analysis of the expression of DNA
mismatch repair genes (Figure 4.6C) showed that the expression of MSH2, MSH6 and
PMS1 were significantly lower at the midway time point compared to the diagnostic time
point (MSH2: diagnosis vs. midway: 23TPM vs. 15TPM, p=1.3e-06, MSH6: diagnosis vs.
midway: 17TPM vs. 12TPM, p=4e-08, PMS1: diagnosis vs. midway: 10TPM vs. 8TPM,
p=0.012). There was no difference in the expression of MLH1, MLH3, MSH3 and PMS2 in
the diagnostic and midway tumour samples.
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Figure 4.6: Mutational signature contribution change during treatment. (A) Percentage difference
between mutational signature contribution at the midway and diagnostic time points. No statistically
significant changes were observed across the cohort, indicating that the overall mutational landscape
was unchanged by chemotherapy. (B) Signature deconvolution performed on all mutations that
were no longer detected and newly-detected. Mutations lost were more likely to be secondary to an
APOBEC signature (13), whilst those gained secondary to a BRCA (Signature 3) or defective DNA
repair (Signature 15) mutational processes. (C) MSH2, MSH6 and PMS1 expression decreased during
chemotherapy, potentially contributing to the increased number of Signature 15-related mutations
observed.
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In order to assess enrichment for mutational signatures specifically on mutations that were
newly detectable and undetectable on therapy, signature deconvolution was performed on the
grouped mutations using the DeconstructSigs R package (Section 3.3.1). This enabled
the identification of mutational processes that were responsible for generating these newly-
detected mutations, as opposed to the aforementioned analysis which measured signature
change globally across each case. As shown in Figure 4.6B, the mutations that were no
longer detected were mostly those generated by age (Signature 1) and APOBEC (Signature
13). On the other hand, newly-detected mutations were attributed to age (Signature 1), BRCA
(Signature 3) and defective DNA mismatch repair (Signature 15) processes. This analysis
showed that chemotherapy rapidly eliminated mutations induced by APOBEC processes,
whilst new mutations observed were induced by BRCA and DNA mismatch repair processes.
Despite the significant enrichment of BRCA generated mutations in the dataset at diagnosis
(Section 3.3.1), very few of these mutations were rapidly eliminated by chemotherapy,
perhaps indicating that mutations induced by this process conferred chemoresistance. Over
20% of new mutation signature contributions fell within an unclassified category, perhaps
revealing previously undescribed signatures secondary to chemotherapy.

In conclusion, the mutational signature landscape remained globally stable on a per-sample
basis during chemotherapy. Mutations that were no longer detectable on therapy enriched for
APOBEC signatures, whilst those that were newly detectable enriched for BRCA and DNA
mismatch repair signatures, with evidence of MSH2, MSH6 and PMS1 expression decreasing
during chemotherapy.

Neoantigenic landscape dynamics

Given the dynamicity of the mutational landscape, as well as a previous observation that the
tumour neoantigen burden associated with response to neoadjuvant therapy (Section 3.3.3),
the change in neoantigenic landscape was explored.

To describe the change in neoantigen load during treatment a neoantigen ratio was computed
by dividing the number of mutations that generated a neoantigen by the number of non-
neoantigenic mutations for each sample. The change in ratio was derived as the difference
between the on-therapy and diagnostic ratio (midway minus diagnostic ratio): higher ratios
signified an increase in the number of neoantigens and lower ratios indicated an overall
decrease in neoantigenic burden during chemotherapy. Tumours that attained pCR had a
greater decrease in neoantigen ratio compared to chemoresistant tumours (Figure 4.7A) and
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Figure 4.7: Change in neoantigen landscape during treatment. (A) Change in neoantigen ratio during
treatment: monotonic change in ratio observed across different RCB categories. (B) Mutations that
were newly-detected during chemotherapy were much less likely to be neoantigenic, with only 11%
of newly-detected mutations generating a neoantigen.

the relationship across the RCB classes was monotonic (p=0.02, ordinal regression model).
Hence, the change in ratio decreased as the degree of RD increased, with RCB-III tumours
showing some evidence of an increase in neoantigen ratio during treatment.

55 cases had at least one new mutation detectable at the midway time point, and of these,
51 (harbouring a total of 462 gained mutations) had matching RNA-seq data. 51 of the 462
(11%) newly-detected mutations were neoantigenic, compared to 411 (89%) newly-detected
mutations that were not neoantigenic (Figure 4.7B): this difference was highly significant
(p-value = 5.127e-09, Wilcoxon rank sum), indicating that newly-detected mutations were
much less likely to be antigenic and therefore less likely to be detected by the immune
system.

Additionally, four cases had evidence of previously undetected HLA LOH (T009, T090,
T110, T120) midway during treatment. None of these four cases attained pCR by the end of
therapy.

In summary, tumours that attained pCR had a greater decrease in neoantigen burden during
therapy, with some chemoresistant tumours showing evidence of an increased neoantigen
ratio. Newly detectable mutations were much less likely to generate a neoantigen, indicating
that they were less likely to elicit an immunogenic response.



4.3 Early genomic landscape alterations 159

4.3.2 Clonal structure deconvolution

The mutational landscape during therapy has been shown to be dynamic, with the findings
so far describing changes presumed to be secondary to the selection pressures induced by
chemotherapy, in keeping with observations made by Kim et al. [155]. Changes secondary
to tumour heterogeneity and multi-region sampling could not be excluded, though all tumour
biopsies were consistently taken close to a radio-opaque fiduciary marker inserted at the time
of first sampling in order to mitigate spatial heterogeneity and random sampling.

The tumour clonal architecture was constructed using PyClone (Section 2.5.1): clonal
clustering was successful in 57 of 75 cases with diagnostic and midway sequencing data.
Failure to identify a clonal structure was due to PyClone being unable to identify optimal
solutions due to the presence of few mutations or very low purity estimations: for example
tumours with pCR by the midway time point would have no or very few somatic mutations
detectable and therefore these were excluded for the purposes of this analysis as no useful
clonal dynamic information would have been obtained.

On establishing the clonal architectures of these tumours and visualising the changes in
clonal prevalences during treatment (Figures 4.8 and 4.9) two distinct patterns of genomic
response to chemotherapy were evident:

1. Clonally stable tumours: defined as tumours that were characterised by mutational
prevalences through chemotherapy that were minimally altered (less than a change of
0.25 CCF points during treatment).

2. Clonally dynamic tumours: defined as tumours that were characterised by altered
clonal prevalences during treatment (more than a change of 0.25 CCF points). Tumours
falling within this category were subsequently sub-classified as:

(a) Tumours with clonal extinction: defined as tumours with evidence of subclonal
mutations that were either decreasing in prevalence during therapy or no longer
detectable

(b) Tumours with clonal emergence: defined as tumours with evidence of subclonal
mutations increased in prevalence during therapy, including mutations that were
either present at low CCFs or not detected at diagnosis.

(c) Tumours with clonal emergence and extinction: defined as tumours with evi-
dence of mutations that were both decreasing and increasing in prevalence during
therapy.
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Figure 4.8: Cases showing a clonally stable architecture midway through chemotherapy.
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Figure 4.9: Cases showing a clonally dynamic architecture midway through chemotherapy, with
evidence of clonal extinction only (T025, T064, T066), clonal emergence only (T010), and both types
of genomic response.



162 Modulation of tumour clonal architecture by neoadjuvant chemotherapy

Classification of cases into these categories was performed computationally. Only mutational
clusters containing at least 3 mutations were retained for classification. In cases where the
CCF of the founding clone was less than 1, scaling of all mutations was performed such that
the upper CCF bound of the founding clonal cluster was at 1. If the difference in CCF at the
two time points was within 0.25 CCF points then the cluster was classified as unchanged.
Any deviation of more than 0.25 was assumed to represent extinction or emergence.

Clonally stable tumours

Clonally stable tumours were characterised by mutational prevalences through chemotherapy
that were minimally altered, with representative examples shown in Figure 4.8. There was
no evidence of appearance or disappearance of subclones during treatment.

23% of all tumours (13/57) showed this response pattern and members comprised both uni-
clonal and multi-clonal tumours. 8 of these tumours were moderately differentiated (grade
2), with the remaining 5 being poorly differentiated (grade 3). There was no association
between clonal stability at the midway time point and response to chemotherapy.

Tumours that were clonally stable were more likely to have a coding non-silent mutation
within Clusterin (CLU, Testosterone-Repressed Prostate Message 2) when compared to
clonally dynamic tumours (34% vs. 0%, p=0.0004, Fisher’s Exact Test). CLU has been
shown to be a key mediator in the protection against cytotoxic-induced cell death through
NF-kB activation and Bcl-2 overexpression [256, 306], with knockdown studies in human
cancer cells showing a significant reduction of growth and higher rates of apoptosis [289].
Additionally, in breast cancer, CLU overexpression has been associated with resistance to
neoadjuvant chemotherapy [214].

Furthermore, clonally stable tumours also had an increased non-silent coding mutation rate
in the mitochondrial protein MT-CYB (p=0.04, Fisher’s Exact Test).

There was no association between TP53 and PIK3CA mutation status and clonal stability
during therapy.
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Clonally dynamic tumours

Clonally dynamic tumours were characterised by a significant shift in subclonal structure
(Figure 4.9): 44 of 57 cases (77%) had this type of response. Whereas the founding clone,
often containing an identifiable non-silent driver mutation, was clearly observed in both initial
and midway samples, there was evidence of subclonal mutations that varied significantly in
prevalence between sampling time points.

Three types of differing clonal dynamic tumours were identified. The first type was pre-
dominantly characterised by clonal extinction, wherein the cellular prevalence (CP) of the
tumour subclones decreased during therapy. Cases T025, T064 and T066 showed such a
genomic response pattern (Figure 4.9) - the CP of the subclones appeared to dramatically
reduce during therapy indicating that they were sensitive to chemotherapy. In the second
type of response, clonal emergence, rare subclones that were present at diagnosis increased
in prevalence during treatment. T010 was one such case, where a rare clone increased in
prevalence from less than 5% before treatment to around 40% midway through therapy. The
third type of response represented a combination of clonal emergence and clonal extinction.
For example, in case T005 (Figure 4.9) there was clear evidence of a founding clone with a
TP53 mutation and a subclone containing KMT2D, BRAF and ATRX mutations at diagnosis.
As chemotherapy was administered, the chemosensitive KMT2D-BRAF-ATRX subclone
was no longer detectable and was replaced by a chemoresistant ESR1-BRCA2 mutant sub-
clone. Likewise, in case T092, a chemoresistant PIK3R1 driven subclone emerged during
chemotherapy. Case T147 was characterised by a founder clone with a PIK3CA mutation and
a subclone with a TP53 mutation. In keeping with observations made in Chapter 3, tumours
with PIK3CA mutations were more likely to be chemoresistant - indeed the tumour from
case T147 had RCB-III RD at the time of surgery, with the more aggressive TP53 subclone
rapidly decreasing in prevalence during treatment, leaving the founding PIK3CA clone that
did not contain a TP53 mutation to predominate the landscape.

All tumours that exhibited clonal emergence without clonal extinction by the midway time
point had RCB-II or RCB-III RD by the end of treatment, indicating aggressive disease with
more prevalent subclones arising during treatment. Dynamic clonal landscapes with com-
bined emergence and extinction were also evident in tumours that eventually attained pCR,
suggesting that the chemoresistant subclones maintained by the first block of chemotherapy
were subsequently eliminated by the second block of treatment.
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Association with chromosomal instability and copy number alterations

The copy number landscape also showed evidence of changes during therapy, with some
tumours showing greater degrees of CNA dynamics than others. Tumours with clonal emer-
gence only had a statistically significant increase in homologous recombination deficiency
(HRD, Figure 4.10A) during therapy, compared to all other types of responses. Indeed, the
change in HRD scores varied monotonically across the four different response subgroups,
with a decrease in HRD score as clonal extinction predominated (p=0.01, ordinal regression
model).

A whole-genome copy number landscape analysis echoed a similar finding: tumours that
had evidence of clonal emergence had an increased number of CNAs during therapy and
increasing chromosomal instability (Figure 4.10B). As clonal extinction predominated, the
degree of copy number instability present decreased (p=0.03, ordinal regression model).
Hence the genomic responses identified were consistent irrespective of whether the analysis
was performed on mutational cellular prevalences or whole-genome copy number changes.

Tumours that were clonally stable also had a more stable copy number landscape compared
to tumours which showed evidence of a dynamic genomic architecture (Figure 4.10C), with
tumours undergoing clonal extinction being the most different from the treatment-naive
tumours secondary to the loss of subclonal copy number events.

As the copy number landscape was shown to be altered during therapy, an analysis of the
tumour iC10 copy number classification before and midway through therapy was performed
(Section 2.5.2). 70% of all cases did not exhibit a change in the iC10 copy number clas-
sification midway through therapy. In 30% of cases, a switch to cluster 4 (normal-like)
was observed: this was universally secondary to lower degrees of tumour purity. Indeed,
60% of cases with a switch to iC4 attained pCR by the end of therapy whilst 25% had
evidence of low-cellularity RCB-I RD, indicating that the switch to a normal-like genotype
was secondary to a decrease in tumour purity attributed to a good response to chemotherapy.
More importantly, this iC10 analysis showed that although the copy number landscapes were
dynamic during therapy, there was no significant change within the CNA driver amplicons
that generated and maintained the tumour cells as there was no evidence of iC10 class
switching in the high purity tumours.
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Figure 4.10: Changes in copy number landscape during therapy. (A) Change in HRD index across
four genomic response groups. (B) Percentage change in copy number instability during therapy. (C)
Tumour copy number landscape similarity midway through chemotherapy.
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4.3.3 Clonal phylogeny reconstruction

Following the deconvolution of clonal architecture from the bulk exome sequencing data,
clonal phylogeny was derived using LICHeE [228], which imposed evolutionarily constrained
networks on the clonal prevalence data inferred by PyClone and determined optimal phyloge-
netic solutions. Representative phylogenies are shown in Figure 4.11.

The phylogenetic networks generated mirrored very closely previous observations, with evi-
dence of changes in the tumour clonal hierarchy during therapy. Clonally stable tumours, as
represented in Figure 4.11A, had a quasi-identical subclonal composition between sampling
time points, with very little deviation of subclone prevalences and no new clones detected.
In the example chosen in Figure 4.11A (T131), the founding clone, as well as two daughter
clones were both identified in the diagnostic and midway time points, with no change in
clonal prevalence.

In contrast to the clonally stable tumours, tumours classified as clonally dynamic showed
distinct changes within the tumour subclonal composition, as shown in Figures 4.11B-F.
Tumours undergoing solely clonal extinction showed two types of phylogenetic alterations,
as depicted by cases T025 (Figure 4.11B) and T064 (Figure 4.11C). In case T025, subclones
that were generated later on in the tumour’s evolutionary history, and which therefore had a
greater degree of mutations/CNAs, were no longer detected after commencing chemotherapy,
with only evidence of the founding clone and earlier subclones detected at the second
sampling time point. Perhaps by accruing new genomic aberrations daughter clones became
more proliferative (and therefore more chemosensitive) or more immunogenic and were
eliminated faster by cytotoxic therapies. In a second scenario, as exhibited by case T064,
rather than exhibiting complete subclonal elimination there was a gradual regression of
the dominant subclone as treatment ensued. For example, in case T064, the pre-treatment
landscape was predominated by the subclone harbouring the 55 mutations in cluster 3 (orange,
also see Figure 4.9), but as treatment was administered there was evident regression of this
abundant clone, with the less chemosensitive parent subclones predominating the clonal
landscape now that the dominant clone was no longer selected for. Perhaps the dynamics
shown by T064 were, in fact, a prelude to those observed in case T025, and with time
complete regression of the dominant subclone would have occurred.

The most common pattern of clonal dynamics was one in which extinction and emergence
occurred together, as shown in Figures 4.11D-F. In case T152, the chemoresistant sub-
clone which harboured a TET2 mutation and dominated the landscape was not convincingly
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observed at the midway time point (Figure 4.11D), and instead a previously unobserved
subclone harbouring 15 previously undetected mutations was seen, together with the originat-
ing founding clone that harboured a TP53 mutation (Figure 4.9). This could have occurred
either due to spatial sampling or due to clonal expansion secondary to altered resistance
patterns. Whereas in case T152 the originating resistant subclone originated directly from
the founding clone, in other cases the resistant cell was derived from a subclone that was
generated later on in the tumour’s evolutionary history (Figures 4.11E and F). In case T005,
the BRCA2 subclone predominating the landscape was not sampled at diagnosis, but its
founder, a subclone carrying an ESR1 mutation, was convincingly detected, albeit at very
low cellular prevalences. On commencement of therapy the BRCA2 subclone (which also
contained an ESR1 mutation), expanded and predominated the landscape. Interestingly,
T005 was an ER+ tumour, and the ESR1 mutation (c.600G>C, p.W200C) was predicted at a
high probability to be deleterious by both SIFT (classification: deleterious, score 0) and
PolyPhen (classification: probably_damaging, score 0.999) and was, perhaps, the selection
of an endocrine therapy resistant subclone.

In summary, subclonal deconvolution using mutational and copy number alteration data
showed evidence of tumours that remained genomically stable midway through therapy,
as well as others that showed a significant change in their architecture. Clonally dynamic
tumours showed evidence of subclonal mutations that were either newly-detected or no longer
detected on second sampling, potentially attributed to chemosensitive or chemoresistant
populations. While tumour spatial heterogeneity could also explain some of these findings,
the biopsy techniques used were designed to consistently sample the same region of a tumour
in order to mitigate this.
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4.4 Late genomic landscape alterations

4.4.1 Mutation dynamics

50 cases had tumour sampling performed at the diagnostic and surgical time points and
26 cases had sampling at all three time points. H&E sections from all the samples that
were subsequently sequenced and included within downstream analyses were examined by a
pathologist and confirmed to have been taken from the tumour bed.

Figure 4.12A shows the mutation dynamics between the pre and post-therapy samples for
all 50 cases. A total of 1,799 mutations observed at diagnosis were not detected by the end
of therapy, whilst 224 mutations were detected in the post-therapy samples but not in the
diagnostic samples. 1,028 mutations were detected at both time points.

A total of 8 cases that attained pCR were sequenced in order to identify whether any remaining
mutations could be identified despite no pathological evidence of tumour cells in the resected
tumour specimens. On close inspection, Figure 4.12A shows that, in these 8 cases, persisting
mutations could still be observed within the exome sequencing data: in case T136 more than
20 mutations persisted within the sequenced tissue with a median AF of 0.8%, despite a
pathological assessment of pCR. The persistent detection of these mutations could either
be secondary to residual tumour cells within the sequenced sample, and therefore incorrect
response classification, or the presence of in-situ carcinoma harbouring these mutations.
Indeed pCR in this study was defined as the absence of any tumour cells in the breast or
lymph nodes, irrespective of the degree of remaining residual carcinoma in situ. Two cases
that attained pCR (T003 and T059) each had two previously unobserved mutations detected,
though it was highly likely these mutations were false positives and secondary to variant
calling error. As described in Chapter 2, the predicted false positive rate for the variant
calling pipeline was estimated at 0.08 mutations Mb-1, so around 3 mutations per sample
would be expected to be false positives. This analysis also showed that chemotherapy did not
induce any new detectable mutations within the germ-line normal breast tissue.

In sharp contrast to the observations made at the midway time point, significantly fewer
newly-detected mutations were observed in the post-chemotherapy specimens, with only
three cases having more than 20 new mutations identified (T004, T090, T127). This might
have been secondary to longer chemotherapy exposure and/or the alteration of chemotherapy
agents administered: most patients in this study received either a taxane for three cycles,



170 Modulation of tumour clonal architecture by neoadjuvant chemotherapy

pCR RCB−I RCB−II RCB−III

0
20
40
60

Pe
rs

is
tin

g
m

ut
at

io
ns

T1
36

T1
80

T0
03

T0
59

T1
54

T1
04

T0
73

T1
63

T1
17

T1
64

T0
39

T0
07

T1
68

T0
56

T1
29

T0
87

T0
90

T1
38

T0
04

T1
37

T0
51

T1
26

T0
17

T1
55

T1
10

T1
60

T0
08

T0
91

T1
71

T0
18

T0
43

T1
41

T1
66

T1
27

T0
19

T0
44

T1
31

T0
53

T1
56

T1
59

T1
78

T0
96

T1
61

T1
40

T1
50

T1
74

T0
58

T1
09

T0
06

−400

−300

−200

−100

0

100

Patient

N
um

be
r o

f m
ut

at
io

ns
A

*** ***

0

30

60

90

pCR RCB−I RCB−II RCB−III

RCB category

%
 M

ut
at

io
ns

no
t d

et
ec

te
d

B

R = 0.79 p = 1.9e−11

0

1

2

1.0 1.5 2.0 2.5

Log10 total mutations at diagnosis

Lo
g1

0 
M

ut
at

io
ns

no
t d

et
ec

te
d

C

Figure 4.12: Somatic mutation landscape dynamic on completion of chemotherapy. (A) Green bars
depict number of mutations detected pre and post-therapy. Red bars show number of newly-detected
mutations detected on completion of chemotherapy, blue bars quantify mutations detected at diagnosis
only. (B) Box plots showing percentage of mutations that were no longer detected after completion of
chemotherapy across the four response groups. (C) Scatter plot showing relationship between the
total number of mutations observed at diagnosis and the number of mutations that were no longer
detected after completion of chemotherapy.
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followed by an anthracycline for a further three cycles if HER2� while in HER2+ disease
the cytotoxic sequence was reversed and trastuzumab was added to the second block of
the chemotherapy regimen. This suggests that by swapping chemotherapy backbone any
chemoresistant subclones maintained by the first block of the chemotherapy regimen might
have been effectively eliminated by the second block of treatment.

In keeping with the observations made at the midway time point, the percentage of mutations
that were not detected correlated to both the response observed (Figure 4.12B) as well as
the number of mutations observed at diagnosis (Figure 4.12C). Tumours that had higher
degrees of RD present at the time of surgery remained genomically very stable, with most of
the mutations observed at the initial time point persisting after completion of neoadjuvant
chemotherapy.

Subclonal driver mutation dynamics

As observed in the midway time point, at the end of treatment the driver gene landscape
was also altered, with evidence of newly detectable driver mutations, as well as the apparent
eradication of others (Figure 4.13). Of all the higher purity post-treatment samples analysed,
six cases had evidence of loss of a driver gene during treatment: in all cases the mutation was
predicted to be subclonal on the pre-therapy tumour sample and included: NF1, SMARCA4,
SF3B1, PIK3CA, MAP3K1, ESR1 and BCOR. Three cases had evidence of new driver
mutations emerging during therapy, and these included GATA3, BUB1B, TP53 and MLLT4.
In all but one case (T004, Figure 4.13) the subclonal probability was estimated to be 100%,
indicating that these were truly not present within the founding clone. None of the cases with
RCB-I RD had evidence of new driver mutations: the emergence of previously unobserved
driver mutations was restricted to chemoresistant (i.e. RCB-II and RCB-III) tumours within
this dataset.

Pathway enrichment and signature deconvolution

To elucidate whether the mutations that were newly-detected during treatment played a
key role in cellular pathways an over-representation analysis was performed using the
ConsensusPathDB tool [149, 150]. An enrichment analysis was conducted on the Reactome,
KEGG, PID and BioCarta databases, retaining pathways that had at least four overlapping
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genes, with statistical significance ascertained only below an FDR cut-off of 0.05 in order to
minimise the number of false positive hits.

Pathway enrichment over newly-detected mutations revealed over-representation of two
pathways, oxidative phosphorylation/respiratory electron transport and mitosis, all at an FDR
of less than 0.04:

1. Reactome pathways
(a) Respiratory electron transport (MT-CO1, MT-ND2, MT-ND3, MT-ND4)
(b) G2/M Transition and Mitotic G2-G2/M phases (CUL-1, TP53, FGFR1OP, HMMR)

2. KEGG pathways
(a) Oxidative phosphorylation (MT-CO1, MT-ND2, MT-ND3, MT-ND4)

Four genes involved in cell cycle regulation were associated with chemoresistance. One of
these, HMMR (Hyaluronan-mediated motility receptor), codes for a protein that associates
with microtubules and plays a key role in the maintenance of spindle integrity and mitosis
[189]. Additionally, HMMR has been shown to interact with BRCA1 and BARD1, with the
resulting complex playing a key role in the regulation of mitosis [146, 229].
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In order to assess whether the new mutations were driven by any particular mutational
process, signature decomposition was performed on the aggregated new mutation data, which
showed enrichment of Age (Signature 1, 69%), two APOBEC signatures (Signature 2: 11%
and Signature 13: 8%) and the error-prone polymerase POLE signature (Signature 10, 6%),
with only 6.6% of total signature contribution attributed to the "Unknown" category. Two
observations can be made from this analysis. Firstly, only a very small proportion of mutations
fell within an unknown mutational signature, showing that the overall detectable mutagenic
effect of the chemotherapeutic agents used was indeed very low, with most mutations being
generated by a pre-existing mutational signature. Secondly, the new mutations observed in
the non-chemosensitive (RCB-II and RCB-III) tumours were secondary to hypermutation
signatures (including APOBEC) that were operating during chemotherapy.

4.4.2 Clonal structure deconvolution

To delineate changes within the subclonal composition of the tumour after completion of
neoadjuvant therapy, PyClone was run on 25 cases which did not attain pCR and had a
tumour purity above 20%. In addition, 10 of these cases also had a corresponding tumour
sample taken at the midway time point.

The clonal dynamics previously observed midway through chemotherapy were once again
very evident, with 76% (19/25) of all cases harbouring a clonally dynamic genotype, and
24% (6/25) showing a clonally stable architecture, as defined previously. Remarkably, the
ratio of tumours with a clonally dynamic versus a clonally stable genotype was very similar
to that seen in the midway biopsy time point. Out of the 19 tumours with a clonally dynamic
genotype, 4 had evidence of clonal emergence only, 5 had evidence of clonal eradication
only and 10 had evidence of both clonal extinction and clonal emergence.

Clonally stable tumours (Figure 4.14) retained a genomically identical architecture throughout
treatment, with no new subclones appearing and the overall clonal structure remaining very
similar. As was observed at the midway time point, tumours with both uni-clonal and
multi-clonal architectures were classified within this response group.

Clonally dynamic tumours showed significant shifts within the cellular prevalences of the
mutational subclones (Figure 4.15), with evidence of new subclones identified (or increasingly
prevalent ones), as well as loss of subclonal mutations (or decreasingly prevalent ones).
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Figure 4.14: Genomic architecture of clonally stable tumours throughout treatment. Cellular preva-
lences compared at the diagnostic, midway and surgical time points. T131 was clonally stable between
the diagnostic and midway time points, with a slight decrease in cellular prevalence of one subclone
by the surgical time point.
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Figure 4.15: Clonally dynamic tumours. Altered clonal dynamics identified in (A) cases with
diagnostic and surgical tumour samples and (B) tumours serially sampled at three time points.
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Following the deconvolution of the mutational and copy number data into clonal clusters,
clonal phylogenies were reconstructed using LICHeE, as described previously, to navigate
temporal clonal evolution. Riverplots of the tumour phylogenies were generated from the
LICHeE output using the R package timescape (Figure 4.16). The riverplots showed dis-
tinctive clonal pattern shift during chemotherapy. For example, case T090 (Figure 4.16A)
received treatment with T!FEC chemotherapy and showed evidence of a dominant sub-
clone (orange) being replaced by a second subclone during treatment with docetaxel. This
subclone, which became increasingly prevalent during treatment with docetaxel, was also
chemoresistant to the second block of the chemotherapy backbone (FEC), thereby exhibiting
a degree of multi-agent resistance. At the time of surgery, RCB-II disease was present.

Case T007 (Figure 4.16B) demonstrated clearly the benefits of trastuzumab when com-
menced at the second block of treatment, During treatment with 3 cycles of FEC, a subclone
(orange) gradually decreased in cellular prevalence, and was replaced by a chemoresistant
subclone (red). However, on commencing trastuzumab and docetaxel, the subclone that was
chemoresistant to FEC greatly decreased in prevalence, showing that a therapy switch to
docetaxel and trastuzumab was beneficial. This decrease in clonal dominance was echoed by
the presence of RCB-I RD at surgery.

Case T131 was also a HER2+ tumour, though treatment was instituted with four cycles of
docetaxel, pertuzumab and trastuzumab with no backbone switch. Unlike the clonal dynamics
observed previously, the tumour remained clonally stable after 2 cycles of treatment (Figure
4.16C), and by the end of therapy only one of the clones decreased in cellular prevalence.
The genomic stability observed was in concordance with the extensive RD present at the
time of surgery (RCB-III).

Case T096, which was treated with T!FEC, showed a very intriguing change in subclone
architecture. On commencing chemotherapy with docetaxel there was quick clonal alteration
with a marked decrease in the prevalence of two subclones (green/orange clones in Figure
4.16D). On switching the chemotherapy backbone to FEC, a gradual increase was observed
in one of the subclones, indicating chemosensitivity to docetaxel but chemoresistance to FEC.
Indeed, as therapy was switched to FEC, there was evidence of resistance to therapy and an
increase in the prevalence of one of the subclones, resulting in RCB-III disease.

Case T141 showed the transient appearance of a TP53 driven subclone (yellow) at the
midway time point during therapy with docetaxel (Figure 4.16E). This clone was no longer
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detected at the time of surgery following an additional three cycles of FEC, though RCB-II
disease was still present at the time of surgery.

Case T150 showed the gradual and slow eradication of a subclone during treatment with
paclitaxel!EC. This patient did not tolerate chemotherapy and was initially started on weekly
paclitaxel (rather than three weekly docetaxel) and required multiple dose reductions of the
taxane. Fluorouracil was removed from the second block of the chemotherapy backbone, and
only received EC instead. As can be seen from the riverplot (Figure 4.16F), the suboptimal
chemotherapy exposure resulted in very little change in the clonal constitution of the tumour
and RCB-III RD was present at the time of surgery.

In summary, the genomic landscape changes seen at the midway time point were also
observed on completion of chemotherapy, with evidence of tumours having a very stable
clonal landscape and others showing greater degrees of shifts. By integrating data from three
sampling time points the gradual changes in clonal prevalences could be modelled, increasing
our insight into the differing genomic responses to therapy induced by backbone switches.
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4.5 Deep sequencing validation

4.5.1 Validation on fresh frozen tissue

The bulk exome sequencing analysis discussed has shown evidence of changes in the clonal
architecture of tumours that occurred during treatment with chemotherapy. In order to
validate these findings, deep sequencing was performed on four index cases that exhibited
evidence of clonal dynamics during chemotherapy (T003, T004, T025, T029). Matched
normal samples were also sequenced for all four cases. Diagnostic samples were available
for all four cases, midway samples available for cases T003, T025 and T029 and surgical
samples available for cases T003, T004 and T029. The aliquots of DNA used were the same
as those that were used for the exome library preparation. In addition, two unrelated control
samples containing normal DNA were also included within the analysis.

A total of 156 mutations were targeted across all four cases and primers designed for each
region. Targeted amplification was performed using the Raindance system (Section 2.4.2),
and the base statistics of the loci containing the mutations of interest generated by using
GATK HaplotypeCaller. As the mutations targeted were exclusive to each case all other
cases served as controls to allow background noise estimation.

The mean amplicon coverage across all samples was 4,596⇥ (range 39-9,931⇥, Figure
4.17A). All samples had a median coverage of over 2,500⇥, except for the T003 surgical
sample, which had lower DNA content due to the fact that pCR had occurred and very few
cells were present within the sequenced sample as most of the tumour had been replaced
by fibrous tissue. Of the 156 amplicons targeted, 5 had a median coverage of less than 10x
across all samples (Figure 4.17B) and were removed from the analysis. Of the remaining
151 amplicons, the median coverage was 5,144⇥ (range 133-9890⇥). Based on this depth of
coverage, any rare variants that were not detected on the exome sequencing data would be
expected to be detected at low allelic fractions.

In order to assess for primer specificity and for inter-sample contamination, the VAFs
of patient-specific mutations were assessed across all controls and cases (Figure 4.17D).
Mutations present in one case were not observed in other cases, indicating high primer
specificity (as opposed to low specificity, in which through binding to regions with high
homology mutations due to misalignments would be expected to be present) and no cross-
contamination between samples.
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Figure 4.17: Targeted amplification metrics. (A) Distribution of coverage across all samples se-
quenced. (B) Median coverage distribution across the 156 amplicons sequenced. (C) Concordance
between exome AF and deep sequencing AF. (D) VAF of targeted mutations across cases and controls.
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A mutation was deemed to be present if the VAF of the mutation in a case was three standard
deviations above that of controls. A high concordance was observed between exome VAF
and deep sequencing VAF (R= 0.91, p=7.2e-117), showing the reproducibility of the exome
sequencing pipeline. By orthogonally validating the selected mutations, the deep sequencing
experiment allowed the characterisation of the performance of the exome pipeline, with an
accuracy of 0.96, sensitivity of 0.96, specificity of 0.95 and false positive rate of 0.05. Only
8 mutations were not detected by exome sequencing but were detected by deep sequencing.

Correlation with predicted clonal structure

In Case T003 (Figure 4.18), three mutational clusters were detected on bulk exome se-
quencing: one founding clone (green) and two subclonal clusters (yellow and orange).
Representative mutations from each of the three groups were deep sequenced and this con-
firmed the presence of a founder clone present at the diagnostic and midway time points, a
subclone that was no longer detectable midway through therapy, and another that appeared
midway and was no longer detectable by the time of surgery. This tumour attained pCR on
therapy and none of the selected mutations were identifiable. Four of the six mutations that
were only present in the midway sampling time point on exome sequencing were also present
at the diagnostic time point on deep sequencing, albeit at low allelic fractions, suggesting
that they were not generated by chemotherapy but present prior to the commencement of
treatment.

In Case T004 three mutational clusters were detected on bulk exome sequencing, with a
founder clone (orange) persisting throughout treatment, a subclone (yellow) that was detected
at diagnosis but not at surgery, and a new clone emerging (green). The deep sequencing data
analysis once again confirmed this clonal structure. The mutations in the founder clone were
present throughout therapy, with the eradication of a subclone driven by SMARCA4, and the
emergence of a subclone with a POT1 mutation. Two of the variants within the subclonal
population that become increasingly prevalent during chemotherapy (RYR2 and POT1) were
robustly identified at the diagnostic time point, albeit at low cellular allelic fractions.

In Case T025, four mutational clusters were present at diagnosis: three of these decreased
in prevalence during treatment but remained detectable. Deep sequencing confirmed the
presence of these clones, with the absence of one mutation in the clonal cluster that was
predicted to be undergoing the greatest degree of clonal extinction (orange cluster in Figure
4.18).
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Figure 4.18: Deep sequencing of serial tumour samples from four cases that were also exome
sequenced. Scatter plots show clonal structure derived from exome sequencing, heatmaps show deep
sequencing results. Presence of an asterisk indicates identification of the mutation in the exome
sequencing data. The surgical sample of case T029 was not exome sequenced as fresh tissue was not
available.
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Case T029 had fresh tissue at two time points (diagnosis and midway) and FFPE tissue at
the surgical time point: only the diagnostic and midway biopsies had been exome sequenced.
The clonal structure identified by exome sequencing in this HER2+ tumour was recapitulated
from the deep sequencing data, though several observations can be made from this case.
Midway through therapy, after three cycles of docetaxel, there was an apparent significant
shift in structure, with one clone no longer detectable (green) and another emerging (orange).
At the surgical time point though, the newly prevalent subclone was no longer detectable,
though there was evidence of re-emergence of the previously undetectable subclone (green).
This could be been either secondary to real shifts in dynamics to treatment secondary to
differential chemoresistance and sensitivity to cytotoxic and targeted therapy (i.e. one clone
was sensitive to docetaxel and resistant to trastuzumab and FEC, and vice versa for the second
subclone), or secondary to spatial heterogeneity, as the FFPE sample was not taken from the
same region the other two samples had been taken from.

In summary, the targeted deep sequencing experiment orthogonally validated the high
accuracy of the exome sequencing pipeline and showed that some newly-detected mutations
called at later time points in the exome data were actually detectable at very low VAFs in the
diagnostic samples. Hence, these mutations were not generated by chemotherapy, but rather
pre-existed as rare events within the treatment-naive tumour.

4.5.2 Multi-region deep sequencing

A recent publication has shown that clonal emergence was often secondary to pre-existing
chemoresistant clones present in treatment-naive tumours, with clonal expansion occurring
due to altered selection pressures induced by cytotoxic therapies [155]. In order to further
determine whether mutations within clonally emergent subclones were present before com-
mencing therapy, or whether they were induced and maintained by chemotherapy (as is the
case when platinum therapy is administered in ovarian carcinoma), multi-region sequencing
was performed on case T004 (Figure 4.19). The clonal architecture during treatment, as
defined by exome sequencing of the fresh frozen tumour samples, comprised three clonal
clusters (Figure 4.19A), with one founding clone containing non-silent TP53 and PTEN
mutations, a subclone driven by SMARCA4 that was no longer detectable during therapy, and
a subclone driven by MLLT4 that showed evidence of clonal emergence during chemotherapy.

Histopathological assessment of the diagnostic and surgical samples by Dr Wei Cope revealed
a population of tumour cells that were very pleomorphic, with vesicular nuclei, prominent
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nucleoli and frequent mitotic figures at both time points (red arrow in Figure 4.19B). How-
ever, whereas the diagnostic biopsy was relatively homogeneous for this morphology, at the
surgical time point a second population of cells was identified that had not been observed in
the diagnostic sample. These were less pleomorphic, smaller in size and with fewer mitoses,
indicating a less proliferative phenotype (green arrow in Figure 4.19B). This apparent differ-
ence in morphology, with the identification of two distinct morphologies after chemotherapy,
could have accounted for the significant genomic shift observed on exome sequencing.

Four cores were punched out of the diagnostic FFPE biopsy for this case (regions 8-11), and
five cores taken from the surgical FFPE resection specimen (regions 3-7), as shown in Figure
4.19C. Two cores were taken from matched normal FFPE tissue (regions 1 and 2, not shown),
and a further five cores taken from normal breast tissue from a different case to increase the
number of controls for noise modelling and robust assessment of mutation status. Targeted
amplification was performed using the Raindance platform.

The analysis of the deep sequencing experiment showed various salient points. Firstly, all
the mutations selected within the founding cluster (cluster 3), were detected in all regions in
the diagnostic and surgical samples. Secondly, most of the mutations present in the newly
predominant subclone at the surgical time point (cluster 1, green) were also observed at
the diagnostic time point, albeit at AFs of less than 1% in most cases, showing that these
mutations were not generated by chemotherapy, but rather were already pre-existing at very
low cancer cell fractions. Finally, Cluster 2, which was seen at diagnosis, but not at the
surgical time point on exome sequencing, was not detected in any of the regions sequenced
(except for FCRL1, which was seen at a low AF in one case at diagnosis). The mutations
falling within these clusters were not false positives, as they were convincingly detected on
deep sequencing of the fresh frozen DNA that was exome sequenced (Figure 4.18). Hence
this could suggest that these mutations were not detected in the FFPE diagnostic sample due
to tumour heterogeneity. Unlike the fresh frozen biopsies, which were often taken adjacent
to the clip site, the diagnostic FFPE biopsy was taken before fiduciary marker insertion,
and therefore was most likely taken from a different region of the tumour, explaining the
difference. Hence the result of this experiment shows how important it is to consistently
sample tumours from the same site, rather than performing unguided biopsies. Additionally,
only a small number of mutations were targeted, and ideally a further experiment comprising
more amplicons would be designed to investigate this further.

Clonal phylogeny construction using Treeomics (Figure 4.19D) showed the genomic re-
lationship between the different sampled areas. The phylogenetic reconstruction mirrored
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very closely the anatomical regions of the specimens, with regions 8 and 9 on the diagnostic
biopsy denoted as harbouring the originating tumour populations. Region 11 in the diagnostic
biopsy was shown to have the greatest similarity to Region 7 in the surgical sample, which
subsequently gave rise to the other populations sampled in the surgical biopsy.
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4.6 Genomic architecture of relapse

Fourteen cases recruited to the TransNEO cohort relapsed by April 2018. Four cases relapsed
regionally, whilst ten patients developed metastatic disease. All four regional relapses (T020,
T052, T078 and T089), as well as two brain metastases from case T108 were sequenced and
clonal phylogenies constructed (Figure 4.20A). Cases T020 and T052 had RCB-I RD whilst
cases T078 and T089 had RCB-II RD following neoadjuvant therapy.

Of the four cases with local relapse, three showed a genomic architecture that was dynamic
and different from the one sampled at diagnosis (T020, T052, T089: Figure 4.20A). This was
very much akin to the dynamics observed during neoadjuvant chemotherapy, with therapy
seemingly altering the clonal composition of the tumours. Indeed, in all three cases there
was evidence of clonal eradication and clonal emergence perhaps secondary to the selective
pressures induced by chemotherapy, with the emergent clone responsible for local relapse.

Case T078 developed a regional relapse within the ipsilateral axilla: remarkably the clonal
architecture of the relapse was identical to that seen at diagnosis, with two populations both
present at identical cellular prevalences. This suggested that both tumour clones migrated
together to the axilla and maintained the clonally stable architecture observed at diagnosis.

Case T108 was the only patient with a distant relapse that was sequenced in this study. This
patient was diagnosed with a lymph node negative, 30x29mm ER�HER2� grade 3 tumour
and developed respiratory failure following 4 cycles of TC chemotherapy. She was deemed
unfit for surgery and instead received radiotherapy to the breast and axilla with the primary
tumour left in situ. Unfortunately, 16 months after diagnosis she developed brain metastases
in the right temporal lobe: two biopsies were taken from different regions of the brain tumour
at the time of metastasectomy. The clonal phylogeny for the three tumours sampled (one
diagnostic, two relapse) are shown in Figures 4.20A and B. The clonal structure at diagnosis
was different from that in the two sampled nodules. The founding clone containing TP53,
NOTCH1 and ESR1 mutations predominated in all samples. Cluster 4, which observed in the
diagnostic biopsy, was no longer detectable in the relapsed tissue, indicating eradication by
chemotherapy or failure of the clone to metastasise. However, three subclones that were not
detected in the pre-therapy tumour were identified in the two brain metastases (clusters 2, 3
and 5, Figure 4.20C), with evidence of different clonal compositions in both metastatic sites
(cluster 2 in relapse 1a, cluster 3 in relapse 1b). These newly-detected mutations could have
been selected for by therapy or generated within the 16-month period between completion of
therapy and relapse.
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4.7 Discussion

The work done in this chapter has described how tumour burden and genomic architectures
were altered during neoadjuvant chemotherapy.

Serial MRI scans done on a subset of patients within this study showed that tumour volumes
decreased during neoadjuvant chemotherapy, thereby allowing for an increased rate of breast
conservation surgery. The rate of volume loss midway through treatment correlated with
the degree of response observed by the end of treatment. Tumours that would eventually
attain pCR decreased in volume faster than those with RD on completion of treatment, with a
linear correlation observed between volume change midway through therapy and response at
the end of therapy. Hence, volume change midway through chemotherapy was predictive of
eventual RCB category. Additionally, an analysis of change in tumour purity based on both
expert histopathological assessment and digital pathology analysis of the sequenced H&E
slides showed that rate of loss of purity midway through chemotherapy also correlated with
eventual response.

The tumour genomic landscape was seemingly altered by neoadjuvant chemotherapy. Through
the use of serial tumour sampling it was very evident that the genomic architectures of the
tumours studied changed during chemotherapy, with evidence of previously undetected
mutations as well as the disappearance of mutations that had originally been detected prior
to commencing therapy. An analysis done on the midway tumour samples showed that
chemosensitive tumours had a greater number of subclonal mutations that were no longer de-
tected on second sampling. Chemoresistant tumours showed very little change in mutational
profile halfway through therapy. This observation was further confirmed by computing the
Jaccard’s coefficient of genetic similarity between the midway and diagnostic tumour sam-
ples. Serial tumours that attained pCR were much more dissimilar to each other, compared to
those with higher degrees of RD, possibly secondary to the greater number of mutations that
were no longer detected. By integrating a digital pathology analysis, the number of mutations
that were newly-detected, eradicated, or persisting were not shown to be correlated to the
number of cancer cells sequenced, showing that the dynamics observed were not confounded
by tumour content.

Mutation dynamics were not limited to passenger mutations only but were also observed in
non-silent mutations harboured within driver genes. Eight cases showed apparent loss of
subclonal driver mutations, whilst five cases showed evidence of newly-detected subclonal
driver mutations, with the computation of CCFs confirming that most of these mutations were
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indeed subclonal rather than clonal. Pathway enrichment on the newly-detected mutations
showed an over-representation of immune pathways (such as TCR and BCR signalling),
proliferation and cell cycle pathways, as well as pathways involved in cellular motility
and metastasis, with a high degree of statistical significance retained even after multiple
test correction. As shown in Chapter 3, these pathways were shown to play key roles in
determining response to chemotherapy, and therefore it was not surprising that mutations
within these pathways were selected for in the chemoresistant tumour cells. Not only did
some of these mutations possibly confer a survival advantage, but they were also less likely
to be neoantigenic, with only 11% of the new (previously unsampled) mutations generating a
putative neoantigen that could be presented by surface MHC class I molecules. Additionally,
tumours that attained pCR had a greater decrease in neoantigen ratio during therapy, with a
monotonic correlation observed across the different response groups.

The work done in this chapter described two types of genomic responses to chemotherapy:
Clonally stable tumours were noted to harbour mutational clusters that were minimally
altered during therapy. Hence the clonal composition during therapy remained remarkably
stable with no evidence of cellular shift. Clonally dynamic tumours were characterised by
altered clonal prevalences during treatment, with evidence of clonal extinction and/or clonal
emergence, possibly indicating evidence of chemoresistant and chemosensitive subclones.
Tumours with non-silent mutations within CLU and MT-CYB were associated with a clonally
stable phenotype. Additionally, the copy number landscape reflected changes observed within
the mutational landscape, with clonally stable tumours also having minimally alteration in
the number of CNAs. Clonally dynamic tumours also showed evidence of CNA dynamics,
increased chromosomal instability, and an increase in HRD during therapy.

By reconstructing clonal phylogenies, evidence of differential chemosensitivity and chemore-
sistance across different subclones was observed. The work described in this chapter mapped
in detail the way chemotherapy altered the pre-existing tumour phylogeny, with multiple
patterns of response observed. In some cases there was evidence of regression of aggressive
tumour subclones generated later on in the tumour’s evolutionary history and increasing
prevalence of earlier, less proliferative, subclones. In some cases, subclones generated
later on in the tumour’s evolution and which were present at very low allelic frequencies at
diagnosis were more chemoresistant and dominated the tumour landscape during therapy.
While these observations could be due to tumour heterogeneity, it is worth noting that all
tumour biopsies were taken at the site of a fiduciary marker in order to ensure consistent
sampling across cases and thereby mitigate, to a degree, any spatial heterogeneity.
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The serial tumour samples obtained at three time points allowed for the appreciation of clonal
dynamics induced by chemotherapy backbone switch. In some cases there was evidence of
differential chemosensitivity to chemotherapy agents, with evidence of clonal eradication
during one half of the chemotherapy treatment, followed by increased cellular prevalence
as soon as the agent was changed. Suboptimal chemotherapy exposure with multiple dose
delays, reductions and omissions were also shown to have a minimal impact on the tumours
genomic architecture, with extensive RD remaining at the time of surgery.

Deep sequencing and multi-region sequencing confirmed that the mutations that were becom-
ing increasingly prevalent during therapy pre-existed prior to commencing chemotherapy and
were selected for by treatment, rather than being generated by chemotherapy, as shown by a
recent report by Kim et al. [155]. These mutations were present at very low allelic fractions
in the diagnostic biopsy, often less than 1%.

Finally, a genomic analysis of tumours that eventually relapsed showed great diversity of
the relapsed tumour compared to the primary tumour, with four of the five cases analysed
harbouring different mutation profiles compared to the diagnostic sample. The patterns of
genomic change echoed very closely those seen during chemotherapy and could have been
indicative of the chemoresistant populations being responsible for the eventual relapse.
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5.1 Introduction

The expression landscape of breast cancer as it is subjected to neoadjuvant chemotherapy has
not been very well described in the literature, with no studies attempting a comprehensive
description of transcriptomic changes throughout chemotherapy.

Few studies have concentrated on attempting to describe the changes in the expression
landscape between pre- and post-therapy samples. Unfortunately because of the small sample
sizes in these studies very few meaningful inferences were made. It was consistently shown
that chemosensitive tumours showed significant changes in the expression landscape, while
chemoresistant tumours had a more stable expression landscape during treatment [113, 299],
and that immune cell signatures were decreased in tumours with residual disease following
chemotherapy [104]. Additionally, some studies also showed a switch in the intrinsic subtype
classification of the tumours studied [104, 181].

Even fewer studies have attempted to describe the transcriptomic alterations observed using
serial sampling during chemotherapy. Magbanua et al. [182] molecularly characterised
tumours obtained before treatment, 24–96 hours after the first dose of chemotherapy, and
at the time of surgery. 36 cases had matched pairs of the first two tumour biopsies and 39
cases had matched pairs of the first and last biopsy. Expression levels were determined at all
time points and an analysis comparing diagnostic and early biopsies showed profound down-
regulation of proliferation and immune-related genes during chemotherapy, with decreased
expression of cell cycle inhibitors associated with poor response. Following completion of
chemotherapy increased interferon signalling and increased expression of cell proliferation
genes in any remaining RD was associated with reduced recurrence-free survival [182].

The work in this chapter aims to describe, at great depth, the transcriptomic changes in
tumours and their surrounding microenvironment during neoadjuvant chemotherapy through
the use of sequential tumour biopsies taken prior to commencing therapy, midway through
therapy and on completion of chemotherapy. By integrating data from MRI imaging, tran-
scriptomic shifts associated with response were noted, and mechanisms of chemoresistance
elucidated. The involvement of the immune system in shaping tumour clonal evolution was
also explored in detail, with BCR and TCR CDR3 deconvolution from the RNA-seq data
used to corroborate findings. Additionally, the possible activation of pro-metastatic pathways
during chemotherapy was also explored.
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5.2 Early expression changes induced by chemotherapy

5.2.1 Mapping MRI dynamics to early expression changes

Numerous trials have shown that neoadjuvant chemotherapy is effective at reducing tumour
bulk. In this study, the degree of volume loss by the midway time point was shown to
correlate to the degree of RD at the end of neoadjuvant treatment (Figure 5.1A). Similarly,
the change in tumour area on MRI (defined as the geometric mean of the largest bidimensional
measurements) also correlated with the degree of RD by the end of therapy (Figure 5.1B).

The rate of disease reduction varied greatly between tumours, with some responding more
rapidly to chemotherapy than others. To delineate the differences in transcriptomic pathways
that were associated with the rate of tumour bulk change during therapy, RNA-seq data
obtained from the midway biopsy was integrated with the change in tumour volume and
area on MRI in order to answer the question: Which pathways were responsible for greater
decreases in tumour bulk on MRI?

Twenty-two cases had matched MRI volumetric data (obtained from the TRICKS study) and
RNA-seq data at the midway time point, while 32 patients had bi-dimensional measurements
on MRI (acquired as part of standard of care imaging) and paired RNA-seq data at the
midway time point. The larger dataset was taken forward in this analysis, however it is worth
noting that very similar results were obtained when tumour volumes were used.

This differential analysis was performed using the linear model shown in Equation 5.1:

⇠ Treatment +ERstatus +HER2status +Darea (5.1)

Treatment, ERstatus and HER2status were categorical variables whilst Darea was the percentage
change of the geometric mean of the two largest bidimensional measurements between
the midway and diagnostic scans. The analysis revealed 30 lowly expressed genes and
346 highly expressed genes as tumour bulk decreased more rapidly (Figure 5.1C). Most
notably, these included a large number of MHC class II molecules (HLA-DMA, HLA-DMB,
HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1 and
HLA-DRB5), as well as multiple members of the immunoglobulin Fc receptor gene family
(FCGR2A, FCGR2B, FCGR2C and FCGR3A). Macrophages and neutrophils predominantly
express these cell surface receptors, allowing the phagocytosis of opsonised antigens. Hence,
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Figure 5.1: Correlating MRI data with transcriptomic signatures. Decrease in (A) tumour volume and
(B) area during treatment, with tumours attaining better responses by the end of therapy decreasing in
size more rapidly. (C) Differential expression volcano plot showing increased expression (in red) of
multiple innate immune system genes associated with greater decrease in tumour bulk on MRI. (D)
Correlation between immune infiltrate and percentage decrease in tumour bulk on MRI.
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the innate immune system pathways appeared to play a greater role in determining the
degree of tumour bulk reduction during neoadjuvant therapy. An enrichment analysis using
MCPcounter [26] showed that various components of the immune infiltrate correlated with
the percentage change in disease bulk (Figure 5.1D). T-cells, B-cells and NK cells, amongst
others, were shown to be strongly correlated with response (p<0.05, Pearson’s product-
moment correlation): the higher the degree of immune infiltrate the greater the decrease in
tumour bulk observed on MRI.

Gene set enrichment analysis (GSEA) and pathway enrichment using the Reactome database
further supported these findings (Figure 5.2). The most up-regulated pathways pertained to
immune system function: tumours exhibiting a greater degree of volume loss were more
likely to have increased TCR and BCR signalling, as well as general augmentation of adaptive
and innate immune pathways. In Chapter 3 it was shown that tumours with high proliferation
at diagnosis were more likely to attain pCR (Section 3.4.2). At the midway time point,
however, tumours that had a greater decrease in volume had significantly lower proliferation
activation, in keeping with increased cell death in tumours that were responding to therapy
(Figure 5.2A).

In order to orthogonally validate these observations, a similar enrichment was done on KEGG
pathways, using the gage R package [180] with a significance cut off (q) of 0.1. Enrichment
was observed over 14 KEGG pathways, of which 8 were immune system pathways, including:
T cell receptor signalling (hsa04660), Antigen processing and presentation (hsa04612),
Natural killer cell mediated cytotoxicity (hsa04650), B cell receptor signalling (hsa04662),
Fc gamma R-mediated phagocytosis (hsa04666) and FceRI signalling (hsa04664). Three
pathways were down-regulated, including Oxidative phosphorylation (hsa00190), Cell cycle
(hsa04110) and Ribosome (hsa03010). As shown in Figure 5.3, the extent of down and
up-regulation of these pathways was very profound, with most members of the immune and
cell cycle pathways statistically significantly altered.

In summary, the findings of this analysis continue to strengthen previous observations made in
Sections 3.4.2 and 3.4.3: proliferation and immune activation played key roles in determining
response to therapy. High proliferation and increased immune activation at the start of
treatment were predictive of pCR and as therapy ensued an increase in immune activation
and a decrease in proliferation were associated with a greater reduction in disease bulk on
MRI.
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Figure 5.3: Enrichment over two KEGG pathways associated with increased disease bulk reduction
on MRI: (A) Cell cycle (B) NK cell mediated cytotoxicity. Red indicates increased gene expression,
green denotes decreased gene expression.
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5.2.2 Transcriptomic changes associated with response

Midway expression profile analysis

The differential expression analysis in Section 5.2.1 described transcriptomic shifts associated
with MRI dynamics and hence the response variable that was modelled was a snapshot
of current tumour response on MR imaging. In order to determine whether the midway
expression profile correlated with pathological assessment of response on completion of
chemotherapy, expression data for 64 patients who had a midway biopsy was explored using
a differential expression model incorporating ER, HER2 and treatment, with the response
variable being the continuous RCB score. The analysis revealed 506 low expression and
404 high expression genes in tumours attaining pCR (Figure 5.4A), with MHC class II
molecules being highly expressed, thereby providing further evidence that the innate immune
system played a key role in determining response to therapy. The analysis also revealed that
tumours that would eventually attain pCR had increased activation of cell death pathways,
with increased expression of various apoptotic proteins, including CASP1 and CASP4 which
both play a central role in the execution of apoptosis. High expression of the driver genes
ALK and JAK3 was associated with an increased probability of pCR, whilst high expression
of ESR1, AR, FOXA1 and FGFR2 was associated with chemoresistance (Figure 5.4B).

A further Reactome gene set enrichment analysis showed profound enrichment over both
immune and proliferation pathways, as was observed in the MRI analysis (Section 5.2.1).
Tumours that attained better degrees of response by the end of therapy had higher immune
activation and lower proliferation at the midway time point whilst chemoresistant tumours
were more proliferative and had significantly less immune activation. To demonstrate the
interplay between these two key pathways, a GSVA analysis was performed using the GSVA
R package [114] on the Genomic Grade Index gene set [271] as well as the STAT1 immune
gene set [68]. The relationship dynamics observed were strikingly different from those
observed in the diagnostic biopsy (Figure 3.17). Whereas at the pre-treatment time point
tumours that attained pCR had high proliferation and immune activation, at the midway time
point tumours that would eventually attain pCR had lower proliferation but sustained high
immune activation, whilst those with RCB-III RD had higher proliferation and sustained low
immune activation (Figure 5.4C).

In order to gain an in-depth understanding of the specific immune pathways that were
activated and corresponded to response to chemotherapy, ssGSEA was performed on the
Reactome components of the Adaptive and Innate immune system pathways by using



5.2 Early expression changes induced by chemotherapy 201

SLC6A4

CLGN

TSPAN13

CTD−2284J15.1
HCCAT3

CERS6
ECEL1C12orf60

REEP5
ENTPD5

FSIP1 SLC38A1

RP11−174G6.5

GRIK4

ARHGAP35

RP11−356O9.1

SPINK8
XBP1RP11−206M11.7

VSTM2A
HLA−DMBHLA−DMA
HLA−DOA

FGFR2

ESR1
MUCL1

CASP1CASP4
FOXA1 HLA−DPB1

RP11−369C8.1

0

1

2

3

4

−2 −1 0 1

Log Fold Change

−L
og

10
 F

D
R

A

RNF43

FGFR2

FOXA1

AR

ESR1

XBP1

JAK3

ALK

−0.5 0.0 0.5 1.0

logFC

G
en

e

Expression in pCR
Highly expressed
Lowly expressed

−log10(FDR)
1.6
1.8

2.0

2.2

B

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

GGI score

ST
AT

1 
sc

or
e

pCR

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

GGI score

ST
AT

1 
sc

or
e

RCB−I

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

GGI score

ST
AT

1 
sc

or
e

RCB−II

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

GGI score

ST
AT

1 
sc

or
e

RCB−III

C

Figure 5.4: Correlation of midway transcriptomic signatures with eventual response to therapy.
(A) Volcano plot showing top differentially expressed genes associated with chemosensitivity. Red
indicates highly expressed in pCR, blue indicates lowly expressed in pCR. (B) Driver gene differential
expression. (C) Association between proliferation (GGI) and immune (STAT1) pathways, and
response to chemotherapy. Tumours that attained pCR had high levels of immune activation and low
levels of proliferation, as opposed to tumours with higher burdens of RD. The yellow maxima can be
seen shifting from the upper left-hand corner in tumours that attained pCR, to the lower right-hand
corner in tumours with higher RD post-chemotherapy.
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the GSVA R package, and the distribution of ssGSEA scores prior and midway through
chemotherapy across different response groups analysed (Figures 5.5A and B). There was a
remarkable correlation between the degree of enrichment of both innate and adaptive immune
pathways and eventual response, more so than that seen at the diagnostic time point. This was
most prominent for the innate immune pathways. In most cases (eg Neutrophil degranulation,
Complement cascade, Antimicrobial peptides, TCR and BCR signalling) the relationship
was monotonic, with a stepwise decrement in immune activation as the degree of residual
disease post-chemotherapy increased. Unsupervised clustering over these pathways (Figure
5.5C) showed that tumours that were immunologically activated by the midway time point
were much more likely to attain pCR or RCB-I RD, compared with those with significantly
less activation.

In summary the expression landscape midway through chemotherapy was predictive of even-
tual response, with decreased proliferation and increased immune activation associated with
pCR, and sustained proliferation and low immune infiltrate associated with chemoresistance.

Quantifying change in expression profiles

Computing the transcriptomic correlation between the diagnostic and midway samples
using Pearson’s product-moment correlation (Figure 5.6A) showed that the transcriptomic
landscapes of tumours that were chemoresistant (RCB-III) was minimally changed by the
midway time point (median R=0.96), compared to those that were chemosensitive (pCR
R=0.90, RCB-I R=0.91), with the change in correlation related to the degree of RD post
surgery (p=0.00005, ordinal logistic regression). Two archetypal examples are shown in
Figures 5.6B and C: the dispersion in intra-sample correlation was significantly higher
in tumours that would eventually attain pCR (such as case T136) than those that were
chemoresistant (such as case T131). Hence, chemoresistant tumours were remarkably
resilient and showed minimal change in the expression landscape, unlike tumours that were
responding to therapy and whose transcriptomic landscape showed a greater degree of change
secondary to altered tumour dynamics as well an altered microenvironment.

To highlight changes in pathways that correlated with response, a further differential expres-
sion analysis was performed that focused on changes in tumour transcriptomic pathways.
Hence, rather than performing a differential analysis based on single time point samples, as
had been done so far, each midway sample was normalised to its corresponding pre-therapy
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Figure 5.6: Changes in transcriptome correlation. (A) Chemoresistant tumours had a very stable
transcriptome after chemotherapy was commenced, whilst chemosensitive tumours showed a greater
degree of dynamics. throughout chemotherapy. Chemosensitive tumours (B) showed a greater degree
of dispersion in correlation plots compared to chemoresistant tumours (C).

sample so as to identify changes in transcriptomic expression that were secondary to the
therapy administered, thereby accounting for inter-tumour differences.

A differential expression analysis was performed on the midway and diagnostic samples
using a nested factorial model, as shown in Equation 5.2:

⇠ Response + Response : Patient + Response : Treatment (5.2)

Where Response was the binary classification of response at surgery (pCR vs. RD), Pa-
tient was the patient identifier (required to identify related tumour samples) and Treatment
was a variable containing information as to whether the tumour sample was obtained pre-
chemotherapy or midway through treatment. Hence patients were nested within the response
groups, and treatments nested within response groups. This differential expression model
allowed the elucidation of response-specific treatment effects by normalising each midway
tumour expression profile to the matched diagnostic expression profile.

This differential expression model was built using 61 cases with paired RNA-seq data at
the diagnostic and midway time points and identified 975 genes that globally decreased
in expression during chemotherapy and 709 genes that increased in expression in tumours
that attained pCR, as shown in Figure 5.7A. Most notably, once again, these included a
large number of MHC class II molecules (HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1,
HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5,
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Figure 5.7: Differential expression of midway tumour samples normalised to matched diagnostic
samples. Red indicates over-expressed in pCR, blue indicates under-expressed in pCR. (A)Volcano
plot showing genes that were over or under-expressed in tumours that were more likely to attain a
better response on chemotherapy. (B) Driver gene expression changes associated with response. (C)
GSEA over the Reactome database: proliferation and immune pathways strongly correlated with
response.
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HLA-DRB6). b2-microglobulin was the only MHC class I molecule that had an increased
expression at the midway time point compared to the diagnostic sample. This result clearly
showed that during therapy there was increased expression of MHC Class II molecules
irrespective of what the baseline expression was. The increased expression of these antigen-
presenting molecules was probably a consequence of increased tumour death and necrosis,
with neoantigen release and increased antigen presentation by antigen-presenting cells, with
expansion of the components of the innate immune system.

The key involvement of immune system components was further confirmed in a pathway
enrichment over the Reactome database (Figure 5.7C). The results were highly similar to
those seen in the volume analysis, which was unsurprising given that volume change on
MRI was shown to correlate with final response at surgery. Tumours with increased immune
activation and inflammatory infiltrate (neutrophil degranulation, platelet degranulation)
attained pCR, whilst tumours that were responding to cytotoxic drugs became increasingly
less proliferative, with less activation of DNA damage repair pathways compared to those
with decreased response to treatment.

Interestingly, as was also seen in the MRI analysis (Figure 5.2), tumours that were chemore-
sistant showed increased activation of senescent profiles, perhaps showing that tumours that
were not as responsive to chemotherapy were entering a state of therapy-induced senescence
(TIS) secondary to cytotoxic induced stress. To validate this, a list of TIS genes were ob-
tained from Dr Masashi Narita’s research group in Cambridge and the change in expression
of these genes computed. An increase in TIS signatures was observed in chemoresistant
subtypes (data not shown), showing that cellular senescence was potentially a mechanism
of evasion to therapy. In order to validate this orthogonally, senescence-associated beta-
galactosidase immunohistochemistry could be performed on the pre and on-therapy tumour
slides.

A driver gene analysis (Figure 5.7B) showed that DNA repair proteins MSH2 and MSH6 were
down-regulated in tumours responding to chemotherapy, showing decreased activity in DNA
repair pathways in tumours that would eventually attain pCR. Tumours that were sensitive to
chemotherapy were less likely to activate DNA repair pathways. The most highly expressed
driver gene was KLF4, a zinc-finger transcription factor and oncogene that has recently been
associated with the promotion of cancer stem-cell like programmes [231, 283, 284] and has
been known to confer worse prognosis in breast cancer [88]. Interestingly, it seemed that in
this case, a stem-like pathway was being activated in those tumours that were responding to
chemotherapy.
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To define pathways associated with monotonic dynamics during treatment, ssGSEA was
performed in all matched tumour samples over all Reactome pathways. Following this, the
difference in ssGSEA scores between the initial and midway biopsies was computed and
ordered ordinal models generated to predict pathways for which there was a monotonic
decrease or increase across all response groups. A total of 152 pathways were identified as
exhibiting trends that correlated with response (FDR < 0.01, Figure 5.8).

99 pathways showed a profound decrease in expression in tumours attaining pCR and little or
increased expression in tumours with higher burdens of RD. The most statistically significant
pathway in this analysis was cholesterol biosynthesis, where tumours that would eventually
attain pCR had a greater likelihood of having decreased cholesterol metabolism during
treatment, with the degree of change in expression compared to the diagnostic time point
monotonically correlating with the degree of RD. The role of lipid metabolic reprogramming
in tumour cells has been well characterised [28, 43, 265], with increased expression of
lipogenic enzymes such as acetyl-CoA carboxylase and fatty acid synthase occurring in
most tumours [195], and increased expression associated with poorer prognosis [161]. As
described previously, DNA repair mechanisms, mitosis, and methylation pathways were
greatly decreased in tumours that were attaining a better response. Interestingly, RCB-III
tumours appeared to gain activation of cell motility pathways during treatment [186], perhaps
showing that as chemotherapy was administered, activation of pro-metastatic pathways
was induced. This phenomenon was initially observed in Chapter 4 (Table 4.1), where an
enrichment of new mutations in pro-metastatic pathways was noted. This observation will
be explored further later on in Section 5.3.3 where similar observations were noted using a
different analytical approach.

Pathways associated with a greater decrease or smaller increase in chemoresistant tumours
included apoptotic pathways (such as caspase activation) and innate immune pathway enrich-
ment (Figure 5.8B). There was predominant enrichment of the Toll-Like Receptor signalling
pathway [154], including the TLR2, TLR4, TRL7/8, TLR9 cascades, as well as increased
scavenger receptor A pathways found in macrophages, showing a profound activation of
innate immune system components.
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Figure 5.8: ssGSEA on Reactome pathways, showing a selection of pathways in which the rate
of change was associated with response. (A) Pathways in which expression decreased much more
profoundly in tumours attaining pCR than those with RD. (B) Pathways in which expression increased
much more profoundly in tumours attaining pCR than those with RD.
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5.2.3 Tumour immune microenvironment dynamics

T cell mediated cytolysis

To further describe the immune system dynamics, the cytolytic activity score (CYT) was
computed for all paired samples (Figure 5.9A). At the diagnostic time point there was a very
clear association between CYT and response at diagnosis (p=0.003) and this association
strengthened during treatment (p=0.0008, ordinal regression). Hence, T cell-mediated
cytolysis continued to play a key role in determining response to chemotherapy.

Taxane treated tumours, which were often HER2�, exhibited a significant increase in CYT
midway during chemotherapy if pCR occurred by the end of therapy (Figure 5.9B). Con-
versely, no statistically significant increase in CYT was evident at the midway time point
if RD was present at the time of surgery, showing that early events occurring after com-
mencing chemotherapy were predictive of response to therapy. An inverse relationship was
observed in anthracycline-treated tumours, which were often HER2+ (Figure 5.9B), where
an increase in CYT was associated with RD and an initial decrease in CYT associated with
pCR. Whether this was due to anthracycline treatment or was a biological feature of HER2+

tumours, or indeed a combination of both, was difficult to untangle. Results from the I-SPY 1
trial showed a decrease in immune activation in tumours treated with anthracyclines [182],
whilst the Neo-tAnGo trial [73] showed that neoadjuvant treatment with a taxane prior to an
anthracycline was superior to the reversed regimen, with more patients attaining pCR if a
taxane was administered first (20% vs. 15%). Hence, trial evidence also suggests differences
between anthracycline-first and taxane-first treated tumours.

IPS and HLA LOH dynamics

As the CYT score was a measure of the expression of two key genes involved in T cell
mediated cytolysis, further evidence was sought to determine whether CYT dynamics cor-
related with other components of the immune system, such as those described by the im-
munophenogram score (IPS) [51]. As shown in Figure 5.9C, the four IPS components
showed a statistically significant correlation with CYT. Tumours that had a CYT increase
during chemotherapy had an associated increase in MHC molecules, effector and suppressor
cells (EC, SC) as well checkpoint (CP) molecules.
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Figure 5.9: Immune dynamics during treatment. (A) Positive correlation with CYT seen at diagnostic
time point more evident at midway time point. (B) Correlation between CYT and response in
anthracycline and taxane treated tumours. (C) Correlation between CYT dynamics and individual
components of the IPS score (EC = effector cells, SC = Suppressor cells, CP= checkpoints). (D)
Unsupervised clustering of IPS components and midway samples. Taxane treated tumours that
attained pCR were immunologically more active than anthracycline-treated tumours that attained
pCR.
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Figure 5.10: Change in immune landscape between diagnostic and midway time points. (A) HER2�

taxane treated tumours that attained pCR had an increase in the degree of innate and adaptive immune
cell enrichment. (B, C) Taxane-treated tumours with HLA LOH at diagnosis had a decrease in CYT
during therapy, compared to tumours with no HLA LOH. A similar pattern was observed on enriching
for CD8 T cells and cytotoxic lymphocytes.
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Unsupervised clustering revealed that most of the taxane-treated HER2� tumours that attained
pCR were immunologically active (Figure 5.9D), whilst the anthracycline-treated HER2+

tumours that attained pCR clustered in the immunologically ‘poor’ group, providing further
evidence to differing immune activation patterns possibly secondary to the different sequence
of chemotherapeutic agents used.

Tumour microenvironment deconvolution using MCPcounter [26] also showed a shift in the
immune tumour microenvironment (Figure 5.10A) and corresponded to the observations
seen with the CYT metric. HER2� tumours that attained pCR had an increase in B cell,
CD8 T cell, neutrophil and NK cell score during therapy. This was not observed in HER2+

tumours, where an initial increase in immune infiltrate was not associated with pCR.

Interestingly, the presence of HLA LOH in the taxane treated HER2� tumours correlated
with CYT dynamics. Tumours without LOH over the HLA locus had an increase in CYT
score during therapy, whilst those with LOH did not (Figure 5.10B). A similar pattern was
also evident on enriching for T cell populations using MCPcounter (Figure 5.10C).

CDR3 dynamics

The Gini coefficient is used in economics to represent the wealth distribution of a nation
and is a measure of inequality. The lower boundary of the coefficient (0) indicates perfect
equality, whilst the upper boundary (1) indicates inequality, with all the wealth distributed
amongst a privileged few. Calculation of the Gini coefficient using the tcr R package [207]
on the TCR and BCR CDR3 data obtained from RNA-seq deconvolution using the MiXCR
package [34] showed that the Gini coefficient at diagnosis was associated with response
(Figure 5.11A, p=0.002 ordinal regression). Tumours that had dominance of few CDR3
clonotypes were more likely to attain pCR than those with a greater variety of clonotypes in
the tumour microenvironment. Additionally, this observation continued to hold true midway
through chemotherapy for HER2�, but not HER2+ tumours (p=0.02 and p=0.15 respectively,
Figure 5.11B). Hence, CDR3 clonotype dominance was positively associated with response.

This observation was further strengthened through a correlation with CYT (Figure 5.11C).
The Gini coefficient was shown to positively correlate with CYT (R=0.53, p<2.2e-16), with
TCR clonotype dominance associated with increased T-cell mediated cytolysis.

The CDR3 similarity between the diagnostic and midway samples in tumours that attained
pCR was lower than that observed in tumours with RD post chemotherapy (Figure 5.11D).
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Figure 5.11: CDR3 deconvolution from bulk RNA-seq data and estimation of clonotype diversity.
(A) Gini coefficient at diagnosis was associated with response. (B) At the midway time point, HER2�

tumours continued to show an association between decreased CDR3 diversity and response. (C)
Positive correlation observed between CYT and Gini coefficient. (D) Box plots showing distribution
of CDR3 repertoire overlap between midway and diagnostic time points: tumours that attained pCR
had a lower degree of overlap between time points, indicating expansion of a select few clonotypes,
making rarer CDR3 sequences that were previously detected less prevalent.
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This indicated that, as chemotherapy was administered, selective clonotype expansion of few
T and B cells occurred in tumours responding to chemotherapy, with less diversity observed
at the midway time point due to clonal expansion and preferential sequencing of the more
abundant clonotypes.

In summary, the tumour immune microenvironment was dynamic during therapy, and showed
changes that were associated with RCB score at the end of neoadjuvant therapy. An upregula-
tion of immune infiltrate, T-cell mediated cytolysis as well as TCR/BCR clonotype expansion
were all associated with better response to therapy in taxane-treated HER2� tumours.

5.2.4 Integration of clonal and expression dynamics

The work discussed in Chapter 4 has provided evidence that tumour clonal architecture can
be altered by chemotherapy. Subclones that were sensitive to therapy decreased in prevalence,
and consequently those resistant to therapy increased in prevalence.

The genomic analysis showed that mutations in CLU and MT-CYB were associated with
clonally stable tumours. In order to determine transcriptomic differences between the
different genomic types of response, tumours with evidence of clonal emergence only (in
which subclones were becoming increasingly prevalent), and those with evidence of clonal
extinction (in which subclones were decreasing in clonal prevalence) were compared to
clonally stable tumours using a differential expression model where the baseline comparator
comprised midway samples from clonally stable tumours.

Clonally stable tumours were less proliferative than clonally dynamic tumours (Figure 5.12).
This offered an explanation as to why these tumours showed very little alteration in clonal
prevalence during therapy: as these tumours were less proliferative they were less likely to
be targeted by cell cycling drugs.

Key expression differences were observed between the tumours undergoing clonal extinction
and those with clonal emergence (Figure 5.12). The immune system played a profound role
in determining the evolutionary trajectory of a tumour: tumours with evidence of ongoing
clonal extinction had significantly higher enrichment of immune pathways, perhaps indicating
that a combination of T-cell induced cytolysis as well as chemotherapy-induced cell death
was responsible for the elimination of these subclones. On the other hand, tumours with
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clonal emergence had decreased TCR, BCR and interleukin signalling, as well as decreased
enrichment over high level innate and adaptive immunity pathways.

Analysis of CYT scores across the different response groups showed that tumours with
clonal emergence had a statistically significant lower CYT score at the midway time point
compared to tumours that exhibited clonal extinction only (Figure 5.13A). The change in
CYT score between diagnostic and midway time points monotonically correlated with the
type of architecture observed (Figure 5.13B), with tumours showing evidence of clonal
emergence having a decrease in CYT, while those with evidence of clonal extinction only
having an increase in CYT. Enrichment over the LM22 gene set used by CIBERSORT further
corroborated these findings (Figure 5.13C).

In summary, clonally stable tumours were less proliferative than clonally dynamic tumours.
Tumours with clonal emergence has statistically significantly less immune activation com-
pared to tumours with clonal extinction.
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5.3 Late expression changes induced by chemotherapy

5.3.1 Mapping MRI dynamics to late expression changes

The analysis of tumour samples taken midway through therapy showed significant transcrip-
tomic dynamics during neoadjuvant therapy, with tumours that attained better degrees of
response more likely to exhibit decreased proliferation and increased immune activation.

To correlate the decrease in tumour bulk on MRI to transcriptomic pathways, the change in
tumour area was computed as discussed in Section 5.2.1. This continuous response variable
was then integrated into a differential expression model (Equation 5.3) to identify genes and
pathways associated with increasing chemosensitivity.

⇠ Treatment +ERstatus +Darea (5.3)

ERstatus and Treatment were categorical variables whilst Darea was the percentage change of
the geometric mean of the two largest bidimensional measurements between the final and
diagnostic scans. HER2 status was not included in this model, as all HER2+ tumours used
in this analysis were exposed to the same therapy sequence, and all HER2� tumours were
exposed to a similar sequence, and therefore the effect of HER2 status and treatment could
not be distinguished from each other.

The output from the differential expression model was used to perform an enrichment over
Reactome pathways, and the analysis once again revealed that immune pathway activation
corresponded with response to chemotherapy. Chemoresistant tumours had significantly less
BCR, TCR, interleukin and interferon signalling compared to chemosensitive tumours, as
well as having increased proliferation and steroid metabolism (Figure 5.14A). Of note, the
most highly expressed pathway in chemoresistant tumours was ESR1 signalling, which was
unsurprising as ER+ tumours have been shown to be more chemoresistant in multiple studies
as well as in this work.

As had been seen at the midway sampling time point, the decrease in tumour bulk on MRI also
corresponded to the enrichment for various immune populations (Figure 5.14B), including T
cells (R= -0.56, p=0.036), CD8 T cells (R= -0.76, p=0.001), NK cells (R= -0.78, p=0.001)
and B cells (R= -0.64, p=0.01). Hence the involvement of the adaptive and innate components
of the immune system played a key role in determining response throughout therapy.
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5.3.2 Transcriptomic changes associated with therapy

Chemoresistance signatures in post-chemotherapy samples

In order to characterise the post-treatment expression landscape of chemoresistant tumours,
expression data obtained at the end of chemotherapy from 41 cases were analysed by means
of a differential expression model and a subsequent Reactome gene enrichment (Figure
5.15A). Chemoresistant tumours were more proliferative than chemosensitive tumours and
interestingly also had significant enrichment of neural signatures. In a recent study [133],
nerve fibres within breast tumours were associated with increased aggressiveness and associ-
ated with poor prognosis. Indeed the thickness of infiltrating nerve fibres was correlated with
poor differentiation, increased probability of lymph node metastasis and shorter disease-free
survival.

Chemoresistant tumours also showed increased oestrogen receptor pathway signalling and
significantly less adaptive and innate immune pathway activation. ssGSEA enrichment over
the MsigDB C2 curated gene sets revealed that chemoresistant tumours enriched for various
experimentally derived gene sets of resistance, including cisplatin, docetaxel, doxorubicin
and fluorouracil resistance (Figure 5.15B). It was very evident that the combined expression
of these gene sets increased during therapy, showing either acquired resistance during therapy,
or the selection and expansion of a pre-existing resistant clone that was present at lower
cellular prevalences prior to commencing therapy. The enrichment analysis also showed that
the post-therapy tumours had an enrichment of a tamoxifen resistance gene set, potentially
also indicating the selection of an endocrine-therapy resistant population. Of note, the
selection of a potentially endocrine-resistant clone was also observed in the analysis of case
T005 (Section 4.3.2), where the emergence of a deleterious ESR1 subclonal mutation was
shown to occur during therapy.

Tumours with RCB-III RD post-chemotherapy are considered to be highly chemoresistant.
To identify changes in the transcriptome in RCB-III tumours during therapy, a differential
expression was performed by comparing matched pre and post-therapy samples from 14
cases with RCB-III RD. This allowed the elucidation of genes and pathways that were
differentially expressed in highly chemoresistant tumours after completion of chemotherapy.
The differential analysis revealed 411 under expressed and 649 overexpressed genes post-
therapy in chemoresistant tumours (Figure 5.16A). The most highly expressed gene was
IL6: this pro-inflammatory cytokine has been shown to be a central player in linking chronic
inflammation to cancer by driving tumour growth and metastasis, as well as increasing



5.3 Late expression changes induced by chemotherapy 221

Immunoregulatory interactions between a Lymphoid and a non−Lymphoid cell
rRNA processing in the nucleus and cytosol
Major pathway of rRNA processing in the nucleolus and cytosol
rRNA processing
Neutrophil degranulation
L13a−mediated translational silencing of Ceruloplasmin expression

Eukaryotic Translation Initiation
Cap−dependent Translation Initiation

Signaling by Interleukins
GTP hydrolysis and joining of the 60S ribosomal subunit
Class A/1 (Rhodopsin−like receptors)
GPCR ligand binding
Signaling by GPCR

Nonsense−Mediated Decay (NMD)
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)

Influenza Viral RNA Transcription and Replication
GPCR downstream signalling
Adaptive Immune System
Cell surface interactions at the vascular wall
Innate Immune System
Cytokine Signaling in Immune system
Platelet activation, signaling and aggregation
Influenza Life Cycle
Degradation of the extracellular matrix
Extracellular matrix organization
TCR signaling
Toll−Like Receptors Cascades
Hemostasis
Influenza Infection
Toll Like Receptor 4 (TLR4) Cascade
Response to elevated platelet cytosolic Ca2+
Selenoamino acid metabolism
Platelet degranulation 
Signaling by Receptor Tyrosine Kinases
Metabolism of RNA

SLC−mediated transmembrane transport
Intra−Golgi and retrograde Golgi−to−ER traffic

S Phase
Mitotic G1−G1/S phases

Signaling by Nuclear Receptors
Biological oxidations

Diseases of glycosylation
DNA Repair

G1/S Transition
RHO GTPase Effectors

Mitotic Metaphase and Anaphase
Mitotic Anaphase

Neurotransmitter receptors and postsynaptic signal transmission
Separation of Sister Chromatids
RHO GTPases Activate Formins

M Phase
HDR through Homologous Recombination (HR) or Single Strand Annealing (SSA)

Mitotic Prometaphase
Homology Directed Repair

DNA Double−Strand Break Repair
Cell Cycle, Mitotic

Cell Cycle
Estrogen−dependent gene expression

ESR−mediated signaling
G2/M Checkpoints

Resolution of Sister Chromatid Cohesion
Mitotic Spindle Checkpoint

Neuronal System
Cell Cycle Checkpoints

−2 0 2
Normalised Enrichment Score

A

****

****

***

****

****

**

FLUOROURACIL RESISTANCE

(KANG)

RESISTANCE TO ALKYLATING AGENTS

(BACOLOD)

TAMOXIFEN RESISTANCE

(RIGGINS)

CISPLATIN RESISTANCE

(KANG)

DOCETAXEL RESISTANCE

(PATTERSON)

DOXORUBICIN RESISTANCE

(GYORFFY)

Diagnosis Surgery Diagnosis Surgery Diagnosis Surgery

Diagnosis Surgery Diagnosis Surgery Diagnosis Surgery
−0.50

−0.25

0.00

0.25

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

−0.6

−0.3

0.0

0.3

0.6

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

Sampling time point

s
s
G

S
E

A
 s

c
o

r
e

B

Figure 5.15: Differential expression analysis on all post-therapy samples, indicating features asso-
ciated with chemoresistance. (A) GSEA over the Reactome database: proliferation and immune
pathways strongly correlated with response. (B) Enrichment of resistance signatures in the post-
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angiogenesis and modulating a highly immunosuppressive environment [83]. Additionally,
recent work has also shown that IL-6 protects tumours from therapy-induced DNA damage,
oxidative stress and apoptosis by facilitating the induction of antioxidant and anti-apoptotic
cellular pathways [162].

The angiogenic chemokine CXCL2 was also highly expressed post-therapy in tumours with
RCB-III RD. There is published evidence that CXCL2 mediates lung metastasis and chemore-
sistance in breast cancer [247], with the administration of CXCR2 blockers shown to break
the chemoresistance cycle induced by CXCL2 and increasing the efficacy of chemotherapy
in breast cancer [4]. CTGF, which was the most statistically significantly highly expressed
gene in chemoresistant tumours following chemotherapy, has also been shown to mediate
taxane resistance in osteosarcoma when overexpressed through the up-regulation of survivin
expression [290]. Additionally, recent work has also shown that CTGF expression also
mediated resistance to fluorouracil by increasing the expression of BCL2L1 and survivin and
increased MEK/ERK signalling [313]. CYR61 has also been associated with resistance to
gemcitabine [121].

Tubulin binding cofactor C (TBCC), a crucial protein for the folding of a and b tubulin, was
very under expressed in chemoresistant tumours, in keeping with recent reports that showed
that TBCC overexpressing tumours displayed increased sensitivity to anti-microtubule agents
through decreased microtubule dynamicity and slower passage into mitosis [110].

A driver gene analysis revealed key gene expression alterations that were associated with
chemoresistance (Figure 5.16B). Increased expression of MYC, EGFR, TNFAIP3, PDGFRA,
CREBBP and ABL1 were all associated with chemoresistance. Decreased expression of
the mitotic checkpoint gene BUB1B, S phase protein SKP2 and cellular senescence gene
EZH2 was associated with chemoresistance. Indeed, low expression of EZH2 has been
associated with the induction of cellular senescence [141, 257], showing that these tumours
were activating senescent profiles following cytotoxic induced stress, further supporting the
observations made earlier in this chapter.

Enrichment over the MSigDB Hallmarks using the camera statistical method in edgeR
showed enrichment over several pathways, including down-regulation of E2F targets, mitosis
and oxidative phosphorylation, and increased activation of TNFa signalling, epithelial
mesenchymal transition pathways, coagulation, angiogenesis, TGFb signalling, and the
immunosuppressive IL2-STAT5 and IL6-JAK-STAT3 pathways (Figure 5.16C).
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A pathway enrichment on the Reactome database, focusing on highly expressed genes showed
enrichment over various interleukin pathways, as well as strong associations with platelet
function (Figure 5.16D).

In summary, chemoresistant tumours showed increased activation of various gene sets
associated with resistance to cytotoxic therapies.

Quantifying change in expression profiles

To determine the degree of gene expression and pathway alteration induced by neoadjuvant
chemotherapy, ssGSEA was performed on Reactome pathways using 41 matched tumour
samples with paired RNA-seq data at diagnosis and on completion of therapy. As shown in
Figure 5.17A, the ssGSEA scores of all samples correlated strongly between both sampling
time points, with some samples showing a stronger temporal correlation than others. The
correlation between ssGSEA scores calculated at both time points was then assessed using
Pearson’s product-moment correlation (Figure 5.17B): a statistically significant associa-
tion was observed between pathway correlation and the degree of RD post-chemotherapy
(p=0.001, ordinal logistic regression). Tumours that attained pCR showed the greatest de-
gree of change secondary to tumour elimination as well as associated reprogramming of
the tumour microenvironment as shown earlier in this chapter. Tumours with much higher
degrees of RD, such as RCB-III tumours, had very little change in ssGSEA pathway scores,
indicating that the expression landscape remained remarkably stable in these tumours despite
therapy with cytotoxic and targeted agents.

Breast tumours with remaining RD post surgery were classified using the intrinsic subtype
(PAM50) classification (Figure 5.18). Most tumours were noted to switch classification to the
less aggressive Luminal A or normal subtype, with only two tumours retaining their original
classification (T004, Basal and T131, HER2 enriched). This was in keeping with previous
observations made by Gonzalez-Angulo et al. [104], where following chemotherapy most
tumours were noted to switch to less aggressive subtypes.

In order to assess how the tumour bed following pCR differed from normal breast tissue,
post treatment tissues taken from the tumour bed of six tumours that attained pCR were
compared to ten breast normal tissues that had been taken at the time of surgery. A differential
expression showed profound differences between these two tissues. Normal tissue taken from
the tumour bed at the time of pCR showed a significantly increased immune infiltrate, as
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Figure 5.17: Correlations between diagnostic Reactome pathway ssGSEA scores and post-therapy
scores. (A) Scatter plot showing degree of dispersion between two sampling time points (B) Box plot
showing distribution of pathway correlation between diagnosis and surgical tumour samples, with
higher correlations seen as the degree of RD increased.
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different cohorts.
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shown by a Reactome enrichment and gene ontology analysis (Figure 5.19A). There was no
appreciable difference in CYT between the normal pCR tissue and the normal breast tissue,
indicating that no further T cell mediated cytolysis was occurring following the complete
elimination of tumour cells (Figure 5.19B).

5.3.3 Metastatic pathway reprogramming

There has been published evidence of neoadjuvant chemotherapy inducing pro-metastatic
behaviour [116, 151] and the work done in this thesis has hinted that this might occasionally
be the case. For example, in Chapter 4 (Table 4.1), it was noted that new mutations enriched
within RAC1 cell motility and angiopoietin receptor Tie2-mediated signalling pathways,
both of which are involved in metastasis and migration. In this Chapter, it was noted that
ERBB2 regulated cell motility pathways increased in chemoresistant tumours, compared to a
decrease in chemosensitive tumours (Figure 5.8). Additionally, the angiogenic pro-metastatic
chemokine CXCL2 [247] increased in expression during chemotherapy in tumours with
RCB-III RD (Figure 5.16A).

One of the published routes of metastasis centres around the ENAH gene, which encodes
Mena proteins (member of the enabled/ vasodilator-stimulated phosphoprotein family) in-
volved in regulating the assembly of actin filaments and modulating cell adhesion and motility
[151]. Alternate splice variants of this gene have been correlated with tumour invasiveness in
breast cancer, with two main Mena splice variants described in the literature [106]:

1. Mena11a, an isoform of Mena that contains an additional 21 amino acids in the EVH2
domain of Mena, which is highly expressed in primary tumour cells, but down-
regulated in invasive cells, and has been shown to decrease motility and dampen
invasion responses to epidermal growth factor (EGF).

2. MenaINV, an isoform of Mena that has an additional 19-amino acid sequence encoded
by the INV exon inserted between the EVH1 domain and the LERER repeats, and
has been shown to promote invasion, intravasation and metastasis by sensitizing cells
to EGF, subsequently allowing them to invade in response to low concentrations of
growth factor.

An immunofluorescence-based quantitative method, MenaCalc, defined as the difference
between total Mena protein expression and expression of the non-invasive Mena protein
isoform (Mena11a) has recently been developed and commercialised. Studies have shown
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evidence of a significant positive association between MenaCalc and poor disease-specific
survival in breast cancer [86].

Chemotherapy has been shown to mobilise TIE2HI macrophages into the tumour microen-
vironment, which associate with newly constructed blood vessels and cause increased
MenaINV isoform expression in tumour cells by NOTCH mediated signalling, increasing their
metastatic potential [116, 151]. Indeed, these macrophages, together with associated tumour
cells and endothelial cells have been shown to form anatomical structures called tumour
microenvironment of metastasis (TMEM), at which breast cancer intravasation into blood
vessels occurs. These TMEM sites have been shown to release circulating tumour cells (CTC)
faster during chemotherapy, with a recent paper suggesting that neo-adjuvant chemotherapy
can lead to increased CTC dissemination as well as increased metastatic burden [152].

In order to explore this hypothesis further, the expression of MenaINV and Mena11a was mea-
sured in all samples within the dataset. De novo transcript assembly and quantification was
performed using Salmon as described in Chapter 2. The expression of Mena11a was defined
as the expression of transcript ENST00000366844, the expression of MenaINV was defined as
the expression of transcript ENST00000284563 and the total Mena expression defined as the
sum of ENAH transcripts ENST00000366844, ENST00000284563 and ENST00000366843.
Any non-coding transcripts were not included in this computation. Only high purity tumours
were retained for this analysis.

Tumours with higher MenaINV and Menacalc expression at diagnosis were more likely to
attain pCR during treatment (Figure 5.20A). As the expression of MenaINV was assumed to
correlate with invasive potential and therefore aggression this observation was in keeping
with previous observations made in this work, where neoadjuvant chemotherapy was shown
to induce better responses in more aggressive tumours. This analysis, therefore, showed
that tumours that had higher metastatic potential were more likely to be eliminated by
chemotherapy.

However, as shown in Figure 5.20B, during chemotherapy, Mena expression correlated
with the degree of RD at surgery. While tumours that attained pCR had very low levels of
MenaINV detectable, tumours with RCB III RD had an increase in MenaINV expression during
treatment, potentially providing further evidence to the findings published by Karagiannis
et al. [152], where chemotherapy was shown to augment metastatic potential of tumour cells
that had not responded to chemotherapy. While similar findings were seen in this work,
further larger studies will be needed for validation.
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Figure 5.20: Mena dynamics during chemotherapy. (A) Tumours with higher Mena expression at
diagnosis were more likely to attain pCR. (B) Change in Mena expression during treatment. Tumours
with higher degrees of residual disease on completion of chemotherapy had increased expression of
Mena during chemotherapy.
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5.4 Discussion

The work done in this chapter has described how the expression landscape of both the tumour
and its microenvironment were altered during neoadjuvant chemotherapy.

Shortly after commencing chemotherapy, transcriptomic changes were set in motion that
correlated tightly with eventual response to treatment. Tumours that attained pCR by the
end of therapy showed great differences in their transcriptomic landscape at the midway and
post-therapy time points, compared to chemoresistant tumours which continued to have a
remarkably stable expression profile despite cytotoxic therapies.

By integrating changes observed on serial MRI scans with transcriptomic data it was shown
that the reduction in tumour bulk correlated with the degree of immune cell infiltrate as
well as tumour proliferation. The greater the reduction in tumour volume, the higher the
degree of both adaptive and innate immune activation and the greater the decrease in tumour
proliferation, in keeping with increased cell death in tumours that were responding to therapy.
A similar pattern was observed when a differential expression analysis was performed to see
which changes in the midway biopsy associated with final response to therapy. Tumours that
attained better degrees of response by the end of therapy had higher immune activation and
lower proliferation at the midway time point, compared to chemoresistant tumours.

Clearly the immune system continued to play a key role throughout treatment. Indeed,
the correlation between the degree of adaptive and innate immune pathway activation and
eventual RCB score was monotonic at the midway time point, with a stepwise decrement in
immune activation as the degree of RD post-chemotherapy increased. Additionally, a clear
association was observed between the cytolytic activity score (CYT) and response, with the
correlation observed being much stronger than that seen in the pre-therapy samples.

Interestingly, taxane-first treated tumours, which were mostly HER2�, exhibited a significant
increase in CYT midway during chemotherapy if pCR occurred by the end of therapy, with
no statistically significant increase if RD was present at the time of surgery. An inverse
relationship was observed in anthracycline-treated tumours, which were often HER2+ (Figure
5.9B), where an increase in CYT was associated with RD and an initial decrease in CYT
associated with pCR. There is a body of evidence that suggests superiority of neoadjuvant
treatments with a taxane prior to an anthracycline, and perhaps this might shed light into why
this is so. HER2� tumours that attained pCR had an increase in B cell, CD8 T cell, neutrophil
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and NK cell enrichment during therapy; this was not observed in the anthracycline-treated
HER2+ tumours.

The presence of HLA LOH in the taxane treated HER2� tumours correlated with CYT
dynamics. Tumours with LOH in at least one MHC class I gene had a decrease in CYT
during therapy, compared to tumours without LOH which had an increase in CYT. These
findings were corroborated on enriching for T cell signatures in the RNA-seq data.

By deconvoluting the TCR and BCR CDR3 clonotype sequences from the bulk RNA-seq
data, various interesting observations were made. Tumours that had CDR3 clonal dominance
at the diagnostic and midway sampling time points, as computed using the Gini coefficient,
were more likely to attain pCR than those with a greater variety of clonotypes in the tumour
microenvironment. The Gini coefficient was also shown to positively correlate with CYT,
indicating that clonotype dominance was associated with increased T cell-mediated cytolysis.

The immune system was also shown to play a key role in fashioning the subclonal response
to therapy and played a profound role in determining the evolutionary trajectory of a tumour.
Tumours with evidence of ongoing clonal extinction had significantly higher enrichment of
immune pathways whilst those with clonal emergence had a distinct paucity of enrichment
over high level innate and adaptive immunity pathways, with less TCR, BCR and interleukin
signalling. Analysis of CYT across the different response groups showed that tumours with
clonal emergence had a statistically significant lesser CYT score at the midway time point
compared to tumours that exhibited clonal extinction only, with findings corroborated by an
enrichment over the LM22 immune gene set.

Chemoresistant tumours at the end of therapy showed an increased expression of various
chemotherapy resistance gene sets, including cisplatin, docetaxel, doxorubicin and fluo-
rouracil resistance metagenes. This could have been either due to acquired resistance during
therapy, or the selection and expansion of a pre-existing resistant clone that was present
at lower cellular prevalences prior to commencing therapy. The enrichment analysis also
showed that the post-therapy tumours also had an enrichment of a tamoxifen resistance
gene set, potentially also indicating the selection of an endocrine-therapy resistant subclone.
Additionally, chemoresistant tumours had significant enrichment of neural signatures, as well
as increased activation of senescent profiles, probably showing evidence of therapy-induced
senescence.

Various genes associated with chemoresistance were identified, including the up-regulation
of the pro-inflammatory cytokine IL6, which has been shown to be a central player in linking
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chronic inflammation to cancer by driving tumour growth and metastasis, the angiogenic
chemokine CXCL2 which has been shown to mediate lung metastasis and chemoresistance in
breast cancer and CTGF, which has been shown to mediate taxane and fluorouracil resistance
in other malignancies.

Finally, in view of published observations that chemotherapy might increase the metastatic
potential of tumour cells that do not respond to therapy, the expression dynamics of the
pro-metastatic transcript MenaINV were elucidated. Tumours that had higher metastatic
potential were more likely to be eliminated by chemotherapy, however tumours with RCB III
RD had an increase in MenaINV expression during treatment, potentially providing further
evidence to the findings published by Karagiannis et al. [152], where chemotherapy was
shown to augment the metastatic potential of tumour cells.
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6.1 Introduction

The presence of circulating cell-free DNA (cfDNA) in plasma was first described more
than 70 years ago [185] and is a physiological occurrence following apoptosis or necrosis
of cells [105, 144]. In healthy individuals, the concentration of cfDNA is generally low
(mean 13ng/ml), however the concentration increases dramatically in malignancy (mean
180ng/ml) [105], with the overall concentration correlating very closely with tumour burden
and response to treatment in patients with metastatic breast cancer [64, 138].

cfDNA is highly fragmented and is typically found in fragments of 160-180 base pairs
[203], reflecting degradation of the nucleic strands into nucleosomal units during apoptosis.
The short fragment length, in the context of a high background level of normal DNA,
renders the detection of tumour derived cfDNA (referred to as circulating tumour DNA,
or ctDNA) challenging [30, 64]. Two main approaches of detecting ctDNA have been
explored: the first approach, as adopted by digital PCR [301], involves identifying single
mutations in the plasma with high sensitivity and specificity. This requires a priori knowledge
of the mutational landscape of a tumour and is often not conducive to high throughput
studies requiring the assaying of multiple mutations. In the second approach, direct plasma
sequencing is performed over either targeted small panels [64, 87, 92] or over much larger
panels (including whole exome sequencing) [158, 205]. Shallow whole genome sequencing
has also been shown to be a reliable way of detecting ctDNA, though this often requires
higher ctDNA fractions, and has shown to perform best in the presence of high tumour
burdens [118].

Most ctDNA studies have been performed in the metastatic setting, where ctDNA con-
centrations correlated closely with the burden of disease [33, 64, 87, 118, 205], with very
few studies performed in the adjuvant or neo-adjuvant setting. This was often secondary
to technological limitations of detecting mutant allele signatures at very low frequencies
and bioinformatic limitations of distinguishing rare mutations from technical artefacts [30].
Indeed, all the studies that have attempted to detect ctDNA during therapy either had very
small numbers of recruited patients or failed to consistently detect mutations in the plasma
[53, 156]. In the post neoadjuvant setting, the detection of ctDNA in plasma after completion
of therapy predicted metastatic relapse with high accuracy [95].

The work described in this chapter aimed to determine whether ctDNA could be reliably
detected in serial plasma samples throughout neoadjuvant therapy by using deep sequencing
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as well as shallow whole genome sequencing, using recently published methods optimised
for ultra-low ctDNA detection [5].



236 The circulating tumour genomic landscape

6.2 Somatic variant detection and tracking using deep se-
quencing

To investigate whether somatic mutations detected on exome sequencing could be reliably
detected within the plasma before and during therapy, the Raindance deep sequencing primer
panel discussed in Chapter 4 was used to amplify cfDNA present in sequential samples
obtained from patients T003, T004, T025 and T029. Cases T003, T004 and T029 had
plasma samples available pre-therapy, before the commencement of cycle 2, before the
commencement of cycle 4 (i.e. midway through therapy), and following completion of
chemotherapy. Case T025 did not have a diagnostic plasma sample available. Library
preparation was performed as discussed in Chapter 2, with an initial single molecule PCR
partitioned in oil droplets, followed by sample barcoding and ligation of sequencing adapters.
All 15 samples were pooled into one library and sequenced on one lane of an Illumina MiSeq
sequencer.

A total of 156 mutations were targeted across all four cases, with amplification performed
in 15 plasma samples. As can be seen in Figure 6.1A, over half of the regions sequenced
attained a coverage of over 3,500⇥ in most samples. 9 amplicons had a median coverage of
less than 100⇥ across all samples and were removed from the analysis. The median amplicon
coverage across all samples was 4,093⇥ (Figure 6.1B), with most samples attaining adequate
amplification. The sequencing data obtained from case T004’s second plasma sample had a
lower median coverage, though somatic mutations were still detectable at this time point, as
discussed later on.

Mutation detection was performed using the bioinformatic pipeline discussed in Chapter 4.
As mutations were mutually exclusive to each case, all plasma samples that were not acquired
from one case served as controls. A mutation was deemed to be present if the variant allele
fraction (VAF) of the mutation in a case was three standard deviations above that of controls.

Figure 6.2 illustrates the results of this sequencing experiment. For each of the four cases,
heat maps showing mutation detection in both the tumour exome sequencing data and plasma
deep sequencing data are depicted, with mutations detected at AFs above 1% shown in red,
rare alleles detected robustly at AFs less than 1% shown in light blue and absent mutations
shown in darker blue. While mutations were readily detectable in the tumour exome data,
mutations within the plasma were less frequent, and present at very low AFs, in keeping with
findings from other studies [53, 156].
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Figure 6.1: ctDNA targeted amplification metrics. (A) Distribution of coverage across all 156
amplicons sequenced. (B) Distribution of coverage across all 15 plasma samples sequenced.
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ctDNA was detected at diagnosis in all four plasma samples analysed. At least one mutation
derived from the founding mutational cluster was present at diagnosis, though driver gene
mutations were not always detectable within the plasma (such as, for example, PIK3CA in
T025). Additionally, ctDNA was also detectable in all three cases with RD post-chemotherapy
(T004, T004 and T029), indicating the usefulness of using ctDNA to monitor residual disease.
It is worth noting that as only a few mutations were detected at all time points, the usefulness
of ctDNA in this setting would require targeting multiple, rather than single, mutations. The
greater the number of mutations targeted, the greater the probability of detecting a tumour
derived DNA molecule.

The analysis also showed that some mutations that were detected at later time points on
tumour exome sequencing were actually present in the plasma at earlier time points. For
example, in case T004, mutations within CELA3B and CREBBP were only detectable in the
tumour after completion of chemotherapy, however there was evidence of these mutations
in the plasma at diagnosis, albeit at very low allelic fractions, once again confirming the
suspicions that these mutations were not generated by chemotherapy, but were already present
at diagnosis.

In order to define a metric associated with total plasma disease burden, the allelic fractions
of all detectable mutations at each time point were added together and used as a surrogate of
total mutation load within the plasma (Figure 6.3). Cases T004 and T029 had a decrease in
ctDNA burden during treatment. In case T004 a high tumour fraction was initially detectable
in the plasma, however this rapidly decreased following one cycle of FEC chemotherapy. The
levels of ctDNA then remained low throughout therapy, with only one mutation detectable
in the plasma on completion of chemotherapy. A significant burden of disease (RCB-III)
was present at the time of surgery despite the low amount of ctDNA detected. This might
indicate that chemotherapy eliminated the more proliferative tumour cells and the tumour
bulk present following completion of therapy was less metabolically active and released
less DNA into the bloodstream. Case T009 showed a very gradual but consistent decrease
in plasma ctDNA fractions during therapy, with the decrease in plasma tumour burden
correlating to a corresponding tumour volume decrease seen on serial imaging.

Case T003 had 7 mutations detectable at diagnosis with a combined AF of more than 4%.
Following one cycle of FEC chemotherapy ctDNA was no longer detectable, however by the
midway time point an increase in tumour DNA was observed, with an associated minimal
decrease in size on ultrasound, suggesting that the tumour was resistant to FEC chemotherapy.
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Figure 6.2: Deep sequencing of serial plasma samples from four cases, with corresponding mutations
identified on tumour exome sequencing. Scatter plots show clonal structure derived from exome
sequencing, plasma heatmaps show deep sequencing results.
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However following a therapy backbone switch to docetaxel and trastuzumab, pCR occurred
with no evidence of any mutations detected within the plasma.

Case T025 did not have a plasma sample taken at diagnosis and therefore the mutation
dynamics prior to commencing chemotherapy could not be elucidated. However, following
one cycle of treatment two mutations were robustly detected at allelic fractions below 1%.
No ctDNA was detectable by the midway time point, though by the end of chemotherapy the
total ctDNA fraction was noted to be higher than that seen prior to cycle 2 therapy (Figure
6.3). Indeed this tumour had RCB-III disease at the end of chemotherapy.

In summary, these analyses provide us with evidence to suggest that ctDNA can be robustly
detected in early-stage breast cancer, with evidence of mutations present at diagnosis in all
cases analysed as well as after one cycle of chemotherapy. Truncal mutations were more
likely to be detected in the plasma. By using deep sequencing, the response to chemotherapy
could also be monitored. Finally, this approach was also able to detect mutations in the
plasma in all three cases with RD post-chemotherapy.
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Figure 6.3: Total ctDNA burden detected in serial plasma samples across four patients (T003: pCR,
T004 and T029: RCB-II, T025: RCB-III). Dotted red line indicates therapy backbone switch.
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6.3 Estimating ctDNA fraction through CNA analysis

The mutational analysis described previously provided incontrovertible evidence that mu-
tations could be detected in the plasma of patients with early-stage breast cancer prior
to commencing therapy, as well as during neoadjuvant treatment. In order to determine
whether copy number alterations (CNAs) could also be detected, whole genome libraries
were constructed from 96 plasma samples obtained from 24 patients. All patients had plasma
sampling performed pre-therapy, prior to commencement of cycle 2, prior to cycle 4 and
prior to surgical intervention. The libraries were sequenced over two lanes of an Illumina
HiSeq4000 in paired-end mode, resulting in a median depth of around 30 million reads per
sample (1⇥ coverage).

Copy number binning and segmentation using QDNAseq, as described in Chapter 2, showed
evidence of detectable CNAs within the plasma in some cases, corresponding to a high
ctDNA burden. One such example, case T004, had evidence of a high degree of copy number
alterations detected within the plasma (Figure 6.4) at the diagnostic and second sampling time
points, with no detectable alterations in the midway and surgical sampling time points. The
mutational deep sequencing analysis performed on this sample had also shown evidence of a
high mutation burden in the plasma prior to commencing therapy (Figure 6.3), corresponding
to the results obtained in this analysis.

The previous mutational analysis showed that at most time points the tumour variant AF in
the plasma was less than 10%, with increasingly lower AFs observed as therapy progressed.
As the plasma tumour DNA fraction was already quite low at diagnosis and decreased even
further through therapy, standard algorithms that estimated tumour purity from copy number
data could not be used, as these often required tumour purities well above 25% to be able to
quantify purity confidently [296]. Indeed tools such as ABSOLUTE [49] failed to detect any
tumour content secondary to the very low tumour purity.

The ichorCNA R package [5] was specifically designed to estimate the fraction of ctDNA
from ultra-low-pass whole genome sequencing and was tuned to detect ctDNA levels above
3%. Indeed, in benchmark experiments, ichorCNA had a lower limit of sensitivity for
detecting the presence of tumour DNA of 3%, with a 91% specificity and 95% sensitivity.
To determine the tumour fraction present in the sequencing data, ichorCNA was run on one
megabase segmented data obtained from QDNAseq using the recommended settings for ultra-
low detection, which served to reduce the complexity of the statistical model while increasing
sensitivity. To account for technical noise and artefacts induced by library preparation, a
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Figure 6.4: Sequential copy number profiles for case T004. Initial copy number changes observed
prior to commencing therapy were no longer evident following three cycles of chemotherapy. Cover-
age: Pre chemotherapy: 20.3M reads, Pre cycle 2: 24.4M reads, Pre cycle 4: 35M reads.
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panel of five normal pooled plasma samples that were processed and sequenced using the
same technology was provided to the algorithm, thereby ensuring that no copy number
alterations were called in plasma samples which did not have any evidence of tumour DNA.

Figure 6.5 shows the results of the ichorCNA analysis. Of the 24 cases sequenced, 19 had
detectable ctDNA at diagnosis (defined as a tumour fraction higher than 3%). In keeping
with the observations made with the mutational analysis, this confirmed that ctDNA was
detectable in early-stage disease and that a combination of copy number analysis, as well as
mutation detection, could help augment sensitivity.

Of the six cases that attained pCR, only two had undetectable ctDNA following completion
of therapy. Case T003 showed an initial decrease in ctDNA after one cycle of chemotherapy,
followed by an increase in ctDNA fraction midway through therapy and no detectable ctDNA
on completion of treatment. These changes mirrored the pattern observed in the mutational
analysis (Figure 6.3), confirming a high correlation between the dynamics observed in both
the mutational and CNA analysis. Four cases that attained pCR had evidence of ctDNA in
the post-therapy samples, and in one case (T067) the total tumour DNA content was above
10%.

The ctDNA analysis showed evidence of varying dynamics during neoadjuvant chemotherapy.
In some cases, such as case T011 (Figure 6.3), the plasma tumour burden was shown to
increase steadily throughout therapy. In other cases, an initial decrease in ctDNA levels was
succeeded by a rapid rise: this often occurred following a chemotherapy backbone switch
(cases: T005, T041, T053, T060, T065), potentially indicating resistance to therapy. A
reversed observation was made in cases T052 and T064, where an increase in ctDNA levels
were detectable prior to a chemotherapy backbone switch, with a decrease following agent
alteration. While these observations are purely descriptive, they highlight the great diversity
of dynamics detected during therapy.

50% (3/6) of all cases with RCB-I RD, 88% (7/8) of all cases with RCB-II RD and all (4/4)
cases with RCB-III RD had evidence of ctDNA present in the plasma at the time of surgery.
There was no relationship observed between the baseline ctDNA level and eventual response.
Additionally, no relationship was observed between the change in ctDNA level after 3 and 9
weeks of therapy and response.
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Figure 6.5: Fraction of ctDNA in serial plasma samples (Diagnosis (D), after 3 weeks (3W), Midway
(M) and post therapy (S)) as estimated by ichorCNA. Dotted red line indicates threshold above which
ctDNA fraction can be confidently detected (0.03).
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6.4 Conclusion

The descriptive work done in this chapter will serve as a foundation for further ctDNA work
in the neoadjuvant setting. It was reassuring that ctDNA could be used to detect disease in
early-stage breast cancer (100% of samples using deep sequencing, 79% using shallow whole
genome sequencing) and these findings will motivate the eventual comprehensive analysis of
all the plasma samples acquired within the TransNEO study.

Targeted deep sequencing has been shown to enable the detection of ultra-rare variants.
As described in Chapter 4, by using a comprehensive background noise model, mutations
with allelic fractions below 1% could be robustly identified using this library preparation
method. Because of the very low ctDNA mutational AF in the early breast cancer setting, a
large number of mutations needed to be targeted to detect and track tumour burden. This is
very unlike the metastatic setting, where ctDNA detection is possible using relatively fewer
mutations because of the higher degree of disease burden. Indeed, as shown in this work,
most of the mutations targeted were not detectable in the plasma, and therefore the greater
the number of mutations targeted, the greater the probability of ctDNA detection.

Mutations as well as copy number alterations were detected throughout therapy and used as
a surrogate of plasma disease burden. Various patterns of ctDNA dynamics were observed.
In some cases (T004, T048) a gradual decrease in ctDNA burden was observed throughout
therapy and assumed to be secondary to the elimination of a tumour sub-population. In other
cases, there was evidence of an increase in ctDNA during the first half of the chemotherapy
backbone, followed by a profound drop in ctDNA levels (eg T052, T064), perhaps showing
selective chemosensitivity to the second set of agents administered. There were also cases
with very low ctDNA levels during the first half of therapy, followed by increased levels as
soon as the therapy backbone was altered (eg T060, T070). In a few cases, ctDNA levels
remained high throughout therapy (T011, T043, T044).

It was interesting to note that ctDNA was also detectable following chemotherapy in cases
with evidence of pCR. This could have been due to undetected micrometastatic disease
elsewhere. While statements regarding survival and relapse cannot be made in view of the
small sample size analysed, further analysis on the whole cohort, as well as more mature
follow-up data, will show whether the detection of ctDNA following chemotherapy in
this group that received apparently-curative treatment has any ramifications on relapse and
survival.





Chapter 7

Summary and Perspective
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Overview

This thesis has described the molecular profiling of a dataset comprising 168 patients with
early breast cancer treated with neoadjuvant chemotherapy, with analyses performed on serial
tumour samples obtained at diagnosis, midway through chemotherapy, and on completion of
neoadjuvant therapy. A total of 300 tumours were available for analysis.

Through the analysis of serial tumour high depth exome and RNA sequencing, and inte-
gration with MRI and digital pathology data, this work has aimed to describe molecular
predictors of response to chemotherapy and chart the changes induced in a tumour and its
microenvironment throughout neoadjuvant treatment.

Molecular predictors of response to chemotherapy

The ability to accurately predict response to chemotherapy remains one of the holy grails
of cancer research. If we were able to confidently stratify patients into groups that would
derive the most and least benefit, therapy would be directed more appropriately and patients
who would derive the least benefit would be spared systemic therapy and its associated
morbidities.

Currently, very few molecular features are utilised in the clinic to guide the use of neoadjuvant
therapies. A review of the current NICE breast cancer treatment guidelines confirms this
[210]: with the exception of ER status, no other molecular determinant is routinely used
to assess suitability. Clinical features (including tumour size) and patient preference are
often the main determinants used to guide neoadjuvant therapy usage, with decisions often
agnostic to molecular features.

The work done in this thesis aimed to add to our understanding of characteristics associated
with response to neoadjuvant therapy. Associations with published phenotypes correlating
with response (ER, HER2, histological grade and age at diagnosis) were observed in this
study, indicating that the patient population recruited was similar to that observed in clinical
practice.

The first striking observation was a strong association between tumour mutation burden
(TMB) and the degree of residual disease (RD) post-chemotherapy. Tumours with high
mutation burdens were more likely to attain a better response to therapy, with the probability
of attaining pCR highest above 3 mutations Mb-1. While this could have been secondary to a
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moderate association between TMB and proliferation, it is likely that a stronger correlation
between TMB and neoantigen burden contributed to this observation. Indeed, the expressed
neoantigen burden was strongly associated with response: tumours with higher neoantigen
burdens were more likely to elicit stronger immune responses. Intriguingly, tumours that
expressed neoantigens presented by more than one HLA molecule were more likely to be
chemosensitive.

Tumour heterogeneity played a key role in mediating resistance to therapy: unsurprisingly,
tumours with a higher degree of heterogeneity at diagnosis were more likely to harbour
resistant phenotypes, in keeping with observations made in the literature in other tumour sites.
Tumour populations harbouring TP53 mutations were associated with a more aggressive phe-
notype and increased chemosensitivity, whilst somatic mutations within PIK3CA and GATA3,
which were often found in low proliferation ER+ tumours, were associated with extensive
RD post-therapy. In addition, oncogene amplification was likely to increase proliferation
and was associated with chemosensitivity while deletions over tumour suppressor genes and
apoptotic machinery conferred chemoresistance.

This study has comprehensively highlighted the role the genomic immune landscape played
in fashioning response to therapy in breast cancer and has resulted in several novel discov-
eries. Both the expressed neoantigen load and HLA subtype correlated with response to
chemotherapy. The presence of HLA-A*23:01 and HLA-B*38:01 were associated with
increased rates of pCR, whilst the presence of HLA-C*07:18 and HLA-B*18:01 were asso-
ciated with extensive RD and chemoresistance: interestingly, the latter HLA molecule has
also been associated with poor prognosis in HIV infection, indicating a possible mechanism
underlying immune escape. These novel observations will motivate further investigation into
the role HLA subtypes play in determining response to therapy and relapse.

Another novel finding was the relationship between HLA LOH and response to therapy.
Tumours with LOH of HLA class I genes were more likely to be chemoresistant: 56% of
neoantigens in 29 cases that harboured HLA LOH were no longer presentable, with 73%
of all LOH events resulting in the preferential loss of an HLA molecule that presented an
equal or greater number of neoantigens than the retained molecule. It was evident that,
by employing a further method of immuno-evasion, tumour cells were less likely to be
recognised as ‘non-self’ by the immune system. This previously unappreciated role of HLA
LOH has resulted in a collaborative effort to comprehensively characterise HLA dynamics
during therapy by performing HLA class-I and II immunohistochemical staining on pre and
post-therapy FFPE breast tumour and metastatic lymph node tissues. This will help ascertain
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the role of HLA heterogeneity and dynamics in allowing immuno-evasion in both the primary
breast tumour and the involved lymph nodes. However it is worth noting that this LOH
analysis was not performed in the context of whole genome LOH normalisation and therefore
more work will need to be done to determine whether this observed relationship was causal.

One of the many strengths of this study lied in the integration of genomic and transcriptomic
data. An analysis of the expression landscape corroborated observations made at the genomic
level: the degree of proliferation and immune activation prior to commencing chemotherapy
played key roles in fashioning response to therapy. This study is the first to model the
interplay between proliferation and immune infiltration across RCB categories. Tumours
attaining pCR had the highest degrees of proliferation and immune activation at diagnosis,
with a gradual decrease in both pathways as the degree of RD increased. This affirmed the
importance of modelling response as a continuum, rather than as a dichotomized variable as
has been done in the past in many studies. Digital pathology analysis orthogonally validated
the association between increasing immune infiltrate and response, and through RNA-seq
deconvolution the prevalence of a wide gamut of immune subpopulations, including B cells,
T cells, NK cells and macrophages, was shown to associate with response.

The neoadjuvant setting provides a unique opportunity to study mechanisms of chemoresis-
tance. In keeping with the immuno-evasive methods described previously, chemoresistant
tumours also profoundly under-expressed HLA genes, thereby presenting fewer neoanti-
gens. It is worth noting that the current generation of anti-tumour agents are increasingly
immuno-modulatory and often rely on inhibiting immuno-suppressive phenotypes. However,
such agents are very unlikely to provide great benefit in cases where the main method of
immuno-evasion is secondary to the decreased presentation of neoantigenic peptides, and
perhaps screening for HLA LOH will play an important role in the future when selecting
candidates suitable for immunotherapies.

Mechanisms of chemoresistance were not solely limited to immuno-evasive pathways.
Treatment-naive chemoresistant tumours also had an augmented expression of xenobiotic
cytochrome P450 enzymes and ATP binding cassette multi-drug efflux transporters and solute
carriers. Perhaps these resistance mechanisms were acquired throughout a lifetime of toxin
exposure and might explain why patients with higher body mass indexes have a higher risk
of breast cancer recurrence after chemotherapy. A novel mechanism of chemoresistance in
HER2+ tumours was shown to be mediated by the stem-cell regulator LIN28A which has
been shown to stabilise HER2 mRNA, resulting in increased protein expression. Through
profound down-regulation of LIN28A, fewer HER2 molecules would be available on the
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cell surface, rendering these tumour cells less sensitive to anti-HER2 therapies. Future work
will involve the analysis of these chemoresistance signatures and genes within independent
adjuvant datasets, such as METABRIC, in order to determine whether an association can
be observed between relapse following adjuvant chemotherapy and chemoresistant gene
expression.

One key aim of this work was to generate a classifier that accurately predicted response
to therapy. By integrating features best posed to predict response to therapy, a model that
incorporated two clinical variables (age at diagnosis and number of positive lymph nodes),
two genomic variables (expressed TMB and HLA-LOH) and five expression variables (GGI
metagene expression, CYT score and ESR1, ERBB2 and LIN28A expression) was shown to
be highly predictive of response. Indeed, this model was able to predict pCR in the entire
cohort with a sensitivity of 86.5%, specificity of 81.5% and an NPV of 93.4%, whilst it could
predict chemoresistance with a sensitivity of 95.7%, specificity of 91.0% and an NPV of
97.0%, outperforming the clinical variable-only model.

The work described in the first section of the thesis has shed a great deal of light on predictors
and mechanisms of chemosensitivity and resistance, with applications directly translatable
to the clinic. While many spin-off projects and collaborative efforts have resulted to further
explore aspects of the data described, the greatest benefit lies in the application of this
data within clinical practice. Oncology practice is becoming increasingly data-driven, with
efforts such as the Personalised Breast Cancer Programme (PBCP) generating tumour whole
genome and transcriptome sequencing data. The PBCP has already resulted in a tangible
alteration of patient management in Cambridge, and plans are in motion to include the features
identified in this work within the molecular reports. Hence, through the additional data
provided, physicians and patients will be in a better position to decide whether neoadjuvant
therapies will provide the desired benefit.

Genomic and transcriptomic changes seemingly induced by chemotherapy

A further aim of this study was the molecular analysis of serial tumour samples obtained
throughout neoadjuvant therapy. Biopsies were consistently taken under ultrasound guidance
from the site of a fiduciary marker to mitigate, as much as possible, intra-tumoural hetero-
geneity. By characterising the genomic and transcriptomic profiles throughout therapy, the
work described in this thesis aimed to increase our understanding of the way tumours, and
their surrounding microenvironment, were altered during therapy.
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Chemotherapy seemingly altered the genomic architecture of tumours, with evidence of
mutation eradication and the emergence of previously unobserved mutations during therapy.
Clonal structure deconvolution revealed two main patterns of genomic response to chemother-
apy: clonally stable tumours characterised by mutational prevalences that were minimally
altered on serial sampling, and clonally dynamic tumours characterised by altered clonal
prevalences during treatment. Clonally dynamic tumours were sub-classified as tumours with
clonal extinction (harbouring mutations with decreasing cellular prevalences) and tumours
with clonal emergence (harbouring mutations with increasing cellular prevalences). Deep
sequencing of serial tumour samples from four cases validated the clonal structure observed
on exome sequencing. One case was subjected to multi-region sequencing and the results
showed that newly emergent mutations were present prior to commencing chemotherapy,
albeit at very low allelic fractions, corroborating findings observed by Kim et al. [155]. Hence
mutations that were ’newly-detected’ during therapy had been previously unobserved due
to insufficient sequencing depth. Deep sequencing on a larger cohort as well as single-cell
sequencing will be required to provide additional validation and delineate the dynamics in
greater detail: work to undertake this is already underway.

Hence, selection pressures introduced by chemotherapy seemingly altered the tumour’s
clonal architecture, with selection against chemosensitive populations. Newly observed
somatic mutations were unlikely to be neoantigenic and on pathway enrichment were noted
to be harboured within genes that were modulators of immune signalling, proliferation, cell
motility and molecular transporters. It is worth remembering that these pathways were also
noted to be predictive of resistance prior to commencing chemotherapy.

Clonally stable tumours retained a stable mutational and copy number landscape, with lower
proliferation pathway activation compared to clonally dynamic tumours. Tumours with
clonal extinction had a significantly higher immune infiltrate compared to all other groups,
indicating that cytotoxic therapy and an augmented immune response were responsible for the
subclonal extinction observed. In contrast, tumours with clonal emergence showed evidence
of chemoresistance and an associated increase in copy number instability and homologous
recombination deficiency during therapy, with evidence of changes within the CNA landscape.
These tumours also had a significantly lower immune infiltrate when compared to all other
tumours in different response groups. It was surprising how the immune infiltrate not only
determined the clinical response to therapy, but also the clonal architecture of a tumour.

Another strength of this study is the integration of breast tumour MRI data with concurrently
obtained expression data. The rate of tumour bulk decrease on MRI at the midway time point
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correlated with pathological response to therapy and on integrating this with the expression
data it rapidly became evident that the key pathways associated with a greater change in
tumour bulk on MRI were proliferation and immune activation. It was highly remarkable that
a linear correlation was observed between the degree of immune subpopulation enrichment at
the midway time point and the percentage decrease in bulk on MRI. This continued to confirm
the important role the immune system played in determining response to therapy. In view
of this, collaborations have now been set up with the Department of Radiology and within
the Cancer Research (UK) Cambridge Institute to integrate other radiomic features, such as
tumour texture and perfusion analyses, with the expression and genomic data generated in
this work. The data generated to date shows great promise.

Intriguingly, differing immune dynamics were observed at the midway time point in taxane
treated HER2� tumours and anthracycline-treated HER2+ tumours. In the former, an increase
in CYT score, as well as an increase in B cells, T cells, NK cells and neutrophils was strongly
associated with pCR. This observed increase in tumour infiltrate was secondary to decreased
tumour purity and increased infiltration by immune cells, which could have been recruited
secondary to increased chemotherapy-induced cell death. An inverse relationship was seen
in the anthracycline-treated HER2+ tumours. This observation has not been reported in the
literature: whether this was an effect secondary to the type of chemotherapy administered, or
whether this was a HER2+-specific response was difficult to untangle, though observations
made in various studies that taxanes given before anthracyclines were more effective at
inducing pCR may hint that this was a chemotherapy-related event. A larger cohort will
be required to validate this observation: as the TransNEO study is still actively recruiting
patients plans are being made to validate these findings in the subsequent cohort of patients
analysed. Further experimental work will need to be done to confirm the immune system
dynamics observed.

Therapy-induced senescence, amongst other chemoresistance mechanisms, was noted to be
associated with chemoresistance, with some tumour cells entering a senescent state in order
to circumvent the cytotoxic effects of chemotherapy. Through collaborations with research
groups in the Cancer Research (UK) Cambridge Institute, efforts have now started to use
computational pathology and machine learning classifiers to identify and quantify senescent
phenotypes on more than 5,000 tumour H&E slides obtained prior to commencing therapy
and on completion of therapy. While this work is still in its infancy, the performance of the
algorithms so far has been impressive.
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Hence this study has described how tumours and their microenvironments are altered during
therapy. The next stages will involve the deeper integration of genomic, transcriptomic,
digital pathology and radiomics data in order to generate a comprehensive, multi-modal
and integrated description of the changes chemotherapy induces within tumours and their
microenvironments.

ctDNA detection

In the final section of this work, deep sequencing and shallow whole genome sequencing
were used to detect ctDNA within the plasma. ctDNA was detected robustly in all diagnostic
plasma samples that were deep sequenced and in 79% of cases that were shallow whole
genome sequenced. The increased sensitivity and specificity of the deep sequencing technol-
ogy used were attributed to the deep single molecule amplification as well as the utilisation
of a robust noise model that aided sensitivity and specificity.

The work described has provided a proof-of-principle solution that allows the robust detection
of ctDNA at diagnosis in early-stage disease and during neoadjuvant therapy and will motivate
the eventual comprehensive analysis of the remaining plasma samples acquired in the study.
With a larger number of samples it will be possible to determine whether ctDNA levels
are predictive of response to therapy and whether the dynamics observed correlate with
response. Indeed, if increasing ctDNA levels were consistently observed during one block of
chemotherapy, then an argument could be made that this indicated chemoresistance and a
switch to an alternative cytotoxic agent or earlier surgical intervention might be beneficial.
Post-surgical ctDNA analysis could also be used to predict the probability of eventual relapse
or guide further adjuvant therapy.

ctDNA surveillance could be used to allow the early detection of relapse, and to this effect,
the REVEAL translational study was set up as part of this PhD. Within this study, plasma
sampling is being performed at defined time points over a six-year period, and ctDNA
analysis performed using ultra-sensitive techniques in order to enable early detection of
relapse in patients with all stages of breast cancer.
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Table A.1: Tumour pathology and stage at diagnosis

Trial ID Age T stage N stage Grade Histology ER/HER2 status PAM50

T001 51 T2 N0 3 IDC ER+ HER2+ Her2
T002 42 T4d N1+ 2 IDC ER+ HER2- Basal
T003 36 T2 N0 2 IDC ER+ HER2+ LumB
T004 33 T3 N0 3 IDC ER+ HER2- Basal
T005 49 T3 N1+ 3 IDC ER+ HER2- LumB

T006 46 T2 N1+ 3 IDC ER+ HER2- LumB
T007 42 T2 N0 2 IDC ER+ HER2+ Her2
T008 50 T3 N1+ 3 IDC ER- HER2- Basal
T009 53 T2 N1+ 2 IDC ER+ HER2+ Her2
T010 56 T2 N0 2 Mixed ER+ HER2+ LumB

T011 53 T3 N1+ 3 IDC ER+ HER2+ Her2
T012 33 T4d N1+ 3 IDC ER+ HER2- Basal
T013 33 T2 N0 3 IDC ER+ HER2- Basal
T014 40 T2 N0 3 IDC ER+ HER2+ Her2
T015 57 T2 N0 3 IDC ER- HER2- Basal

T016 56 T3 N1+ 2 ILC ER+ HER2- LumA
T017 46 T3 N1+ 3 IDC ER+ HER2- Normal
T018 47 T3 N1+ 2 IDC ER- HER2- Normal
T019 59 T2 N1+ 2 IDC ER+ HER2- NA
T020 34 T1 N0 3 IDC ER+ HER2+ LumB

T022 42 T2 N1+ 2 IDC ER- HER2+ Her2
T023 39 T2 N1+ 2 IDC ER+ HER2- LumA
T024 27 T2 N0 3 IDC ER- HER2- Basal
T025 62 T2 N1+ 2 IDC ER+ HER2- LumA
T026 32 T2 N0 3 Medullary ER+ HER2- Basal

T027 52 T2 N0 2 IDC ER+ HER2- LumA
T028 37 T3 N1+ 3 IDC ER+ HER2+ Her2
T029 53 T2 N0 3 IDC ER+ HER2+ LumB
T030 48 T3 N0 2 IDC ER+ HER2- LumA
T031 51 T1 N0 3 IDC ER- HER2+ Her2

T032 69 T2 N0 3 IDC ER- HER2- Basal
T033 49 T2 N0 3 IDC ER- HER2- Basal
T035 33 T2 N0 3 IDC ER- HER2- Basal
T036 54 T2 N1+ 3 IDC ER+ HER2- Her2
T037 49 T2 N0 3 IDC ER- HER2- Basal

T038 41 T2 N0 2 IDC ER- HER2- Basal
T039 51 T2 N1+ 2 IDC ER+ HER2- LumA
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T040 34 T2 N0 3 IDC ER- HER2- Basal
T041 44 T2 N0 3 IDC ER+ HER2- LumB
T042 57 T3 N0 3 IDC ER- HER2- Basal

T043 54 T2 N1+ 2 IDC ER+ HER2- LumB
T044 40 T2 N1+ 3 IDC ER+ HER2- LumB
T045 41 T2 N1+ 3 IDC ER+ HER2- LumA
T046 65 T2 N1+ 3 IDC ER+ HER2- LumB
T047 58 T3 N0 2 IDC ER+ HER2- LumA

T048 66 T2 N0 2 IDC ER+ HER2+ LumB
T049 37 T2 N1+ 3 IDC ER+ HER2+ Her2
T050 60 T3 N1+ 2 IDC ER+ HER2+ LumB
T051 46 T2 N0 2 IDC ER+ HER2- LumB
T052 35 T2 N0 3 IDC ER- HER2- Basal

T053 46 T3 N1+ 2 ILC ER+ HER2- NA
T054 51 T2 N0 3 IDC ER- HER2- Basal
T055 63 T2 N1+ 3 IDC ER+ HER2+ NA
T056 55 T2 N0 2 IDC ER- HER2- Normal
T057 42 T2 N0 3 IDC ER- HER2- Basal

T058 24 T3 N1+ 2 IDC ER+ HER2- LumB
T059 52 T1 N0 3 IDC ER+ HER2+ Her2
T060 67 T3 N1+ 3 IDC ER+ HER2- LumB
T061 53 T2 N1+ 2 IDC ER+ HER2- LumA
T062 64 T3 N1+ 3 IDC ER+ HER2- LumB

T064 61 T2 N0 3 IDC ER+ HER2+ Her2
T065 63 T3 N1+ 2 ILC ER- HER2- Basal
T066 52 T4d N1+ 2 IDC ER+ HER2- LumB
T067 48 T2 N1+ 2 IDC ER+ HER2- LumA
T068 61 T4d N1+ 2 IDC ER+ HER2- LumA

T069 65 T3 N1+ 3 Mixed ER+ HER2+ LumA
T070 63 T2 N1+ 3 IDC ER+ HER2- Basal
T071 35 T2 N1+ 3 IDC ER- HER2- Basal
T072 53 T2 N1+ 2 Mixed ER+ HER2- LumA
T073 38 T3 N0 3 IDC ER+ HER2+ Her2

T074 50 T2 N1+ 2 IDC ER+ HER2- LumB
T075 52 T2 N1+ 2 IDC ER+ HER2- NA
T076 54 T2 N0 2 IDC ER- HER2+ Normal
T077 48 T2 N0 3 IDC ER+ HER2+ NC
T078 50 T3 N0 3 IDC ER+ HER2+ Her2



288 Clinical Tables

Table A.1 – continued from previous page

Trial ID Age T stage N stage Grade Histology ER/HER2 status PAM50

T079 59 T2 N0 2 IDC ER- HER2- Basal
T080 50 T3 N1+ 3 IDC ER+ HER2+ Her2
T081 39 T2 N0 3 IDC ER- HER2- Basal
T083 48 T3 N0 3 IDC ER+ HER2+ LumB
T086 63 T2 N0 3 IDC ER- HER2- Her2

T087 56 T2 N1+ 3 IDC ER+ HER2+ LumB
T088 67 T2 N0 2 IDC ER+ HER2+ LumB
T089 33 T4d N1+ 3 IDC ER- HER2- Basal
T090 49 T2 N0 3 IDC ER- HER2- Normal
T091 45 T2 N0 3 IDC ER+ HER2- NA

T092 53 T2 N1+ 3 IDC ER- HER2+ Her2
T093 48 T2 N0 3 IDC ER+ HER2- LumB
T094 35 T2 N1+ 3 IDC ER- HER2- Basal
T095 53 T2 N0 2 Apocrine ER- HER2+ Her2
T096 59 T2 N1+ 2 ILC ER+ HER2- LumA

T097 56 T1 N0 3 IDC ER- HER2+ Her2
T098 37 T2 N0 2 IDC ER+ HER2+ LumA
T099 62 T3 N0 2 IDC ER+ HER2+ LumB
T100 57 T3 N0 3 IDC ER- HER2+ Her2
T101 74 T3 N1+ 3 IDC ER- HER2- Basal

T102 65 T2 N1+ 3 IDC ER+ HER2- LumB
T103 55 T2 N0 3 Medullary ER- HER2- Basal
T104 53 T2 N1+ 3 IDC ER- HER2- Her2
T105 43 T3 N0 3 IDC ER+ HER2+ Her2
T106 39 T4d N1+ 3 IDC ER+ HER2- LumB

T108 66 T2 N0 3 IDC ER- HER2- Basal
T109 39 T3 N1+ 2 IDC ER+ HER2- LumA
T110 42 T4d N1+ 2 Micropapillary ER+ HER2+ Her2
T112 38 T2 N0 3 IDC ER- HER2- Basal
T114 62 T2 N1+ 3 IDC ER- HER2+ Basal

T115 56 T3 N1+ 3 Mixed ER+ HER2+ Her2
T116 66 T2 N1+ 3 IDC ER+ HER2+ LumB
T117 59 T2 N0 3 IDC ER+ HER2+ Her2
T118 44 T3 N1+ 2 IDC ER- HER2- Normal
T119 52 T3 N1+ 2 Mixed ER+ HER2+ LumB

T120 61 T2 N0 3 IDC ER- HER2+ Her2
T121 50 T2 N1+ 2 Apocrine ER+ HER2+ Normal
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T122 55 T2 N1+ 2 IDC ER+ HER2+ LumB
T123 53 T2 N1+ 3 IDC ER- HER2- Basal
T124 50 T3 N0 2 IDC ER+ HER2+ Her2

T125 56 T2 N0 3 IDC ER+ HER2+ LumB
T126 32 T2 N0 2 IDC ER+ HER2- LumB
T127 65 T2 N1+ 2 ILC ER+ HER2- LumA
T128 55 T2 N1+ 3 IDC ER- HER2+ Her2
T129 43 T2 N0 3 IDC ER- HER2- Basal

T130 68 T2 N1+ 3 IDC ER- HER2- Basal
T131 81 T4d N1+ 2 Apocrine ER- HER2+ Her2
T132 47 T3 N0 2 IDC ER+ HER2+ Her2
T133 61 T3 N1+ 3 Micropapillary ER+ HER2- LumB
T134 36 T3 N0 3 IDC ER+ HER2+ Her2

T135 41 T3 N0 3 IDC ER- HER2- Basal
T136 67 T3 N0 3 IDC ER- HER2- Basal
T137 45 T2 N1+ 2 IDC ER+ HER2- LumB
T138 38 T2 N1+ 3 Micropapillary ER+ HER2- LumB
T139 46 T2 N0 3 IDC ER+ HER2- LumB

T140 47 T3 N1+ 2 IDC ER+ HER2- LumA
T141 39 T2 N0 3 IDC ER+ HER2- LumB
T142 42 T2 N1+ 3 IDC ER+ HER2+ LumB
T143 49 T2 N0 3 IDC ER+ HER2- Basal
T144 58 T2 N0 3 IDC ER+ HER2+ LumB

T145 62 T2 N1+ 2 IDC ER+ HER2- LumB
T147 57 T2 N1+ 2 IDC ER+ HER2+ LumB
T148 38 T1 N1+ 3 IDC ER+ HER2- LumB
T149 28 T2 N0 3 IDC ER+ HER2+ LumB
T150 60 T3 N1+ 2 ILC ER- HER2- Her2

T151 68 T2 N1+ 3 IDC ER+ HER2- LumB
T152 36 T2 N0 3 IDC ER+ HER2+ Her2
T153 64 T3 N1+ 3 IDC ER- HER2- Basal
T154 62 T2 N0 3 IDC ER- HER2- Basal
T155 58 T4d N1+ 3 Micropapillary ER+ HER2- LumB

T156 67 T2 N1+ 3 IDC ER+ HER2- LumB
T157 79 T2 N1+ 3 IDC ER+ HER2+ Her2
T158 46 T1 N0 3 IDC ER+ HER2+ Her2
T159 36 T3 N1+ 2 IDC ER+ HER2- LumB
T160 50 T3 N0 2 IDC ER+ HER2- LumA
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T161 55 T3 N1+ 3 IDC ER+ HER2- LumB
T162 55 T1 N0 3 IDC ER+ HER2+ LumB
T163 39 T2 N0 3 IDC ER+ HER2+ NA
T164 44 T2 N0 2 IDC ER+ HER2+ LumB
T165 20 T2 N0 3 IDC ER+ HER2+ LumA

T166 48 T1 N0 2 IDC ER- HER2- LumA
T167 59 T2 N1+ 2 ILC ER+ HER2- LumB
T168 50 T2 N0 3 Medullary ER- HER2+ Basal
T169 35 NA N1+ 2 IDC ER+ HER2- LumB
T170 66 T2 N1+ 2 Micropapillary ER+ HER2- LumB

T171 68 T3 N0 3 IDC ER+ HER2+ LumB
T172 54 T2 N1+ 3 IDC ER- HER2+ Her2
T173 68 T2 N0 2 IDC ER+ HER2- LumB
T174 50 T2 N1+ 2 IDC ER+ HER2- LumB
T175 48 T3 N1+ 3 IDC ER+ HER2+ Her2

T176 39 T3 N1+ 2 IDC ER+ HER2- LumB
T178 56 T2 N1+ 2 Mixed ER+ HER2- LumB
T180 52 T3 N0 3 IDC ER- HER2+ Her2
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Trial ID Regimen name Regimen classification Total cycles

T001 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T002 T-FEC Taxane > Anthracycline 6
T003 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T004 FEC-T Anthracycline > Taxane 6
T005 FEC-T Anthracycline > Taxane 6

T006 T-FEC Taxane > Anthracycline 6
T007 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T008 T-FEC Taxane > Anthracycline 6
T009 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T010 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T011 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T012 T-FEC Taxane > Anthracycline 6
T013 T-FEC Taxane > Anthracycline 6
T014 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T015 T-FEC Taxane > Anthracycline 6

T016 T-FEC Taxane > Anthracycline 6
T017 T-FEC Taxane > Anthracycline 6
T018 T-FEC Taxane > Anthracycline 6
T019 T-FEC Taxane > Anthracycline 6
T020 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T022 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T023 T-FEC Taxane > Anthracycline 6
T024 T-FEC Taxane > Anthracycline 6
T025 T-FEC Taxane > Anthracycline 6
T026 T-FEC Taxane > Anthracycline 6

T027 TC Taxane, no anthracycline 4
T028 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T029 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T030 T-FEC Taxane > Anthracycline 6
T031 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T032 T-FEC Taxane > Anthracycline 6
T033 T-FEC Taxane > Anthracycline 6
T035 T-FEC Taxane > Anthracycline 6
T036 T-FEC Taxane > Anthracycline 6
T037 T-FEC Taxane > Anthracycline 6

T038 T-FEC Taxane > Anthracycline 6
T039 T-FEC Taxane > Anthracycline 6
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T040 T-FEC Taxane > Anthracycline 6
T041 T-FEC Taxane > Anthracycline 6
T042 T Taxane, no anthracycline 2

T043 T-FEC Taxane > Anthracycline 5
T044 T-FEC Taxane > Anthracycline 6
T045 T-FEC Taxane > Anthracycline 6
T046 T-EC Taxane > Anthracycline 6
T047 T-FEC Taxane > Anthracycline 6

T048 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T049 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T050 EC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T051 T-FEC Taxane > Anthracycline 6
T052 T-FEC Taxane > Anthracycline 6

T053 T-FEC Taxane > Anthracycline 6
T054 TC Taxane, no anthracycline 4
T055 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T056 T-FEC Taxane > Anthracycline 6
T057 T-FEC Taxane > Anthracycline 6

T058 T-FEC Taxane > Anthracycline 6
T059 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T060 T-FEC Taxane > Anthracycline 6
T061 FEC-T Anthracycline > Taxane 6
T062 T-FEC Taxane > Anthracycline 6

T064 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T065 T-Carboplatin Taxane + Platinum 6
T066 T-FEC Taxane > Anthracycline 6
T067 T-FEC Taxane > Anthracycline 6
T068 T-FEC Taxane > Anthracycline 6

T069 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 5
T070 FEC-T Anthracycline > Taxane 6
T071 T-FEC Taxane > Anthracycline 6
T072 T-FEC Taxane > Anthracycline 6
T073 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T074 FEC-T Anthracycline > Taxane 6
T075 T-FEC Taxane > Anthracycline 6
T076 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T077 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T078 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
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T079 T-FEC Taxane > Anthracycline 6
T080 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T081 T-FEC Taxane > Anthracycline 6
T083 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T086 T-FEC Taxane > Anthracycline 6

T087 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T088 TC + Trastuzumab Taxane + anti-HER2 4
T089 EC-T Anthracycline > Taxane 5
T090 T-FEC Taxane > Anthracycline 6
T091 T-FEC Taxane > Anthracycline 6

T092 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T093 T-FEC Taxane > Anthracycline 6
T094 T-FEC Taxane > Anthracycline 6
T095 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T096 T-FEC Taxane > Anthracycline 6

T097 TC + Trastuzumab Taxane + anti-HER2 4
T098 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T099 FEC-T + Trastuzumab + Pertuzumab Anthracycline > Taxane + anti-HER2 6
T100 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T101 TC Taxane, no anthracycline 4

T102 TC Taxane, no anthracycline 1
T103 T-FEC Taxane > Anthracycline 6
T104 T-FEC Taxane > Anthracycline 6
T105 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T106 T Taxane, no anthracycline 3

T108 TC Taxane, no anthracycline 4
T109 T-FEC Taxane > Anthracycline 6
T110 FEC-T + Trastuzumab + Pertuzumab Anthracycline > Taxane + anti-HER2 6
T112 T-FEC Taxane > Anthracycline 6
T114 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T115 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T116 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T117 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T118 P-FEC Taxane > Anthracycline 7
T119 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T120 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T121 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
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T122 EC + Trastuzumab Anthracycline, no taxane + anti-HER2 4
T123 P-FEC Taxane > Anthracycline 7
T124 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T125 TC + Trastuzumab Taxane + anti-HER2 4
T126 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T127 T-FEC Taxane > Anthracycline 6
T128 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T129 P-FEC Taxane > Anthracycline 7

T130 P-EC Taxane > Anthracycline 7
T131 T + Pertuzumab + Trastuzumab Taxane + anti-HER2 4
T132 TC + Trastuzumab Taxane + anti-HER2 4
T133 T-EC Taxane > Anthracycline 6
T134 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6

T135 P-FEC Taxane > Anthracycline 7
T136 P-EC Taxane > Anthracycline 7
T137 T-FEC Taxane > Anthracycline 6
T138 T-EC Taxane > Anthracycline 6
T139 T-EC Taxane > Anthracycline 6

T140 T-FEC Taxane > Anthracycline 6
T141 T-FEC Taxane > Anthracycline 6
T142 T-FEC + Trastuzumab + Pertuzumab Taxane + anti-HER2 > Anthracycline 7
T143 T-FEC Taxane > Anthracycline 6
T144 T-FEC + Trastuzumab Taxane + anti-HER2 > Anthracycline 6

T145 T-EC Taxane > Anthracycline 6
T147 FEC-T + Trastuzumab + Pertuzumab Anthracycline > Taxane + anti-HER2 7
T148 T-FEC Taxane > Anthracycline 6
T149 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T150 P-EC Taxane > Anthracycline 7

T151 T-FEC Taxane > Anthracycline 6
T152 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T153 P-EC Taxane > Anthracycline 6
T154 P-FEC Taxane > Anthracycline 7
T155 EC-T Anthracycline > Taxane 6

T156 TC Taxane, no anthracycline 4
T157 T + Pertuzumab + Trastuzumab Taxane + anti-HER2 7
T158 TC + Pertuzumab + Trastuzumab Taxane + anti-HER2 6
T159 T-FEC Taxane > Anthracycline 6
T160 T-FEC Taxane > Anthracycline 6
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T161 T-EC Taxane > Anthracycline 6
T162 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T163 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T164 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T165 TC + Trastuzumab Taxane + Platinum + anti-HER2 6

T166 P-Carboplatin Taxane + Platinum 4
T167 T Taxane, no anthracycline 1
T168 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T169 T-EC Taxane > Anthracycline 7
T170 T-FEC Taxane > Anthracycline 6

T171 TC + Trastuzumab Taxane + anti-HER2 4
T172 FEC-T + Trastuzumab Anthracycline > Taxane + anti-HER2 6
T173 P + Trastuzumab Taxane + anti-HER2 4
T174 T-EC Taxane > Anthracycline 6
T175 T-FEC + Trastuzumab + Pertuzumab Taxane + anti-HER2 > Anthracycline 7

T176 T-Carboplatin Taxane + Platinum 6
T178 T-FEC Taxane > Anthracycline 6
T180 FEC-T + Trastuzumab + Pertuzumab Anthracycline > Taxane + anti-HER2 7
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Table A.3: Assessment of post-therapy tumour pathology

Trial ID
Tumour dim.

(mm)
%

Cellularity
%

CIS
Positive

LN
Largest LN
met (mm)

RCB
score

RCB
category

T001 3 x 2 5 0 0 0 0.98 RCB-I
T002 0 0 0 0 0 0 pCR
T003 0 0 0 0 0 0 pCR
T004 16 x 10 80 0 0 0 2.075 RCB-II
T005 15 x 9 5 0 5 5 2.866 RCB-II

T006 18 x 13 50 0 3 7 3.584 RCB-III
T007 21 x 12 5 30 0 0 1.267 RCB-I
T008 6 x 0.1 1 0 4 2 1.948 RCB-II
T009 0 0 0 1 0.1 0.676 RCB-I
T010 16 x 14 30 0 0 0 1.807 RCB-II

T011 8 x 5 1 0 0 0 0.876 RCB-I
T012 0 0 0 0 0 0 pCR
T013 0 0 0 0 0 0 pCR
T014 0 0 0 0 0 0 pCR
T015 5 x 3 40 0 0 0 1.508 RCB-II

T016 180 x 44 15 0 2 9 3.773 RCB-III
T017 70 x 24 0.1 0 5 5 2.403 RCB-II
T018 50 x 25 1 0 3 4 2.633 RCB-II
T019 100 x 45 5 0 5 6 3.359 RCB-III
T020 8 x 4 0.1 0 0 0 0.581 RCB-I

T022 0 0 0 0 0 0 pCR
T023 22 x 11 2 0 2 3 2.474 RCB-II
T024 0 0 0 0 0 0 pCR
T025 15 x 14 50 0 6 12 3.828 RCB-III
T026 3 x 2 80 0 0 0 1.57 RCB-II

T027 NA
T028 0 0 0 0 0 0 pCR
T029 27 x 10 60 0 0 0 2.066 RCB-II
T030 33 x 16 10 0 0 0 1.613 RCB-II
T031 0 0 0 0 0 0 pCR

T032 9 x 5 50 0 0 0 1.72 RCB-II
T033 1 x 1 95 0 0 0 1.388 RCB-II
T035 3 x 2 90 0 0 0 1.601 RCB-II
T036 0 0 0 0 0 0 pCR
T037 0 0 0 0 0 0 pCR

T038 0 0 0 0 0 0 pCR
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Cellularity
%

CIS
Positive

LN
Largest LN
met (mm)

RCB
score

RCB
category

T039 6 x 4 20 40 0 0 1.279 RCB-I
T040 0 0 0 0 0 0 pCR
T041 14 x 11 80 0 0 0 2.068 RCB-II
T042 4 x 0.5 5 0 0 0 0.892 RCB-I

T043 18 x 17 40 0 2 13 1.949 RCB-II
T044 18 x 10 40 50 11 10 3.514 RCB-III
T045 27 x 9 0.1 0 0 0 0.69 RCB-I
T046 5 x 4 25 0 2 5 2.873 RCB-II
T047 41 x 37 30 2 1 0.1 2.795 RCB-II

T048 18 x 15 5 0 0 0 1.354 RCB-I
T049 0 0 0 0 0 0 pCR
T050 26 x 10 5 0 11 32 3.615 RCB-III
T051 31 x 15 10 0 0 0 1.595 RCB-II
T052 0 0 0 1 0.7 0.941 RCB-I

T053 34 x 30 10 0 4 9 3.429 RCB-III
T054 0 0 0 0 0 0 pCR
T055 6 x 4 5 0 1 4 2.368 RCB-II
T056 12 x 7 70 0 0 0 1.92 RCB-II
T057 0 0 0 0 0 0 pCR

T058 100 x 36 50 0 12 3 4.013 RCB-III
T059 0 0 0 0 0 0 pCR
T060 3 x 2 10 0 3 0.1 1.882 RCB-II
T061 15 x 12 70 5 1 5 3.346 RCB-III
T062 32 x 23 10 5 4 6 3.253 RCB-II

T064 1 x 0.8 90 0 0 0 1.349 RCB-I
T065 55 x 43 10 0 6 4 3.382 RCB-III
T066 25 x 11 1 0 9 7 2.77 RCB-II
T067 15 x 13 10 2 7 3 2.966 RCB-II
T068 130 x 48 5 5 20 9 3.591 RCB-III

T069 30 x 16 1 10 0 0 1.062 RCB-I
T070 0 0 0 0 0 0 pCR
T071 0 0 0 0 0 0 pCR
T072 70 x 26 10 10 2 4 3.152 RCB-II
T073 0 0 0 0 0 0 pCR

T074 17 x 11 15 40 0 0 1.45 RCB-II
T075 3 x 1 20 0 0 0 1.169 RCB-I
T076 1 x 0.5 10 0 0 0 0.892 RCB-I
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(mm)
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Cellularity
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CIS
Positive

LN
Largest LN
met (mm)

RCB
score

RCB
category

T077 0 0 0 0 0 0 pCR
T078 0 0 0 2 6 1.491 RCB-II

T079 0 0 0 0 0 0 pCR
T080 0 0 0 7 7 1.72 RCB-II
T081 0 0 0 0 0 0 pCR
T083 10 x 2 10 99 0 0 0.558 RCB-I
T086 2 x 1 10 0 1 2 2.129 RCB-II

T087 50 x 31 15 5 1 0.1 2.553 RCB-II
T088 NA
T089 100 x 44 20 2 1 1 3.165 RCB-II
T090 14 x 8 10 0 0 0 1.414 RCB-II
T091 14 x 10 50 10 0 0 1.86 RCB-II

T092 12 x 4 5 0 0 0 1.169 RCB-I
T093 6 x 5 80 0 2 0.2 2.636 RCB-II
T094 0 0 0 0 0 0 pCR
T095 0 0 0 0 0 0 pCR
T096 65 x 38 20 0.5 21 8 3.869 RCB-III

T097 0 0 0 0 0 0 pCR
T098 30 x 21 30 20 1 3 3.105 RCB-II
T099 0 0 0 0 0 0 pCR
T100 2 x 1 5 0 0 0 0.892 RCB-I
T101 17 x 12 40 30 1 9 3.225 RCB-II

T102 19 x 10 60 1 2 12 3.679 RCB-III
T103 0 0 0 0 0 0 pCR
T104 0 0 0 0 0 0 pCR
T105 11 x 6 2 0 0 0 1.028 RCB-I
T106 NA

T108 NA
T109 19 x 17 90 0 8 11 4.116 RCB-III
T110 95 x 35 5 0 2 2 2.913 RCB-II
T112 0 0 0 0 0 0 pCR
T114 14 x 9 40 0 0 0 1.807 RCB-II

T115 140 x 25 20 0 6 4 3.68 RCB-III
T116 20 x 14 70 5 1 4 3.374 RCB-III
T117 8 x 2 2 0 0 0 0.911 RCB-I
T118 13 x 4 40 70 3 9 3.041 RCB-II
T119 28 x 14 5 0 1 1 2.398 RCB-II
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Tumour dim.

(mm)
%

Cellularity
%

CIS
Positive

LN
Largest LN
met (mm)

RCB
score

RCB
category

T120 10 x 1 5 0 0 0 1.023 RCB-I
T121 90 x 53 10 5 4 1 3.114 RCB-II
T122 41 x 24 5 0 1 11 3.015 RCB-II
T123 15 x 7 75 0 0 0 1.98 RCB-II
T124 83 x 37 10 50 3 3 3.055 RCB-II

T125 17 x 5 5 40 0 0 1.125 RCB-I
T126 8 x 7 40 0 0 0 1.687 RCB-II
T127 19 x 15 10 20 26 21 3.597 RCB-III
T128 0 0 0 0 0 0 pCR
T129 20 x 15 20 0 0 0 1.729 RCB-II

T130 4 x 1 5 0 1 0.1 1.623 RCB-II
T131 28 x 22 60 0 4 14 4.074 RCB-III
T132 18 x 17 10 0 0 0 1.54 RCB-II
T133 15 x 13 90 5 1 2 3.259 RCB-II
T134 40 x 24 10 30 2 2 2.834 RCB-II

T135 0 0 0 0 0 0 pCR
T136 0 0 0 0 0 0 pCR
T137 16 x 10 1 0 4 5 2.668 RCB-II
T138 2 x 1 5 0 1 0.1 1.568 RCB-II
T139 19 x 18 60 30 1 1.5 3.055 RCB-II

T140 17 x 12 80 0 1 18 3.753 RCB-III
T141 27 x 18 20 1 0 0 1.799 RCB-II
T142 0 0 0 0 0 0 pCR
T143 0 0 0 0 0 0 pCR
T144 0 0 0 0 0 0 pCR

T145 140 x 55 5 0 10 12 3.712 RCB-III
T147 14 x 12 10 60 1 0.6 2.16 RCB-II
T148 18 x 13 10 40 3 8 3.022 RCB-II
T149 20 x 8 3 20 0 0 1.143 RCB-I
T150 48 x 22 20 0 22 10 3.796 RCB-III

T151 16 x 3 5 0 3 5 2.685 RCB-II
T152 0 0 0 0 0 0 pCR
T153 18 x 11 40 0 0 0 1.878 RCB-II
T154 0 0 0 0 0 0 pCR
T155 250 x 57 3 0 9 2 3.144 RCB-II

T156 45 x 19 30 5 3 8 3.65 RCB-III
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Trial ID
Tumour dim.

(mm)
%

Cellularity
%

CIS
Positive

LN
Largest LN
met (mm)

RCB
score

RCB
category

T157 NA
T158 NA
T159 96 x 50 10 0 2 7 3.477 RCB-III
T160 60 x 39 30 5 0 0 2.187 RCB-II

T161 70 x 40 30 10 5 9 3.956 RCB-III
T162 0 0 0 0 0 0 pCR
T163 0 0 0 0 0 0 pCR
T164 12 x 8 1 0 0 0 0.943 RCB-I
T165 7 x 7 60 40 NA

T166 10 x 7 60 0 0 0 1.842 RCB-II
T167 152 x 54 20 20 21 60 4.743 RCB-III
T168 4 x 3 80 0 0 0 1.665 RCB-II
T169 152 x 54 10 0 0 0 2.036 RCB-II
T170 0.8 x 0.6 10 0 0 0 0.899 RCB-I

T171 21 x 11 60 0 1 2 3.164 RCB-II
T172 0 0 0 0 0 0 pCR
T173 13 x 9 15 0 0 0 1.52 RCB-II
T174 22 x 12 50 1 1 6 3.352 RCB-III
T175 33 x 20 2 20 0 0 1.204 RCB-I

T176 130 x 80 30 20 5 12 4.255 RCB-III
T178 34 x 18 30 10 5 5 3.523 RCB-III
T180 0 0 0 0 0 0 pCR
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