
Interleaving anomalies in collaborative text editors
Martin Kleppmann
mk428@cl.cam.ac.uk

University of Cambridge
Cambridge, UK

Victor B. F. Gomes
vb358@cl.cam.ac.uk

University of Cambridge
Cambridge, UK

Dominic P. Mulligan
Dominic.Mulligan@arm.com

Arm Research
Cambridge, UK

Alastair R. Beresford
arb33@cl.cam.ac.uk

University of Cambridge
Cambridge, UK

ABSTRACT
Collaborative text editors allow two or more users to concurrently
edit a shared document without merge conflicts. Such systems
require an algorithm to provide convergence, ensuring all clients
that have seen the same set of document edits are in the same
state. Unfortunately convergence alone does not guarantee that
a collaborative text editor is usable. Several published algorithms
for collaborative text editing exhibit an undesirable anomaly in
which concurrently inserted portions of text with a well-defined
order may be randomly interleaved on a character-by-character
basis, resulting in an unreadable jumble of letters. Although this
anomaly appears to be known informally by some researchers in
the field, we are not aware of any published work that fully explains
or addresses it. We show that several algorithms suffer from this
problem, explain its cause, and also identify a lesser variant of the
anomaly that occurs in another algorithm. Moreover, we propose a
specification of collaborative text editing that rules out the anomaly,
and show how to prevent the lesser anomaly from occurring in one
particular algorithm.

CCS CONCEPTS
• Theory of computation → Distributed algorithms; • Soft-
ware and its engineering→ Consistency; •Human-centered
computing → Collaborative and social computing systems and
tools; • Social and professional topics→ Computer supported co-
operative work; •Computer systems organization→Distributed
architectures.

KEYWORDS
CRDTs, collaborative text editing, specification, consistency
ACM Reference Format:
Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair
R. Beresford. 2019. Interleaving anomalies in collaborative text editors. In
Proceedings of 6th Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC ’19). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PaPoC ’19, 25 March 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6276-4.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In collaborative software, several users may contribute to a project
by creating and editing shared documents such as text documents,
spreadsheets, or similar. When a user wishes to view a document,
a copy of that document is loaded on the user’s computer in a
web-browser tab, or in a native app on their device. Any changes
made by the user are immediately applied to the local copy of the
document on the user’s computer, and then asynchronously sent to
any other users who have a copy of the document—possibly via a
server, which may also store a copy. This collaboration scenario is
very similar to the problem of replication in distributed databases:
in this context, the shared data is a database rather than a document,
and each node that has a copy of the data is called a replica.

At a high level, there are two possible ways of managing modifi-
cations to documents: either the system enforces that only one user
at a time may edit a particular document using a synchronization
mechanism (e.g. locks), or the system allows multiple users to edit
a document concurrently. This latter case is known as optimistic
replication [16]. In an optimistic replication setting, several users
may make changes at the same time, causing the state of these
users’ documents to diverge. This is illustrated in Figure 1, where
one user changes the text of their document from ‘Hello!’ to
‘Hello World!’, while another user concurrently edits the text of
their document to read ‘Hello! :)’. In order to ensure that no
user input is lost, these concurrent changes must be merged into a
consistent document—in this example ‘Hello World! :)’.

Merge operations can either be performed manually—the ap-
proach used by version control systems such as git—or can be
automated. Conflict-free Replicated Data Types, or CRDTs [17, 18],
have been developed to automate such merges. A CRDT is an ab-
stract datatype whose state can be modified by performing certain
operations. For example, a datatype for text editing may represent
text as a list of characters, allowing characters to be inserted or
deleted anywhere in the document. Local changes are propagated to
other replicas, either by encoding the updated state and merging it
into remote copies of the document, or by encoding the operations
and applying them to remote copies.

1.1 Consistency for optimistic replication
CRDTs implement a consistency model called strong eventual con-
sistency [6, 18], defined by the following properties:

Eventual delivery: An update applied on one correct replica
is eventually applied on all correct replicas.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/189163265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PaPoC ’19, 25 March 2019, Dresden, Germany Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford

User 1:

Hello!

Hello World!

Hello World! :)

User 2:

Hello!

Hello! :)

Hello World! :)

Insert ‘ World’
between ‘Hello’ and ‘!’

Insert ‘ :)’ after ‘!’

Insert ‘ :)’ after ‘!’ Insert ‘ World’
between ‘Hello’ and ‘!’

Figure 1: Simple concurrent text editing example. Solid black lines indicate state changes over time while dashed blue arrows
indicate network communication.

User 1:

Hello!

Hello Alice!

Hello Al Ciharcliee!

User 2:

Hello!

Hello Charlie!

Hello Al Ciharcliee!

Insert ‘ Alice’
between ‘Hello’ and ‘!’

Insert ‘ Charlie’
between ‘Hello’ and ‘!’

Insert ‘ Charlie’
between ‘Hello’ and ‘!’

Insert ‘ Alice’
between ‘Hello’ and ‘!’

Figure 2: Two concurrent insertions at the same position are interleaved.

H e l l o !

0.18 0.26 0.32 0.49 0.64 0.95

H e l l o A l i c e !

0.18 0.26 0.32 0.49 0.64 0.69 0.71 0.74 0.79 0.86 0.93 0.95

H e l l o C h a r l i e !

0.18 0.26 0.32 0.49 0.64 0.75 0.77 0.80 0.83 0.85 0.87 0.89 0.91 0.95

H e l l o A l C i h a r c l i e e !

0.18 0.26 0.32 0.49 0.64 0.69 0.71 0.74 0.75 0.77 0.79 0.80 0.83 0.85 0.86 0.87 0.89 0.91 0.93 0.95

Figure 3: Interleaving due to character positions taken from a dense identifier set, e.g. the rational numbers Q.

Interleaving anomalies in collaborative text editors PaPoC ’19, 25 March 2019, Dresden, Germany

Convergence: If the same set of updates have been applied
(possibly in a different order) on two replicas then those two
replicas have equivalent state.

Termination: All method executions terminate.

In operation-based CRDTs the convergence property is implemented
by ensuring that concurrent operations commute. For example, con-
sider Figure 1 wherein User 1 first applies the insertion of ‘ World’
and then applies the insertion of ‘ :)’ to the document, while
User 2 applies the same two insertions in the opposite order. Com-
mutativity of the insertions ensures that the two replicas obtain
the same final state.

When replicas mutually merge each others’ changes, the conver-
gence property ensures that those replicas obtain the same state.
However, we must also specify what that state should be: strong
eventual consistency is necessary but it is not sufficient, as it does
not capture all of the consistency properties that we require. For
example, the convergence property for a document could be met by
storing all inserted characters in lexicographical order, but this does
not represent a useful document editing system. More is needed in
order to ensure the system is useful.

In this paper we examine a particular consistency property for
collaborative text editors that has been overlooked in the literature.
Notably, failing to satisfy this property may result in arbitrary text
interleaving leading to an undesirable (garbled) document state. We
highlight existing CRDT algorithms and a specification that exhibit
this anomaly, and demonstrate how to fix this flaw.

2 THE INTERLEAVING ANOMALY
In this section we discuss an anomaly that can lead to undesirable
outcomes when two users concurrently insert text at the same posi-
tion in a document. For example, in Figure 2, two users are editing
a text document that initially reads ‘Hello!’. User 1 changes it
to read ‘Hello Alice!’, while concurrently User 2 changes it
to ‘Hello Charlie!’. However, when the concurrent edits are
merged, the merging algorithm randomly interleaves the two inser-
tions of ‘ Alice’ and ‘ Charlie’ character by character, resulting
in an unreadable jumble of characters.

Even though this outcome is obviously undesirable, it does some-
times occur in practice. Two published CRDTs for collaborative text
editing, Logoot [20, 21] and LSEQ [11, 12], suffer from this problem,
as we explain shortly. In prior work [8, 9] we mechanically proved
that another text editing CRDT, RGA [15], does not suffer from this
problem; however, RGA can exhibit a lesser variant of the anomaly,
which we describe in Section 3. We conjecture that Treedoc [14]
and WOOT [13] do not suffer from either anomaly, but we leave a
rigorous proof of this claim for future work.

The reason why this anomaly occurs with Logoot and LSEQ
is illustrated in Figure 3. Conceptually, these algorithms work by
assigning every character of the text a unique position identifier
from a dense ordered set; that is, for any two given identifiers we
can find a new, distinct identifier that lies between the two. The
order of characters in the text is then given by the order of these
identifiers. In Figure 3 we use rational numbers between 0.0 and 1.0
as identifiers. In reality, identifiers in Logoot and LSEQ are paths
through a tree, which have the same effect.

We can see in Figure 3 that identifiers are assigned correctly
by each of the users: the characters of ‘ Alice’ and ‘ Charlie’
are assigned rational numbers between 0.64 and 0.95 (the interval
between the preceding ‘Hello’ and the following ‘!’) in increas-
ing order. However, the exact values assigned to each character
can vary arbitrarily, and since neither user knows about the other
user’s concurrent insertion, both users spread the identifiers of
their insertions across the interval (0.64, 0.95). When merged, the
resulting character sequence is an arbitrary interleaving of the two.

We performed tests with open source implementations of Logoot
[1, 2] and LSEQ [5, 11], and observed this interleaving anomaly
occurring in practice. The problem is even worse if the concurrent
insertions are comprised of not just a single word but a paragraph
or section. In these cases, interleaving the users’ insertions would
most likely result in an incomprehensible text that would have to
be deleted and rewritten.

Note, however, that this problem does not occur in the example of
Figure 1. Here, the merged outcome is unambiguous as the relative
ordering of all parts of the text is clear: ‘ World’ is inserted before
the exclamation mark, while the ‘ :)’ is inserted after it.

2.1 Attiya et al.’s specification
In 2016 Attiya et al. [4] proposed Astrong, an implementation-
independent specification of collaborative text editing. However,
this specification also permits the interleaving anomaly; we there-
fore argue that it is too weak to be a suitable specification for col-
laborative text editing. The definition of Astrong is as follows [4]:

An abstract execution A = (H , vis) belongs to the
strong list specificationAstrong if and only if there is a
relation lo ⊆ elems(A)×elems(A), called the list order,
such that:

(1) Each event e = do(op,w) ∈ H returns a sequence
of elementsw = a0 . . . an−1, where ai ∈ elems(A),
such that

(a) w contains exactly the elements visible to e that
have been inserted, but not deleted:

∀a. a ∈ w ⇐⇒ (do(ins(a, _), _) ≤vis e) ∧

¬(do(del(a), _) ≤vis e).

(b) The order of the elements is consistent with the
list order:

∀i, j . (i < j) =⇒ (ai ,aj) ∈ lo.

(c) Elements are inserted at the specified position: if
op = ins(a,k), then a = amin{k, n−1} .

(2) The list order lo is transitive, irreflexive and total,
and thus determines the order of all insert opera-
tions in the execution.

The list order relation lo in this definition plays the same role as
the position identifiers in Figure 3, and hence this specification
permits the same interleaving anomaly. We can correct this flaw in
the Astrong specification and rule out interleaving by introducing
an additional clause 1(d):

(1) Each event e = do(op,w) ∈ H returns a sequence of elements
w = a0 . . . an−1, where ai ∈ elems(A), such that
(a) . . . (c): as before;

PaPoC ’19, 25 March 2019, Dresden, Germany Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford

(d) Concurrent insertions are not interleaved: that is, for any
two sets of insertions X and Y

X = {x | ∃a. x = do(ins(a, _), _) ∧ x ≤vis e}

Y = {y | ∃a. y = do(ins(a, _), _) ∧ y ≤vis e}

such that all operations in X and Y are concurrent:

∀x ∈ X . ∀y ∈ Y . ¬(x ≤vis y) ∧ ¬(y ≤vis x)

if the insertions are at the same location in the document:

∃i, j . {ak | i < k < j} = {a | do(ins(a, _), _) ∈ X ∪ Y }

then we have either

∀i, j . do(ins(ai , _), _) ∈ X ∧ do(ins(aj , _), _) ∈ Y

=⇒ i < j or
∀i, j . do(ins(ai , _), _) ∈ X ∧ do(ins(aj , _), _) ∈ Y

=⇒ j < i .

That is, either all X insertions appear before all Y inser-
tions in the documentw = a0 . . . an−1, or vice versa, but
they are never interleaved.

(2) as before.
The additional clause specifically addresses the case of concurrent
insertions within the same interval ai . . . aj and rules out interleav-
ing. The existing clause 1(b) ensures that all replicas resolve the
insertions to appear in the same order.

3 THE LESSER INTERLEAVING ANOMALY
The RGA algorithm for collaborative text editing [15] does not suf-
fer from the anomaly described in Section 2, as we proved in prior
work [8, 9]. In particular, if the insertions are made in sequential or-
der (e.g. the string ‘ Alice’ is inserted by first typing a space, then
the letter ‘A’, then the letter ‘l’, etc.), then RGA guarantees that
there will be no interleaving. In the scenario of Figure 2, assuming
sequential insertions, RGA allows only two possible outcomes of
the merge: either ‘Hello Alice Charlie!’ or ‘Hello Charlie
Alice!’ with no mixture of the two permitted.

However, RGA does not satisfy the revised specification of Sec-
tion 2.1 because it allows a lesser anomaly: text may be interleaved
if insertions are not sequential. This lesser anomaly is illustrated in
Figure 4. In this example, User 1 first positions the cursor between
‘Hello’ and the exclamation mark, types the word ‘ reader’,
thenmoves the cursor back to a position immediately after ‘Hello’,
and types the word ‘ dear’.

In RGA an insertion is anchored to the existing character that
immediately precedes the character to be inserted. Thus, in Figure 4,
the first character of ‘ reader’ and the first character of ‘ dear’
are both anchored to the last character of ‘Hello’. When User 2
makes a concurrent insertion of ‘ Alice’, it is also anchored to the
last character of ‘Hello’. This tree of anchoring relationships is
illustrated in Figure 5 (Attiya et al. call this structure a timestamped
insertion tree [4], while Grishchenko calls it a causal tree [7]).

When multiple insertions are anchored to the same character,
they are sorted in descending timestamp order. In the example,
we can assume that the timestamp of the insertion of ‘ dear’
is greater than that of ‘ reader’, since these insertions were
performed sequentially by the same user. However, we do not know

the timestamp of ‘ Alice’ relative to the other two insertions,
and hence that insertion can be ordered arbitrarily relative to other
insertions with the same anchor. Thus, in this example, RGA allows
three possible outcomes of the merge:

(1) ‘Hello dear reader Alice!’
(2) ‘Hello dear Alice reader!’
(3) ‘Hello Alice dear reader!’

Although RGA rules out random character-by-character inter-
leaving, it does still allow the word ‘Alice’ to be interleaved be-
tween the two insertion sequences by User 1. We characterise this
as a lesser form of the anomaly described in Section 2.

The worst case for RGA occurs if the user types all characters
in the reverse order of their appearance in the document, i.e. the
document is typed back to front. In this case, all characters would be
anchored to the head of the document, ordered only by timestamp,
and thus arbitrary character-level interleaving could occur. Whilst
this editing pattern is unlikely to occur in realistic editing scenarios,
it is a case that must be considered by formal consistency models
for collaborative text editors.

3.1 Fixing interleaving in RGA
RGA assigns a unique logical timestamp to every operation, and
treats that timestamp as the identifier for that operation. Roh et
al.’s original definition of RGA used a custom S4Vector datatype as
timestamp [15], and subsequent presentations of the algorithm [17]
have used Lamport timestamps [10] instead. Our RGA fix works by
changing the algorithm to use a new timestamp definition.

In Attiya et al.’s formulation of RGA [4], an insertion operation
is represented by a triple (a, t , r) where a is the character being in-
serted, t is the timestamp of the operation, and r is the timestamp of
the reference character (the timestamp of the operation that inserted
the immediate predecessor character at the time the insertion was
performed, or the distinguished value head if the insertion was
performed at the beginning of the document). Deletion operations
are performed by marking a character as deleted but retaining its
position in the document as a tombstone. Since deletions do not
affect identifier order in the document, we ignore them henceforth.

We extend this definition to represent each insertion operation
by a 4-tuple (a, t , r , e) where a, t and r are defined as before, and e
is the set of timestamps of all insertion operations with the same
reference character r at the time the insertion was performed (not
including t itself). Let I be the set of insertion operations that have
been performed on a document at a given point in time. To insert a
character a after reference character r in this document, we create
a new timestamp t , create an insertion operation, and add it to I :

I ′ = I ∪
{
(a, t , r , {t ′ | ∃a′, e ′. (a′, t ′, r , e ′) ∈ I })

}
In the example of Figure 5, if the timestamp of the last character

of ‘Hello’ is τ0, the set of insertions contains (‘!’,τ1,τ0, {}) for
the exclamation mark, (‘ ’,τ2,τ0, {τ1}) for the first character of
‘ reader’, (‘ ’,τ3,τ0, {τ1}) for the first character of ‘ Alice’,
and (‘ ’,τ4,τ0, {τ1,τ2}) for the first character of ‘ dear’.

In order to use this insertion 4-tuple in RGA we need to define a
total order that is used to sort insertions with the same reference
character. Consider two distinct insertion operations ins1 and ins2

Interleaving anomalies in collaborative text editors PaPoC ’19, 25 March 2019, Dresden, Germany

User 1:

Hello!

Hello reader!

Hello dear reader!

Hello dear Alice reader!

User 2:

Hello!

Hello Alice!

Hello Alice reader!

Hello dear Alice reader!

Insert ‘ reader’
between ‘Hello’ and ‘!’

Insert ‘ dear’
between ‘Hello’
and ‘ reader!’

Insert ‘ Alice’
between ‘Hello’ and ‘!’

Insert ‘ Alice’
between ‘Hello’ and ‘!’

Insert ‘ reader’
between ‘Hello’ and ‘!’

Insert ‘ dear’
between ‘Hello’
and ‘ reader!’

Figure 4: The lesser interleaving anomaly that can occur with RGA.

head H e l l o

τ0

!

τ1τ4

space

d

e

a

r

τ3

space

A

l

i

c

e

τ2

space

r

e

a

d

e

r

Figure 5: The tree structure underlying the RGA example in Figure 4: each node represents a character, and its parent is
the immediate predecessor character at the time it was inserted. The document state corresponds to a depth-first pre-order
traversal over this tree, with sibling nodes visited in descending timestamp order (τ4 > τ3 > τ2 > τ1).

PaPoC ’19, 25 March 2019, Dresden, Germany Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford

with the same reference character r :

ins1 = (a1, t1, r , e1) and ins2 = (a2, t2, r , e2).

First observe that if ins1 happened before ins2 wemust have t1 ∈ e2,
and vice versa. In this case we make the ordering of operations
consistent with the happens-before relation:

(a1, t1, r , e1) < (a2, t2, r , e2) if t1 ∈ e2

(a2, t2, r , e2) < (a1, t1, r , e1) if t2 ∈ e1

Otherwise ins1 and ins2 are concurrent, and we have t1 < e2 and
t2 < e1. From this we can deduce that

{t1} ∪ e1 − e2 , {} and {t2} ∪ e2 − e1 , {}.

As these sets are nonempty and we have a total ordering on time-
stamps, each of them has a unique minimal element:

m1 = min({t1} ∪ e1 − e2) and m2 = min({t2} ∪ e2 − e1)

The timestampsm1 andm2 identify the first operations at which
the editing histories of ins1 and ins2 diverged. From the definition
above it follows thatm1 ,m2. We can now define the ordering of
concurrent operations based on the relative ordering ofm1 andm2:

(a1, t1, r , e1) < (a2, t2, r , e2) ifm1 < m2

(a2, t2, r , e2) < (a1, t1, r , e1) ifm2 < m1

This order has the property that all of the operations in a particular
editing session are grouped, so that they are either all less than or
all greater than the operations in a different, concurrent editing
session. Hence, all characters inserted during a particular editing
session are grouped together in the final document, and interleaving
of insertions from concurrent editing sessions is prevented. We
conjecture that applying this construction to RGA results in a CRDT
without interleaving, as required by our specification in Section 2.1.
A formal proof of this conjecture is left for future work.

Our construction increases the memory and network bandwidth
used by the CRDT, due to the additional timestamp set e that needs
to be included in each operation. However, the sets are expected to
be small, since there are normally not many operations with the
same reference character, regardless of the length of the document.

4 CONCLUSIONS
Several published CRDT algorithms for collaborative text editing
exhibit an undesirable anomaly in which concurrently inserted
portions of text may be randomly interleaved on a character-by-
character basis, resulting in an unreadable jumble of letters. We
highlighted two cases of undesirable interleaving, one affecting
Logoot and LSEQ, and the other affecting RGA.

The interleaving anomaly in Logoot and LSEQ has been indepen-
dently pointed out in our draft manuscript [8], by Sun et al. [19],
and by a Stack Overflow user [3]. From conversations with various
members of the CRDT community it appears that the anomaly has
been known in the community folklore for some time, but to our
knowledge there is no published work that clearly explains the
problem or proposes solutions.

In this paper we proposed an improved specification of collabo-
rative text editing that rules out these interleaving anomalies, and
proposed a modification to the RGA algorithm that, we conjecture,
rules out the interleaving anomaly in this algorithm.

ACKNOWLEDGMENTS
This work was supported by The Boeing Company and the EPSRC
“REMS: Rigorous Engineering for Mainstream Systems” programme
grant (EP/K008528).

REFERENCES
[1] Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and

Pascal Urso. 2011. Evaluating CRDTs for real-time document editing. In 11th
ACM Symposium on Document Engineering (DocEng). 103–112. https://doi.org/
10.1145/2034691.2034717

[2] Mehdi Ahmed-Nacer, Gérald Oster, and Pascal Urso. [n. d.]. Java bench-
marker of optimistic replication algorithms. https://github.com/PascalUrso/
ReplicationBenchmark

[3] Archagon. 2017. Logoot CRDT: interleaving of data on concurrent ed-
its to the same spot? https://stackoverflow.com/questions/45722742/
logoot-crdt-interleaving-of-data-on-concurrent-edits-to-the-same-spot

[4] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok
Yang, and Marek Zawirski. 2016. Specification and Complexity of Collaborative
Text Editing. In ACM Symposium on Principles of Distributed Computing (PODC).
259–268. https://doi.org/10.1145/2933057.2933090

[5] Chat-Wane. [n. d.]. LSEQTree. https://github.com/Chat-Wane/LSEQTree
[6] Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R

Beresford. 2017. Verifying strong eventual consistency in distributed systems.
Proceedings of the ACM on Programming Languages (PACMPL) 1, OOPSLA (Oct.
2017). https://doi.org/10.1145/3133933

[7] Victor Grishchenko. 2014. Citrea and Swarm: Partially ordered op logs in the
browser. In 1stWorkshop on Principles and Practice of Eventual Consistency (PaPEC).
https://doi.org/10.1145/2596631.2596641

[8] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R.
Beresford. 2018. OpSets: Sequential Specifications for Replicated Datatypes
(Extended Version). https://arxiv.org/abs/1805.04263

[9] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R.
Beresford. 2018. OpSets: Sequential Specifications for Replicated Datatypes (Proof
Document). https://www.isa-afp.org/entries/OpSets.html

[10] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/359545.
359563

[11] Brice Nédelec, PascalMolli, andAchourMostefaoui. 2016. CRATE:Writing Stories
Together with our Browsers. In 25th International World Wide Web Conference
(WWW). 231–234. https://doi.org/10.1145/2872518.2890539

[12] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils.
2013. LSEQ: an Adaptive Structure for Sequences in Distributed Collaborative
Editing. In 13th ACM Symposium on Document Engineering (DocEng). 37–46.
https://doi.org/10.1145/2494266.2494278

[13] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006. Data
Consistency for P2P Collaborative Editing. In ACM Conference on Computer
Supported Cooperative Work (CSCW). https://doi.org/10.1145/1180875.1180916

[14] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Letia. 2009.
A commutative replicated data type for cooperative editing. In 29th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS). https:
//doi.org/10.1109/ICDCS.2009.20

[15] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated
abstract data types: Building blocks for collaborative applications. J. Parallel and
Distrib. Comput. 71, 3 (2011), 354–368. https://doi.org/10.1016/j.jpdc.2010.12.006

[16] Yasushi Saito and Marc Shapiro. 2005. Optimistic Replication. Comput. Surveys
37, 1 (March 2005), 42–81. https://doi.org/10.1145/1057977.1057980

[17] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A com-
prehensive study of Convergent and Commutative Replicated Data Types. Technical
Report 7506. INRIA. http://hal.inria.fr/inria-00555588/

[18] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-free Replicated Data Types. In 13th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS). 386–400. https:
//doi.org/10.1007/978-3-642-24550-3_29

[19] Chengzheng Sun, David Sun, Agustina, and Weiwei Cai. 2018. Real Differences
between OT and CRDT for Co-Editors. https://arxiv.org/abs/1810.02137

[20] StéphaneWeiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A Scalable Optimistic
Replication Algorithm for Collaborative Editing on P2P Networks. In 29th IEEE
International Conference on Distributed Computing Systems (ICDCS). 404–412.
https://doi.org/10.1109/ICDCS.2009.75

[21] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2010. Logoot-Undo: Distributed
Collaborative Editing System on P2P networks. IEEE Transactions on Parallel and
Distributed Systems 21, 8 (Jan. 2010), 1162–1174. https://doi.org/10.1109/TPDS.
2009.173

https://doi.org/10.1145/2034691.2034717
https://doi.org/10.1145/2034691.2034717
https://github.com/PascalUrso/ReplicationBenchmark
https://github.com/PascalUrso/ReplicationBenchmark
https://stackoverflow.com/questions/45722742/logoot-crdt-interleaving-of-data-on-concurrent-edits-to-the-same-spot
https://stackoverflow.com/questions/45722742/logoot-crdt-interleaving-of-data-on-concurrent-edits-to-the-same-spot
https://doi.org/10.1145/2933057.2933090
https://github.com/Chat-Wane/LSEQTree
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2596631.2596641
https://arxiv.org/abs/1805.04263
https://www.isa-afp.org/entries/OpSets.html
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1145/1057977.1057980
http://hal.inria.fr/inria-00555588/
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://arxiv.org/abs/1810.02137
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/TPDS.2009.173
https://doi.org/10.1109/TPDS.2009.173

	Abstract
	1 Introduction
	1.1 Consistency for optimistic replication

	2 The interleaving anomaly
	2.1 Attiya et al.'s specification

	3 The lesser interleaving anomaly
	3.1 Fixing interleaving in RGA

	4 Conclusions
	Acknowledgments
	References

