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SUMMARY  

Low bioavailability of phosphate (P) due to low concentration and high immobility in 

soils is a key limiting factor in crop production. Application of excess amounts of P 

fertilizer is costly and by no means sustainable, as world-wide P resources are finite and 

running out. To facilitate the breeding of crops adapted to low-input soils, it is essential 

to understand the consequences of P deficiency. The second messenger calcium (Ca2+) is 

known to signal in plant development and stress perception, and most recently its direct 

role in signalling nutrient availability and deficiency has been partially elucidated. The 

use of Ca2+ as a signal has to be tightly controlled, as Ca2+ easily complexes with P groups 

and therefore is highly toxic to cellular P metabolism. It is unknown whether Ca2+ signals 

P availability or whether signalling is altered under P starvation conditions. 

The aim of this PhD project was to characterise the use of Ca2+ ions, particularly cytosolic 

free Ca2+ ([Ca2+]cyt), in stress signalling by P-starved roots of the model plant Arabidopsis 

thaliana. The hypothesis was that under P starvation and a resulting decreased cellular P 

pool, the use of [Ca2+]cyt may have to be restricted to avoid cytotoxic complexation of 

Ca2+ with limited P groups. Employing a range of genetically encoded Ca2+ reporters in 

Arabidopsis, P starvation but not nitrogen starvation was found to strongly dampen the 

root [Ca2+]cyt
 increases evoked by mechanical, salt, osmotic, and oxidative stress as well 

as by extracellular nucleotides. The strongly altered root [Ca2+]cyt response to extracellular 

nucleotides was shown to manifest itself during seedling development under chronic P 

deprivation, but could be reversed by P resupply. Fluorescent imaging elucidated that P-

starved roots showed a normal [Ca2+]cyt response to extracellular nucleotides at the apex, 

but a strongly dampened [Ca2+]cyt response in distal parts of the root tip, correlating with 

high reactive oxygen species (ROS) levels induced by P starvation. Excluding iron, as 

well as P, rescued the altered [Ca2+]cyt response, and restored ROS levels to those seen 

under nutrient-replete conditions. P availability was not signalled through [Ca2+]cyt. In 

another part of this PhD project, a library of 77 putative Ca2+ channel mutants was 

compiled and screened for aberrant root hair growth under P starvation conditions. No 

mutant line showed aberrant root hair growth.  

These results indicate that P starvation strongly affects stress-induced [Ca2+]cyt 

modulations. The data generated in this thesis further understanding of how plants can 

integrate nutritional and environmental cues, adding another layer of complexity to the 

use of Ca2+ as a signal transducer.  
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Chapter 1: Introduction  

 1 

1 INTRODUCTION 

1.1 Plant phosphate nutrition and homeostasis 

1.1.1 Food security and the ‘phosphate problem’ in agriculture 

Globally, an estimated 815 million people suffer from hunger and malnutrition (FAO, 

State of Food Security and Nutrition, 2017). The projected population growth from 

currently 7.5 billion to 10 billion in 2050 will intensify the problem (FAO, 2017). The 

20th century has seen the ‘Green Revolution’ and dramatic increases in yield, using new 

crop varieties, manufactured fertilizers, pesticides and herbicides, as well as modern 

agricultural technologies. However, this Revolution has failed to deliver productivity in 

sustainable ways. To achieve ‘Zero Hunger’ (Sustainable Development Goal 2, United 

Nations, 2015) moving forward, food production needs to increase, whilst being 

environmentally and socially sustainable. More and nutritious food needs to be produced 

on less land using lower inputs, whilst being resilient to threats such as climate change 

and degraded soils.  This ‘Evergreen Revolution’ will need to increase productivity 

without ecological and social harm (Swaminathan, 2000).  

Phosphorus is one of the most limiting nutrients for plant growth in agriculture. Its ionic 

form phosphate (PO4
3-, P) is a key macronutrient in metabolic processes, playing central 

roles in cell membranes, DNA, RNA and proteins, protein phosphorylations as well as 

signalling and energy transport molecules, most notably adenosine 5’- triphosphate 

(ATP) (Westheimer, 1987; Hunter, 2012; Fernández-García et al., 2017). Whilst plants 

require high cellular P concentrations in the millimolar range, soil P concentrations are 
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low and in the micromolar range (Raghothama, 1999; Werner et al., 2017). The little P 

that occurs in soil is heterogeneously spread, immobile and has a low bioavailability, as 

it readily complexes with aluminium or iron in acidic soils, and calcium in alkaline soils 

(Cole et al., 1953; Wang et al., 2012; Werner et al., 2017). This scarcity of P most 

dramatically affects the crop yield of small-scale farmers in developing countries who 

generally work on the least productive arable land and cannot afford costly fertilizer 

(Raghothama, 1999; Nachtergaele et al., 2009; Kochian, 2012). In high-input agricultural 

systems, low soil P status is overcome by application of excessive amounts of P fertilizer, 

with on average less than 10 percent’s being utilized by crops (Sylvester-Bradley et al., 

2016).  

In contrast to the geochemical nitrogen (N) cycle, where N enters the ecosystem through 

biological N2 fixation and is thus available to plants, the soil P concentration depends 

solely on the mineral composition of parental rock. P fertilizer is mined from phosphate 

rock. The main use of all globally mined rock phosphate is as fertilizer in agriculture 

(over 87 % in 2014, FAO STAT). The consumption of P fertilizer has increased more 

than four-fold since the 1960s. Globally, over 47 million tonnes are consumed per year 

(FAO STAT, last data entry 2014). World resources of rock phosphate include the 

currently mined high-grade type, as well as off-shore and lower-grade rock phosphate 

which are currently untapped due to being economically and ecologically unsustainable 

(Gilbert, 2009; United States Geological Survey, 2018). Mined rock phosphate reserves 

have been predicted to run out within 50 – 125 years, as almost no recycling of applied 

fertilizer takes place (Cordell et al., 2009; Gilbert, 2009). On the contrary, fertilizer run-

off from fields into water bodies adds another dimension to the ‘phosphate problem’, as 

eutrophication leads to harmful algal bloom and hypoxia (Vörösmarty et al., 2010; 

Bouwman et al., 2017). Making rock phosphate an explosive socioeconomic issue is its 

uneven occurrence across the globe (Obersteiner et al., 2013), with Morocco and Western 

Sahara sitting on 71 percent of estimated global rock phosphate reserves (China: 5 %, 

Algeria: 3 %, remaining countries: 21 %; United States Geological Survey 2018). See 

Figure 1 for a summary of the ‘phosphate problem’. 

Closing yield gaps and dismissing nutrient overuse is deemed achievable (Mueller et al., 

2012). However, moving towards a more sustainable use of P fertilizer in future 

agricultural practice without compromising yields will need to see changes on political, 

socioeconomic and agricultural levels. Of major importance for the latter is the generation 

of high-yielding crop varieties for low-input systems (Lynch, 2007). To do so, we need 
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to understand the relationship between plants and soil P, as well as the impact of lower P 

levels on plant growth. In the following section, aspects involved in overall plant P 

metabolism and signalling will be summarized. The focus will be on plant roots, as roots 

are the point of contact with soil, and responsible for nutrient uptake.  

 

 

Figure 1: The ‘phosphate problem’. (A) Globally, phosphate (P) availability in soils is low, with 

regions in red showing high P retention potential. (B) Plant growth, and ultimately crop yield, is 

affected by P scarcity (shown here is a wheat field, with P-deficient wheat plants on the left, P-

sufficient plants on the right). (C) Rock phosphate is invasively mined for fertilizer, for example 

in a mine in Togo, and (D) fertilizer consumption has increased drastically since the 1960’s 

(Million tonnes consumed by regions per year). (E) Most rock phosphate reserves are estimated 

to localize to Morocco. (F) Increased P run-off into waterways leads to environmental problems, 

such as algal bloom off the Devon and Cornwall coast. Sources: A - USDA-NRCS Soil Science 

Division, Phosphorus retention potential map, B – Peter Wall, Cimmyt, C – Wikicommons, D – 

FAOSTAT, E – US Geological Survey Phosphate Rock 2018, F – Wikicommons. 
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1.1.2 P uptake, translocation and storage 

Plants can take up and assimilate inorganic phosphate (PO4
3-, H2PO4

- or HPO4
2-, referred 

to as P hereafter) (Raghothama, 1999; Marschner, 2012; Srivastava et al., 2018). Soil 

solution contains very low levels of plant available P (low micromolar range), whereas 

the cellular P pool is maintained at much higher levels (5 – 20 mM; Raghotama, 1999; 

Marschner, 2012). Cytosolic P concentrations are difficult to measure and therefore 

debated (Kanno, Cuyas, et al., 2016), however they are reported to be within the range of 

1 – 10 mM (Mukherjee et al., 2015; Versaw and Garcia, 2017). To maintain this steep 

gradient between extra- and intracellular P, P can be taken up directly from the soil or 

indirectly through association with beneficial mycorrhizal fungi (Javot et al., 2007; 

Kobae and Hata, 2010; Sawers et al., 2017). In both cases, P needs to be transported 

across the plant cell plasma membrane against its electrochemical gradient (low 

apoplastic [P], high cytosolic [P]). This is facilitated by phosphate transport proteins 

which are well studied in numerous plant species (reviewed by Młodzińska and Zboińska, 

2016; Srivastava et al., 2018). In the non-mycorrhizal model plant Arabidopsis thaliana 

these are encoded by the PHOSPHATE TRANSPORTER (PHT) family. PHT1 subfamily 

are energy-driven, proton-coupled H2PO4
- symporters in the plasma membrane (PM) with 

different affinities for P (PHT1, first reported by Muchhal, Pardo and Raghothama, 1996; 

reviewed by Młodzińska and Zboińska, 2016; Srivastava et al., 2018). Expectedly, proton 

co-transport resulted in acidification of the cytoplasm, as was shown during P uptake in 

Catharanthus roseus cell cultures and root hairs of the aquatic plant Limmobium 

stoloniferum (Ullrich and Novacky, 1990; Sakano et al., 1992). Uptake of P across the 

PM can lead to a quick and transient depolarization of the membrane potential of plant 

cells (i.e. the membrane potential becoming more positive), indicating influx of overall 

positive charge consistent with a H+: P stoichiometry of more than 1 (Ullrich and 

Novacky, 1990; Dunlop and Gardiner, 1993).  

In Arabidopsis, PHT1;1 and PHT1;4 are responsible for up to 75 % of P uptake, and are 

localized to the root tip (Shin et al., 2004). Tracer experiments using radio-labelled 33P 

showed that the root cap and root tip more generally play major roles in P uptake. The 

root cap alone absorbed circa 20 % of total P despite its small surface area (Kanno, 

Arrighi, et al., 2016). Depending on cellular P demand, the abundance and composition 

of PHTs is altered, modulating the affinity and capacity of the overall transport system 

(Ayadi et al., 2015). Due to redundancy and overlapping expression patterns, some debate 

exists around unique functions and localization of the individual transporters 
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(summarized by Nussaume et al., 2011; Młodzińska and Zboińska, 2016; Srivastava et 

al., 2018). An accessory, endoplasmic reticulum- (ER) localized protein, called 

PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF), was shown to 

facilitate correct ER-export and PM-targeting of the PHT1;1 transporter (Gonzalez et al., 

2005). Some PHT1 transporters display dual affinity for P, indicating that 

posttranslational regulation adds another level of regulatory complexity (Ayadi et al., 

2015). The potato phosphate transporter StPT2 has been shown to localize to the outer 

PM domain of epidermal cells, indicating that polar localization of transporters further 

directs P flux from soil into root (Gordon-Weeks et al., 2003; Barberon and Geldner, 

2014).  

Once P is taken up across the PM into the cytosol, organellar P pools need to be 

replenished dynamically to satisfy metabolic demand, whereas the vacuole acts as a 

storage compartment for P. Members of the PHT2/4, PHT3 and PHT4 subfamilies 

transport P across the plastid, mitochondrial and Golgi membrane, respectively (Versaw 

and Garcia, 2017). Sufficient plastid P is further regulated by PLASTIDIC PHOSPHATE 

TRANSLOCATOR proteins (pPTs), exchanging triose-P for P (Knappe, 2003; Lee et al., 

2014). Mitochondrial P supply for ATP synthesis is regulated through 

MITOCHONDRIAL PHOSPHATE TRANSPORTER (MPT, Jia et al., 2015). The 

recently discovered VACUOLAR PHOSPHATE TRANSPORTER1 (VPT1, also named 

PHT5;1) imports P across the tonoplast (Jinlong Liu et al., 2015; Liu et al., 2016).  

Intercellular, long-distance root-to-shoot transport of P occurs mainly in the xylem 

(Marschner, 2012). A major player in root-to-shoot translocation is PHO1, which loads P 

from root pericycle cells into xylem vessels (Poirier et al., 1991; Hamburger et al., 2002). 

PHO1 protein was found to mostly locate to the Golgi, to some extent to vesicular 

structures of unknown identity and to the PM upon P supply (Arpat et al., 2012). Recently, 

PHO1 was found to be specifically expressed in unsuberized ‘passage cells’, specialized 

endodermal cells that have been suggested to act as a ‘nutrient funnel’ from outer into 

inner root cell layers (Andersen et al., 2018). To date it is unclear if PHO1 exports P 

directly via PM transport and/or through exocytosis of loaded vesicles, possibly linking 

intra- and intercellular P transport (Arpat et al., 2012; also see Figure 2 for a schematic 

of P uptake across the root).  

Root P uptake and transport to sink tissues such as the shoot occurs within minutes. Rice 

seedling roots were shown to translocate radio-labelled 32P within 15 minutes along the 

whole plant (bulk 32P remained in the root, 5 % had moved to the shoot, Kobayashi et al., 
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2013). Using a higher resolution approach and 43-day old Arabidopsis, the velocity of 

32P in the shoot was calculated to be > 6 cm per hour (Sugita et al., 2016). Few studies 

have considered a diurnal regulation of P uptake and translocation. In tomatoes, P uptake 

took place dominantly during the night compared to all other nutrients and was 

independent of water uptake and transpiration rate (Terabayashi et al., 1991; Marschner 

2012). Similarly, 32P uptake into the root was accelerated during the night in Lotus 

(Yamawaki et al., 2011). The same study found that 32P translocation from root to shoot 

was almost absent during the night but occurred during the day (Yamawaki et al., 2011). 

The chloroplast P importers, PHT2;1 and PHT4;1, have been annotated to be under 

circadian control, with their expression peaking around dawn (Covington and Harmer, 

2007). Increased translocation between cellular compartments is likely needed to satisfy 

P demand in photosynthesis during the day (Haydon et al., 2011, 2015). In general, a 

trend to P uptake during the night, and P translocation during the day emerges.  

The vacuole is the primary storage compartment for P in vegetative tissue (Bieleski, 1973; 

Yang et al., 2017). Due to a more positive membrane potential on the inside of the 

tonoplast, ten times more P could be accumulated in the vacuole relative to the cytosol 

(Versaw and Garcia, 2017). Fluctuations in external P levels can therefore lead to 

significant changes in vacuolar P levels, whilst cytosolic P levels are well buffered 

(Rebeille et al., 1983; Mimura et al., 1996; Pratt et al., 2009). In contrast to fungi and 

algae, which store P in long chains called polyphosphate, higher plants store most P in 

the same form as required, as inorganic phosphate, in their vegetative tissue (reviewed by 

Yang et al., 2017). P can be remobilized and redistributed through the plant via the 

phloem (Marschner, 2012). This nutrient cycling occurs during developmental processes, 

e.g. during senescence and seed-loading (Mimura et al., 1996; Nagarajan et al., 2011). In 

seeds, P is mainly stored as phytate (phytic acid with cations such as Ca2+, Fe3+, K+, Mg2+, 

Mn2+, Zn2+, Bieleski, 1973; Marschner, 2012). During germination, phytate is hydrolysed 

into P and inositol to nurture the emerging seedling. 
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Figure 2: Schematic of phosphate and calcium uptake and transport across the root as explained 

in the text. P (green dots) occurs in low concentration in soil, particularly in alkaline soils 

complexed with Ca2+ (green-yellow dots). P is taken up mostly symplastically into cells (green 

solid line) through proteins of the P transporter family (PHT1;X, pink box) and loaded into xylem 

for long-distance transport via PHO1 (blue box). P can be redistributed in the plant via the phloem. 

P uptake seems to predominate during the night. Ca2+ (yellow dots) is abundant in most soils, and 

extracellular concentrations are high, where Ca2+ is being non-metabolically accumulated in the 

cell wall through binding to negatively charged groups (exemplified by orange dots). Ca2+ 

transport across the root occurs mainly in the apoplast (solid yellow line), but some symplastic 

passage is necessary (dashed yellow line) to cross endodermal cells impregnated by the Casparian 

strip. Ca2+ long-distance transport via the xylem is dependent on transpiration rate. Ca2+ shows 

very low phloem mobility. Phl – phloem, Xyl – xylem, E+P – endodermis and pericycle, Cor – 

cortex, Epi – epidermis, Rh – root hair; drawing is not to scale. Root cross section template 

downloaded from figshare.com. 
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1.1.3 Impact of P deficiency on plant root growth and metabolism 

P deficiency leads to profound changes in plant metabolism and growth. When P is 

limited, plants show an array of adaptive responses to increase exploration of the soil, 

uptake and use of P. On a systemic level, growth slows. Root growth is favoured over 

shoot growth, indicative of maximizing soil exploration and thus nutrient uptake (Gruber 

et al., 2013). In addition, root system architecture is remodelled which has been well 

described in many crop species, such as barley, maize, rice and tomato, as well as 

Arabidopsis (Péret et al., 2014). Multi-component nutrient studies found P to be the 

predominant nutrient controlling primary root length (Gruber et al., 2013; Kellermeier et 

al., 2014). Primary root growth stops, through inhibition of both cell proliferation in the 

meristematic zone and cell expansion in the elongation zone (Williamson et al., 2001; 

Sánchez-Calderón et al., 2005; Svistoonoff et al., 2007; Balzergue et al., 2017). In many 

cases, lateral root formation is favoured (Williamson et al., 2001; Nacry et al., 2005), 

with lateral roots of bean, maize, rice and Arabidopsis becoming shallower to explore P-

rich topsoil layers (Lynch and Brown, 2001; Bai et al., 2013; Huang et al., 2018). 

Strikingly, fine root hairs increase in length and density in many plant species, likely to 

increase overall root surface area for nutrient uptake whilst investing little energy (Foehse 

and Jungk, 1983; Bates and Lynch, 1996; Gahoonia et al., 1997; Ma et al., 2001; Mueller 

and Schmidt, 2004; Haling et al., 2013; Bhosale et al., 2018). Another adaptation to P 

scarce conditions, seen particularly in plant species evolved on highly weathered soils, is 

the formation of so called ‘cluster roots’, rootlets of extremely high density (reviewed by 

Lambers, Martinoia and Renton, 2015). Besides increasing P uptake, P is recycled 

throughout the plant body, e.g. from older to younger leaves, as well as from shoot-to-

root via the phloem to satisfy P demand.  Roots exude organic acids to acidify the 

rhizosphere and thus to solubilize P-containing minerals, as well as secreting acid 

phosphatases to release P from organic substrates (Diatloff et al., 2004; Mukherjee et al., 

2015; Wang and Liu, 2018). 

The majority of plant species enter a beneficial symbiosis with root-associated fungi, in 

which the fungus delivers P through its extensive hyphal system, and receives plant 

assimilated carbon in return. Association can occur extracellularly, classified as 

ectomycorrhizal fungi (reviewed by Tedersoo et al., 2010), or intracellularly through 

arbuscular mycorrhizal fungi of the phylum Glomeromycota (reviewed by Choi et al., 

2018). The latter unload P across the periarbuscular membrane into the fungus/plant 

interface, to be taken up by plant cells via P transporters belonging to the MtPT4/OsPT11 
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type, characterized in Medicago truncatula and rice respectively (Paszkowski et al., 2002; 

Javot et al., 2007; Kobae and Hata, 2010). In addition, P transport does not only occur 

from fungus to plant, but was also shown to move from a ‘source’ plant through an 

associated fungus into a ‘donor’ plant, establishing inter-plant connectivity (Eason et al., 

1991). Recently, diverse endophytic fungi and root microbiota have been shown to 

modulate P stress responses, even in plants that do not establish mycorrhizal symbiosis 

such as Arabidopsis (Hiruma et al., 2016; Castrillo et al., 2017).  

On a cellular level, it has long been known that P deficiency leads to a lower cellular P 

level and cytosolic P can drop within minutes of starvation (Duff et al., 1989; Pratt et al., 

2009). The organic P pools - DNA, RNA, P-esters and phospholipids - are known to have 

different turnover times, with DNA’s being the most stable, phospholipids turning over 

within hours, and P-esters turning over within seconds to minutes (Bieleski, 1973), 

allowing for remodelling of P distribution within cells. Cellular ATP and GTP levels drop 

sharply after onset of P deficiency, e.g. shown in Catharanthus roseus and sycamore cell 

culture (Shimano and Ashihara, 2006; Gout et al., 2014). Overall, P deficiency triggers a 

shift to alternative metabolic pathways which consume less P (Duff et al., 1989; Plaxton 

and Tran, 2011; Pant et al., 2015). Phosphorylated metabolites decrease (Pant et al., 

2015). Phospholipids are remodelled into sulpho- and glycolipids, restricted to the 

cytoplasmic leaflet of the PM (Andersson et al., 2005; Tjellstrom et al., 2010; Nakamura, 

2013; Okazaki et al., 2013). Despite PM remodelling, no significant change in overall 

membrane potential seems to occur under P deficiency (Mimura et al., 1998; Dindas et 

al., 2018).  

1.1.4 P sensing and molecular responses to P deficiency 

Plants monitor internal as well as external P status, which involves systemic or local 

signalling events, respectively. A myriad of molecular players functioning in the P 

deficiency response have been described in recent years. In general, changes in root 

system architecture have been found to be controlled locally by P supply, whereas activity 

of P uptake and distribution was found to be under systemic control (reviewed by Abel, 

2017).   

Local P supply is sensed by the root tip, irrespective of the P status of the shoot 

(Svistoonoff et al., 2007; Thibaud et al., 2010). Mutant studies uncovered a response 

module, consisting of the transcription factor SENSITIVE TO PROTON TOXICITY1 
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(STOP1) and its target ALUMINIUM-ACTIVATED MALATE TRANSPORTER1 

(ALMT1), a malate channel, as well as LOW PHOSPHATE ROOT1 (LPR1), a cell wall 

targeted ferroxidase, LPR2 and PHOSPHATE DEFICIENCY RESPONSE (PDR2), a P5-

type ATPase with unknown substrate that governs the inhibition of primary root growth 

upon root tip contact with low external P (Svistoonoff et al., 2007; Ticconi et al., 2009; 

Balzergue et al., 2017). In the elongation zone, STOP1 stimulates the expression of 

ALMT1, which in turn results in ALMT1-mediated malate efflux into the apoplast 

(Balzergue et al., 2017). Malate alters Fe chelation and activity of the LPR1-PDR2 

module (Balzergue et al., 2017). Fe accumulates, which in turn triggers reactive oxygen 

species (ROS) production, cell wall stiffening and callose (1,3-β-glucan)  deposition, 

significantly decreasing symplastic communication and cell elongation (Müller et al., 

2015; Hoehenwarter et al., 2016; Balzergue et al., 2017). Callose deposits have in general 

been described as major regulators of plasmodesmal permeability, mostly for biotic stress 

responses (Kauss, 1985; Xu et al., 2017). Callose deposition occurs rapidly (within 10 

minutes), but is a reversible process (Kauss, 1985). Once cell-to-cell communication is 

impaired, movement of transcription factors such as SCARE CROW, involved in root 

patterning, or SHORT ROOT, involved in maintenance of the stem cell niche, are less 

mobile (Ticconi et al., 2009; Müller et al., 2015; Balzergue et al., 2017). In the meristem, 

the LPR1-PDR2 module leads to an inhibition of cell division that is STOP1- and 

ALMT1-independent (Balzergue et al., 2017).  

Once a change in external P levels has been detected, the systemic P status is signalled 

and sensed through multiple networks of signalling molecules. P itself likely acts as a 

signal, independent of its function as a nutrient, as the non-metabolic analogue phosphite 

suppressed P deficiency responses (Ticconi et al., 2001). Long non-coding RNAs and 

microRNAs, such as microRNA399, are induced under P deficiency and were found to 

be shoot-to-root mobile (Bari et al., 2006; Pant et al., 2008; Yuan et al., 2016). Sugars 

are described as another shoot-derived systemic signal, as malfunctioning of 

photosynthesis under P limitation leads to less sugars’ being transported into the roots 

(Hammond and White, 2011). A wide range of hormonal signals such as ethylene, auxin, 

strigolactone and gibberellin play prominent roles under P deficiency, acting in intricate 

networks (reviewed by e.g. Chien et al., 2018). For example, strigolactone levels in roots 

of Arabidopsis and rice have been shown to increase under P starvation conditions 

(Umehara et al., 2010; Kohlen et al., 2011), leading to changes in root system architecture 

such as stimulating root hair outgrowth (Kapulnik, Delaux, et al., 2011). Strigolactone’s 
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involvement in root hair elongation was further found to be co-regulated by ethylene, but 

independent of the promoting growth effect of auxin (Kapulnik, Resnick, et al., 2011). 

Auxin transport from the root apex into the differentiation zone was recently found to be 

a major regulator of P starvation-induced root hair outgrowth in Arabidopsis and rice 

(Bhosale et al., 2018; Giri et al., 2018). 

On a transcriptional level, PHOSPHATE STARVATION RESPONSE1 (PHR1) has been 

described as a master regulator. PHR1 is a MYB transcription factor, and alongside its 

homologues PHR-like (PHL), was found to regulate most genes that were induced upon 

P deficiency (Rubio et al., 2001; Bustos et al., 2010; Sun et al., 2016). For example, 

PHR1 controls the transcription of microRNA399 (Bari et al., 2006). PHR1 further 

regulates FERRITIN1 (FER1), establishing a first genetic link between P and Fe nutrition 

(Bournier et al., 2013). Cross-talk with other nutrients such as nitrate, zinc and sulphate 

are involved in signal read out (Briat et al., 2015; Medici et al., 2015). Interestingly, Fe 

and N transporters, namely IRT1 and NRT1.1, have recently been described to function 

as ‘transceptors’, i.e. transporting ions as well as sensing the nutritional status like a 

receptor (Bouguyon et al., 2015; Dubeaux et al., 2018). For P nutrition, the yeast 

transporter PHO84 has been described as a transceptor (Popova et al., 2010). Unequivocal 

proof for a plant P transceptor however is missing. In Arabidopsis, P deficiency led to 

upregulation of PHTs, increasing P uptake (Ayadi et al., 2015; Z. Q. Wang et al., 2018). 

Downstream P translocation through PHO1 was recently shown to be upregulated under 

P starvation conditions, through the degradation of the PHO1-repressor, transcription 

factor WRKY6 (Ye et al., 2018).  

Post-transcriptionally, P deficiency led to dynamic changes in global DNA methylation 

patterns, recently shown for both rice and Arabidopsis (Secco et al., 2015; Yong-

Villalobos et al., 2015). Using cell-free extract from Arabidopsis seedlings, P deficiency 

altered gene silencing via inhibition of DICER-LIKE3 (DCL3), whereas small interfering 

RNA production through DCL3 was rescued by P re-addition in vitro (Seta et al., 2017). 

Chromatin modifications through the activity of HISTON DEACETYLASE19 (HDA19) 

controlled epidermal cell elongation, root hair density and membrane lipid remodelling 

under P deficiency (Chen et al., 2015).  

A common attribute of P-responsive genetic elements across the eukaryotes is the 

occurrence of SPX domains, sensing intracellular P status (named after SYG1, PHO81 

and XPR1, the first three identified SPX gene members, reviewed by Liu et al., 2018). 

These domains are either part of a more complex protein, as found for example in PHO1 
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and VPT1, or occur as independent, single-domain proteins (Duan et al., 2008; Puga et 

al., 2014; Jinlong Liu et al., 2015; Wild et al., 2016). For example, SPX1 protein binds 

to PHR1, preventing the transcription of PHR1 target genes and as such the expression of 

deficiency genes under P-sufficient conditions (Duan et al., 2008; Puga et al., 2014). 

Recently it has been shown that SPX domains interact with P-containing ligands, but with 

little specificity and selectivity for P itself. Inositol P (InsP) rather than P was found to be 

important in SPX-dependent PHO1-mediated P homeostasis (Wild et al., 2016). HDA19 

regulates SPX expression transcriptionally (Chen et al., 2015). 

A signal transducer of widespread action is Ca2+. Its involvement in P sensing and 

modulation of plant responses to P deficiency has been hypothesized (Chiou and Lin, 

2011; Lin et al., 2014), however to date no known study has reported the use of Ca2+ as a 

signalling ion in the context of P deficiency responses.  

1.2 Calcium – macronutrient with structural and signalling roles 

Calcium is an essential macronutrient for plant growth and development. The calcium 

ion, Ca2+, has a structural and growth regulatory role, as well as acting as a signal 

transducer (Hirschi, 2004). In general, its structural role in macromolecules is determined 

by its capacity to coordinate through stable but reversible linkages (Marschner, 2012). 

Through cross-linkage of pectins, it stabilizes cell walls (Kinzel, 1989). Through cross-

linkage of P groups in phospholipids and carboxylic groups in proteins, it equally 

stabilizes membranes (Kinzel, 1989). Ca2+ has also been shown to regulate cell extension 

and secretory processes, most notably the polar growth of single cell systems such as root 

hairs and pollen tubes (Bibikova et al., 1997; Felle and Hepler, 1997; Véry and Davies, 

2000; Ketelaar et al., 2008). On a cellular level, the same mechanism can be observed as 

to what occurs in soils: Ca2+ forming stable complexes with P. Therefore, to avoid 

cytotoxicity, levels of cytosolic free Ca2+ ([Ca2+]cyt) have to be maintained at low levels 

to guarantee a functioning metabolism (Edel and Kudla, 2015; Verkhratsky and Parpura, 

2015). In the following, plant Ca2+ nutrition will be briefly summarized, to enable a 

comparison with P nutrition. Then, its role as a signal transducer will be described in 

more detail. 
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1.2.1 Ca2+ uptake, translocation and storage on whole plant level 

The negatively charged groups in the cell wall (carboxylic groups, R.COO-) attract 

cations from the soil solution, easily leading to the accumulation of Ca2+ in a non-

metabolic way (Marschner, 2012; Barberon and Geldner, 2014; see Figure 2 for a 

schematic). A high proportion of total plant Ca2+ therefore localizes to the apoplast and 

cell wall (Marschner, 2012). Movement through the outer layers of the root has been 

described to occur through the apoplast (White and Broadley, 2003). It has however been 

under debate if Ca2+ is exclusively transported through the apoplast before its being loaded 

into the xylem for long-distance transport, or whether Casparian strip and suberized 

endodermal cells require Ca2+ loading into the symplast (Ferguson and Clarkson, 1976; 

White, 2001; Baxter et al., 2009; Marschner, 2012). Only recently it has been shown that 

suberized endodermal cells indeed block apoplastic Ca2+ movement, indicative of a 

symplastic passage of Ca2+ through non-suberized cells (Li et al., 2017).  

Most Ca2+ taken up by the root is shuttled to the shoot (Conn and Gilliham, 2010). This 

transport occurs in the xylem, where Ca2+ is mostly chelated with organic acids such as 

malate and citrate (Marschner, 2012). The speed of Ca2+ translocation directly depends 

on water uptake and transpiration rate and therefore occurs mainly during the day 

(Terabayashi et al., 1991; Marschner, 2012). Ca2+ has a very low mobility in the phloem, 

posing the problem that it cannot be redistributed, and might accumulate at terminal sites 

of the transpiration stream (Conn and Gilliham, 2010; Tang and Luan, 2017). Plants have 

been shown to accumulate Ca2+ in trichomes or store away Ca-oxalates in the apoplast to 

manage excess Ca2+ (Fink, 1991; White and Broadley, 2003; Franceschi and Nakata, 

2005). 

1.2.2 Ca2+ uptake and translocation on a cellular level 

Ca2+’s entering the symplast is risky as, within the cytosol, Ca2+ is easily cytotoxic. This 

is due to Ca2+’s (i) readily complexing with cellular P groups, such as ATP, and (ii) 

competing with magnesium for binding sites, which overall disturbs cellular metabolism 

(Hepler and Wayne, 1985; Sanders, Brownlee and Harper, 1999; Marschner, 2012; Edel 

and Kudla, 2015; Verkhratsky and Parpura, 2015). Therefore, early on in the evolution of 

life that based its metabolism on P-rich molecules, Ca2+ entry into the cytosol had to be 

tightly regulated to maintain a low concentration of [Ca2+]cyt, resulting in a large 

machinery of influx and efflux proteins, as well as Ca2+-binding proteins which decrease 
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the activity of cytosolic Ca2+ (Hodgkin and Keynes, 1957; Conn and Gilliham, 2010; 

Demidchik et al., 2018). 

Whilst apoplastic Ca2+ levels are easily within millimolar range, levels of [Ca2+]cyt are 

maintained within 50 - 200 nanomolar (Felle, 1988; Sanders et al., 1999; Stael et al., 

2012; Costa et al., 2018). To facilitate such low [Ca2+]cyt levels, auto-inhibited Ca2+-

ATPases (ACAs) and ER Ca2+-ATPases (ECAs) transport Ca2+ out of the cytosol into the 

apoplast and organelles (Boursiac and Harper, 2007; Aslam et al., 2017; Costa et al., 

2017). Additionally, on the vacuolar membrane, Ca2+-H+-antiporters (Ca2+ exchanger, 

CAX) have been described (Hirschi et al., 1996; Cheng et al., 2005). Both Ca2+-ATPases 

and Ca2+-H+-antiporter move Ca2+ against its electrochemical gradient, and consume 

ATP, either directly (Ca2+-ATPases) or indirectly (CAX). Measurement of organellar 

[Ca2+] levels is challenging, but has become more accessible through the advent of 

genetically encoded Ca2+ reporters (summarized by Costa et al., 2018, see section 1.2.9 

for introduction to Ca2+ reporters). Organellar Ca2+ levels are finely tuned, e.g. up to 

500 nM was found in the thylakoid lumen, which is 3 – 5 times higher than what was 

found in the chloroplast stroma of Arabidopsis (Sello et al., 2018). Mitochondrial matrix, 

ER lumen, Golgi lumen and peroxisome lumen are all compartments with reported free 

Ca2+ concentration well above [Ca2+]cyt (Stael et al., 2012; Costa et al., 2018). 

The return flow down the electrochemical gradient and across membranes occurs via 

different kinds of ion channel or uniporter proteins (reviewed by Swarbreck et al., 2013; 

Demidchik et al., 2018). By definition, channels exhibit a higher turnover rate than 

uniporters, and Ca2+ channels were found capable of transporting more than 1 million 

ions per second  (Tsien et al., 1987). This implies that only a few proteins within a given 

membrane are required to influence cellular physiology significantly and need to be 

tightly regulated. Functional characterization of channel proteins has proven very 

difficult, as with any transmembrane proteins, and is further complicated by their low 

abundance. Channel characteristics and genetic basis have been elucidated using 

pharmacological treatment, electrophysiological approaches, phenotypic screens or by 

exploiting sequence similarity to animal, bacterial or yeast Ca2+ channels.  

Using patch-clamp technique and other electrophysiological approaches, much progress 

has been made by demonstrating that, at the PM, such channels can be variously activated 

by voltage, as well as be voltage independent (Swarbreck et al., 2013). Hyperpolarization-

activated Ca2+ channels (HACCs) are triggered by the PM potential’s becoming more 

negative, depolarization-activated Ca2+ channels (DACCs) are opened if the PM potential 
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becomes more positive (Swarbreck et al., 2013). Accordingly, voltage-independent Ca2+ 

channels (VICCs) would be capable of transporting Ca2+ at any given membrane voltage. 

Taken together, the membrane harbours an arsenal of protein complexes which would 

allow for regulated Ca2+ flux at any given membrane potential (Swarbreck et al., 2013). 

Channels can be further regulated by signalling events/molecules, such as cyclic 

AMP/GMP, phosphorylation and reactive oxygen species (Yoshioka et al., 2006; 

Demidchik et al., 2009; Richards et al., 2014). The direct or indirect activation of such 

signalling intermediates is often challenging to determine. Further complicating the issue 

is the fact that specificity of a given channel protein for a species of ions might be low, 

resulting in transport of mixed ionic content, e.g. “Ca2+ permeable, non-selective cation 

channel” might refer to a channel capable of transporting Ca2+, whilst moving other 

cations such as K+ to various degrees (Véry and Davies, 2000). Therefore, to find the 

genetic basis plus its involvement in Ca2+ flux plus a phenotype for a given channel is 

challenging, and evidence for most candidates is scant (Swarbreck et al., 2013).  

1.2.3 Ca2+ channels localizing to the plasma membrane 

Through sequence similarity with known Ca2+ channels from other evolutionary lineages, 

the genetic basis of some HACCs, DACCs and VICCs has been identified in plants. The 

cyclic nucleotide-gated channels (CNGCs; Kohlen et al., 1999; Leng et al., 1999) and 

glutamate receptor-like (GLRs; Lam et al., 1998; Chiu et al., 2002) channels bear some 

structural similarities to their animal counterparts, and form conventional, membrane-

spanning channel proteins. Arabidopsis possesses large gene families coding for CNCGs 

and GLRs, with 20 members each (Mäser et al., 2001; Chiu et al., 2002). Size of gene 

families varies greatly depending on plant species, e.g. 11 CNGCs have been annotated 

for the Ricinus communis genome, whilst wheat was recently found to contain as many 

as 47 CNGCs genes (Saand et al., 2015; Guo et al., 2018). The same variation in size has 

been reported for GLRs. Tree species of Rosaceae (pear, plum, peach) were recently 

annotated to harbour between 34 to 40 GLR genes in their genome, including a subfamily 

absent in Arabidopsis and Brassicales in general (Chen et al., 2016). It has further been 

shown that different GLRs can form heteromultimeric complexes, adding another level 

of diversity to the observed Ca2+ channel behaviours (Price and Okumoto, 2013). Both 

CNCGs and GLRs are found mostly at the PM and shown to be activated by intracellular 

cyclic nucleotides and extracellular amino acids, respectively (Michard et al., 2011; 

Vincill et al., 2012; Kong et al., 2016). Both CNGCs and GLRs are involved in abiotic 
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and biotic stress perception, as well as in general plant ion homeostasis. For example, 

Arabidopsis CNGC2 was reported to be involved in pathogen resistance, and overall Ca2+ 

homeostasis (Clough et al., 2000; Chan et al., 2008; Chaiwongsar et al., 2009). 

Arabidopsis CNGC10 was found to regulate the response to both fungal attack and salt 

stress (Vadassery et al., 2009; Jin et al., 2014), whilst CNGC14 has recently been 

described to govern the root gravitropic response, as well as auxin-dependent root hair 

growth (Shih et al., 2015; Zhang et al., 2017; Dindas et al., 2018). Outside Arabidopsis, 

the role of CNGCs is being elucidated, with e.g. wheat CNGC14 and CNGC16 being 

strongly induced upon pathogen perception (Guo et al., 2018). GLRs are similarly 

involved in a range of responses, such as Arabidopsis GLR3.7’s being prominently 

involved in pollen tube growth, and tolerance to high salt levels during germination 

(Michard et al., 2011; Cheng et al., 2016). Tomato GLR1.1 and GLR3.5 were found 

hypersensitive to Na+ and K+ stress, through controlling Ca2+ uptake and homeostasis 

(Aouini et al., 2012). 

More recently, annexins have been described as capable of forming Ca2+-permeable 

channels. Annexins are ubiquitous, small amphipathic proteins able to bind to membrane 

phospholipids (reviewed by Davies, 2014). Eight annexins are found in Arabidopsis (Jami 

et al., 2012), with ANNEXIN1’s (ANN1) being the best studied member of the family. 

In contrast to canonical channel proteins, which localize exclusively to membranes, 

annexins occur both within the cytosol as well as inserting into bilayer membranes, thus 

establishing ionic transport (Laohavisit et al., 2012). Recruitment to the membrane would 

allow rapid and quantitative response to external stimuli. ANN1-dependent Ca2+ transport 

across the root plasma membrane is activated by reactive oxygen species (Laohavisit et 

al., 2012; Richards et al., 2014).  

Ca2+ is known to play an important role in mechanosensing (Braam and Davis, 1990; 

Knight et al., 1991, 1992; Legué et al., 1997; Kiegle, et al., 2000; Monshausen et al., 

2009) and it has long been postulated that mechanically-gated ion channels could be 

involved (Braam and Davis, 1990; Ding and Pickard, 1993). Candidates for Ca2+-

permeable mechanosensitive channels have been described based on sequence similarity 

to their bacterial homologues, as the Mechanosensitive channels of small conductance 

(MscS) are well-studied in Escherichia coli (Kung et al., 2010). In Arabidopsis, the 

MscS-like gene family (MSL) has 10 members, mostly localizing to the PM (Haswell and 

Meyerowitz, 2006; Haswell et al., 2008; Hamilton et al., 2015). MSL channels are mainly 

described to function as anion channels (Kurusu et al., 2013; Hamilton et al., 2015), 
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however they have also been shown to moderately transport Ca2+ (Haswell et al., 2008), 

thus their role in [Ca2+]cyt requires further studies. 

Another family of mechanosensitive and Ca2+-permeable channel proteins comprises the 

MCAs (mid1-complementing activity). MCA1 was named after it was found to 

complement the mid1 yeast mutant, which lacks a putative Ca2+ channel (Nakagawa et 

al., 2007). MCA1 and MCA2 proteins are localized to the PM, permit influx of Ca2+ upon 

mechanical stimulation, and are involved in cold sensing (Mori et al., 2018). The MCA 

proteins are likely to be unique to land plants (Nakagawa et al., 2007). From their 

structure it is likely that they are a component of a channel complex (Yamanaka et al., 

2010). 

Most recently, two independent studies described another family of Arabidopsis 

mechanosensitive Ca2+ channels, responding to osmotic shock. The hyperosmolality 

gated Ca2+-permeable channel was named ‘reduced hyperosmolality-induced [Ca2+]cyt 

increase’ (OSCA, Yuan et al., 2014) or ‘Calcium permeable Stress-gated cation 

Channel1’ (CSC1, Hou et al., 2014). OSCA1/CSC1 localized to the PM, and transported 

various cations including Ca2+ (Hou et al., 2014; Yuan et al., 2014). Closure of the 

channel seemed dependent on Ca2+ (Hou et al., 2014). Mutants of OSCA1/CSC1 showed 

impaired Ca2+ fluxes in response to osmotic stimuli in guard cells and roots (Hou et al., 

2014; Yuan et al., 2014). The family of OSCA/CSC comprises 15 members in 

Arabidopsis, and 11 members in rice (Yuan et al., 2014; Li et al., 2015). Gene expression 

of 10 out of 11 rice OSCA genes was found to be regulated by osmotic stress, indicating 

a conserved role of OSCAs across plant species (Li et al., 2015). 

1.2.4 Ca2+ channels and uniporters localizing to organellar membranes 

Besides PM localization, some members of the CNGC and GLR family have been 

reported to localize to organellar membranes. For example, Arabidopsis CNGC19 and 

CNGC20 localized to the tonoplast (Yuen and Christopher, 2013). Splicing variants of 

GLR3.5 were shown to be targeted to either inner mitochondrial membrane, or plastid 

membrane (Teardo et al., 2015), whilst GLR3.4 localized to both plasma and plastid 

membrane (Teardo et al., 2011). ANN1 has been identified in the membrane of ER, 

vacuole, mitochondria and chloroplasts (Davies, 2014). MSL1 localized to the inner 

mitochondrial membrane (Lee et al., 2016), MSL2 and MSL3 localized to the plastid 

envelope (Haswell and Meyerowitz, 2006).  
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As mitochondrial Ca2+ dynamics in animals are regulated through a mitochondrial 

calcium uniporter complex (MCUC), the search was on to find a similar complex in 

plants. Based on sequence similarity, a similar complex has recently been starting to be 

elucidated in plants. MICU, named after its animal counterpart and with one member in 

Arabidopsis, was found to localize to the mitochondrial membrane and regulate 

mitochondrial free Ca2+ dynamics (Wagner et al., 2015). MICU mutants showed higher 

resting concentrations of free Ca2+ in the mitochondrial matrix, indicating MICUs 

involvement in Ca2+ homeostasis in the mitochondria, whilst no impact was seen on 

[Ca2+]cyt responses (Wagner et al., 2015). Recently it has then been shown that the 

Mitochondrial Calcium Uniporter (MCU) was the component responsible for Ca2+-

permeability, named AtMCU1 in Arabidopsis, being regulated by MICU (Teardo et al., 

2017). MCU1 equally localizes to the mitochondrial membrane, and is highly expressed 

in root tissue (Teardo et al., 2017).  

The ‘slow vacuolar’ Ca2+ channel is encoded by the Two Pore Channel1gene (TPC1), 

with one member described in Arabidopsis, functioning as a homodimer (Peiter et al., 

2005; Guo et al., 2016). TPC1 was shown to be voltage dependent and requires cytosolic 

Ca2+ for activation  – the more cytosolic Ca2+, the easier to activate (Guo et al., 2016). As 

TPC1 shows low Ca2+ selectivity and ambiguous phenotypes, its function is still under 

debate as the protein knock-out led to few striking phenotypes considering its supposedly 

important role as tonoplast Ca2+ channel (Ranf et al., 2008; Stael et al., 2012; Swarbreck 

et al., 2013). Nonetheless, TPC1 has been described to govern the propagation of ‘Ca2+ 

waves’ upon salt perception in roots of Arabidopsis (W.-G. Choi et al., 2014; Evans et 

al., 2016). 

1.2.5 Ca2+ storage on a cellular level 

The vacuole is often considered the main Ca2+ intracellular store to sequester excess Ca2+ 

(Marschner, 2012; Stael et al., 2012; Schönknecht, 2013; Costa, Navazio and Szabo, 

2018). This assumption is based on the large volume vacuoles have compared to cytosol 

and other cellular organelles (up to 90 % of total cell volume, Costa, Navazio and Szabo, 

2018); and high vacuolar Ca2+ concentrations measured in leaf tissue. For example, 12 

mM free Ca2+ and up to 80 mM total Ca2+ were measured in Arabidopsis leaf vacuoles 

(Conn and Gilliham, 2010; Conn et al., 2011). Interestingly, the few studies that 

quantified root vacuolar Ca2+ reported much lower accumulation of Ca2+ in vacuoles of 
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all root cell types, e.g. 1.5 mM free Ca2+ in maize roots, 0.2 mM in roots of red beet (Felle, 

1988; Pérez et al., 2008). This is likely an effect of little Ca2+ being taken up into the 

symplast of root cells, but Ca2+ rather being transported via the transpiration stream into 

shoot tissue (also see section 1.2.1).  

1.2.6 Ca2+ as a signal transducer of abiotic and biotic stress signalling 

Ca2+ ions serve as second messengers which transduce a primary signalling event. The 

steep Ca2+ gradient between cytosol and neighbouring apoplast and organelles sets the 

scene for the use of Ca2+ as a signal: flux of comparably few ions are needed to evoke a 

large concentration difference in compartments of low [Ca2+], such as the cytosol. This 

movement of Ca2+ needs to occur transiently, to avoid cytotoxicity. The modulation of 

intracellular Ca2+ has been termed ‘Ca2+ signature’, and can differ in duration, amplitude, 

frequency and spatial occurrence (Williamson and Ashley, 1982; Hetherington et al., 

1997; McAinsh and Pittman, 2009; Dodd et al., 2010). Importantly, it is observed that 

specific Ca2+ signatures are elicited in response to a multitude of biotic and abiotic 

stresses. It is deducted that the kinetics of the Ca2+ transients encode information, which 

can be decoded intracellularly and translated into intracellular response. Hence, one type 

of signalling ion, Ca2+, can transduce different messages. 

Modulation of [Ca2+]cyt has been described for many abiotic stresses, including 

mechanostimulation, salt, osmotic and drought stress, oxidative and wounding stress, 

temperature stress and perception of extracellular purine nucleotides (Knight et al., 1991; 

Knight, Trewavas and Knight, 1996; Legué et al., 1997; Demidchik et al., 2003; Rentel 

and Knight, 2004; Monshausen et al., 2009; Choi et al., 2014; Storti et al., 2018; for a 

review see Wilkins et al., 2016). Oscillations of [Ca2+]cyt are tightly linked to circadian 

rhythms (Johnson et al., 1995; Dodd et al., 2006). A large body of work has uncovered 

the effect of abiotic and biotic stresses on [Ca2+]cyt transients and oscillations in guard 

cells, regulating stomatal aperture and as such temperature response or defence against 

pathogens (McAinsh and Pittman, 2009). See Chapter 3, section 3.1.1, for a more detailed 

introduction to rapid Ca2+ signalling events upon perception of mechanostimulation, salt, 

osmotic and oxidative stress. See Chapter 4, section 4.1.2, for a more detailed introduction 

to Ca2+’s involvement in extracellular nucleotide signalling.   

Perception of biotic signals equally involves early modulation in [Ca2+]. Both pathogen-

induced immunity responses as well as establishment of symbiosis rely on similar, but 
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distinct initial signalling components: cell-surface receptors to perceive the specific biotic 

signalling molecules, and Ca2+ fluxes to transduce the stimuli (reviewed by Zipfel and 

Oldroyd, 2017). The focus has been on nuclear [Ca2+] oscillations. As beneficial 

symbioses respectively lead to better nitrogen (N) and P nutrition of the plant, the 

signalling role of Ca2+ in these cases can be seen as indirectly involved in plant nutrition.  

1.2.7 Ca2+ as direct signal transducer in nutrient stress signalling 

Besides Ca2+ involvement in mycorrhizal symbiosis and bacterial nodulation, it is only 

recently that a possible direct role of Ca2+ in nutrient stress signalling has been 

investigated, likely owing to its being technically challenging and nutrition being very 

complex (Wilkins et al., 2016). Three scenarios of direct Ca2+ involvement are 

theoretically conceivable: (i) the use of Ca2+ to signal availability of a given nutrient, (ii) 

the use of Ca2+ to signal absence of a given nutrient, or (iii) alteration of the Ca2+ signature 

as a function of nutrient deficiency/toxicity and subsequent altered stress perception.  

In the case of nitrate, starved Arabidopsis roots have been shown to respond through a 

monophasic transient increase of [Ca2+]cyt to a re-supply of nitrate, which was dependent 

on the nitrate transporter NRT1.1 (Riveras et al., 2015). Another study using Arabidopsis 

mesophyll protoplasts found a more prolonged increase of [Ca2+]cyt upon nitrate re-

addition, and an increased nuclear [Ca2+] (Liu et al., 2017).  

Recently, K+ deficiency was found to trigger two distinct [Ca2+]cyt elevations within the 

Arabidopsis root, the first response occurring within 1 to 4 minutes, and the second 

response from 18 to 32 hours after onset of K+ deficiency (Behera et al., 2017). The first 

increase may reflect the effect of lowering external K+ on epidermal PM potential, as this 

should hyperpolarize the voltage and promote Ca2+ influx. Indeed, hyperpolarizing PM 

potential of Arabidopsis root epidermal protoplasts by lowering external K+ supported 

higher [Ca2+]cyt (Demidchik et al., 2002). 

Magnesium (Mg2+) is - besides Ca2+ - the most abundant divalent cation in plants, and 

mostly described as having an antagonistic relationship with cellular Ca2+ (reviewed by 

Tang and Luan, 2017). Recently, it was found that [Ca2+]cyt signalling were necessary for 

vacuolar Mg2+ detoxification in a high Mg2+ environment (Tang et al., 2015).  

In the case of the microelement boron (B), a transient rise in [Ca2+]cyt in response to 

deprivation has yet to be reported (Gonzalez-Fontes et al., 2014; Wilkins et al., 2016). 
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However, in bean, B deprivation led to a release of membrane-bound Ca2+ into the 

apoplast within minutes, and B starvation-induced gene expression was reliant on external 

Ca2+ availability in tobacco, indicating some involvement of Ca2+ (Mühling et al., 1998; 

Koshiba et al., 2010). B deprivation led to an increase of baseline [Ca2+]cyt in Arabidopsis, 

however over the course of hours (reported for 6 and 24 h after onset of B-deprivation, 

Quiles-Pando et al., 2013).  

Microelements iron (Fe) and copper (Cu) have been reported to induce transient increases 

in [Ca2+]cyt of various dynamics in marine diatoms, marine algae and higher plants 

(Falciatore et al., 2000; González et al., 2010; Rodrigo-Moreno et al., 2013). However, 

as both Fe and Cu play dual roles within metabolism – being essential for the functioning 

of a number of enzymes, but leading to production of oxidative stress if in excess – the 

increase of [Ca2+]cyt after addition of Fe or Cu might be due to oxidative stress rather than 

perception of nutrient availability (Richards et al., 2015; Wilkins et al., 2016). 

Intriguingly, a study using tobacco cell cultures, found that high (and physiologically 

toxic) Cu concentrations were found to elicit an increase in [Ca2+]cyt that was independent 

of ROS production but rather dependent on PM thiol groups (Inoue et al., 2005).  

1.2.8 Decoding of stress-specific Ca2+ signatures 

Stress perception triggers particular Ca2+ signatures, as well as changes in other signalling 

molecules, such as reactive oxygen species and lipid signalling molecules. Together, 

these molecules induce the stress response of plants (see Chapter 3 and Chapter 4 for 

more details on the interplay of various, stress-triggered signalling molecules). 

Differences in observed Ca2+ signatures have long been hypothesized to encode 

information, and evidence is accumulating that modulations in [Ca2+] are sufficient and 

necessary to elicit specific downstream responses such as gene expression changes 

(Whalley et al., 2011; Whalley and Knight, 2013; J. Liu et al., 2015; Lenzoni et al., 2017). 

However, the lag-time between the transient, often short-lived Ca2+ signature, and 

downstream responses such as transcriptional changes easily obscure causative 

relationships. Much progress has been made in recent years in both elucidating the vast 

array of gene families encoding Ca2+-binding elements, as well as their interaction in 

decoding a Ca2+ signature into an appropriate response.  

Perception of intracellular changes in [Ca2+] is made possible by the ability of proteins to 

bind Ca2+ through Ca2+-binding motifs, followed by a conformational change (McAinsh 
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and Pittman, 2009). Large numbers of genes have been annotated as capable of Ca2+-

binding, i.e. around two percent of all genes in Arabidopsis (Vaz Martins et al., 2013). 

Ca2+-dependent protein kinases (CDPKs) have been summarized as primary responders 

(Bender et al., 2018; Costa et al., 2018). Calmodulins (CaMs), calmodulin-like proteins 

(CMLs) and calcineurin B-like proteins (CBLs) are secondary signal relays (Lenzoni et 

al., 2017; Bender et al., 2018). Specificity is conceivable through variable binding 

affinity, location, plus the high number of potential interactions and binding complexes 

(Lenzoni et al., 2017). Different Ca2+ signatures have been shown to regulate transcription 

via the induction of specific transcription factors (Whalley and Knight, 2013). For a 

particular group of transcription factors, the calmodulin-binding transcription activators 

(CAMTAs), mathematical modelling elucidated that Ca2+ increases, and binding to CaM 

and CAMTA non-linearly amplified the initial signal, indicating a complex and often 

counter-intuitive relationship (J. Liu et al., 2015). Taking an immunity response as 

example, the number of Ca2+ binding sites of the CaMs involved, as well as the CaM-

binding sites in downstream molecular elements such as the CAMTAs were shown to 

give rise to a high number of potential outcomes, together funnelling a specific Ca2+ 

signature into transcriptional changes relevant to the primary stress (Lenzoni et al., 2017). 

Interestingly, the time needed to return to steady-state Ca2+ levels was found to be 

quantitatively relevant for the transcriptional response (Lenzoni et al., 2017).  

With regards to nutritional stress, a number of Ca2+ signal decoding protein networks 

have been described. For example, CDPK10, CDPK30 and CDPK32 were described as 

master regulators in the response to nitrate re-supply, activating a large number of 

transcription factors and thus amplifying the nitrate-induced Ca2+ cue (Liu et al., 2017). 

High Mg2+ levels and subsequent detoxification of Mg2+ into the vacuole relied on Ca2+ 

binding to CBL2 and CBL3, and their interaction with four CBL-interacting protein 

kinases (CIPK; CIPK3, CIPK9, CIPK23, CIPK26; Tang et al., 2015). Interestingly, 

CIPK23 has also been reported by multiple other studies to be involved in nutritional 

signalling: CIPK23 has been shown to activate the major root K+ transporter AKT1 in 

Arabidopsis and rice (Cheong et al., 2007; Li et al., 2014), as well as the high-affinity K+ 

transporter HAK5 (Ragel et al., 2015). CIPK23 was found to inhibit ammonium transport 

(Straub et al., 2017), whilst on the other hand converting the nitrate transporter NRT1.1 

through phosphorylation from a low- to high-affinity transport system when nitrate was 

scarce (Ho et al., 2009). Most recently, CIPK23 was found to phosphorylate the Fe 

transporter IRT1, inducing its self-degradation under metal toxic conditions (Dubeaux et 



Chapter 1: Introduction  

 23 

al., 2018). Hence, CIPK23 is a central hub in integrating root responses to nutrient 

availability, and unveils complex and multi-functional signalling networks integrating 

nutrient status. Little evidence suggests Ca2+ decoders to signal in P nutrition. Through 

an in silico screen and experimental validation of candidate genes, knock-out of a similar 

network of CBL-CIPKs (CBL1, CIPK2, CIPK14) was recently found to act as negative 

regulators of growth under P starvation (Linn et al., 2017). However, this was based on 

longer term growth studies rather than immediate (Ca2+) responses to an acute stress. 

Overall, the role of Ca2+-signalling networks, including appropriate decoder proteins, 

likely plays a much larger role than has been investigated so far. 

1.2.9 Quantification and visualization of Ca2+ in vivo using genetically 

encoded reporters 

Visualizing and quantifying the dynamics of Ca2+ ions in planta is challenging. 

Historically, this was first achieved through the use of microinjection and Ca2+-specific 

dyes such as Quin2 and fura-2 (Tsien et al., 1982; Grynkiewicz et al., 1985). Even though 

ground-breaking, these set-ups were biased through invasive dye-loading procedures, low 

throughput, and artefacts introduced by the dyes themselves (Costa et al., 2018). The use 

of genetically-encoded Ca2+ indicators (GECIs) has since revolutionised the Ca2+ field. 

Ca2+ dynamics can be monitored in vivo with high resolution and sensitivity, without 

much handling of the material, and – depending on the reporter protein – over long time 

courses. The GECIs differ in sensitivity and affinity for Ca2+, as well as other 

characteristics such as pH-sensitivity and quantum yield, and can be expressed in different 

cell types or subcellular organelles. Together with modern imaging technology, single-

cell analysis has become feasible (Costa et al., 2013a). In the following, the three GECIs 

used in this thesis will be introduced, covering some of the major GECI types: aequorin, 

Yellow Cameleon 3.6 (YC3.6) and GCaMP3. 

The most prominent Ca2+ reporter is aequorin, isolated originally from the bioluminescent 

jellyfish Aequorea victoria (Shimomura et al., 1962; Shimomura, 1995). Once 

transformed cells express the (apo)aequorin protein, it can be reconstituted through 

exogenous application of its prosthetic group coelenterazine (Shimomura et al., 1990; 

Knight et al., 1991). Upon Ca2+ binding, the reconstituted protein undergoes a 

conformational change which leads to the production of luminescence. Photon emission 

measurements allow determination of free Ca2+ concentrations in cellular compartments 

(Knight et al., 1991). Advantages of aequorin include its insensitivity to changes in pH, 
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its high signal-to-noise ratio, and that no damaging illumination of the sample is 

necessary, thus samples can be measured for long time intervals (Brini, 2008; Marti et 

al., 2013, also see Table 1). In Arabidopsis, aequorin has been targeted to various cellular 

compartments, such as the cytosol, tonoplast, nucleus, chloroplast and mitochondria 

(Knight et al., 1991, 1996; Mehlmer et al., 2012; Sello et al., 2018); or specific tissues 

within the root and shoot (Kiegle et al., 2000; Dodd et al., 2006; Marti et al., 2013). 

Aequorin has also been successfully transformed into other plant species such as 

Physcomitrella patens, tomato, wheat and rice (Moyen et al., 1998; Nagel-Volkmann et 

al., 2009; Finka et al., 2012; Y. Zhang et al., 2015).  

One of the major drawbacks of aequorin is its low amount of emitted light, necessitating 

highly sensitive photon-counting equipment and complete occlusion of the sample. 

Hence, only low spatial resolution within the sampled tissue is possible, and emitted light 

is averaged over a cell population. Advances in the field of fluorescent ratiometric Ca2+ 

reporter proteins have enabled a higher spatial resolution, as signal read-out is not 

dependent on underlying amounts of reporter protein, but rather a ratio shift of the emitted 

signal output. One particular group, the cameleon proteins (for example Yellow 

Cameleon 3.6; YC3.6), are based on variants of the green fluorescent protein (GFP). 

These cameleons are Förster Resonance Energy Transfer (FRET)-based indicator 

proteins, consisting of a cyan and yellow fluorescent protein (CFP and YFP). These 

moieties are connected through a Ca2+-binding calmodulin and the calmodulin-binding 

protein M13 (Miyawaki et al., 1997; Nagai et al., 2004). Ca2+ binding to calmodulin leads 

to a conformational change, which brings together the YFP and CFP. This decrease in 

distance allows energy to be transferred, i.e. in the scenario of CFP excitation, the binding 

of Ca2+ would decrease the distance between CFP and YFP, transferring energy onto YFP, 

and leading to an increase of YFP over CFP emission (Miyawaki et al., 1997, see Table 

1 for a schematic). Fluorescence microscopy allows for high spatial resolution, down to 

single-cell analysis (Costa and Kudla, 2015). As the signal read-out fully relies on ratio 

shift, these proteins are not hampered by actual protein expression levels of the cell, and 

are highly suitable for conditions where protein expression might be affected (Costa et 

al., 2018). These cameleon sensors are available with different sensitivities for Ca2+ and 

can be expressed in different subcellular compartments such as the cytosol, nucleus, 

chloroplast and ER (Krebs et al., 2012; Loro et al., 2012, 2016; Bonza et al., 2013; Costa 

et al., 2017). Different plant species, such as rice and most recently the moss 
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Physcomitrella patens, have been successfully transformed with cameleon proteins 

(Behera et al., 2015; Storti et al., 2018).  

Disadvantages of these ratiometric probes are the low throughput and the need for highly 

advanced microscopes (e.g. with beam splitter to separate YFP and CFP emission). 

Fluorescent probes for simple microscopy set-ups, i.e. based on single wavelength 

emission only, have more recently been designed and are available as plant-compatible 

constructs such as the GCaMP3 series (Tian et al., 2009; Vincent et al., 2017). GCaMP3 

is based on a single permuted green fluorescent protein (cpGFP), and fluorescence 

intensity increases upon binding to Ca2+ and is used as direct read-out (see Table 1). 

 

Table 1: Details of the genetically encoded Ca2+-sensors used in this thesis. Cartoons were 

modified after P. Koldenkova and Nagai (2013). Pink dots represent bound Ca2+, arrows indicate 

excitation light. The Ca2+-bound states are in all reporter constructs reversible. References: 

Kendall et al., 1992; Brini et al., 1995; Nagai et al., 2004; Tian et al., 2009; Akerboom et al., 

2012; Krebs et al., 2012. 
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1.3 The relationship of phosphate and calcium  

Recent years have seen major advances in the two fields of Ca2+ signalling and P 

starvation research. Molecular players in response to P starvation have been elucidated in 

plants, with signalling networks being formed by hormones, other nutrients and 

transcriptional and translational feedback loops. Similarly, Ca2+ signalling research has 

been resolved to single-cell level using a palette of GECIs as Ca2+ reporters and superior 

imaging techniques. However, the two fields have not yet been directly connected. Ca2+ 

has been hypothesized to signal in P starvation responses (Chiou and Lin, 2011; Chien et 

al., 2018), but few studies have made connections between P nutrition and Ca2+ 

signalling.  

Some P-starvation studies reported Ca2+-associated proteins to be differentially 

expressed. For example, P-starved Brachhypodium distachyon showed up-regulated 

expression of a few CDPKs amongst a number of other kinases (Zhao et al., 2018), hence 

there is no dominant ‘Ca2+ fingerprint’. In tomato roots, a Ca2+-ATPase was found to be 

highly upregulated under P starvation (Muchhal et al., 1997). Intracellular Ca2+ levels 

were not quantified, but membrane damage and leakage were reasoned to trigger higher 

[Ca2+]cyt influx and thus higher Ca2+-ATPase activity (Muchhal et al., 1997). One of the 

most direct links between Ca2+ and P homeostasis was described for vacuolar Ca2+/H+ 

transporter knock-out mutants, cax1 and cax3 in Arabidopsis (Liu et al., 2011). The 

mutant lines took up more P, and had subsequent higher P content in leaves, suggesting 

a role of the Ca2+/H+ transport system in P homeostasis (Liu et al., 2011). For the 

unconventional Ca2+ channel proteins of the annexin family, ANNEXIN 1 was found to 

be the protein of highest abundance in P-starved roots (Lan et al., 2012). This was recently 

corroborated by another study quantifying proteomic response in whole seedlings of 

Arabidopsis, and reporting higher abundance of ANNEXIN1, 2 and 4 (Z. Q. Wang et al., 

2018).  

P and Ca2+ have an exceptional relationship, as they easily form tight complexes. Calcium 

phosphate (Ca-P) complexation occurs in neutral to alkaline soils, and similar 

complexation would occur in cells at physiological pH (Cole, 1953; Edel and Kudla, 

2015; Verkhratsky and Parpura, 2015). Therefore, early during the evolution of life, a 

sophisticated machinery of Ca2+ regulating transport and buffer proteins evolved to 

maintain low cytosolic free Ca2+ levels, giving rise to the use of Ca2+ as a signalling ion 

(Verkhratsky and Parpura, 2015). Plants struggle to accumulate P in necessary amounts 
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to sustain metabolism. To avoid precipitation of precious P with Ca2+, Ca2+ follows 

different uptake dynamics and is stored in different tissue compared to P (see Figure 2).  

1.3.1 Calcium phosphates were recently also described in plants 

Through consumption of primary P-accumulators (plants), animals can afford to ‘spend’ 

more P, and use the benefits arising from stable Ca-P complexes. Bones and teeth are 

composed mainly of Ca-Ps, in the case of humans representing 99 % of total body Ca2+ 

(Plattner and Verkhratsky, 2015). However, animals employ a complex endocrine system 

to regulate blood Ca2+ and P levels and subsequent bone formation which only exists in 

vertebrates, and thus little can be learnt about the regulation of Ca-Ps in plants (Bouillon 

and Suda, 2014).  

Compared to animal Ca-P skeletons, algae evolved carbonate biomineralization whilst in 

some vascular plants, such as grasses, epidermal cells became stabilized by silica-based 

minerals (Knoll, 2003). Only recently, the first report of Ca-Ps in higher plants was 

reported (Ensikat et al., 2016). Trichomes of the South-American rock nettle family 

Loasaceae were found to contain Ca-Ps as structural fortification (Ensikat et al., 2016). 

Since then, Ca-Ps were similarly found in the trichomes of a diverse range of higher plant 

species of the order Malpighiales, Rosales, Boraginales, and Brassicales – including 

Arabidopsis (Weigend et al., 2017; Mustafa et al., 2018). Ca-Ps were found to replace or 

co-localize with silica in trichome tips and cell walls, indicating biomineralization 

patterns to be more complex than so far assumed. To date, no mechanism is known that 

guides and regulates Ca-P formation in plants.  

1.4 Working hypothesis and experimental approaches 

The involvement of the second messenger Ca2+ in signalling nutrient availability and 

deficiency has been partially elucidated. However, to date no study has apparently 

investigated its involvement in signalling under P starvation conditions. In light of the 

particular relationship of Ca2+ and P, this PhD thesis investigates the following 

hypothesis:  

In plants, P starvation changes the use of Ca2+ as signalling ion.  
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The overall aim of this PhD thesis was to test if and how the use of cytosolic free Ca2+ 

([Ca2+]cyt) were altered in P-starved roots of the model plant Arabidopsis thaliana, and 

subsequently dissect the underlying molecular components.  

To this end, genetically encoded reporters of [Ca2+]cyt (aequorin, NES-YC3.6, GCaMP3) 

were employed to quantify the [Ca2+]cyt response of P-starved roots to a range of abiotic 

stresses (mechanical stimulation, salt, osmotic and oxidative stress), extracellular 

nucleotides and a P source. As a test for specificity, N-starved roots were challenged with 

similar stresses. Iron and copper availability in P starvation conditions were tested for 

involvement in modulating the stress-induced [Ca2+]cyt responses, as well as employing 

receptor and Ca2+ channel mutants to test for their involvement in shaping the [Ca2+]cyt 

responses under P starvation.  

Provided that [Ca2+]cyt responses were altered as a consequence of P starvation, the 

underlying molecular components of an exemplary treatment, i.e. extracellular ATP, 

would be dissected. Pharmacological treatments, physical manipulation, and histological 

staining of stress markers would delineate the components of a root [Ca2+]cyt response, 

and determine how these are altered under P starvation. To further identify the genetic 

basis of Ca2+ channels involved in root growth particularly under P starvation conditions, 

such as root hair elongation, a collection of putative Ca2+ channel mutants in Arabidopsis 

was compiled, and this mutant library was screened for a P starvation-induced root hair 

phenotype. 

Taken together, this work will elucidate how P starvation influences the use of Ca2+ as 

signalling ion, and more generally enhance our understanding of how nutrition affects the 

root signalling landscape. 
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2 MATERIAL AND METHODS 

2.1 Plant material 

All Arabidopsis thaliana (from here on, Arabidopsis) lines were in the Col-0 ecotype 

background unless otherwise stated and transformed with (apo)aequorin as a cytosolic 

free calcium ([Ca2+]cyt) reporter where indicated. Transformations had been performed 

previously by laboratory members such that (apo)aequorin was constitutively expressed 

under the 35S-CaMV promoter (Knight et al., 1991). Lines at the T3 generation or 

onwards were used. If not indicated otherwise, all seed material used was from laboratory 

stock and had been genotyped previously. Lines expressing the ratiometric cameleon 

sensor in the cytosol and under control of the UBIQUITIN10 promoter (NES-YC3.6, 

Krebs et al., 2012) were a gift from Alex Costa’s group (University of Milan). Lines 

expressing the intensiometric 35S::GCaMP3 construct in the cytosol (Tian et al., 2009) 

were a gift from Dale Sanders’ group (John Innes Centre, Norwich). 

Arabidopsis containing stably transformed green fluorescent protein (GFP)-tagged 

ANNEXIN1 constructs were previously generated by Siân Richards (University of 

Cambridge). In the first, GFP was fused to a long version (2 kilo bases upstream of the 

coding region) promoter of ANN1 (LPANN1::sGFP), to visualize gene expression of ANN1. 

In the second, GFP was fused to the same ANN1 promoter as well as the coding region of 

ANN1 (LPANN1::ANN1-sGFP), designed to visualize localization of ANN1 protein. Both 

constructs were transformed in ann1 mutant lines of Col-0 background. 

A library of putative calcium channel mutants was compiled (see Appendix I for complete 

list of mutant lines, including their bioinformatics annotations; see Appendix II for details 
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of origin of seed stock). In total, 100 mutant lines were sourced from the Nottingham 

Arabidopsis Stock Centre (NASC), other laboratories and own laboratory stock. 

Mutagenized lines were derived from SALK T-DNA library (Alonso et al., 2003), SAIL 

T-DNA library (Syngenta Arabidopsis Insertion Library), GABI-Kat library 

(Kleinboelting et al., 2012), WiscDsLox T-DNA library (Woody et al., 2007), T-DNA-

tag library (Kazusa DNA Research Institute), TILLING mutant library (Till et al., 2003), 

Agrikola RNAi library (Hilson et al., 2004), ethyl methane sulfonate (EMS) mutagenized 

Arabidopsis population (Yu et al., 1998). Out of 100 received mutant lines, 74 single 

mutants and 3 higher order mutants could be employed for root hair growth analysis (as 

they were genotyped homozygous for the mutation, germinated well and set seeds).  

2.2 Plant growth conditions 

2.2.1 General propagation conditions 

All plant material was propagated in the Plant Growth Facilities (PGF) of the Plant 

Sciences Department, University of Cambridge. Plants were grown on Levington’s F2 

compost, containing the systemic insecticide imidacloprid (Fargro Limited). Arabidopsis 

plants were grown until seed maturity under long-day conditions (16 h light / 8 h dark) in 

a growth room (200 µmol m-2 s-1 light intensity, 20°C, 60 % relative humidity). 

2.2.2 General sterile growth conditions 

Arabidopsis seeds were surface sterilized by rinsing briefly with 70 % (v/v) ethanol, then 

sterile distilled water, shaking for 5 minutes in sterilizing solution (10 % (v/v) sodium 

hypochlorite solution (Fisher Chemicals), 0.01 % (v/v) Triton X-100 (Sigma-Aldrich)), 

and then rinsed five times using sterile distilled water.  

2.2.3 Plant growth on Murashige and Skoog growth medium 

Standard half strength Murashige and Skoog growth medium with vitamins (Duchefa), 

‘half MS’, contained: 9.4 mM KNO3, 0.75 mM MgSO4, 1.5 mM CaCl2, 10.3 mM 

NH4NO3, 0.625 mM KH2PO4, 0.055 µM CoCl2, 0.05 µM CuSO4, 50 µM H3BO3, 2.5 µM 

KI, 50 µM MnSO4, 0.52 µM Na2MoO4, 15 µM ZnSO4, 50 µM FeNaEDTA, vitamins: 

13.3 µM glycine, 277.5 µM myo-inositol, 2 µM nicotinic acid, 1.2 µM pyridoxine HCl, 
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0.15 µM thiamine HCl. This standard half MS comprised the full phosphate, ‘full P’, and 

full nitrogen, ‘full N’, growth condition. A custom-made MS medium without P was used 

for ‘zero P’ conditions (Duchefa, DU1072) or without N for ‘zero N’ conditions 

(PhytoTechnology Laboratories, M531). KCl was used to substitute for missing 

potassium (K+) whenever P (KH2PO4) or N (KNO3) were excluded (Table 2). As the N-

free medium was not available including vitamins, MS vitamin x 1000 stock solution 

(Sigma-Aldrich, M7150) was added to ‘zero N’ medium to the same final concentration 

as described above. For all growth conditions requiring modified iron (Fe) or copper (Cu) 

content, half MS medium was prepared from stock solutions and vitamins were supplied 

from the MS vitamin x 1000 stock (Table 2).  

Arabidopsis seeds were sown aseptically and grown vertically on medium in square petri 

dishes (12 cm x 12 cm, Greiner Bio-One), with 12 seeds per plate. In general, each plate 

contained circa 100 ml of half MS, with varying P / N / Fe / Cu as stated in the individual 

experiments. Medium was prepared using distilled water, without sucrose addition. The 

pH of the media was adjusted to pH 5.6 using dilute KOH / HCl, before 0.8 % (w/v) agar 

(Bacto agar, BD Biosciences) was added and the medium was autoclaved. Plates were 

dried for 55 – 60 min under sterile air to ensure equal humidity. Plates were sealed using 

micropore tape (3M) to allow for gas exchange. All seeds were stratified at 4°C and in 

darkness for 2 to 3 days prior to cultivation under long-day conditions (16 h light / 8 h 

dark) in a growth chamber with 78 µmol m-2 s-1 light intensity, at 23°C (PERCIVAL, 

CLF Plant Climatics). 

The nomenclature used in this thesis, e.g. ‘zero P’ and ‘zero N’, reflects the nutrient 

content of the growth medium rather than the nutrients available to the plant, as all seeds 

would have nutrients stored. Further, the agar used introduced mineral traces (BD Bacto 

agar typical analysis: P < 0.005 %, nitrate < 0.005 %, Fe 0.002 %, Cu <0.001 %; Difco™ 

& BBL™ Manual, 2nd Edition). The programme Geochem EZ (Shaff et al., 2010) was 

employed to calculate the ion activities in the nutrient solutions used, and determine 

possible complexations (also see Chapter 3, section 3.2.13 onwards).  
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Table 2: Nutrient modifications of half MS medium relevant for particular deficiency growth 

condition. ‘Label’ includes names used in different experimental chapters (separated by dash). 

KCl was added to substitute for missing potassium.  

 

2.2.4 Transfer experiments 

For transfer experiments, Arabidopsis plants expressing (apo)aequorin were grown as 

described in section 2.2.3 on sterile half MS agar plates. After eight days of growth, 

seedlings were aseptically transferred using ethanol-cleaned forceps to: (i) Plates 

containing the same growth condition (e.g., full P to full P = transfer control); (ii) plates 

containing the opposite growth condition (e.g., full P to zero P) or; (iii) not transferred (= 

no transfer control). Plants were then grown further in standard growth cabinet conditions. 

Plants were used for cytosolic free calcium measurements on day 11 as described in 

section 2.6. 

2.2.5 Growth conditions for root hair screen 

To screen Arabidopsis mutants for a root hair phenotype, different growth conditions 

were trialled based on growth conditions found in the literature (see Appendix III for 

more details). To aid microscopy, the use of Phytagel as a gelling agent proved requisite. 

Therefore, the composition of the growth medium had to be adjusted, and the following 

protocol was used (adapted after Bates and Lynch, 1996; Datta, Prescott and Dolan, 

2015). Arabidopsis seeds, pooled from multiple plants of the same genotype, were sown 

Growth 

condition
Label P [mM] N [mM] KCl [mM] Fe [µM] Cu [µM]

Control / no 

deficiency
full P / full N / full P_full Fe 0.625 19.7 0 50 0.05

zero P / zero P_full Fe / 

zero P_full Cu
0 19.7 0.625 50 0.05

medium P 0.1 19.7 0.525 50 0.05

N deficiency zero N 0.625 0 9.4 50 0.05

full P_zero Fe 0.625 19.7 0 0 0.05

full free P_full free Fe 0.626 19.7 0 55.35 0.05

full P_excess Fe 0.625 19.7 0 100 0.05

zero P_zero Fe 0 19.7 0.625 0 0.05

zero P_low Fe 0 19.7 0.625 10 0.05

zero P_excess Fe 0 19.7 0.625 100 0.05

P / Cu 

deficiency
zero P_zero Cu 0 19.7 0.625 50 0

P / Fe 

deficiency

P deficiency
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aseptically and grown vertically on medium in square petri dishes (12 cm x 12 cm, 

Greiner Bio-One), with 4 seeds per genotype per plate (12 seeds per plate in total). The 

growth medium was half strength Johnson medium (‘half Johnson’), containing 3 mM 

KNO3, 0.5 mM MgSO4, 2 mM Ca(NO3)2, 25 µM KCl, 12.5 µM H3BO3, 1 µM MnSO4, 1 

µM ZnSO4, 0.25 µM CuSO4, 0.25 µM (NH4)6Mo7O24, 25 µM FeEDTA, 1 % (w/v) 

sucrose, 2.5 mM MES. This was adjusted to pH 5.7 using KOH, before 0.5 % (w/v) 

Phytagel (Sigma-Aldrich) was added and the medium was autoclaved. The ‘full P’ 

condition of half Johnson medium contained 1 mM NH4H2PO4. The ‘zero P’ condition 

of half Johnson medium contained 0 mM P, and 1 mM (NH4)2SO4 was added to substitute 

for missing N.  

2.3 Root system architecture quantification and image analysis 

To determine primary root (PR) length, number and length of lateral roots (LR), plants 

grown vertically on plates were scanned using a Perfection V300 Photo scanner (Epson) 

with 300 dots per inch (dpi) resolution, saving the images in .tiff format. The software 

ImageJ (Abràmoff et al., 2004) and plugin NeuronJ (Meijering et al., 2004) were used to 

trace root length.  

To measure root hair length and density, 6-day old plants were imaged on a stereo 

microscope M165FC (Leica), capturing the first cm of the root tip. Plants grown on the 

edge of the plate were not considered for analysis. Images were saved in .tiff format. 

Using the Grid plugin in ImageJ, the images were divided into 1 mm segments. Using the 

NeuronJ plugin, root hair length was quantified by measuring the 10 longest, fully 

expanded root hairs within a 1 mm segment, 4-5 mm away from the root tip, with 5 root 

hairs on either side. Root hair density was determined by counting all root hairs with clear 

tips within the same 1 mm segment (Bates and Lynch, 1996; Yi et al., 2010; Stetter et al., 

2015). 

2.4 Extracellular ATP quantification 

To determine extracellular ATP accumulated by roots (eATP), 11-day old Arabidopsis 

Col-0 seedlings (grown as described in section 2.2.3) were tested in sterile, 6-well plates 

(Corning Costar, Sigma-Aldrich) containing 1 ml of autoclaved liquid half MS, 

containing full or zero P to maintain prior growth conditions of the seedlings, pH adjusted 

to 5.6 using Tris / MES, and tilted at 30° from the horizontal. Per well, the roots of 4 
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seedlings were submerged into the medium, whilst the shoots stood upright into the air. 

Without touching the roots, a sample (100 µl) of the medium surrounding the roots was 

taken immediately after transfer of the seedlings. Seedlings were left in light and at room 

temperature for 1 hour, before the next medium sample (at 60 minutes) was taken. All 

samples were flash frozen in Nliq and stored at -80°C until quantification. ATP 

concentration in the roots’ bathing medium was determined using the ATP Determination 

Kit (Life Technologies) following the standard protocol. The assay is based on the 

enzyme luciferase’s requirement for ATP in producing light. The resulting luminescence 

was detected using the plate reader FLUOstar OPTIMA (BMG Labtech). Each sample 

was measured in 2 technical replicates. Fresh weight of the roots was recorded after 

drying them quickly on filter paper and separating roots from shoots. 

2.5 Confocal microscopy using ANN1-GFP lines 

Arabidopsis lines expressing the LPANN1::sGFP or LPANN1::ANN1-sGFP were grown on 

half MS medium containing full or zero P (as described in section 2.2.2 and 2.2.3 ). Roots 

of 10-day old seedlings were placed between microscopy slides (2.5 cm x 7.5 cm) and 

cover glass (22 x 50 mm), in a drop of control solution (autoclaved liquid half MS medium 

including vitamins and 1.175 mM MES (Sigma), pH adjusted to pH 5.6 using Tris base 

(Sigma), and maintaining prior growth condition, i.e. full or zero P levels). Root tips were 

imaged on a Leica SP5 DM6000B confocal microscope, using a x 10 (HC PL APO 10x / 

0.4 CS) or x 20 objective (HC PL APO 20x / 0.7). GFP was excited at 488 nm using an 

argon laser, set to 30 % laser power. GFP fluorescence emission was measured at 502 to 

540 nm. Throughout the experiments the settings were kept constant (pinhole: 101.35 µm, 

gain set to 652 (for x 10 objective) or 690 (for x 20 objective), line average set to 8, and 

speed of scanning to 400 Hz). Bright field images were also taken of every imaged root 

section.  

2.6 Root [Ca2+]cyt measurements by aequorin luminescence 

2.6.1 Sample preparation and coelenterazine incubation 

Excised whole roots or root tips (1 cm) of Col-0 seedlings expressing the cytosolic free 

Ca2+ reporter protein (apo)aequorin were used (Knight et al., 1991). If not otherwise 

stated, the plate reader was used for luminescence quantification for which sample tissue 
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was prepared as follows. Excised whole roots or root tips of 10-day old seedlings were 

incubated in 100 µl incubation medium containing 10 µM coelenterazine (NanoLight 

Technology) overnight, in darkness and at room temperature, with one leaf or root or root 

tip being placed per well in white 96-well plates (Greiner Bio-One), covered tightly with 

aluminium foil. Tissue was assayed on day 11. The coelenterazine incubation medium 

comprised autoclaved liquid half MS medium including vitamins and the same nutrient 

concentrations (i.e., varying P / N / Fe / Cu concentrations) as the plants were grown on. 

This was to maintain prior growth conditions during the whole assay. The incubation 

medium further contained 1.175 mM MES (Sigma), the pH was set to 5.6 using Tris base 

(Sigma) solution. Coelenterazine aliquots were dissolved in methanol before being 

carried over into the incubation medium. The final methanol concentration was 0.2 % 

(v/v) methanol. All work involving coelenterazine was carried out in green light. 

For luminometer experiments (stated in corresponding experiments), sample tissue was 

prepared as described above, with the adjustments of using whole seedlings, placed into 

3.5 ml tubes (55 mm x 12 mm, Sarstedt) containing 500 µl of 10 µM coelenterazine 

(NanoLight Technology) in incubation medium. On the morning of the assay (day 11), 

coelenterazine containing solution was replaced with 500 µl fresh incubation medium 

(without coelenterazine, maintaining full and zero P growth conditions). Samples were 

left to acclimatize after the washing step for 30 to 45 minutes before starting the assay.  

2.6.2 Luminescence quantification using a plate reader 

After overnight incubation, the plate containing root tissue was uncovered and inserted 

into a bioluminescence plate reader (FLUOstar OPTIMA, BMG Labtech). Per well, 

luminescence was recorded every second for 200 seconds. Baseline luminescence was 

recorded for 35 seconds, before injecting 100 µl of different treatment solutions (see 

section 2.6.4) with an injection speed of 150 µl / second. Changes in luminescence signal 

were monitored for 120 seconds, before injecting 100 µl discharge solution (final 

concentration: 10 % (v/v) ethanol, 1 M CaCl2) and monitoring for a further 45 seconds. 

The gain of the plate reader was adjusted to render the photon counting detector as 

sensitive as possible, without saturating it. Gain settings were kept constant between 

corresponding experiments. As the relationship between luminescence and Ca2+ 

concentration is temperature dependent, the plate reader was set to constant 25°C (Knight 
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et al., 1997). For a time course of n time points, cytosolic free Ca2+ concentrations were 

calculated according to the following formula 

− log[𝐶𝑎2+]𝑐𝑦𝑡 = 𝑎 × [−log (
𝐿𝑐

𝐿𝑡
)] + 𝑏 

with Lc = luminescence count per second at time point n (background luminescence 

subtracted); Lt = total luminescence counts; a = 0.3326; b = 5.559 (Knight et al., 1997).  

2.6.3 Luminescence quantification using a luminometer 

For longer time-course and higher sensitivity luminescence measurements, a photon-

counting luminometer (photomultiplier tube 9899A) was employed to quantify aequorin-

derived luminescence (stated in corresponding experiments). The luminometer was 

cooled to - 20°C with a FACT50 housing (Electron Tubes), and controlled using the EV6 

Counter/Timer Software. Tubes containing whole, coelenterazine-reconstituted seedlings 

were placed into the holder, and left to acclimatize from handling for circa 5 minutes, or 

until baseline luminescence was stable. Luminescence was recorded every second for in 

total 1100 seconds. Baseline luminescence was recorded for at least 150 seconds, before 

manual treatment applications (500 µl) were performed using a 1-ml light-tight syringe 

(Terumo), attached to a luer needle (26 g x 75 mm). Changes in luminescence signal were 

monitored for 850 seconds, before 500 µl of discharge solution was injected (final 

concentration: 10 % (v/v) ethanol, 1 M CaCl2) and monitoring for a further 100 seconds. 

Cytosolic free Ca2+ concentrations were determined as described in section 2.6.2.  

2.6.4 Abiotic stress treatments 

Coelenterazine-reconstituted, (apo)aequorin-expressing roots of Arabidopsis were 

challenged with a variety of abiotic stresses. Treatment solutions comprised autoclaved 

liquid half MS medium corresponding to prior growth conditions, to maintain the same 

nutrient conditions throughout the assay (from here on referred to as ‘control solution’, 

and essentially the same as the liquid medium used for incubation, see section 2.6.1, but 

excluding coelenterazine). The liquid medium further contained 1.175 mM MES (Sigma), 

pH was set to 5.6 using Tris base solution (Sigma). Application of this control solution 

was further used as a control treatment for mechanical stimulation induced by application 

of any of the treatment solutions described below.  
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On the plate reader, test treatments were applied in varying concentrations containing: 

Adenosine 5’-triphosphate disodium salt trihydrate (ATP, Melford); adenosine 5’-

diphosphate disodium salt dehydrate (ADP, Melford); non-hydrolyzable ATP-analogue 

adenosine 5′-[γ-thio]triphosphate tetralithium salt (γ-ATP, Sigma); phosphoric acid 

(Thermo Fisher); NaCl (Thermo Fisher); osmotic control for NaCl treatments, D-sorbitol 

(Sigma-Aldrich); hydrogen peroxide (H2O2, Sigma). The accompanying ions (Na+ for 

ATP and ADP; Li+ for γ-ATP) were previously shown in our laboratory not to confound 

the response (Demidchik et al., 2009). Test treatments were prepared at double strength, 

as in the well, a 1:2 dilution led to the desired final concentration of the treatment. On the 

plate reader, treatment volume was 100 µl, applied with a pump speed of 150 µl / second. 

A Vapro5520 osmometer (Wescor) was used to measure the osmolality of the NaCl and 

D-sorbitol treatment solutions.  

For the luminometer, test treatments applied were a high P-source (5 mM KH2PO4, in 

control solution background) or a solution containing equivalent [K+] to control for any 

K+ applied with KH2PO4 (5 mM KCl, in control solution background).  

2.6.5 Pharmacological inhibitor treatments  

Coelenterazine-reconstituted, (apo)aequorin-expressing roots of Arabidopsis were pre-

incubated with either diphenyleneiodonium chloride (DPI, Merck / Calbiochem), or 1,4 

– dithiothreitol (DTT, Life Technologies). DPI is a cell membrane-permeable, 

irreversible inhibitor of NADPH-Oxidases (Bolwell and Wojtaszek 1997). Powdered DPI 

was dissolved in dimethyl sulfoxide (DMSO) for a stock solution, further diluted in 

control solution background (see section 2.6.4) to a final concentration of 100 µM (final 

DMSO content: 0.63 % (v/v)) and used to pre-incubate root tissue for 30 minutes. Control 

roots were incubated in an equal DMSO concentration, without DPI. After 30 minutes, 

DPI / DMSO was washed off, and root tissue re-suspended in control solution before 

conducting the assay as described in section 2.6.2.  

DTT is known as a potent reducing agent, maintaining accessible protein thiol groups in 

reduced states (Carmack 1968, Demidchik 2009). Powdered DTT was dissolved in sterile 

distilled water for a 100 mM stock solution, further diluted in control solution background  

(see section 2.6.4) to a final concentration of 2 mM and used to pre-incubate root tissue 

for 30 minutes. DTT was kept in the well during the assay.  
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Root tissue pre-treated with DPI or DTT were challenged with ATP treatment (or 

corresponding control solution background) only.  

2.7 Root [Ca2+]cyt measurements by ratiometric YC3.6 reporter  

2.7.1 Sample preparation and superfusion set-up 

Förster resonance energy transfer (FRET) microscopy was carried out in the laboratory 

of Alex Costa, University of Milan, Italy. Ten-day old Arabidopsis seedlings, grown on 

half MS (0.8 % bactoagar, pH 5.6, no sucrose) and expressing a cytosolic cameleon sensor 

(NES-YC3.6; Krebs et al., 2012) were mounted into a custom-built superfusion chamber   

(Behera and Kudla, 2013), stabilized with wetted cotton wool and continuously 

superfused with imaging solution (IS; 5mM KCl, 10 mM CaCl2, 10 mM MES, set to pH 

5.8 using Tris) using an EconoPump system (BioRad) with a tube diameter of 0.8 mm 

and a speed of 0.9 ml / minute. The shoots were not submerged but propped onto the 

cotton wool. Seedlings were left to acclimatize to constant superfusion for 10 - 15 

minutes, before starting the experiment.  

2.7.2 Inverted fluorescence microscopy 

NES-YC3.6-expressing plants were imaged using a Ti-E widefield inverted fluorescence 

microscope (Nikon) with a Nikon Plan Fluor 4x 0.13 dry objective. The samples were 

excited at 440 nm using a Prior Lumen 200 PRO fluorescent light source (Prior 

Scientific). Images were collected with an ORCA-D2 Dual CCD camera (Hamamatsu). 

Exposure time was 250 ms with 4 x 4 binning. Images were acquired every five seconds 

for up to 30 minutes. The software NIS Elements AR 4.0 (Nikon) was used to control the 

microscope, light source and camera.  

2.7.3 Stress treatment 

Upon the start of an experiment, seedlings were imaged for two minutes whilst 

superfusing IS. Stress treatment (1 mM ATP, in IS background) was then superfused 

through the system for three minutes before changing back to IS without ATP. 
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2.7.4 YC3.6 image analysis using ImageJ Fiji 

ImageJ Fiji was used to process the cpVenus and CFP signal intensities. Using the ‘ROI 

Manager’ tool, each root sample was individually fitted with regions of interest (ROI) 

which covered comparable areas (size and location, determined as distance from the root 

tip). Z-axis profiles were plotted for each channel and used to calculate the FRET raw 

ratios (cpVenus / CFP). Background signal was subtracted.  

2.8 Root [Ca2+]cyt measurements by intensiometric GCaMP3 

reporter 

2.8.1 Sample preparation and set-up  

Ten- to 11-day old Arabidopsis seedlings grown on half MS (0.8 % bactoagar, pH 5.6, no 

sucrose) and expressing the 35S::GCaMP3 reporter in the cytosol were used for 

experiments (Tian et al., 2009; Vincent et al., 2017). Seedlings remained on horizontal 

growth medium plates for the entire experiment, facilitating minimal handling and local 

application of treatment solution (compared to injection and perfusion set-up for aequorin 

and YC3.6 assays, respectively). Treatment solution (1 mM ATP) was in control solution 

background (containing respective full or zero P, further containing 1.175 mM MES, set 

to pH 5.6 using Tris, as for treatment solutions in aequorin trials, see section 2.6.4). 

Control solution without ATP was used as a control for any mechanical stimulation during 

treatment application. Treatment was applied as a 3 µl drop to the root tip. A fluorescein 

solution (20 µM, gift from Philip Mair, Biochemistry Department), was applied to test 

for capillary spread along the root and was monitored using a GFP-specific emission 

spectrum. The applied solution was found to spread within < 1.5 seconds along the 

imaged root section (Figure 3). Different barrier set-ups were therefore trialled to allow a 

defined local application of treatment (see Figure 3), of which a gap in the agar proved 

most successful in preventing spread of treatment solution. Whenever a localized 

application of treatment solution was required, root tips were placed across a gap in the 

agar.  
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Figure 3: Trialling different barriers to allow localized application of treatment solution in a 

simple plate-based horizontal set-up. Brightfield images (A, C, E, G) and GFP-emission (B, D, F, 

H) depict the spread of a fluorescein-containing solution along the root if applied to the root tip 

without barrier (A, B), if applied to KimWipe square placed over root tip (C, D), applied to the 

root tip with Vaseline barrier across root (E, F) and applied to the root tip with the root being 

placed over a gap in the agar (G, H). Scale bar in B: 1 mm. 

2.8.2 Microscopy of GCaMP3-expressing plants 

GCaMP3-expressing Arabidopsis plants were imaged on a Stereo microscope M205 FA 

(Leica), with a DFC365FX camera (Leica) and a Sola SE365 light source (Lumencor), 

which allowed excitation at 470/40 nm and using a GFP-ET filter collected emission at 

525/50 nm, with a 500 ms exposure time, a gain of 2.0 and 30 x magnification. The 

software LAS X (Leica) was used to control the microscope, light source and camera. 

2.8.3 GCaMP3 Image analysis using ImageJ Fiji 

ImageJ Fiji was used to process the GCaMP3 GFP signal intensities. Using the ‘ROI 

Manager’ tool, each root sample was individually fitted with regions of interest (ROI) 
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which covered comparable areas (size and location, determined as distance from the root 

tip). Z-axis profiles were plotted for each ROI, and background signal was subtracted. 

2.9 Histological staining 

2.9.1 Intracellular ROS staining 

To stain intracellular ROS (reactive oxygen species), the membrane-permeable dye CM-

H2DCFDA (2′, 7′-dichlorodihydrofluorescein diacetate, Thermo Fisher) was used at a 

final concentration of 20 µM. A 50 µg aliquot of the dye was dissolved in dimethyl 

sulfoxide (DMSO) to give a 10 mM stock, and further diluted in assay medium (0.1 mM 

KCl, 0.1 mM CaCl2, 1.175 mM MES, set to pH 6.0 using Tris, adapted from Foreman et 

al., 2003). Work was carried out in the dark as the dye is light sensitive. Ten- to 11-day 

old Arabidopsis Col-0 seedlings grown on half MS (0.8 % bactoagar, pH 5.6, no sucrose, 

with varying P and Fe concentrations) were incubated in 20 µM CM-H2DCFDA for one 

hour (in the dark and at 4°C to inhibit activity of extracellular esterases), before seedlings 

were gently washed in fresh assay medium and placed back onto plates containing half 

MS medium matching their prior nutrient growth condition. Plants acclimatized in light 

for one hour before being imaged on the plates under a stereo microscope, M205FA 

(Leica, see section 2.8.2).  The GFP-ET filter allowed excitation at 470/40 nm and 

collected emission at 525/50 nm, with a 400 ms exposure time, light intensity of 70 %, a 

gain of 2.0 and 50 x magnification. ImageJ Fiji software was used to trace each root using 

the line tool (line width: 10) in combination with the ‘plot profile’ function which reports 

signal intensity along the root (Reyt et al., 2015). For each root, three lines were drawn 

(from root tip shoot wards through centre of root, from root tip shoot wards along the 

upper side of the root, from root tip shoot wards along the lower part of the root), and the 

intensity profiles averaged to report an overall average per root (Reyt et al., 2015).  

2.9.2 Callose staining 

Callose deposition was stained using aniline blue. Ten- to 11-day old Arabidopsis Col-0 

seedlings grown on half MS (0.8 % bactoagar, pH 5.6, no sucrose, with varying P and Fe 

concentrations) were incubated in 0.01 % (w/v) aniline blue (BDH Chemicals) in a 

background medium of 150 mM K2HPO4 (Fisher Chemicals) in distilled water, pH 9, for 

1.5 hours in the dark and at room temperature (after Schenk and Schikora, 2015). 
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Seedlings were gently washed in distilled water, and placed into a drop of 60 % (v/v) 

glycerol on microscopy slides (2.5 cm x 7.5 cm) and cover glass (22 x 50 mm). Root tips 

were imaged under a stereo microscope, M205FA (Leica, see section 2.8.2).  Samples 

were excited at 358 nm and a UV-filter (Leica # 10447415) allowed emission collection 

at 461 nm, with a 1.5 second exposure time, light intensity of 100 %, gain of 2.0 and x 50 

magnification. ImageJ Fiji software was used to process the captured images. As aniline-

stained callose deposition results in small but distinct spots, which are difficult to 

quantify, presence or absence in the root tip (0 – 500 µm) and elongation zone (1000 – 

1500 µm) was scored, to relate callose deposition to regions of intracellular ROS hotspots 

(for more details, see Chapter 4, Figure 51).  

2.10 Genotyping of Arabidopsis mutant lines 

2.10.1 Manual genomic DNA extraction  

One leaf per circa 2-week old seedling grown on half MS medium (0.8 % bactoagar, pH 

5.6, no sucrose) was placed in a sterile 1.5 ml Eppendorf tube and flash frozen in liquid 

nitrogen (Nliq). Using Nliq-cooled micropestles, each sample was ground and 400 µl of 

genomic DNA (gDNA) extraction buffer added (200 mM Tris-HCl pH 7.5, 250 mM 

NaCl, 25 mM ethylenediaminetetraacetic acid (EDTA), 0.5 % (v/v) sodium dodecyl 

sulfate (SDS), in autoclaved distilled water). Samples were vortexed to further disrupt the 

tissue, before being centrifuged for 7.5 minutes at full speed (14 000 g). The supernatant 

(circa 300 µl) was pipetted off and into new, sterile Eppendorf tubes containing an equal 

amount of ice-cold isopropanol, quickly vortexted, and left at -20°C for 10 to 15 minutes 

to precipitate the gDNA. Samples were centrifuged for 5 minutes at 14 000 g before 

removing supernatant and drying the gDNA (by opening the Eppendorf lids) at room 

temperature for 15-30 minutes. The pelleted gDNA was resuspended in 25 – 40 µl 

autoclaved distilled water, before checking DNA concentration and quality on a 

NanoDrop 2000 Spectrophotometer (Thermo Fisher). 

2.10.2 High-throughput genomic DNA extraction  

One leaf per circa 2-week old seedling was harvested into 8-strip 1.2 ml collection tubes 

(Alpha Laboratories), adding one 3 mm-glass bead per tube, and 200 µl of gDNA 

extraction buffer without SDS (see section 2.10.1 for extraction buffer details). The 8-
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strip tubes were fitted into 96-sample adapters of the TissueLyzerII (Qiagen), which was 

used to disrupt the sample tissue with 2 cycles at 20 Hz, turning the plates in between the 

cycles to ensure homogenous tissue disruption. Samples were pulse-centrifuged in a 

Sorvall Legend RT Plus centrifuge (Thermo Fisher), before adding 200 µl of gDNA 

extraction buffer with 1% (v/v) SDS. Samples were centrifuged for 7 minutes (3000 rcf, 

4°C), before transferring 200 µl supernatant per sample into the wells of a storage plate 

(0.8 ml, Thermo Fisher), containing 200 µl isopropanol. Samples were left at -20°C for 

10 minutes up to overnight, before centrifuging for 35 minutes (3000 rcf, 4°C). 

Supernatant was poured off, plates blotted dry with paper towel, the pelleted gDNA 

washed with 150 µl 70% ethanol, pulse-spinned upside down to remove excess ethanol 

and dried at room temperature for 20-30 minutes. The pelleted gDNA was resuspended 

in 75 µl autoclaved distilled water, before checking DNA concentration and quality on a 

NanoDrop 2000 Spectrophotometer (Thermo Fisher). 

2.10.3 Polymerase chain reaction (PCR) 

Gene-specific primers were designed using the Signal Salk T-DNA Primer Design tool 

powered by the Genome Express Browser Server (signal.salk.edu/tdnaprimers.2.html). 

Resulting primer sequences were checked for specificity using the Primer Blast tool 

(www.ncbi.nlm.nih.gov/tools/primer-blast/) powered by the National Centre for 

Biotechnology Information (NCBI). For a complete list of genotyping primers, including 

T-DNA insertion specific primers, see Appendix II. Corresponding wild type gDNA 

samples were run alongside every T-DNA-mutant to be analysed. A Taq DNA 

Polymerase (‘Eco-Taq’, produced and purified in the Department of Plant Sciences) was 

used for PCR reactions at the following concentrations: 1 x Taq reaction buffer (20 mM 

(NH4)2SO4, 75 mM Tris-HCl pH 8.8, 2 mM MgCl2, 0.01 % (v/v) Tween-20), 200 µM 

deoxynucleotide mix (Bioline), 0.1 µM forward and reverse primer (Sigma-Aldrich), 0.5 

U Taq DNA Polymerase, and 1 µl of extracted gDNA in a total volume of 20 µl 

autoclaved distilled water. PCRs were run on a ProFlex PCR system (Thermo Fisher), 

using the following hot-start programme: Heat lid to 105°C; initial denaturation step (2 

min, 95°C); 35 cycles of denaturation (30 sec, 95°C), annealing (30 sec, 58-63°C 

depending on amplicon of interest), elongation (1 min, 72°C); a final elongation step (10 

min, 72°C), cooling the reaction to 4°C (10 min), and holding at 15 - 20°C until stopping 

the run. PCR products were checked using gel electrophoresis (Sub-Cell GT 

electrophoresis cell with a PowerPac300 power source, BioRad). Samples were run on 
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0.8 – 1 % (w/v) agarose (Melford) gels in 1 x Tris-Acetate EDTA background (TAE, 

diluted from 50 x stock: 2 M Tris, 1 M glacial acetic acid, 50 mM EDTA). Five times 

concentrated DNA loading buffer (Bioline) was added at a final concentration of 1 x to 

each sample, and DNA was stained using SYBR Safe DNA gel stain (Invitrogen). 

Hyperladder 1kb (Bioline) was used to estimate size of amplicons. Gel electrophoresis 

was run at 90 mV, and resulting band separation imaged under UV light on an InGenious 

3 imaging system (Syngene).  

2.11 Bioinformatic resources and statistical analysis 

A list of putative genes for Ca2+ channels in Arabidopsis was compiled, according to the 

following criteria: (i) Include experimentally confirmed Ca2+ channels reported for 

Arabidopsis; (ii) include all members of their gene family; (iii) include all genes 

belonging to gene ontology term “Ca2+ channel activity” (GO:0005262, defined as: 

“enables the facilitated diffusion of a calcium ion (by an energy-independent process) 

involving passage through a transmembrane aqueous pore or channel without evidence 

for a carrier mediated mechanism”). Candidates were checked for site of expression and 

prioritized if expressed in the root (particularly root hairs), pollen tube or ‘not annotated’, 

to avoid false negatives (site of expression was assessed through araport.org and previous 

studies (Talke et al., 2003; Gobert et al., 2006; Jones et al., 2006; Brady et al., 2007; Deal 

and Henikoff, 2010; Bruex et al., 2012; Lan et al., 2013; Becker et al., 2014; Kellermeier 

et al., 2014; L. Huang et al., 2017)).  

Using publicly available bioinformatic resources and previous studies, the genes were 

checked for reported change of expression under low P (Lin et al., 2011; Kellermeier et 

al., 2014), in response to gravity vector or mechanical stimulation (Kimbrough et al., 

2004), their co-expression with genes of interest with regards to P starvation and root hair 

growth using the atted.jp co-expression database (Obayashi et al., 2014),  proteomic 

changes upon P starvation (Lan et al., 2012), and membrane-localized protein-protein 

interaction using  the MIND database (Jones et al., 2014a). See Appendix I for a full list 

of putative Ca2+ channels. 

All statistical analyses were performed using the open-source software R (www.r-

project.org, version 3.5.1) in a R studio environment. The R packages ‘dplyr’ and ‘tidyr’ 

were used to arrange data. The package ‘MESS’ was used to calculate area under the 

curve. See Figure 6 for details on analysis of aequorin-derived data. A Student’s t-test or 
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ANOVA was used to test for statistically significant differences, using a significance 

threshold of p < 0.05. A Tukey HSD post-hoc test was employed to determine differences 

among the groups. A 95% family-wise confidence level was applied.   

R was used to plot data, using the package ‘ggplot2’. The default boxplot design (as 

implemented in R, after Tukey) was used to display the data spread, using an underlying 

‘jitterplot’ to display individual data points. In the boxplot, the thick middle line denotes 

the median, separating the upper and lower half of the data; the hinges (box outline) 

denote median of the upper and the lower half of the data, respectively; the bars denote 

entirety of data excluding outliers; outliers are depicted by individual points outside the 

boxplot bars. The free graphic software Inkscape (www.inkscape.org, version 0.92.2) was 

used for figure design.  
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3 PHOSPHATE STARVATION 

ALTERS CALCIUM 

SIGNALLING IN ARABIDOPSIS 

ROOTS 

3.1 Introduction 

3.1.1 Abiotic stress perception involves Ca2+ ion fluxes 

In the field, plants are exposed to a multitude of external stresses, such as mechanical 

stimulation, salt, drought and oxidative stress and wounding. Stress perception and 

translation into adequate plant responses are fundamental to optimal plant growth and 

ultimately, survival. On a cellular level, much progress has been made in uncovering 

networks of signalling molecules that translate extra- into intracellular clues. Fluxes of 

Ca2+ ions across membranes have been shown to play a major role (see Chapter 1, section 

1.2.6 onwards, for a more thorough introduction to Ca2+ as a second messenger, and 

Chapter 4, section 4.1.2, for a more thorough introduction to extracellular nucleotide 

signalling). In the following, abiotic stresses used as tools to elicit Ca2+ fluxes will be 

briefly introduced, and the main questions for the for the involvement of Ca2+ signalling 

in P starvation will be outlined. 
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Mechanical stress has long been known to rapidly trigger the influx of Ca2+ ions into 

cells of tobacco and Arabidopsis (Knight et al., 1991, 1992; V Legué et al., 1997). The 

resulting [Ca2+]cyt signatures were shown to vary depending on the tissue affected and the 

stimulus perceived (V Legué et al., 1997; Monshausen et al., 2009; Shih et al., 2014). 

Arabidopsis root epidermal cells from the elongation and mature zone showed a localized 

extracellular alkalinisation (increase of pH) within seconds of touch stimulus, whereas a 

transient acidification occurred intracellularly (Monshausen et al., 2009). Two 

extracellular ROS bursts occurred within less than a minute upon touch perception 

(Monshausen et al., 2009). Both pH change and ROS production were dependent on an 

initial increase in [Ca2+]cyt (Monshausen et al., 2009). Widespread transcriptional changes 

were reported within minutes of mechanostimulation (Kimbrough et al., 2004). Ca2+-

associated genes such as Calmodulin-like (CML) 12 and CML24 were strongly 

upregulated (Braam and Davis, 1990). A PM-localized receptor-like kinase, FERONIA, 

was found necessary for the full [Ca2+]cyt and pH response upon a bending stimulus, as 

well as induction of  touch-related genes, e.g. CML12 and CML24 (Shih et al., 2014).  

Early on, the existence of mechanoresponsive Ca2+-permeable channels was deduced and 

to date, several PM-localized mechanosensitive Ca2+-permeable channels have been 

identified in planta, including MCA1 and MCA2 (Nakagawa et al., 2007; Yamanaka et 

al., 2010), the MSL family with ten members (Haswell and Meyerowitz, 2006; Haswell 

et al., 2008; Hamilton et al., 2015) and most recently, the hyperosmolality-gated Ca2+-

permeable channel OSCA1 / CSC1 with 15 family members in Arabidopsis (Hou et al., 

2014; Yuan et al., 2014; see Chapter 1 section 1.2.3 and 1.2.4 for a more detailed 

introduction to putative Ca2+ channels). Understanding the molecular components 

involved in mechanosensing is however hampered by the fact that disturbing the function 

of those channel proteins mostly led to very mild phenotypes, possibly due to genetic 

redundancy. Recently, an embryo lethal phenotype has been described for a 

transmembrane protein, Defective Kernel1 (DEK1), which was necessary for a 

mechanically activated Ca2+ flux in Arabidopsis protoplasts, (Tran et al., 2017). If DEK1 

forms a mechanosensitive Ca2+ channel itself or rather is associated with another channel 

is however unknown (Tran et al., 2017). 

Salt and osmotic stress have also been shown to lead to dynamic increases in [Ca2+]cyt, 

reported for many plant species including tobacco, Arabidopsis, rice and most recently 

the moss Physcomitrella patens (Knight et al., 1997; Kiegle, C. Moore, et al., 2000; 

Moore et al., 2002; Tracey et al., 2008; Laohavisit et al., 2013; W.-G. Choi et al., 2014; 
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X. Zhang et al., 2015; Y. Zhang et al., 2015; F. Huang et al., 2017; Storti et al., 2018). 

Hyperosmotic stress is defined as a higher solute concentration outside compared to 

inside the cells (occurring during e.g. drought and salt stress), and vice versa for 

hypoosmotic stress (occurring in e.g. waterlogged soils). Salt stress is composed of a 

hyperosmotic component as well as toxicity through excess Na+ and Cl- ion accumulation 

(Maathuis, 2014).  

Monitoring whole-tissue [Ca2+]cyt  did initially not show marked differences between 

response to salt and osmotic stress (Knight et al., 1997), cell-type specific targeting of 

aequorin however resolved different responses (Kiegle et al., 2000). A pronounced 

[Ca2+]cyt response to both salt and osmotic stress occurred in the epi- and endodermis, but 

to a lesser extent in the pericycle upon osmotic stress (Kiegle et al., 2000). Local salt 

treatment of root tissue led to the propagation of a [Ca2+]cyt signal along the roots’ 

endodermis and cortex, to areas not in direct contact with the stress (W.-G. Choi et al., 

2014). The experimental bathing medium and hence the PM’s voltage was found to 

strongly influence the [Ca2+]cyt response to salt and osmotic treatment (Tracey et al., 

2008). PM-Ca2+ channel blockers (lanthanides) dampened, but did not abolish, the 

[Ca2+]cyt response upon salt and mannitol in both Arabidopsis and rice roots, indicating 

that both extracellular and intracellular Ca2+ stores operate in the response, as well as 

other signalling events besides Ca2+ transducing the message (Knight et al., 1997; Tracey 

et al., 2008; Y. Zhang et al., 2015). Other signalling molecules rapidly increasing upon 

salt perception were extracellular ATP and ROS (Miller et al., 2009; Dark et al., 2011; 

Ma et al., 2012). ROS formation in the roots was dependent on the NADPH-oxidases D 

and F (Ma et al., 2012). Inositol triphosphate (InsP3)-dependent [Ca2+]cyt microdomains 

were found adjacent to the tonoplast, suggesting the vacuole as intracellular source and 

InsP3 as a signal transducer upon osmotic stress (Knight et al., 1997). The ER, which is 

described as another major Ca2+ source in cells, did not show a decrease in [Ca2+], but 

only a rapid increase upon salt perception, excluding the ER as (major) Ca2+ source upon 

salt stress (Bonza et al., 2013).  

Particularly for salt stress, the initial [Ca2+]cyt increase has been linked to downstream 

changes in gene expression (W.-G. Choi et al., 2014). Most prominently, the Salt Overly 

Sensitive (SOS) pathway has been dissected, in which the PM-localized CBL4 (or SOS3) 

senses the salt-dependent increase in [Ca2+]cyt, and has been shown to interact with 

CIPK24 (SOS2) (Liu et al., 2000). The CBL/CIPK complex then phosphorylates and thus 
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activates the PM Na+/H+ antiporter (SOS1), which enhances Na+ efflux from the cytosol 

(Shi et al., 2000; Quintero et al., 2011). 

As Na+ entry depolarizes the epidermal PM voltage (Maathuis, 2014), voltage-dependent 

and independent PM Ca2+-permeable channels have been implicated in response to salt 

stress (Wilkins et al., 2016). So far, knocking out individual single channel proteins has 

not led to major inhibition of the rapidly triggered [Ca2+]cyt fluxes, thus the genetic 

identity of channel proteins underlying the trans-PM and trans-endomembrane Ca2+ flux 

upon salt perception remain unknown. TPC1 has been implicated in governing vacuolar 

Ca2+ release upon salt stimulus, however it showed a delayed rather than an inhibited Ca2+ 

response (W.-G. Choi et al., 2014). ANN1 was found to be responsible for the ROS-

activated [Ca2+]cyt component of salt stress perception, consistent with ANN1’s role as a 

Ca2+-permeable channel activated by extracellular ROS (Laohavisit et al., 2012, 2013). 

As osmotic stress is easily linked to mechanical stress – through increase or decrease of 

turgor – ion channels activated could be mechano-regulated. Indeed, OSCA1 showed a 

strongly dampened Ca2+ influx in response to hyperosmotic stress (Yuan et al., 2014). 

Trans-PM Ca2+ influx upon hypoosmotic stress was shown to be mediated by MCA 

proteins, in rice, tobacco and Arabidopsis (Kurusu et al., 2012; Kamano et al., 2015). 

Oxidative stress can occur as a bona fide stress in the field (e.g. through exposure to high 

concentrations of ozone), and oxidative signalling (in the form of ROS) has been 

mentioned as a component of the above described mechanical and osmotic stresses. Both 

reactive oxygen as well as reactive nitrogen species (ROS, RNS, respectively) occur in 

diverse, often short-lived forms of which most are difficult to quantify, and of which ROS 

are the better studied (Halliwell and Whiteman, 2004; Richards et al., 2015). In plants, 

ROS can be produced enzymatically via specialized NADPH-Oxidases, in which 

intracellular NADPH oxidation is translated into extracellular H2O2 production (Foreman 

et al., 2003; Miller et al., 2009; Magnani et al., 2017). Transition metals, such as iron and 

copper, non-enzymatically catalyse the formation of intra- and extracellular reactive 

species, e.g. hydroxyl radicals, and thus have to be tightly regulated (Kehrer, 2000; Ravet 

et al., 2009; Richards et al., 2015).  

Perception of ROS rapidly triggers an increase in [Ca2+]cyt (Price et al., 1994; Rentel and 

Knight, 2004; Evans et al., 2005). The response has been shown to vary depending on the 

type of ROS, e.g. Arabidopsis root tissue responded differently to ozone and hydrogen 

peroxide (H2O2; Evans et al., 2005), or hydroxyl radicals and H2O2 (Demidchik, Shabala, 

et al., 2003). PM-localized Ca2+ channels in Arabidopsis root tissue showed a decreasing 
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sensitivity to extracellular H2O2 the more mature the epidermal cells tested, but 

independently of age, epidermal cells always responded more readily to H2O2 than cortex 

cells (Demidchik et al., 2007). Recently, transmembrane aquaporins were shown to 

facilitate transport of extracellular H2O2 into cells, so far however only reported for leaf, 

and not root, cells of Arabidopsis (Tian et al., 2016; Rodrigues et al., 2017). A receptor 

for H2O2 encoded by a PM-localized leucine rich repeat receptor-like kinase, GHR1 

(guard cell hydrogen peroxide resistant 1), was described in Arabidopsis guard cells (Hua 

et al., 2012). GHR1 was shown to be ubiquitously expressed, including in roots (Wu et 

al., 2016), studies so far have however focussed to characterize GHR1 in leaf tissue only 

(Hua et al., 2012; Devireddy et al., 2018). 

Early work to characterize the PM Ca2+ channel(s) involved focussed on guard cells, and 

showed H2O2-activated PM Ca2+ flux in Arabidopsis (Pei et al., 2000). Since then, it was 

demonstrated that ROS equally regulated channel-activity in root cells of Arabidopsis and 

pea (Demidchik, Shabala, et al., 2003; Foreman et al., 2003; Zepeda-Jazo et al., 2011). 

ANN1 was shown to form redox-regulated Ca2+-permeable pores in the PM of root 

epidermal cells (Laohavisit et al., 2012). The genetic identity of the ROS-activated 

conventional Ca2+ channels remains unknown. 

Extracellular nucleotides, such as extracellular ATP (eATP), are known to consistently 

trigger strong [Ca2+]cyt increases in plant tissue (Demidchik, Nichols, et al., 2003; Tanaka 

et al., 2010; J. Choi, Tanaka, Cao, et al., 2014). The receptor for eATP, mutants of which 

completely lack the eATP-induced [Ca2+]cyt response, has only recently been 

characterised in plants (Does Not Respond to Nucleotides1 (DORN1); Choi, Tanaka, 

Cao, et al., 2014). DORN1 protein localizes to the plasma membrane (Choi, Tanaka, 

Liang, et al., 2014) and is expressed throughout the root, with highest levels of expression 

found in the quiescent centre and columella root cap cells, as well as in the endodermis 

and cortex cells of the elongation zone (Birnbaum et al., 2003; Nawy et al., 2005; Brady 

et al., 2007; J. Choi, Tanaka, Liang, et al., 2014). Signalling networks upon eATP 

perception will be introduced in more detail in Chapter 4 (see section 4.1.1 onwards).  
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3.1.2 The involvement of Ca2+ fluxes in nutrient deficiencies – unknown 

for P starvation 

Besides their role in abiotic stress perception (for details on Ca2+’s role in biotic stress 

perception see Chapter 1, section 1.2.6), fluxes of Ca2+ have more recently also been 

shown to play a role in nutrient sensing. For nitrate-starved Arabidopsis root and leaf 

tissue, there is strong evidence for nitrate-resupply’s eliciting rapid modulations in 

[Ca2+]cyt, followed by an increase in nuclear [Ca2+] (Riveras et al., 2015; Liu et al., 2017). 

Potassium (K+) deficiency triggered rapid and more delayed changes in [Ca2+]cyt (Behera 

et al., 2017). As altering the [K+] however strongly affects the PM voltage (Demidchik et 

al., 2002), it is unknown to what extent this is an effect of mis-regulated PM voltage over 

direct sensing of nutrient availability. Vacuolar magnesium (Mg2+) detoxification relied 

on [Ca2+]cyt signalling (Tang et al., 2015). For boron (B), prolonged deprivation was 

shown to increase [Ca2+]cyt, however so far no short-term [Ca2+]cyt modulation has been 

reported (Mühling et al., 1998; Quiles-Pando et al., 2013). Iron (Fe) and copper (Cu2+) 

addition led to rapid increases in [Ca2+]cyt in marine diatoms, marine algae and 

Arabidopsis, however owing to their redox-active role it is difficult to discern their 

nutritional role from their involvement in generating oxidative stress (Falciatore et al., 

2000; González et al., 2010; Rodrigo-Moreno et al., 2013). 

Even though P, alongside nitrogen (N) and K+, is one of the major nutrients limiting plant 

growth when limited in availability, the involvement of [Ca2+]cyt signalling in P nutrition 

is currently unknown. A role for [Ca2+]cyt in P nutrition is particularly intriguing given the 

special relationship P and Ca2+ have; they easily complex, which evolutionary dictated 

low [Ca2+]cyt to guarantee a functioning P-based metabolism (see Chapter 1, section 1.3 

for a more detailed dissection of the problem). The involvement of [Ca2+]cyt in P nutrient 

sensing has been implied but not resolved (Chiou and Lin, 2011; Lin et al., 2014; Chien 

et al., 2018). Both the effect of P starvation on [Ca2+]cyt signalling, as well as the 

involvement of [Ca2+]cyt in transducing P availability, are unknown.  

3.1.3 Experimental approaches and aims 

To elucidate the role of [Ca2+]cyt in P nutrition, Arabidopsis wild type plants, ubiquitously  

expressing the Ca2+ reporter aequorin in the cytosol, were starved of P. In general, half 

MS medium was used as the standard growth medium, and nutrient content was modified 

according to the experimental question, e.g. altering P levels (see Chapter 2, section 2.2.3, 
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for further details). Root system architecture was quantified to assess the impact of the 

altered ionic composition of the growth medium on plant growth. Root tissue was used 

for the analysis of [Ca2+]cyt responses, particularly root tip tissue, as roots in  general are 

the first site of contact with nutrients in the soil, and the root tip was found to be 

predominantly responsible for P uptake (Kanno, Arrighi, et al., 2016). 

First, the [Ca2+]cyt response of aequorin-expressing P-starved root tips to abiotic stresses 

(mechanical, osmotic and salt, oxidative stress and extracellular nucleotide signalling 

molecules) was tested. P-starvation could potentially affect the [Ca2+]cyt response by 

either increasing or decreasing the use of Ca2+ upon stress perception, or not alter its use 

at all. Given the fact that Ca2+ easily complexes with P-groups, it could be conceived that 

in P-limited conditions, and an overall decreased cellular P-pool, the use of Ca2+ might be 

restricted to contain its cytotoxic effects.  

Secondly, to test the specificity of the [Ca2+]cyt response of P-starved root tissue to abiotic 

stress treatments, (apo)aequorin-expressing Arabidopsis plants were also starved of N and 

root tissue subjected to stress treatments. As it is known that Fe-availability affects P-

starvation responses of Arabidopsis, including remodelling of the root system (see 

Chapter 1, section 1.1.4 for an introduction), Fe levels were modified in addition to 

varying P levels, to test how the described Fe-P interaction might influence the [Ca2+]cyt 

response. Cu2+-deprived Arabidopsis plants were then used to test for the specificity of 

this Fe-P relationship.  

Finally, P-starved Arabidopsis aequorin-expressing plants were resupplied with a high P-

pulse, to test if [Ca2+]cyt were involved in perception of P availability. Both a transient 

increase of [Ca2+]cyt, as reported for nitrate resupply ((Riveras et al., 2015; Liu et al., 

2017), as well as a transient decrease of [Ca2+]cyt upon P resupply are theoretically 

conceivable to act as a signalling event.  

Overall, these experimental approaches should enable answering the following questions: 

 Is the [Ca2+]cyt response to abiotic stresses altered under P starvation? 

 If so, is this effect specific to P starvation? 

 What other components are involved in shaping the [Ca2+]cyt response under P 

starvation (e.g. proteins involved, developmental aspects, links to Fe nutrition)? 

 Is P availability signalled through modulations in [Ca2+]cyt? 
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3.2 Results 

3.2.1 Phosphate starvation inhibits primary root growth 

To study the effect of P starvation on the free cytosolic calcium ([Ca2+]cyt) signature, 

Arabidopsis thaliana Col-0 roots constitutively expressing cytosolic (apo)aequorin were 

grown under different P regimes. Seedlings were germinated and grown on half-strength 

Murashige & Skoog medium (half MS), with varying P concentrations: full P: 0.625 mM 

P, medium P: 0.1 mM P, zero P: 0 mM P. Roots grown on these P regimes differed in 

primary root length, with primary root growth being inhibited by decreasing P supply 

(Figure 4A). Seedlings grown on full P showed a primary root length of 6.01 ± 0.06 cm 

(mean ± standard error of means (SEM), 5 independent trials, n = 142 – 144 individual 

roots measured per growth condition, Figure 4B), medium P roots were significantly 

shorter than full P roots (4.42 ± 0.04 cm, Analysis of variance (ANOVA) with post-hoc 

Tukey test: p-value < 0.001, Figure 4B). Zero P roots were significantly shorter than 

medium P roots (2.69 cm ± 0.04 cm, p-value < 0.001).  
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Figure 4: Primary root lengths of phosphate-starved Arabidopsis thaliana plants. Col-0 were 

grown on gel-based nutrient medium with varying P concentrations: full P (0.625 mM PO4
3-), 

medium P (med P, 0.1 mM PO4
3-) or zero P (0 mM PO4

3-). On day 10, plants were scanned and 

primary root length was quantified using the ImageJ NeuronJ Plugin. (A) Representative root 

system architecture of 10-day old seedlings, scale bar indicates 1 cm. (B) Primary root lengths of 

n = 142 - 144 individual seedlings per growth condition, data from 5 independent trials. Boxplot 

thick middle line denotes median. Analysis of variance (ANOVA) with post-hoc Tukey Test was 

used to assess statistical differences. Significance levels (p-value): *** (< 0.001).  

  



Chapter 3: Phosphate Starvation alters Calcium Signalling in Arabidopsis Roots 

 55 

3.2.2 Phosphate starvation induces root hair growth – independent of non-

functional single putative Ca2+ channels 

Mutant genotyping and root hair phenotyping was carried out in collaboration with Dr. 

Zhizhong Song, Ludong University, China 

Another root system architectural trait linked to P starvation is the increased length of 

root hairs (Foehse and Jungk, 1983; Bates and Lynch, 1996; Ma et al., 2001; Haling et 

al., 2013; Bhosale et al., 2018). As [Ca2+]cyt oscillations and gradients are involved in 

governing polar root hair growth (Bibikova et al., 1997; Monshausen et al., 2008), 

mediated by PM localized Ca2+ channels (Véry and Davies, 2000), it was of passing 

interest to test for involvement of putative Ca2+ channel genes in root hair growth under 

P starvation conditions. In short, a suite of Arabidopsis lines defective in putative Ca2+ 

channels was compiled and genotyped (see Chapter 2, section 2.1 and 2.11, for details of 

compilation, and Appendix I for putative Ca2+ channel details; see section 2.10 and 

Appendix II for details on genotyping and the individual mutant lines). Different root hair 

growth conditions were trialled (based on relevant previous studies, Appendix III), and 

optimal growth conditions for the current laboratory conditions chosen (see Chapter 2, 

section 2.2.5, and Appendix III).  

In total, 74 single mutants and 3 higher-order mutant lines were screened for a root hair 

phenotype under both full and zero P growth conditions. As for some gene models more 

than one allele was included, this mutant library covered 61 unique gene models. Each 

mutant was grown with its respective paired wild type. Primary root lengths were scored 

as a measure of how the mutation might affect overall root growth and potentially bias 

root hair scoring (Appendix IV). All mutants showed primary root lengths within a range 

that was comparable to their respective wild types. Quantification of root hairs (for details 

see Chapter 2, section 2.3) showed significantly elongated root hairs under P starvation 

conditions (compare Figure 5A and B). Under nutrient-replete conditions, wild types 

grew mean root hair lengths (± SEM) of 0.55 ± 0.01 mm (data of 6 independent trials, n 

= 251 – 236 individual roots per growth condition, Figure 5C). Under P starvation 

conditions, wild types had mean root hair lengths of  0.95 ± 0.01 mm (Figure 5C).  

However, all mutant lines showed considerable root hair outgrowth, and within the range 

scored for their respective wild types (Appendix V). Only one mutant allele, glr3.7-2, 

displayed impaired root hair growth. This mutant phenotype did however not manifest 

itself in another line (which technically was annotated as being the same line), glr3.7-1, 
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and was later shown to be independent of the mutation found in the GLR3.7 gene, but 

linked to another T-DNA insertion within the genome (Prof. Alex Costa, personal 

communication).  

Overall, this indicated that the knock-out of single genes within large gene families did 

not cause a root hair phenotype, likely due to genetic redundancy (see Chapter 1, section 

1.2.3 onwards for an introduction to Ca2+ channel families).  

 

 

Figure 5: Root hair growth of phosphate-starved Arabidopsis wild type plants. As part of 

screening putative Ca2+ channel mutants for a root hair phenotype, paired Arabidopsis wild type 

were grown alongside. Root tips of 6-day old seedlings were imaged under a stereomicroscope, 

shown are representative images for plants grown on (A) full phosphate conditions (full P, 1 mM 

PO4
3-) and (B) zero phosphate conditions (zero P, 0 mM PO4

3-), scale bar: 1 mm. Root hair lengths 

were analysed by measuring the 10 longest root hairs (5 on either side of the root) within a 1 mm 

window, 4-5 mm from the apical tip, using the ImageJ NeuronJ plugin. (C) Measured root hair 

lengths of n = 236 - 251 individual wild type roots per growth condition, data from 6 independent 

trials. In boxplot, thick line denotes median, dots display individual data points (= mean root hair 

length of a single root). A Welch two sample t-test was used to assess statistical differences. 

Significance levels (p-value): *** (< 0.001).   
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3.2.3 Phosphate-starved root tips show an altered [Ca2+]cyt response to a 

range of abiotic stresses 

To test if stress-induced [Ca2+]cyt signatures were altered in P-starved roots, Arabidopsis 

Col-0 roots constitutively expressing cytosolic (apo)aequorin were P-starved and 

subsequently challenged with different abiotic stresses. Mechanical, salt, osmotic and 

redox stress were applied in the form of control solution application, NaCl, sorbitol and 

H2O2 treatment, respectively. To account for differences in root size due to varying P 

growth conditions (see Figure 4), excised root tips of equal length (1 cm) were used for 

the aequorin assays. Single root tips were challenged with application of control solution, 

or stress treatments in control solution background. Changes in [Ca2+]cyt were recorded 

every second over a time-course of in total 155 seconds, before discharging all remaining 

reconstituted aequorin (for more details, see Chapter 2, section 2.6.2). Figure 6 defines 

the wording used throughout this thesis to describe [Ca2+]cyt time-course traces and 

analysed parameters. Traces of individual samples were analysed for peak maxima (= 

maximum of peak height with average baseline subtracted), and area under the curve (= 

integrated area under the curve with average baseline subtracted). Peak maxima report 

the maximal increase of [Ca2+]cyt  in response to a treatment. Area under the curve (AUC) 

is an estimate of the [Ca2+]cyt mobilised during [Ca2+]cyt  response to a treatment. Different 

stresses result in overall monophasic, biphasic and multi-phasic [Ca2+]cyt signatures 

originating from the cell population of the tissue used (see schematic in Figure 6). 
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Figure 6: Schematic representation of aequorin-based [Ca2+]cyt time-courses and analysis as 

presented in this thesis. Mean time-course traces are plotted for (A) monophasic responses 

(control solution application; NaCl, sorbitol treatment), (B) biphasic responses (H2O2 treatment) 

and (C) multi-phasic responses (ATP, ADP, γ-ATP treatments). Traces from individual samples 

were baseline-subtracted prior to analysis (baseline = mean of 0 – 35 second measurements prior 

to application of treatment solution). Analysed parameters include area under the curve (AUC, 

totalled over 35 – 155 seconds) and maxima of specific peaks occurring within set phases as 

indicated by grey dashed lines ((A) Touch Maximum: 35 – 155 seconds; (B) Touch Maximum: 

35 – 49 seconds, Peak 1 Maximum: occurring in 50 – 155 seconds; (C) Touch Maximum: 35 - 41 

seconds, Peak 1 Maximum: 42 - 63 seconds, Peak 2 Maximum: 64 - 155 seconds). 
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In a first set of experiments, P-starved root tips were challenged with salt and osmotic 

stress. Stress treatments were prepared to be osmotically equivalent, represented by 

150 mM NaCl and 280 mM sorbitol. Application of control solution was used to quantify 

the response of root tips to mechanical stimulation without any further stress treatment 

addition. Application of control solution led to an immediate and monophasic [Ca2+]cyt 

response in root tips from all P growth conditions (Figure 7A), with return to pre-stimulus 

levels approximately 20 seconds after treatment application. Control solution response 

was variable, but overall full P roots responded with a stronger increase in [Ca2+]cyt (mean 

touch maxima ± SEM: 0.6 ± 0.07 µM) compared to medium P (0.2 ± 0.03 µM ) and zero 

P (0.24 ± 0.04 µM) root tips. Both parameters analysed, touch maximum (Figure 7B) and 

area under the curve (Figure 7C), were highly significantly greater in full P root tips 

compared to medium and zero P root tips (p-value < 0.001, analysis of variance 

(ANOVA) with post-hoc Tukey Test, n = 31 – 36 individual root tips per growth condition 

from 3 independent trials). There was no significant difference between medium and zero 

P root tips (p = 0.875 (touch maxima), p = 0.968 (AUC)).   

Application of 150 mM NaCl led to a significantly higher [Ca2+]cyt response (Figure 7D) 

compared to control solution treatment irrespective of P growth condition (p < 0.001; n = 

35 – 36 root tips). Full P roots showed significantly higher touch maxima (1.29 ± 

0.02 µM, p-value < 0.001) than medium P root tips (1.0 ± 0.02 µM), which in turn 

responded significantly more strongly than zero P root tips (0.74 ± 0.03 µM, p < 0.001, 

Figure 7E). With regards to area under the curve, the [Ca2+]cyt response to NaCl was more 

prolonged in medium P root tips, resulting in a significantly higher area under the curve 

than full P root tips (p < 0.001, Figure 7F), even though the touch maxima was lower.  

Treatment with 280 mM sorbitol led to a similarly strong response as was seen in NaCl-

treated root tips, with full P root tips responding significantly more strongly (1.21 ± 

0.02 µM) than medium and zero P root tips (0.84 ± 0.05 µM; 0.72 ± 0.04 µM, p < 0.001, 

n = 22 – 24, Figure 7H). For all P growth conditions, response to sorbitol was significantly 

higher than to control solution (p < 0.001). As was seen for NaCl treatment, medium P 

root tips showed a more prolonged response to sorbitol than full and zero P root tips, 

resulting in an area under the curve not statistically significantly different from full P root 

tips (p = 0.113, Figure 7I). Zero P root tips show a significantly lower area under the 

curve compared to full and medium P root tips (p < 0.001, Figure 7I). Comparing NaCl 

and sorbitol treatment with the respective P growth conditions, neither touch maxima nor 

area under the curve were significantly different (p > 0.05).    
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Figure 7: The [Ca2+]cyt response of phosphate-starved root tips to salt and osmotic stress. Col-0 

aequorin-expressing seedlings were grown on full, medium (med) or zero P (green, purple, blue 

trace respectively). Root tips (1 cm) of 11-day old seedlings were challenged with treatments 

applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Mechanical stimulation 

(control solution); time course trace represents mean ± standard error of mean (SEM) from 3 

independent trials, with n = 31 - 36 root tips averaged per data point. Time course data were 

analysed for (B) touch maxima and (C) area under the curve (AUC), both baseline-subtracted, 

with each dot representing an individual data point (see Figure 6 for details). Boxplot middle line 

denotes median. (D-F) Responses to 150 mM NaCl (3 independent trials, n = 35 – 36 root tips). 

(G-I) Responses to 280 mM sorbitol (3 independent trials, n = 22 - 24 root tips). Analysis of 

variance (ANOVA) with post-hoc Tukey Test was used to assess statistical differences. 

Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  
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In a second set of experiments, root tips were challenged with oxidative stress in the form 

of hydrogen peroxide, H2O2. Stress treatments were 1 mM and 5 mM H2O2 in control 

solution background. Application of control solution alone led to an immediate and 

monophasic [Ca2+]cyt response (Figure 8A), as was seen previously. However, in this set 

of experiments, response to control solution mostly did not differ between roots grown 

on different P conditions. The area under the curve was not significantly different between 

full P and zero P, as well as full P and medium P root tips (p > 0.05, n = 24 individual 

root tips per growth condition from 3 independent trials, Figure 8B). Medium P root tips 

showed a significantly higher area under the curve than zero P root tips (p = 0.003, Figure 

8B). The maximum touch response to control solution did not differ between root tips 

grown on different P concentrations (full P: 0.29 ± 0.06 µM, medium P: 0.30 ± 0.04 µM, 

zero P: 0.21 ± 0.04 µM, p > 0.05 for all comparisons, Figure 8C).  

Application of H2O2 led to an overall biphasic increase in [Ca2+]cyt for both 1 and 5 mM 

H2O2. The immediate touch response was followed by a more prolonged increase in 

[Ca2+]cyt which peaked within approximately 30 seconds of onset, then slowly decreased 

without returning fully to pre-stimulus baseline levels within the timeframe monitored 

(Figure 8D, H).  

Application of 1 mM H2O2 led to significantly more [Ca2+]cyt being mobilised in full P 

root tips compared to medium and zero P root tips (p ≤ 0.002, Figure 8E). Medium P root 

tips mobilised significantly more [Ca2+]cyt than zero P root tips (p = 0.001, Figure 8E). 

Touch maxima did not differ between full, medium and zero P root tips treated with 1 mM 

H2O2 (full P: 0.40 ± 0.07 µM, medium P: 0.34 ± 0.03 µM, zero P: 0.28 ± 0.05 µM, n = 

23 – 24 root tips per growth condition, p ≥ 0.228, Figure 8F). Compared to control 

solution application, 1 mM H2O2 did not lead to higher touch maxima in all three P 

regimes (p ≥ 0.7). The subsequent, prolonged increase in [Ca2+]cyt however was 

significantly lower in zero P root tips, compared to both full and medium P root tips (full 

P: 0.39 ± 0.01 µM, medium P: 0.39 ± 0.01 µM, zero P: 0.26 ± 0.01 µM, p < 0.001, Figure 

8G).  

Increasing the treatment H2O2 concentration to 5 mM resulted in a pattern of [Ca2+]cyt  

response that was very similar to 1 mM H2O2 treatments (Figure 8H). Again, full P root 

tips mobilised significantly more [Ca2+]cyt than medium P and zero P root tips, as 

quantified by area under the curve (p ≤ 0.003, Figure 8I). Medium P root tips in turn 

mobilised significantly more [Ca2+]cyt than zero P root tips (p = 0.004, Figure 8I). In 

contrast to treatment with 1 mM H2O2 however, medium P root tips showed a higher 
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touch maximum (0.39 ± 0.05 µM, p ≤ 0.34) compared to full and zero P root tips (full P: 

0.25 ± 0.03 µM, zero P: 0.16 ± 0.03 µM, n = 22 – 24 root tips per growth condition, 

Figure 8J). Touch maxima of full and zero P root tips did not differ significantly (p = 

0.26). Compared to control solution application, 5 mM H2O2 did not lead to higher touch 

maxima in all three P regimes (p ≥ 0.9). As was seen for 1 mM H2O2 treatment, the 

subsequent [Ca2+]cyt response was similarly high in full P and medium P root tips (Peak 

1 maxima: full P: 0.42 ± 0.07 µM,  medium P: 0.41 ± 0.03 µM, p = 0.98), but significantly 

dampened in zero P root tips (0.29 ± 0.01 µM, p < 0.001, Figure 8K).  

When comparing control solution treatment to 1 mM and 5 mM H2O2 stress treatment, 

touch maxima were not significantly different, regardless of P growth condition (p ≥ 0.7 

for all comparisons). Unsurprisingly, H2O2 treatment led to an overall significantly larger 

area under the curve in all P regimes, compared to control solution treatment (p < 0.001).  

When comparing 1 mM to 5 mM H2O2 stress treatments, the [Ca2+]cyt response did not 

differ regardless of P growth condition (p ≥ 0.3). Peak maxima and area under the curve 

were very similar between 1 mM and 5 mM H2O2 treatment, indicating that the root tips 

could not sense an increase in H2O2 concentration, possibly because 1 mM H2O2 already 

triggered the maximal [Ca2+]cyt stress response.  
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Figure 8: The [Ca2+]cyt response of phosphate-starved root tips to oxidative stress. Col-0 aequorin-

expressing seedlings were grown on full, medium (med) or zero P (green, purple, blue trace 

respectively). Root tips (1 cm) of 11-day old seedlings were challenged with treatments applied 

at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Mechanical stimulation (control 

solution); time course trace represents mean ± standard error of mean (SEM) from 3 independent 

trials, with n = 24 individual root tips averaged per data point. Time course data were analysed 

for (B) area under the curve (AUC) and (C) touch maxima, both baseline-subtracted, with each 
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dot representing an individual data point (see Figure 6 for details). Boxplot middle line denotes 

median. (D-G) Responses to 1 mM H2O2 (3 independent trials, n = 23 – 24 root tips). (H-K) 

Responses to 5 mM H2O2 (3 independent trials, n = 22 – 24 root tips). Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  

3.2.4 Phosphate-starved root tips show an altered [Ca2+]cyt  response to 

extracellular nucleotides 

P-starved, aequorin-expressing root tips were next challenged with the extracellular 

nucleotides ATP and ADP. ATP carries two hydrolysable P groups, ADP carries one, 

which might increase P availability in any solution if added as a treatment. As it was 

unknown how P-starved root tips respond to P resupply, an initial control experiment was 

therefore carried out to test if the P available from hydrolysis of ATP and ADP would 

trigger any [Ca2+]cyt response. To equal the maximum P available from a 1 mM ATP 

solution, a 2 mM phosphoric acid (P-acid) treatment solution was prepared in control 

solution background and used to treat root tips grown on different P conditions. 

In this set of experiments, application of control solution again led to an immediate and 

monophasic [Ca2+]cyt response (Figure 9A). On average, the maximal [Ca2+]cyt increase 

was significantly higher in full P root tips, compared to medium and zero P root tips 

(Touch maxima: full P: 0.42 ± 0.03 µM, medium P: 0.27 ± 0.02 µM, zero P: 0.20 ± 

0.02 µM, data from 11 independent trials, n = 90 - 97 individual root tips per growth 

condition, p < 0.001 for both comparisons, Figure 9B). Medium and zero P root tips 

showed a comparable touch maximum (p = 0.112, Figure 9B). The area under the curve 

was not significantly different between full and medium P root tips (p = 0.159), but 

significantly larger in full and medium P root tips compared to zero P root tips (p < 0.001, 

Figure 9C). 

Application of a 2 mM P-acid solution led to a [Ca2+]cyt signature comparable to control 

solution treatment  (Figure 9D), as the increase in [Ca2+]cyt was immediate and 

monophasic. Touch maxima of the root tips were as follows: full P: 0.30 ± 0.05 µM, 

medium P: 0.27 ± 0.04 µM, zero P: 0.2 ± 0.03 µM (data from 3 independent trials, n = 22 

– 23 individual root tips), implying a trend of lowered touch response in zero P root tips. 

However, as data were variable (see individual data points in Figure 9E), neither touch 

maxima (Figure 9E) nor area under the curve (Figure 9F) were significantly different 

between the different P growth regimes (p > 0.05). 
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Comparing 2 mM P-acid treatment (in control solution background) to the respective 

control solution treatments did not show any significant differences for both touch 

maxima and area under the curve, regardless of P growth condition (p ≥ 0.883). This 

indicates that addition of a 2 mM P pulse to root tips does not evoke a different response 

than adding control solution alone. Therefore, ATP and ADP stress treatments could be 

carried out, reasoning that hydrolysed P from purine nucleotides would not interfere with 

the response of P-starved root tips. 

 

 

Figure 9: The [Ca2+]cyt response of phosphate-starved root tips to mechanical stimulation and a 

phosphate source. Col-0 aequorin-expressing seedlings were grown on full, medium (med) or 

zero P (green, purple, blue trace respectively). Root tips (1 cm) of 11-day old seedlings were 

challenged with treatments applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. 

(A) Mechanical stimulation (control solution); time course trace represents mean ± standard error 

of mean (SEM) from 11 independent trials, with n = 90 - 97 individual root tips averaged per data 

point. Time course data were analysed for (B) touch maxima and (C) area under the curve (AUC), 

both baseline-subtracted, with each dot representing an individual data point (see Figure 6 for 

details). Boxplot middle line denotes median. (D-F) Responses to 2 mM phosphoric acid (P-acid, 

3 independent trials, n = 22 - 23 root tips). Analysis of variance (ANOVA) with post-hoc Tukey 

Test was used to assess statistical differences. Significance levels (p-values): *** (<0.001), ** 

(<0.01), * (<0.05), n.s. (not significant).   
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In the next set of experiments, (apo)aequorin expressing wild type Arabidopsis seedlings 

were again P-starved, and root tips challenged with different concentrations of ATP 

(0.1 mM and 1 mM). Regardless of the concentration, ATP treatment led to a multi-

phasic [Ca2+]cyt signature in control root tips (grown on full P). ATP application triggered 

an immediate increase in [Ca2+]cyt, similar in shape as seen for mechanical stimulation 

treatments previously. After approximately 15 seconds, this initial ‘touch’ response was 

superseded by a secondary increase and subsequent decrease, appearing as a peak for 

approximately 20 seconds (‘peak 1’), before another increase and decrease of [Ca2+]cyt 

defined another peak (‘peak 2’, Figure 10A, F). Most distinctively, this multi-phasic 

[Ca2+]cyt response was found to be dampened in P-starved root tips, with zero P grown 

root tips showing a reduced peak 1 and missing peak 2 (Figure 10A, F).  

Application of 0.1 mM ATP led to the most [Ca2+]cyt being mobilised in full P grown root 

tips, showing a significantly larger area under the curve compared to medium P and zero 

P root tips (data from 6 individual trials, n = 34 – 36 root tips per growth condition, p < 

0.001, Figure 10B). Medium P root tips in turn showed a significantly larger area under 

the curve than zero P root tips (p < 0.001). Full P root tips showed a variable touch 

response, however mean (0.59 ± 0.06 µM) full P touch maxima were significantly higher 

than medium P (0.4 ± 0.05 µM, p < 0.01) and zero P root tips (0.23 ± 0.04 µM, p < 0.001, 

Figure 10C). With regards to peak 1 maxima, 0.1 mM ATP treatment led to a maximal 

and similar response of 0.29 ± 0.02 µM in full P and 0.28 ± 0.02 µM in medium P root 

tips (p = 0.684, Figure 10D). Zero P grown root tips showed strongly dampened peak 1 

maxima (0.16 ± 0.01 µM), responding significantly different than full and medium P root 

tips (p < 0.001, Figure 10D). Most strikingly, peak 2 maxima differed strongly between 

the three P growth conditions. Full P roots showed a strong response, with mean peak 2 

maxima of 0.24 ± 0.03 µM. Medium P root tips responded significantly less (0.15 ± 

0.01 µM, p < 0.001, Figure 10E). Zero P root tips arguably did not show any increase of 

[Ca2+]cyt in the peak 2 phase analysed, but rather a ‘leak through’ of peak 1 (Figure 10A), 

with maximum mean [Ca2+]cyt of 0.09 ± 0.004 µM, being significantly lower than full and 

medium P root tips (p < 0.001, Figure 10E).  

Application of 1 mM ATP led to a very similar [Ca2+]cyt response as was seen for 0.1 mM 

ATP application (data from 5 independent trials, n = 27 - 45 root tips per growth 

condition). Full P root tips responded strongest, with three distinct peaks of [Ca2+]cyt 

(Figure 10F). Medium P root tips again showed a dampened [Ca2+]cyt signature, but with 

three distinct peaks of [Ca2+]cyt increase and decrease (Figure 10F). Zero P root tips again 
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showed a dampened peak 1, and missed peak 2 (Figure 10F). Overall, the area under the 

curve was significantly larger in full P root tips compared to medium and zero P root tips 

(p < 0.001, Figure 10G). Medium P root tips had a larger area under the curve compared 

to zero P root tips (p < 0.001, Figure 10G). Full P root tips responded to 1 mM ATP 

application with mean touch maxima of 0.54 ± 0.06 µM, due to the spread of the data this 

was similar to the response of medium P root tips (0.40 ± 0.05 µM, p = 0.203, Figure 

10H). Zero P root tips showed significantly lower touch maxima (0.15 ± 0.02 µM, p ≤ 

0.009, Figure 10H). The subsequent increase of [Ca2+]cyt was not significantly different 

in amplitude compared between full P and medium P root tips (peak 1 maxima full P: 

0.32 ± 0.02 µM, medium P: 0.29 ± 0.02 µM, p = 0.259, Figure 10I). Peak 1 maxima in 

zero P root tips were significantly lower (0.2 ± 0.01 µM) compared to full and medium P 

root tips (p ≤ 0.001, Figure 10I). For peak 2 maxima, full P root tips responded 

significantly stronger (0.31 ± 0.01 µM) than medium (0.18 ± 0.01 µM) and zero P (0.15 

± 0.01 µM ) root tips (p < 0.001, Figure 10J). Medium P and zero P grown root tips did 

not differ in their peak 2 maxima – as mentioned for 0.1 mM ATP treatment, this is likely 

to reflect a ‘leak through’ of peak 1 in zero P root tips, rather than an actual increase of 

[Ca2+]cyt within that phase.  

Comparing ATP treatments with their respective control solution treatments (see Figure 

9A-C) did not show any difference in touch maxima between 0.1 mM ATP treatment and 

control solution treatment (p ≥ 0.123), or 1 mM ATP treatment and control solution 

treatment respectively (p ≥ 0.473). This indicates that the initial touch response is due to 

mechanical stimulation, but independent of an ATP response.  

To delineate if an increase of ATP concentration led to an increase in [Ca2+]cyt response, 

the two ATP treatments were compared within their P regimes (e.g. full P 0.1 mM ATP 

versus full P 1 mM ATP treatment). No difference could be seen between touch maxima 

(p = 0.999), which agrees with the finding that this initial response is due to mechanical 

stimulation, and thus independent of ATP perception. Further, peak 1 maxima did not 

show a difference between 0.1 and 1 mM ATP in all P growth conditions (p ≥ 0.977). It 

was only for peak 2 maxima that increasing the ATP concentration ten-fold from 0.1 mM 

to 1 mM ATP led to a stronger response in full P and zero P root tips (p < 0.001). Medium 

P root tips did not show a significantly increased response to higher ATP treatment (p = 

0.128). With regards to area under the curve, only full P root tips mobilised more [Ca2+]cyt 

in response to 1 mM ATP compared to 0.1 mM ATP (p < 0.001). Medium P root tips and 
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zero P root tips did not show a ATP concentration-dependent significant increase in area 

under the curve (p = 0.366, p = 0.329 respectively).  

Overall, P-starvation led to a dampening of the ATP-induced [Ca2+]cyt signature in 

medium P root tips, and a dampening (peak 1) as well as knock-out of a defined [Ca2+]cyt 

increase (peak 2) in zero P root tips. Only full P root tips overall responded to an increase 

in ATP concentration (determined by area under the curve), i.e. medium and zero P grown 

root tips did not mobilize more [Ca2+]cyt  when increasing the ATP treatment from 0.1 mM 

to 1 mM. Increasing the ATP concentration ten-fold did not lead to stronger peak 1 

maxima irrespective of P growth condition, but did increase peak 2 maxima in full P and 

zero P root tips. It needs to be stressed that the analysis of peak 2 maxima for zero P root 

tips might be hampered by the fact that zero P root tips did not show a defined increase 

and decrease within the phase analysed, but rather only a decrease of the preceding 

peak 1. This might bias absolute values of peak 2 maxima quantified and mask the 

missing response of zero P root tips in that phase.  
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Figure 10: The [Ca2+]cyt response of phosphate-starved root tips to extracellular ATP. Col-0 

aequorin-expressing seedlings were grown on full, medium (med) or zero P (green, purple, blue 

trace respectively). Root tips (1 cm) of 11-day old seedlings were challenged with treatments 

applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Stress treatment of 0.1 

mM ATP; time course trace represents mean ± standard error of mean (SEM) from 6 independent 

trials, with n = 34 - 36 individual root tips averaged per data point. Time course data were analysed 
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for (B) area under the curve (AUC), (C) touch maxima, (D) peak 1 maxima and (E) peak 2 

maxima, all baseline-subtracted, with each dot representing an individual data point (see Figure 

6 for details). Boxplot middle line denotes median. (F-G) Responses to 1 mM ATP (5 independent 

trials, n = 27 - 45 root tips per growth condition). Analysis of variance (ANOVA) with post-hoc 

Tukey Test was used to assess statistical differences. Significance levels (p-values): *** (<0.001), 

** (<0.01), * (<0.05), n.s. (not significant).  

 

Next, it was interesting to test if the observed altered [Ca2+]cyt response of P-starved root 

tips in response to ATP treatment were dependent on ATP hydrolysis. Both hydrolysis, 

as well as hydrolytic products (such as ADP) could be direct effectors in the observed 

ATP response. First, a non-hydrolysable analogue of ATP was used to dissect any effect 

due to the mechanism of ATP hydrolysis. Adenosine 5’-[γ-thio]triphosphate tetralithium 

(γ-ATP) is one of the non-hydrolysable ATP analogues available. It is easily water 

soluble, and could therefore be prepared in control solution background as was done with 

standard ATP treatments.  

As with ATP, γ-ATP was applied to (apo)aequorin expressing Arabidopsis Col-0 root 

tips, grown on full, medium and zero P growth medium. Two concentrations were tested, 

0.1 mM and 1 mM γ-ATP (Figure 11). The [Ca2+]cyt response of root tips was very similar 

to what was seen upon ATP treatment. Upon application of 0.1 mM γ-ATP, the overall 

[Ca2+]cyt mobilised was significantly different between all P regimes, with full P root tips 

showing the largest area under the curve, and zero P root tips showing the smallest area 

under the curve (p < 0.001, data from 3 independent trials, n = 22 – 23 root tips per growth 

condition, Figure 11B). The touch maxima of full P root tips were variable, but their 

means were significantly higher (p < 0.01) than medium and zero P grown root tips, which 

did not differ in touch maxima (touch maxima: full P: 0.51 ± 0.07 µM, medium P: 0.27 ± 

0.04 µM, zero P: 0.27 ± 0.04 µM, Figure 11C). The same pattern was observed for peak 1 

maxima, with full P root tips responding significantly stronger (p < 0.001) than medium 

and zero P root tips, which responded similarly (peak 1 maxima: full P: 0.31 ± 0.02 µM, 

medium P: 0.19 ± 0.01 µM, zero P: 0.16 ± 0.01 µM, Figure 11D). For peak 2 maxima, 

significant differences between all P regimes were observed (p < 0.001 for all 

comparisons, Figure 11E). Full P roots showed the highest mean [Ca2+]cyt response (0.21 

± 0.01 µM), medium P root tips a moderate [Ca2+]cyt response (0.13 ± 0.01 µM), and zero 

P root tips the lowest [Ca2+]cyt response (0.09 ± 0.01 µM, Figure 11E). 



Chapter 3: Phosphate Starvation alters Calcium Signalling in Arabidopsis Roots 

 71 

Increasing the γ-ATP concentration ten-fold, to 1 mM, led to a similar pattern of the 

[Ca2+]cyt response (Figure 11F). The area under the curve was significantly different 

between all P grown root tips, with full P root tips showing the largest area under the 

curve, and zero P root tips the smallest (p < 0.001 in all comparisons, data from 3 

independent trials, with n = 23 – 24 root tips per growth condition, Figure 11G). Touch 

maxima were significantly higher (p ≤ 0.01) in full P root tips (0.46 ± 0.07 µM) compared 

to medium (0.23 ± 0.03 µM) and zero P root tips (0.23 ± 0.04 µM, Figure 11H). This was 

the same pattern as was observed upon 0.1 mM γ-ATP treatment. Peak 1 maxima were 

significantly higher (p < 0.001) in full P root tips (0.35 ± 0.02 µM) compared to medium 

(0.25 ± 0.01 µM) and zero P root tips (0.2 ± 0.01 µM, Figure 11I). Peak 2 maxima differed 

significantly (p < 0.001 for all comparisons), with full P root tips showing the strongest 

response (0.33 ± 0.01 µM) compared to medium (0.19 ± 0.004 µM) and zero P root tips 

(0.14 ± 0.01 µM, Figure 11J). Again, this was the same pattern as observed upon 0.1 mM 

γ-ATP treatment. 

Comparing γ-ATP treatments with their respective control solution treatments (see Figure 

9A-C) did not show any difference in touch maxima between 0.1 mM γ-ATP treatment 

and control solution treatment (p ≥ 0.996), or 1 mM γ-ATP treatment and control solution 

treatment respectively (p ≥ 0.999), regardless of P regime. This corroborates what was 

seen with ATP treatment, and suggests that the initial touch response is due to mechanical 

stimulation, but independent of γ-ATP perception. 

To characterize if an increase of γ-ATP concentration led to a difference in [Ca2+]cyt 

response, the response of root tips to 0.1 mM and 1 mM γ-ATP was compared. For both 

touch maxima and peak 1 maxima, there were no differences between 0.1 mM and 1 mM 

γ-ATP treatment (p ≥ 0.891), regardless of P regime. Peak 2 maxima were significantly 

higher in response to 1mM γ-ATP (p < 0.001) for all P growth conditions. Overall, this 

led to a significant larger area under the curve for full P and medium P root tips in 

response to 1mM γ-ATP compared to 0.1 mM γ-ATP (p ≤ 0.003). Zero P root tips did 

also show an increase of area under the curve, when increasing the γ-ATP concentration 

to 1 mM, this difference was however not significant (p = 0.07).  

To answer the initial question – if the hydrolysis of ATP played a role in the observed 

[Ca2+]cyt responses – ATP and γ-ATP treatments were compared within respective P 

growth conditions. None of the parameters analysed (area under the curve, touch maxima, 

peak 1 maxima, peak 2 maxima) showed any significant difference when comparing 

0.1 mM ATP and 0.1 mM γ-ATP, as well as 1 mM ATP and 1 mM γ-ATP (p-values were 
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in the range of 0.125 – 0.999). This suggests that (i) the [Ca2+]cyt response observed in 

full P root tips (= control root tips) was independent of ATP hydrolysis, and (ii) that ATP 

hydrolysis did not play a role in the dampened and altered [Ca2+]cyt response observed in 

P-starved root tips.  
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Figure 11: The [Ca2+]cyt response of phosphate-starved root tips to a non-hydrolysable ATP 

analogue. Col-0 aequorin-expressing seedlings were grown on full, medium (med) or zero P 

(green, purple, blue trace respectively). Root tips (1 cm) of 11-day old seedlings were challenged 

with treatments applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Stress 

treatment of 0.1 mM γ-ATP; time course trace represents mean ± standard error of mean (SEM) 

from 3 independent trials, with n = 22 – 23 individual root tips averaged per data point. Time 
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course data were analysed for (B) area under the curve (AUC), (C) touch maxima, (D) peak 1 

maxima and (E) peak 2 maxima, all baseline-subtracted, with each dot representing an individual 

data point (see Figure 6 for details). Boxplot middle line denotes median. (F-G) Responses to 

1 mM γ-ATP (3 independent trials, n = 23 - 24 root tips per growth condition). Analysis of 

variance (ANOVA) with post-hoc Tukey Test was used to assess statistical differences. 

Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  

 

In the next set of experiments, the effect of the purine nucleotide ADP on the [Ca2+]cyt 

response of P-starved, (apo)aequorin expressing Arabidopsis Col-0 plants was 

investigated. Two different concentrations of ADP, 0.1 mM and 1 mM, were prepared in 

control solution background and applied to root tips. Treatment with ADP led to a similar 

[Ca2+]cyt signature as was seen upon ATP and γ-ATP treatment – a multi-phasic response, 

which could be divided into three distinct phases (touch, peak 1, peak 2), with P-starved 

root tips showing an altered signature (Figure 12A, F). 

Application of 0.1 mM ADP triggered the strongest [Ca2+]cyt response in full P root tips, 

which showed a significantly higher area under the curve compared to medium and zero 

P root tips (p < 0.001, Figure 12B). Medium P root tips in turn responded significantly 

more strongly than zero P root tips (p < 0.001, Figure 12B). The initial response to 

0.1 mM ADP, quantified as mean touch maxima, were similar between the three P growth 

conditions (full P: 0.38 ± 0.07 µM, medium P: 0.32 ± 0.04 µM, zero P: 0.3 ± 0.04 µM, p 

≥ 0.582, Figure 12C). With regards to peak 1 maxima, full and medium P root tips 

responded similarly (0.26 ± 0.01 µM, 0.26 ± 0.02 µM, respectively, p = 0.985, Figure 

12D). Zero P root tips showed significantly dampened peak 1 maxima (0.16 ± 0.01 µM) 

compared to full and medium P root tips (p < 0.001, Figure 12D). With regards to peak 2 

maxima, full P root tips responded significantly more strongly (0.27 ± 0.01 µM) than 

medium P root tips (0.19 ± 0.01 µM, p < 0.001), which in turn responded significantly 

more strongly than zero P root tips (0.1 ± 0.01 µM, p < 0.001, Figure 12E).  

Increasing the ADP concentration ten-fold to 1 mM led to a similar [Ca2+]cyt pattern as 

was observed upon application of 0.1 mM ADP (Figure 12F). Again, area under the curve 

was largest for full P, intermediate for medium P and smallest for zero P root tips (p < 

0.001 for all comparisons, Figure 12G). Touch maxima in response to 1 mM ADP were 

not different between the P growth conditions (full P: 0.39 ± 0.06 µM, medium P: 0.28 ± 

0.05 µM, zero P: 0.30 ± 0.05 µM, p ≥ 0.268, Figure 12H). Peak 1 maxima were 

comparable between full P (0.30 ± 0.02 µM) and medium P (0.28 ± 0.01 µM, p = 0.7, 
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Figure 12I) root tips. Zero P root tips however showed significantly lower peak 1 maxima 

compared to full and medium P root tips (p < 0.01, Figure 12I). Peak 2 maxima were 

significantly different between all P growth conditions, with full P root tips exhibiting the 

strongest response (0.34 ± 0.01 µM), medium P root tips responding intermediately (0.24 

± 0.01 µM) and zero P root tips the lowest (0.15 ± 0.01 µM, p < 0.001 for all comparisons, 

Figure 12K). As mentioned for ATP and γ-ATP treatment experiments: zero P root tips 

did not show a defined peak (increase and decrease of [Ca2+]cyt) with the phase, where 

peak 2 maxima were easily determined for full and medium P root tips. The value reported 

for zero P root tips might rather be a trailing off of peak 1.  

Comparing both 0.1 mM and 1 mM ADP treatments with their respective control solution 

treatments (see Figure 9A-C) showed very similar maximal touch responses, regardless 

of P growth condition (p ≥ 0.534 for all comparisons). This corroborates the observations 

described above for ATP and γ-ATP treatments, i.e. the ‘touch response’ being 

attributable to mechanical stimulation but not to a response to purinergic molecules. ADP 

in all cases mobilized significantly more [Ca2+]cyt compared to control solution 

application, when comparing area under the curves for all P growth conditions (p < 0.001 

for all comparisons).  

To understand if roots responded differently to a ten-fold increase in ADP concentration, 

their [Ca2+]cyt response to 0.1 mM and 1 mM ADP treatment was compared. Regardless 

of P growth condition, touch maxima and peak 1 maxima did not show a significant 

difference between 0.1 mM and 1 mM ADP treatment (p-values in the range of 0.355 – 

0.999 for all comparisons). Peak 2 maxima however were significantly higher when 

treating root tips with 1 mM ADP, for all P growth conditions (p ≤ 0.001 for all 

comparisons). Overall, 1 mM ADP led to a significantly larger area under the curve in 

zero P grown root tips (p = 0.027), whereas medium P root tips did not show a larger area 

under the curve (p = 0.901). Full P grown root tips did show an overall larger area under 

the curve in response to the higher ADP treatment of 1 mM, the difference was however 

not significant (p = 0.078).  

To answer the initial question, if any hydrolytic product were involved in shaping the 

[Ca2+]cyt signature when challenging roots with ATP treatment, ADP and ATP treatments 

were compared. Comparing 0.1 mM ADP with 0.1 mM ATP, and 1 mM ADP with 1 mM 

ATP treatments showed that there was no significant difference between touch maxima 

and peak 1 maxima (p-values in the range of 0.061 – 0.999 for all comparisons). It was 

only for peak 2 maxima and subsequently, area under the curve, that differences were 
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observed, depending on P growth condition: Full P grown root tips showed a significantly 

stronger response to 0.1 mM ADP compared to 0.1 mM ATP (p = 0.011). However, this 

difference was lost when higher concentrations (1 mM) of both ATP and ADP were 

applied (p = 0.348). No difference of area under the curve was observed in full P grown 

root tips, comparing low ADP to low ATP, and high ADP to high ATP treatment (p ≥ 

0.960). Medium P grown root tips showed the most pronounced difference between ADP 

and ATP treatment: 0.1 mM ADP treatment evoked significantly higher peak 2 maxima 

compared to 0.1 mM ADP treatment (p < 0.001), the same was observed when comparing 

1 mM ADP treatment to 1 mM ATP treatment (p < 0.001). This subsequently resulted in 

a significantly smaller area under the curve in medium P grown root tips treated with 

0.1 mM ATP compared to 0.1 mM ADP (p = 0.014). However, the area under the curve 

in response to 1 mM ATP and 1 mM ADP in medium P root tips was similar (p = 0.847). 

Zero P grown root tips did not show a different in response to low ATP and low ADP, or 

high ATP and high ADP treatment (p ≥ 0.628).  

Taken together, ADP application to root tips triggered a very similar [Ca2+]cyt response to 

what was observed for ATP treatment. Furthermore, P-starvation led to a similarly 

dampened [Ca2+]cyt response to ADP, as well as an altered [Ca2+]cyt signature with regards 

to peak 2. A ten-fold increase in ADP concentration (0.1 mM to 1 mM) did not affect 

analysed touch maxima or peak 1 maxima, it did however increase the downstream 

peak 2.  
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Figure 12: The [Ca2+]cyt response of phosphate-starved root tips to extracellular ADP. Col-0 

aequorin-expressing seedlings were grown on full, medium (med) or zero P (green, purple, blue 

trace respectively). Root tips (1 cm) of 11-day old seedlings were challenged with treatments 

applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Stress treatment of 0.1 

mM ADP; time course trace represents mean ± standard error of mean (SEM) from 3 independent 

trials, with n = 22 – 24 individual root tips averaged per data point. Time course data were 
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analysed for (B) area under the curve (AUC), (C) touch maxima, (D) peak 1 maxima and (E) peak 

2 maxima, all baseline-subtracted, with each dot representing an individual data point (see Figure 

6 for details). Boxplot middle line denotes median. (F-G) Responses to 1 mM ADP (3 independent 

trials, n = 23 – 24 root tips per growth condition). Analysis of variance (ANOVA) with post-hoc 

Tukey Test was used to assess statistical differences. Significance levels (p-values): *** (<0.001), 

** (<0.01), * (<0.05), n.s. (not significant).  

 

3.2.5 Phosphate-starved root tips tend to respond less to mechanical 

stimulation 

In previous experiments, a trend was observed that the amplitude of the touch response 

was linked to the P growth condition, i.e. full P root tips showing a stronger [Ca2+]cyt 

response to mechanical stimulation, and zero P root tips showing a weaker response. 

However, the response was variable e.g., full P root tips showing a wide range of weak 

to strong responses to mechanical stimulation. In some sets of experiments, this response 

was significantly different between P regimes (see control treatments run together with 

NaCl, sorbitol, and purine nucleotide experiments (Figure 7, Figure 9). In other 

experiments, root tips grown on different P growth conditions did not show a significant 

difference in response to mechanical stimulation (even though the trend was there, see 

H2O2 experiments, Figure 8).  

To gain a clearer picture, control solution treatments of individual experiments were 

compiled to increase statistical power (18 independent trials, n = 150 – 155 individual 

root tips per P growth condition, Figure 13). Application of control solution clearly 

evoked a stronger mean [Ca2+]cyt response in full P grown root tips (0.44 ± 0.03 µM), 

compared to medium P (0.26 ± 0.02 µM) and zero P root tips (0.21 ± 0.02 µM, p < 0.001 

for both comparisons, Figure 13A, B). Medium and zero P grown root tips did not show 

a significant difference in touch maxima (p = 0.185, Figure 13B). With regards to area 

under the curve, full P root tips mobilized significantly more [Ca2+]cyt compared to 

medium and zero P root tips (p ≤ 0.01, Figure 13C). In contrast to touch maxima, medium 

P root tips showed a significantly larger area under the curve compared to zero P root 

tips, as their response was prolonged (p < 0.001, Figure 13C).  

Taken together, this indicates that P starvation influences the ability of root tips to respond 

to mechanical stimulation. As the response to mechanical stimulation was varied, even in 
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nutrient-sufficient conditions (= full P), this difference could be observed as a trend in 

smaller sets of experiments, gaining statistical significance when increasing sample size.  

 

 

Figure 13: The [Ca2+]cyt response of phosphate-starved root tips to mechanical stimulation. 

Arabidopsis Col-0 aequorin-expressing seedlings were grown on full, medium (med) or zero P 

(green, purple, blue trace respectively). Root tips (1 cm) of 11-day old seedlings were challenged 

with treatments applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) 

Mechanical stimulation by application of control solution; time course trace represents mean ± 

standard error of mean (SEM) from 18 compiled independent trials, with n = 150 – 155 individual 

root tips averaged per data point. Time course data were analysed for (B) area under the curve 

(AUC) and (C) touch maxima, all baseline-subtracted, with each dot representing an individual 

data point (see Figure 6 for details). Boxplot middle line denotes median. Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  
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3.2.6 Nitrogen starvation leads to primary root length reduction 

Next, it was of interest to test if the dampened [Ca2+]cyt response described above were 

specific to P nutrition, or a general starvation response. Therefore, (apo)aequorin 

expressing Arabidopsis Col-0 plants were starved of nitrogen (N). To induce N starvation, 

seedlings were germinated and grown on half MS, containing either standard amounts of 

N (‘full N’: 19.7 mM N total), or no N (‘zero N’: 0 mM N). The full N condition is the 

same as the full P condition reported earlier (both are standard half MS). Starving 

seedlings of N led to severely stunted plants, which strongly differed in root architecture, 

as quantified after 10 days of growth (Figure 14A). N-starved seedlings appeared overall 

more fragile than P-starved seedlings. Mean primary root lengths of seedlings grown on 

full N conditions were 5.6 ± 0.07 cm (data from 3 independent trials, n = 76 – 88 

individual root tips per growth condition, Figure 14B). N-starved primary roots were 

significantly shorter (2.5 ± 0.13 cm, p < 0.001, Welch two sample t-test, Figure 14B). N-

starvation thus led to primary roots that were comparable in length to P-starved roots (p 

= 0.203, see Figure 4 for zero P primary root lengths).  

 

 

 

Figure 14: Nitrogen starvation alters root architecture of Arabidopsis. Col-0 was grown on gel-

based nutrient medium with varying N concentrations: full N (19.7 mM N) or zero N (0 mM N). 

On day 10, plants were scanned and primary root length was quantified using the ImageJ NeuronJ 

Plugin. (A) Representative root system architecture of 10-day old seedlings, scale bar: 1 cm. (B) 

Primary root lengths of n = 76 - 88 individual seedlings per growth condition, data from 3 

independent trials. Boxplot thick middle line denotes median. Welch two-sample t-test was used 

to assess statistical differences. Significance levels (p-value): *** (<0.001).  
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3.2.7 Nitrogen starvation does not dampen the [Ca2+]cyt signature in 

response to abiotic stresses 

In a first set of experiments, N-starved roots were challenged with salt and osmotic stress. 

To account for differences in root size between full and zero N roots, 1 cm of root tip was 

used for the assays, as was done for P starvation experiments. As salt stress has a major 

osmotic component, an osmotic treatment was run alongside the salt treatment. The 

osmotic treatment, 280 mM sorbitol, was prepared to be osmotically equivalent to the salt 

stress treatment of 150 mM NaCl. 

To control for mechanical stimulation due to application of treatment solutions, control 

solution was applied to full and zero N root tips, resulting in an immediate increase of 

[Ca2+]cyt (data of 3 independent experiments, with n = 13 – 16 individual root tips per 

growth condition, Figure 15A). Full N root tips showed slight but significantly higher 

touch maxima (0.21 ± 0.05 µM) than zero N root tips (0.1 ± 0.03 µM, ANOVA with post-

hoc Tukey test: p = 0.04, Figure 15B). Equally, the area under the curve was significantly 

larger in full N root tips compared to zero N root tips (p = 0.049, Figure 15C).  

Application of 150 mM NaCl led to an immediate, strong and monophasic increase in 

[Ca2+]cyt, returning to baseline levels within approximately 40 seconds (n = 28 individual 

root tips per growth condition, Figure 15D). Full and zero N root tips responded very 

similarly with regards to touch maxima (full N: 1.35 ± 0.03 µM, zero N: 1.3 ± 0.04 µM, 

p = 0.7, Figure 15E) as well as area under the curve (p = 0.43, Figure 15F).  

Application of 280 mM sorbitol led to a similar [Ca2+]cyt signature as was seen in response 

to salt treatment: an immediate, strong and monophasic response, returning to baseline 

levels within approximately 40 seconds (n = 24 – 27 individual root tips per growth 

condition, Figure 15G). The touch maxima of full and zero N root tips were similar (full 

N: 1.22 ± 0.02 µM, zero N: 1.18 ± 0.03 µM, p = 0.246, Figure 15H). However, zero N 

root tips overall mobilised more [Ca2+]cyt, as their response to sorbitol was slightly 

prolonged (quantified as area under the curve, p = 0.01, Figure 15I).  

Compared with control solution application, salt and osmotic stress led in all parameters 

analysed to a significantly stronger [Ca2+]cyt response, regardless of N growth condition 

(p < 0.001 for all comparisons). Comparing salt to osmotic stress treatment, full N root 

tips did not show a significant difference in touch maxima or area under the curve (p = 

0.068, p = 0.582, respectively). Zero N root tips showed significantly lower touch maxima 
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in response to sorbitol compared to salt treatment (p < 0.001), but no difference in area 

under the curve (p = 0.137).  

 

Figure 15: The [Ca2+]cyt response of nitrogen-starved root tips to salt and osmotic stress. Col-0 

aequorin-expressing seedlings were grown on full N or zero N (green, beige trace respectively). 

Root tips (1 cm) of 11-day old seedlings were challenged with treatments applied at 35 seconds, 

and [Ca2+]cyt was measured for 155 seconds. (A) Application of control solution; time course trace 

represents mean ± standard error of mean (SEM) from 3 independent trials, with n = 13 - 16 

individual root tips averaged per data point. Time course data were analysed for (B) touch maxima 

(AUC) and (C) area under the curve (AUC), all baseline-subtracted, with each dot representing 

an individual data point (see Figure 6 for details). Boxplot middle line denotes median. (D-F) 

Responses to 150 mM NaCl (3 independent trials, n = 28 individual root tips per growth 

condition). (G-I) Responses to 280 mM sorbitol (3 independent trials, n = 24 – 27 individual root 

tips per growth condition).  Analysis of variance (ANOVA) with post-hoc Tukey Test was used 

to assess statistical differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * 

(<0.05), n.s. (not significant).  
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In a second set of experiments, N-starved root tips were challenged with oxidative stress 

in the form of 1 mM H2O2 (data from 3 independent trials, Figure 16). Application of 

control solution led to similar areas under the curves between full and zero N root tips 

(p = 0.418, n = 23 – 24 individual root tips per growth condition, Figure 16B). Equally, 

touch maxima did not differ significantly, as especially the response in zero N root tips 

was variable (full N: 0.24 ± 0.05 µM, zero N: 0.34 ± 0.1 µM, p = 0.373, Figure 16C). 

Application of 1 mM H2O2 triggered a biphasic [Ca2+]cyt response, where an immediate 

touch response was followed by a prolonged increase in [Ca2+]cyt of approximately 50 

seconds, which then started to decrease but did not reach pre-treatment baseline levels 

within the time monitored (n = 20 – 24 individual root tips per growth condition, Figure 

16D). The overall mobilised [Ca2+]cyt was not significantly different between full and zero 

N root tips (p = 0.118, Figure 16E). Similarly, touch maxima (full N: 0.18 ± 0.3 µM, zero 

N: 0.15 ± 0.4 µM, p = 0.537, Figure 16F) and peak 1 maxima (full N: 0.33 ± 0.2 µM, zero 

N: 0.32 ± 0.2 µM, p = 0.984, Figure 16G) did not differ between the N growth conditions. 

Even though the amplitude of the [Ca2+]cyt response was similar between full and zero N 

root tips, it was striking that zero N root tips significantly lagged behind in their prolonged 

(‘peak 1’) response to 1 mM H2O2. Zero N root tips reached peak 1 maxima on average 

17 seconds later than full N root tips (timing of peak 1 maxima, given as seconds after 

start of experiment: full N: 74.4 ± 3.2 seconds, zero N: 91.5 ± 3.4 seconds, p = 0.001 (as 

determined by Welch two sample t-test)).  

Comparing 1 mM H2O2 and control solution application, touch maxima were highly 

variable and therefore not significantly different, regardless of N regime (p ≥ 0.763). On 

the other hand, 1 mM H2O2 mobilised significantly more [Ca2+]cyt overall than did control 

solution treatment, regardless of N growth condition (area under the curve: p < 0.001).  

  



Phosphate Starvation alters Calcium Signalling in Roots of Arabidopsis thaliana 

84   

 

Figure 16: The [Ca2+]cyt response of nitrogen-starved root tips to oxidative stress. Col-0 aequorin-

expressing seedlings were grown on full or zero N (green, beige trace respectively). Root tips (1 

cm) of 11-day old seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt 

was measured for 155 seconds. (A) Mechanical stimulation (control solution); time course trace 

represents mean ± standard error of mean (SEM) from 3 independent trials, with n = 23 - 24 

individual root tips averaged per data point. Time course data were analysed for (B) area under 

the curve (AUC) and (C) touch maxima, both baseline-subtracted, with each dot representing an 

individual data point (see Figure 6 for details). Boxplot middle line denotes median. (D-G) 

Responses to 1 mM H2O2 (3 independent trials, n = 20 – 24 root tips). Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  

 

In a last set of experiments using N-starved root tips, these were treated with 1 mM 

extracellular ATP (data from 3 independent trials, Figure 17). Application of control 

solution again led to an immediate and monophasic increase in [Ca2+]cyt (n = 31 – 32 

individual root tips per growth condition, Figure 17A). Full and zero N root tips 

responded similarly, with no significant difference between their areas under the curve 
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(p = 0.662, Figure 17B). Touch maxima were variable, especially in zero N root tips, but 

not significantly different (full N: 0.25 ± 0.3 µM, zero N: 0.37 ± 0.6 µM, p = 0.08, Figure 

17C).  

Application of 1 mM ATP led to a multi-phasic [Ca2+]cyt signature, without any apparent 

difference between the response of full and zero N root tips (n = 33 – 34 individual root 

tips per growth condition, Figure 17D). Zero N root tips showed a more variable area 

under the curve, but on average mobilised comparable amounts of [Ca2+]cyt compared 

with full N root tips (p = 0.05, Figure 17E). Touch maxima (full N: 0.34 ± 0.04 µM, zero 

N: 0.40 ± 0.06 µM, p = 0.362, Figure 17F) and peak 2 maxima (full N: 0.31 ± 0.01 µM, 

zero N: 0.32 ± 0.01 µM, p = 0.336, Figure 17H) did not differ depending on the N-status 

of the root tips. Only peak 1 maxima showed a significant difference, as zero N root tips 

responded slightly, but significantly, more strongly (full N: 0.28 ± 0.01 µM, zero N: 0.32 

± 0.01 µM, p = 0.021, Figure 17G).  

Comparing control solution treatment with 1 mM ATP treatment showed no difference 

for the initial touch maxima (p ≥ 0.539), regardless of N regime. With regards to total 

[Ca2+]cyt mobilized, ATP treatment led to a significantly larger area under the curve than 

control solution treatment in both full and zero N root tips (p < 0.001).  

Taken together, the response of N-starved root tips to NaCl, sorbitol, H2O2 and ATP 

resembled that of N-sufficient root tips. This was an interesting finding, as N-starved 

seedlings looked poorly, even more so than P-starved root tips.  
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Figure 17: The [Ca2+]cyt response of nitrogen-starved root tips to extracellular ATP. Col-0 

aequorin-expressing seedlings were grown on full N or zero N (green, beige trace respectively). 

Root tips (1 cm) of 11-day old seedlings were challenged with treatments applied at 35 seconds, 

and [Ca2+]cyt was measured for 155 seconds. (A) Mechanical stimulation (control solution); time 

course trace represents mean ± standard error of mean (SEM) from 3 independent trials, with n = 

31 - 32 individual root tips averaged per data point. Time course data were analysed for (B) area 

under the curve (AUC) and (C) touch maxima, both baseline-subtracted, with each dot 

representing an individual data point (see Figure 6 for details). Boxplot middle line denotes 

median. (D-H) Responses to 1 mM eATP (3 independent trials, n = 33 - 34 individual root tips 

per growth condition). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to 

assess statistical differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), 

n.s. (not significant).  
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3.2.8 Overall aequorin luminescence levels are comparable between 

nutrient conditions 

All experiments shown so far were based on the use of (apo)aequorin as reporter 

construct. In this construct, the aequorin gene is under the control of a 35S-promoter, 

leading to constitutively high aequorin protein expression in the cytosol of all cell types. 

Differences of aequorin protein levels between individual plant samples are controlled 

for by ‘discharging’ all available aequorin in any given sample at the end of each 

experiment (see Chapter 2, section 2.6.2). This allows normalization of the [Ca2+]cyt stress 

response with overall ‘ability’ of the given sample to respond to the stress, based on total 

luminescence counts as a proxy for aequorin levels.  

However, nutrient starvation conditions might alter (a) aequorin expression and / or (b) 

reconstitution of (apo)aequorin with its co-factor coelenterazine, as coelenterazine uptake 

across the plasma membrane might differ. This could potentially bias the [Ca2+]cyt 

signature. Initial trials were therefore re-examined for levels of total aequorin 

luminescence signal, to appraise the use of this particular reporter construct in nutrient 

starvation experiments (for its other characteristics, see Chapter 1, section 1.2.9). 

Individual root tips were found to support varying levels of aequorin discharge, as 

determined by total luminescence counts, but to similar levels when overall comparing P 

starvation conditions (Figure 18).  

When finishing a larger body of experimental trials, overall aequorin discharge levels 

were compiled from root tips challenged with control solution and test solutions (Figure 

18). Root tip aequorin discharge levels were assessed with two parameters: (i) ‘sum of all 

counts’, the overall luminescence signal including ‘discharged’ aequorin (Figure 18A), 

and (ii) sum of discharge counts, the luminescence signal occurring 4 seconds after 

application of discharge solution (Figure 18B). Four seconds was the time frame in which, 

after application of discharge solution, the major luminescence response of all remaining 

available aequorin occurred. This was taken as a proxy of how much coelenterazine-

reconstituted aequorin could have been available for previous stress response during 

treatment application.  

With regards to total luminescence counts (‘sum of all counts’), full P and full N grown 

root tips showed the strongest response, and were not significantly different from each 

other (p = 0.847). This was as expected as full P / full N were both standard half MS, 

nutrient replete conditions. Medium P root tips showed higher, zero P root tips lower total 
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luminescence counts (p < 0.001). Zero N root tips showed the lowest total luminescence 

signal, significantly lower than all other nutrient conditions (p < 0.001). Mean sum of all 

counts were as follows (mean ± SEM, in million counts) for compiled P-starvation trials: 

full P: 4.3 ± 0.1, medium P: 5.1 ± 0.1, zero P: 2.9 ± 0.07 and for compiled N-starvation 

trials: full N: 4.1 ± 0.1, zero N: 2.1 ± 0.06 (data from 19 independent trials, with n = 211 

– 231 individual root tips per growth condition, Figure 18A). A total luminescence count 

of one million had been used in laboratory practice as an acceptable threshold for a 

‘strong’ luminescence signal when selecting lines after aequorin-transformation. All 

growth conditions barring some samples of zero N root tips were above this threshold 

(see dashed black line, Figure 18A), indicating strong luminescence signal.  

Considering a smaller window of luminescence signal, namely the immediate seconds 

after discharge application, showed a similar picture. Full P, full N and also zero P root 

tips showed no significant difference (in million counts: full P: 2.6 ± 0.08, full N: 2.7 ± 

0.09, zero P: 2.4 ± 0.06, p ≥ 0.149, Figure 18B). Medium P root tips again showed a 

significantly stronger signal (3.3 ± 0.09, p < 0.001). Zero N root tips showed the lowest 

immediate discharge response (1.5 ± 0.06, p < 0.001 compared to all other conditions, 

Figure 18B).  

Overall, this indicates that nutrient conditions did affect aequorin discharge levels. 

However, the luminescence signal of all root tips was still considerably strong. As this 

study is particularly interested in the response of P-starved roots, with N-starved root tips 

showing similarly shaped [Ca2+]cyt signatures compared to nutrient-replete plants, the use 

of aequorin as [Ca2+]cyt reporter was considered acceptable.  
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Figure 18: Luminescence counts of compiled aequorin experiments. (A) Sum of all counts (in 

million), each dot representing total luminescence counts of one individual root tip sample as 

monitored within 200 seconds, including stress treatment application and ‘discharge’ of all 

remaining, reconstituted aequorin. Data were compiled if belonging to P-starvation experimental 

series (zero, medium (med), full P; green, purple, blue trace respectively, on the left) or N-

starvation experimental series (full, zero N; green, beige trace respectively, on the right). Full P 

and full N are both standard half MS growth condition. Data from 19 independent trials, n = 211 

– 230 individual root tip samples per growth condition. Boxplot middle line denotes median. (B) 

As A, but only considering luminescence counts immediately (4 seconds) after application of 

discharge solution. Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess 

statistical differences. Different lower-case letters describe groups of significant statistical 

difference (p < 0.05), same letters indicate no statistical significance (p > 0.05).  
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3.2.9 Phosphate-starved root tips still accumulate extracellular ATP 

As it was unknown if P-starved plants still employ eATP as a P-costly signalling 

molecule, the capacity of P-starved root tips to accumulate eATP in the extracellular 

space was investigated. To do so, the roots of full P and zero P whole seedlings were 

placed into control solution bathing medium (containing respective full or zero P 

concentrations, see Chapter 2 section 2.4 for further details). Samples of bathing medium 

close to the root were taken immediately after immersion (0 min) and after a prolonged 

period of immersion in the bathing medium (60 min). Concentrations of ATP in these 

samples were determined using a luciferase-assay. To normalize for differences in root 

size, ATP concentrations were then calculated relative to root biomass (Figure 19).  

Immediately after immersion, full P roots supported mean concentrations of 0.58 ± 

0.19 nM ATP per mg root fresh weight (root mg FW, data of 3 independent trials, n = 7 

– 9 individual samples per growth condition), zero P roots supported 0.34 ± 0.09 nM per 

root mg FW, which was not significantly different (p = 0.999, Figure 19). After one hour 

of keeping the roots in the medium, full P roots showed significantly more ATP (2.6 ± 

0.49 nM ATP per root mg FW) than zero P roots (0.59 ± 0.14 nM ATP per root mg FW, 

p < 0.001, Figure 19). Even though the mean eATP accumulation of zero P roots was 

slightly higher after 60 minutes compared to 0 minutes, the difference between the two 

time points was not significant (p = 0.999).  

As this technique cannot take the effect of hydrolysed ATP into account, the following 

can be concluded: full P roots accumulated higher amounts of eATP in their surrounding 

assay medium, and / or showed a lower rate of eATP hydrolysis than zero P roots. 

Extracellular ATP could be detected in the assay medium of zero P root tips, indicating 

that P-starved roots still accumulated some eATP. However, whether lower eATP 

accumulation is due to less efflux, and / or higher rate of ATP hydrolysis remains to be 

determined.  
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Figure 19: Quantification of extracellular ATP in root bathing medium of phosphate-starved 

roots. Col-0 seedlings were grown on full or zero P. Roots of 11-day old seedlings were 

submerged into control solution (roots of four seedlings per sample), with shoots not touching the 

bathing medium. Bathing medium samples were taken immediately (0 min) after placing the 

seedlings into the bathing medium, and after 60 minutes. ATP concentrations of these samples 

were analysed using a luciferase assay, with two technical replicates per sample. Each dot 

represents the mean of two technical replicates per biological sample. Boxplot middle line denotes 

median. Data from 3 independent trials, with n = 7 – 9 individual samples per growth condition. 

Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess statistical 

differences. Different lower-case letters describe groups of significant statistical difference (p < 

0.05), same letters indicate no statistical significance (p > 0.05).  
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3.2.10 Proteins potentially involved in shaping the altered [Ca2+]cyt in 

phosphate-starved root tips  

To understand if - under P starvation - roots rely on the same mechanistic components to 

perceive eATP as under P-sufficient conditions, aequorin-expressing dorn1-1 mutant 

lines were grown on full and zero P conditions. Root tips (1 cm) were challenged with 

control solution, as control for mechanical stimulation occurring in the assay, or 1 mM 

ATP in control solution background, as the eATP treatment (Figure 20).  

Control solution application led to an immediate and monophasic [Ca2+]cyt response in 

both Col-0 as well as dorn1-1 mutant plants (data from 3 independent trials, n = 13 – 18 

individual root tips per growth condition and genotype, Figure 20A). The maximal 

[Ca2+]cyt increase was higher in full P root tips (Col-0: 0.57 ± 0.07 µM, dorn1-1: 0.49 ± 

0.06 µM) than in zero P root tips (Col-0: 0.13 ± 0.03 µM, dorn1-1: 0.17 ± 0.05 µM, Figure 

20B), however it did not differ between the genotypes with respect to the two P conditions 

(p ≥ 0.928). Equally, the area under the curve did not differ between Col-0 and dorn1-1 

in response to mechanical stimulation (Figure 20C).  

Application of 1 mM eATP led to a multi-phasic response in [Ca2+]cyt in Col-0 root tips 

grown on full P, and the characteristically altered [Ca2+]cyt response of zero P root tips 

(n = 16 – 18 individual root tips per growth condition and genotype, Figure 20D). In 

dorn1-1 root tips however, only an initial touch response was observed, without any 

further strong [Ca2+]cyt increases as seen in wild type root tips (Figure 20D). Touch 

maxima were not significantly different between wild type and dorn1-1, neither for full 

nor zero P conditions (Col-0: full P: 0.19 ± 0.05 µM, zero P: 0.16 ± 0.04 µM; dorn1-1: 

full P: 0.17 ± 0.03 µM, zero P: 0.3 ± 0.06 µM; p ≥ 0.424, Figure 20E). Peak 1 maxima 

were significantly higher in wild type root tips grown on full P (0.25 ± 0.01 µM) 

compared to dorn1-1 (0.07 ± 0.01 µM, p < 0.001, Figure 20F). Zero P root tips however 

showed no significant difference in peak 1 maxima between wild type (0.2 ± 0.01 µM) 

and dorn1-1 (0.13 ± 0.02 µM, p = 0.212, Figure 20F), even though the [Ca2+]cyt response 

was a much more defined peak in wild type than in dorn1-1 (see Figure 20D). This is 

likely due to the bias introduced into analysis of peak 1 maxima, as dorn1-1 touch 

response was slightly more prolonged, ‘leaking’ into the phase analysed for peak 1 

maxima (see Figure 6 for analysis details). Wild type peak 2 maxima were dependent on 

P conditions (full P: 0.26 ± 0.01 µM, zero P: 0.13 ± 0.01 µM), as has been reported earlier 

(for more details see Figure 10). Independent of P-regime, dorn1-1 however showed 
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significantly lower peak 2 maxima than wild type (full P: 0.05 ± 0.001 µM, zero P: 0.03 

± 0.01 µM, p < 0.001 for both comparisons), as no [Ca2+]cyt response to ATP was observed 

(Figure 20G). Overall, wild type root tips mobilized more [Ca2+]cyt than dorn1-1 

independent of P growth condition (p < 0.001 for both comparisons, Figure 20H).  

It should be pointed out that in response to eATP, a very slight [Ca2+]cyt increase of 

approximately 15 seconds can be observed in dorn1-1 root tips, independent of P growth 

condition (see Figure 20D). This is more of a response than previously reported (J. Choi, 

Tanaka, Cao, et al., 2014), where whole seedlings of dorn1-1 did not show even the 

slightest response to ATP.  

Taken together, both wild type and dorn1-1 root tips responded to mechanical 

stimulation. However, dorn1-1 mutant lines showed an overall impaired response to 

eATP, independent of P regime. This indicates that the perception of eATP is dependent 

on DORN1 under P replete and starvation conditions, and no alternative ATP-perception 

comes into effect under P starvation.  
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Figure 20: The [Ca2+]cyt response of phosphate-starved dorn1-1 mutants to extracellular ATP. 

Col-0 and dorn1-1 mutant, both expressing aequorin, were grown on full, or zero P (green, blue 

trace respectively, light colours for Col-0, dark colours for dorn1-1). Root tips (1 cm) of 11-day 

old seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was measured 

for 155 seconds. (A) Application of control solution; time course trace represents mean ± standard 

error of mean (SEM) from 3 independent trials, with n = 13 - 18 individual root tips averaged per 

data point. Time course data were analysed for (B) touch maxima and (C) area under the curve 

(AUC), all baseline-subtracted, with each dot representing an individual data point (see Figure 6 

for details). Boxplot middle line denotes median. (D-H) Responses to 1 mM eATP (3 independent 

trials, n = 16 – 18 individual root tips per growth condition and genotype). Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  
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Next, the potential involvement of ANNEXIN1 (ANN1) protein in the regulation of the 

[Ca2+]cyt signature under P starvation was investigated. As ANN1 was reported to be up-

regulated by P starvation, this might correlate with the observed alteration of the eATP-

induced [Ca2+]cyt response in P-starved root tips. This would imply ANN1’s acting as a 

negative regulator of the eATP-induced [Ca2+]cyt response. To test if ANN1 up-regulation 

was indeed the causative factor, aequorin-expressing lines with a non-functional ANN1 

protein, ann1, were grown on full and zero P and challenged with eATP. Knock-out of 

ANN1 should rescue the dampened [Ca2+]cyt response of zero P root tips, back to a multi-

phasic response as seen in full P.  

Application of control solution, as a control for mechanical stimulation, led to an 

immediate and monophasic, as well as variable, [Ca2+]cyt response in both wild type and 

ann1 mutant root tips (Figure 21A). Neither touch maxima (Col-0: full P: 0.46 ± 0.09 µM, 

zero P: 0.40 ± 0.11 µM, ann1: full P: 0.56 ± 0.1 µM, zero P: 0.45 ± 0.09 µM) nor area 

under the curve were significantly different with regards to the ann1 mutation (p ≥ 0.989 

for all comparisons, Figure 21B, C).  

Application of 1 mM ATP treatment led to a multi-phasic [Ca2+]cyt response in full P root 

tips, and an altered [Ca2+]cyt signature in zero P root tips (Figure 21D). However, this was 

observed in both wild type and ann1 mutant. Touch maxima did not differ significantly 

between wild type and mutant, regardless of growth condition (Col-0: full P: 0.27 ± 

0.07 µM, zero P: 0.25 ± 0.06 µM, ann1: full P: 0.31 ± 0.06 µM, zero P: 0.29 ± 0.06 µM, 

p = 0.999, Figure 21E). Peak 1 maxima did also not show any significant difference 

between wild type and ann1 (Col-0: full P: 0.29 ± 0.01 µM, zero P: 0.20 ± 0.02 µM, ann1: 

full P: 0.27 ± 0.01 µM, zero P: 0.16 ± 0.02 µM, p ≥ 0.963, Figure 21F). Under full P, the 

ann1 mutant line showed a slightly stronger peak 2 response, however not significantly 

different to the wild type response (p = 0.061, Figure 21G). Under P starvation conditions, 

both ann1 and wild type showed an altered peak 2 response, and lower peak 2 maxima 

compared to full P root tips (peak 2 maxima as follows: Col-0: full P: 0.27 ± 0.02 µM, 

zero P: 0.10 ± 0.01 µM, ann1: full P: 0.31 ± 0.01 µM, zero P: 0.14 ± 0.01 µM, Figure 

21G). Overall, wild type and ann1 mobilized comparable levels of [Ca2+]cyt, quantified as 

area under the curve, dependent of P regime (p ≥ 0.390, Figure 21H). Taken together, 

ann1 mutant responded very similarly to wild type, both in full and zero P growth 

conditions. Hence, the knock-out of functional ANN1 protein did not rescue the altered 

[Ca2+]cyt signature in response to eATP treatment.  
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Figure 21: The [Ca2+]cyt response of phosphate-starved ann1 mutants to extracellular ATP. Col-0 

and ann1 mutant, both expressing aequorin, were grown on full, or zero P (green, blue trace 

respectively, light colours for Col-0, dark colours for ann1). Root tips (1 cm) of 11-day old 

seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was measured for 

155 seconds. (A) Application of control solution; time course trace represents mean ± standard 

error of mean (SEM) from 3 independent trials, with n = 17 - 18 individual root tips averaged per 

data point. Time course data were analysed for (B) touch maxima and (C) area under the curve 

(AUC), all baseline-subtracted, with each dot representing an individual data point (see Figure 6 

for details). Boxplot middle line denotes median. (D-H) Responses to 1 mM eATP (3 independent 

trials, n = 15 – 18 individual root tips per growth condition and genotype). Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant).  
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Complementary to the aequorin-based study of ANN1 involvement, its localization and 

– roughly – its abundance were estimated using GFP-fused reporter lines. These lines had 

been produced by Siân Richards (University of Cambridge). Two constructs were 

available for fluorescence microscopy. In the first construct, a soluble GFP (sGFP), was 

fused to a long version (2 kilo bases upstream of the coding region) promoter of ANN1. 

This promoter-sGFP fusion was designed to visualize ANN1 gene expression (hereafter 

labelled as LPANN1::sGFP). In a second construct, the same ANN1 promoter as well as the 

coding region of ANN1 was fused to sGFP. This promoter-coding region-sGFP fusion 

was designed to visualize localization of ANN1 protein (hereafter labelled as 

LPANN1::ANN1-sGFP).  

To visualize both ANN1 gene expression as well as ANN1 protein localization, both GFP 

constructs were used and plants were grown on full and zero P. Ten-day old seedlings 

were imaged using a confocal microscope, with particular focus on the root tip of 

seedlings, to enable comparison with aequorin data.  

In full P roots, ANN1 gene expression, visualized using the LPANN1::sGFP line, was found 

throughout the root (data from 2 experiments, representative images shown in Figure 

22A, C, E). The signal was particularly strong in root hairs (Figure 22A) and the 

epidermis (Figure 22C). Within the epidermis, expression was localized to cytosol and 

nucleus (Figure 22C). There was weak to no expression in the first approximately 200 µM 

of the root tip (Figure 22E). This followed exactly the pattern as described before (Siân 

Richards, PhD thesis).  

When starving LPANN1::sGFP seedlings of P, localization of ANN1 gene expression was 

very similar to what was seen under full P growth conditions. A strong signal was found 

throughout the root, particularly in root hairs and within the epidermis (Figure 22B, D). 

As was seen under full P conditions, there was no signal in the immediate root tip (Figure 

22F).  

The ANN1-protein fusion (LPANN1::ANN1-sGFP) showed a signal mostly comparable 

with what was seen for ANN1 gene expression. Under full P conditions, the translational 

GFP-fusion was easily detectable throughout the root (Figure 23A, C, E). The signal was 

strong in root hairs, where it occurred in aggregates (Figure 23A). As was seen with the 

gene expression construct, the epidermis showed a stronger signal compared with the 

other cell layers (Figure 23C). However, the signal did not localize to the nucleus, was 

patchier and, as was seen in root hairs, appeared in aggregates (Figure 23C). In contrast 
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to ANN1 gene expression, the translational construct was also found in the immediate root 

tip, were it occurred in the outermost cell layer, and cells of the root cap (Figure 23E). 

This localization of the ANN1 protein-GFP fusion construct was as described previously 

(Siân Richards, PhD thesis). Additionally, it was found previously that the aggregates in 

root hairs and epidermal cells moved over time, possibly indicating cytoskeleton 

association or cytoplasmic streaming (Siân Richards, PhD thesis).  

Growing seedlings of the LPANN1::ANN1-sGFP construct on zero P, led to an overall 

much lower and diffuse signal of ANN1 protein expression (Figure 23B, D, F). This was 

unexpected, as previous studies reported the up-regulation of ANN1 protein under P 

starvation conditions (Lan et al., 2012; Z. Q. Wang et al., 2018).  
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Figure 22: ANNEXIN1 gene expression in phosphate-starved root tips. Ten-day old Arabidopsis 

roots, expressing the LPANN1::sGFP construct, were grown on full P (A, C, E) or zero P (B, D, F). 

Images were captured using a confocal microscope, with each sample being shown as GFP-

channel and corresponding bright field image. Representative images from 2 independent 

experiments. Scale bar: 100 µm. 
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Figure 23: ANNEXIN1 protein expression in phosphate-starved root tips. Ten-day old 

Arabidopsis roots, expressing the LPANN1::ANN1-sGFP construct, were grown on full P (A, C, E) 

or zero P (B, D, F). Images were captured using a confocal microscope, with each sample being 

shown as GFP-channel and corresponding bright field image. Representative images from 2 

independent experiments. Scale bar: 100 µm (please note the different magnification for (B) 

only).  
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3.2.11 The altered [Ca2+]cyt response under phosphate starvation occurs 

during development 

To delineate if the dampening of [Ca2+]cyt response occurred early or later in root 

development, Col-0 (apo)aequorin-expressing seedlings were grown on full or zero P for 

6, 7, or 8 days, to be then challenged with eATP, and compared to the response of 11-day 

old root tips.  

To track root development, plants grown on plates were scanned prior to preparation for 

aequorin assays (hence on day 5, 6, 7 and 10 of growth), and primary root lengths were 

quantified (data from 3 independent trials for 5-, 6-, and 7-day old seedlings, n = 18 – 39 

individual roots scored per growth condition and age; and data from 5 independent trials 

for 10-day old seedlings, n = 142 – 144 individual roots scored per growth condition, 

Figure 24). In general, plants grown on the full P condition showed a strong increase in 

root length over the time period monitored, whilst P-starved plants showed only a minor 

increase in root length (see Figure 24A for representative images). On day 5, full P 

primary roots were already slightly longer than zero P root tips, this difference was 

however not significant (mean primary root length ± SEM: full P: 1.99 ± 0.08 cm, zero P: 

1.83 ± 0.04 cm, p = 0.908, Figure 24B). Already in 6-day old plants, the root length was 

significantly different between full and zero P grown plants (full P: 2.99 ± 0.11 cm, 

zero P: 2.18 ± 0.07 cm, p < 0.001, Figure 24B). This difference became even more 

pronounced in 7-day old plants (full P: 3.27 ± 0.08 cm, zero P: 2.31 ± 0.07 cm, p < 0.001, 

Figure 24B), and  most pronounced in 10-day old plants (full P: 6.01 ± 0.06 cm, zero P: 

2.69 ± 0.04 cm, p < 0.001, Figure 24B, also see Figure 4 for 10-day old root lengths only). 

P-starved, 10-day old plants had, on average, root lengths comparable to 6-day old plants 

grown on full P (p = 0.08).  
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Figure 24: Primary root lengths of  5-, 6-, 7- and 10-day old phosphate-starved Arabidopsis.  

Col-0 expressing (apo)aequorin was grown on gel-based nutrient medium with varying P 

concentrations: full P (0.625 mM PO4
3-, in green) or zero P (0 mM PO4

3-, in blue). On day 5, 6, 7 

or 10, plants were scanned and primary root length was quantified using the ImageJ NeuronJ 

Plugin. (A) Representative root system architecture of differently aged seedlings (corresponding 

to subjacent labelling in (B)), scale bar indicates 1 cm. (B) Primary root lengths of 5-, 6- and 7-

day old seedlings (data from 3 independent trials, n = 18 - 39 individual seedlings per growth 

condition) and 10-day old seedlings (data from 5 independent trials, n = 142 – 144 individual 

seedlings per growth condition, same data as shown in Figure 4). Boxplot thick middle line 

denotes median. Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess 

statistical differences. Different lower-case letters describe groups of significant statistical 

difference (p < 0.001), same letters indicate no statistical significance (p > 0.05).  

 

For luminometric determination of the [Ca2+]cyt response, root tips (1 cm) of differently 

aged plants were challenged with 1 mM eATP treatment (data of 6-, 7-, 8-day old root 

tips from 3 independent experiments, n = 13 – 16 individual root tips per growth condition 

and age; data for 11-day old root tips from 5 independent experiments, n = 29 - 45 

individual root tips per growth condition, Figure 25). The additional ‘day’ relative to root 

length determinations reflects the post-harvest preparation time for luminometry. Six-day 

old root tips showed a multi-phasic response to eATP, for both full and zero P grown root 
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tips. An immediate touch response was followed by two defined increases of [Ca2+]cyt 

(Figure 25A). Already on day 6, the [Ca2+]cyt response was however dampened in zero P 

root tips. On day 7, the shape of the [Ca2+]cyt signature started to change shape in zero P 

root tips, with peak 2 starting to decrease (Figure 25B), being fully knocked down after 8 

days (Figure 25C).  

The pattern can be summarized as follows: touch maxima are not significantly different 

(p > 0.05) in 6-, 7- and 8-day old root tips when comparing full and zero P root tips (see 

Table 3 for mean [Ca2+]cyt response ± SEM). Only in 11-day old material, touch maxima 

were significantly lower in zero P root tips (p < 0.001). The same was observed for peak 1 

maxima (not significantly different between P growth conditions in 6-, 7- and 8-day old 

root tips (p > 0.05), but significantly lower in 11-day old zero P root tips (p < 0.001)). 

Peak 2 maxima however were strongly dampened already in 6-day old P-starved, and all 

older, root tips (p < 0.001). Overall, eATP mobilised significantly more [Ca2+]cyt in full P 

root tips, as approximated by area under the curve, compared to zero P root tips, 

independent of age (see Figure 25E for an overview). In full P root tips, the area under 

the curve remained similar when comparing the response of differently aged root tips 

(Figure 25E). In zero P root tips, the area under the curve was similar between 6-, 7- and 

8-day old root tips, however significantly decreased in 11-day old root tips (p < 0.001, 

Figure 25E).  

To exactly pin-point when during development peak 2 is ‘lost’ in zero P root tips, peak 2 

maxima of differently aged zero P root tips were compared. Peak 2 maxima of 6- and 7-

day old root tips were very similar (p = 0.93). Comparing 6-day peak 2 maxima to 8- or 

11-day peak 2 maxima of zero P root tips showed a much lower response, however not 

quite significant (p = 0.06 for both comparisons). Peak 2 maxima between 7-, 8- and 11- 

day old zero P root tips were very similar (p = 0.52 – 0.99).  

Taken together, this indicates that P starvation led to a dampening of the eATP-induced 

[Ca2+]cyt response already in young seedlings (= 6 days after germination on zero P 

medium). Initially, P-starved root tips still showed a multi-phasic [Ca2+]cyt  response to 

eATP, which was however altered 6 to 7 days after germination. After 11 days of P 

starvation, all parameters quantified – touch maxima, peak 1 maxima, peak 2 maxima and 

area under the curve – were strongly reduced in zero P root tips.   

Lastly, the [Ca2+]cyt response of differently aged seedlings (Figure 25) was considered in 

light of their primary root lengths (Figure 24). To clarify: root lengths of 5-day old 
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seedlings would relate to the [Ca2+]cyt response of 6-day old seedlings (as aequorin-assay 

included an overnight incubation step, and ‘ge in days defines the number of days since 

germination). This relation might introduce an error term, however, excised root tips 

incubated overnight would not grow as they would in the same time on an intact root. 

Hence, 5-day old primary roots grown on P-sufficient and P-deficient medium were 

similar in length (Figure 24B), and showed a multi-phasic response to eATP treatment 

(Figure 25A). However, the [Ca2+]cyt response was already dampened in zero P root tips.  

From 6 days onward (for root length measurements, Figure 24B, relating to ‘7-day old’ 

[Ca2+]cyt measurements, Figure 25B), zero P roots were significantly shorter than full P 

grown roots, and also lost the multi-phasic [Ca2+]cyt response to eATP. This suggests that 

P-starvation early on dampened the [Ca2+]cyt response to eATP, without altering the 

dynamics of the response. Only later on, the [Ca2+]cyt dynamics were altered in P-starved 

root tips, occurring simultaneously with primary root growth inhibition.  
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Figure 25: The [Ca2+]cyt response of phosphate-starved root tips of different age to extracellular 

ATP. Col-0 aequorin-expressing seedlings were grown on full or zero P (green, blue trace 

respectively). Root tips (1 cm) of (A) 6-day, (B) 7-day, (C) 8-day or (D) 11-day aged seedlings 

were challenged with 1 mM eATP applied at 35 seconds, and [Ca2+]cyt was measured for 155 

seconds. Time course trace represents mean ± standard error of mean (SEM) from 3 - 5 

independent trials, with n = 13 - 45 individual root tips averaged per data point. Time course data 

were analysed for (E) area under the curve (AUC), see Table 3 for means ± SEM of touch maxima, 

peak 1 maxima, peak 2 maxima, area under the curve, all baseline-subtracted, (see Figure 6 for 

details). Boxplot middle line in (E) denotes median. Analysis of variance (ANOVA) with post-

hoc Tukey Test was used to assess statistical differences. Different lower-case letters describe 

groups of significant statistical difference (p < 0.001), same letters indicate no statistical 

significance (p > 0.05).  
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Table 3: Analysed parameters of the [Ca2+]cyt response of differently aged phosphate-starved root 

tips to 1 mM eATP. Primary data are shown in Figure 25. See Figure 6 for details of analysis.  

 

 

  

Growth condition full P full P full P full P zero P zero P zero P zero P

Treatment 1mM ATP 1mM ATP 1mM ATP 1mM ATP 1mM ATP 1mM ATP 1mM ATP 1mM ATP

Age [days] 6 7 8 11 6 7 8 11

Baseline mean 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

± SEM 0.002 0.002 0.002 0.001 0.004 0.003 0.003 0.002

 Touch maxima 

mean
0.32 0.42 0.42 0.54 0.37 0.40 0.40 0.15

± SEM 0.072 0.083 0.087 0.061 0.102 0.099 0.071 0.024

Peak 1 maxima 

mean
0.26 0.31 0.31 0.32 0.24 0.27 0.26 0.20

± SEM 0.013 0.006 0.010 0.015 0.019 0.026 0.027 0.009

Peak 2 maxima 

mean
0.31 0.35 0.36 0.31 0.19 0.17 0.14 0.15

± SEM 0.011 0.007 0.011 0.010 0.011 0.010 0.008 0.006

Area under the 

curve mean
24.7 27.9 28.2 25.4 17.2 15.7 12.6 9.6

± SEM 0.9 0.6 0.8 0.9 1.0 1.0 0.9 0.5

n 16 16 14 45 13 16 16 29
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3.2.12 The altered [Ca2+]cyt response under phosphate starvation is 

reversible 

In the previous experiment it was shown that the altered [Ca2+]cyt  response to eATP in P-

starved root tips correlated with the onset of primary root growth inhibition during 

development. So far, all experiments shown examined root tissue that was germinated 

and grown under chronic P-replete or P-deficient conditions. To further characterize the 

developmental mechanism underlying the altered [Ca2+]cyt  signature, it was of interest to 

examine if short-term P deprivation or P resupply could impair or rescue the [Ca2+]cyt  

signature, respectively.  

To this end, a transfer experiment was designed in which (apo)aequorin-expressing 

Arabidopsis Col-0 seedlings were first germinated on either full or zero P growth 

medium. After 8 days, the seedlings were (i) not transferred, (ii) transferred to the same 

growth condition (e.g. full P to full P, representing a transfer control) or (iii) transferred 

to the opposite growth condition (e.g. full P to zero P). Plants were then grown for a 

further 2 days, before scanning the plants on day 10 (after germination), and preparing 

them for subsequent luminometric analysis on day 11 (see Chapter 2, section 2.6.1 for 

further details). Day 8 was chosen as the transfer day for two reasons: 8-day old plants 

already showed a severely altered [Ca2+]cyt  signature (see Figure 25C) if grown on zero 

P; and if transferred on day 8 (rather than day 9), plants could be grown for a considerable 

time to recover from any transfer stress, and still be prepared on day 10 and assayed on 

day 11, making the data comparable to the majority of aequorin assays reported in this 

thesis. 

Plants grown on such variable P conditions were scanned on day 10, and their primary 

root lengths were scored (data from 3 independent trials, n = 19 – 36 individual plants 

scored per growth condition, Figure 26). By eye, plants grown initially on full P showed 

a much larger root and shoot biomass than plants grown initially on zero P (see Figure 

26A for representative seedling architectures). Primary roots of non-transferred full P 

grown plants were on average (± SEM) 5.36 ± 0.21 cm long, whereas zero P grown plants 

had significantly short roots (3.87 ± 0.14 cm, p < 0.001, Figure 26B). Transferring plants 

from full P to full P for 2 days of growth did not significantly change their primary root 

length (5.20 ± 0.1 cm, p = 0.983, Figure 26B). Transferring plants from full P to zero P 

slightly decreased their primary root length to 4.96 ± 0.16 cm, however this difference 

was not significant (p = 0.454). Transferring plants from zero P to a full P growth 
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condition stimulated primary root growth, and roots were significantly longer (4.58 ± 

0.11 cm) than grown on zero P alone (p = 0.016). Plants transferred from zero P to zero 

P showed an intermediate primary root length (4.19 ± 0.15 cm), as it was not significantly 

different to both non-transferred P-starved roots and transferred and P-resupplied roots 

(p = 0.677 and p = 0.260, respectively). Plants that were transferred to the opposite growth 

medium, i.e. full P to zero P, and zero P to full P, had root lengths comparable to each 

other (p = 0.322). Overall, this indicated that a 2-day resupply or depletion of P 

manifested itself to some extend at the level of primary root length.  
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Figure 26: Primary root lengths of Arabidopsis transferred to differing phosphate growth 

conditions during development. Col-0 expressing (apo)aequorin was grown on gelled nutrient 

medium with varying P: full P (0.625 mM PO4
3-) or zero P (0 mM PO4

3-). On day 8, plants were 

either (i) not transferred, (ii) transferred to the same growth conditions (e.g. full P to full P) or 

(iii) transferred to the opposite growth conditions (e.g. full P to zero P). On day 10 (= 2 days after 

transfer), plants were scanned and primary root length was quantified using the ImageJ NeuronJ 

Plugin. (A) Representative root system architecture of differently grown seedlings (corresponding 

to subjacent labelling in (B)), scale bar indicates 1 cm. (B) Primary root lengths of differently 

grown seedlings, see labelling for transfer conditions (data from 3 independent trials, n = 19 - 36 

individual seedlings per growth condition). Boxplot thick middle line denotes median. Analysis 

of variance (ANOVA) with post-hoc Tukey Test was used to assess statistical differences. 

Different lower-case letters describe groups of significant statistical difference (p < 0.05), same 

letters indicate no statistical significance (p > 0.05). 
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With regards to [Ca2+]cyt  dynamics, it was first investigated if short-term resupply of P to 

initially P-starved plants could rescue the impaired [Ca2+]cyt  signature. Three growth 

conditions were considered: zero P grown plants without transfer, zero P to zero P 

transferred plants, and zero P to full P transferred plants. As in previous experiments, 

1 cm excised root tips were used for the assays, challenging them with control solution 

(to control for mechanical stimulation) or 1 mM eATP treatment (in control solution 

background).  

Application of control solution led to an immediate and monophasic increase in [Ca2+]cyt  

(data from 3 independent trials, n = 8 – 15 individual root tips per growth condition, 

Figure 27A). The response was very similar between all three growth conditions, i.e. roots 

grown on zero P and then transferred to full or zero P, or not transferred at all. Neither 

touch maxima (Figure 27B) nor area under the curve (Figure 27C) were significantly 

different between the three growth conditions (p ≥ 0.995 for all comparisons).  

Application of 1 mM eATP treatment showed the characteristically altered [Ca2+]cyt  

signature in non-transferred zero P root tips (data from 3 independent trials, n = 15 – 28 

individual root tips per growth condition, Figure 27D). Most interestingly though, transfer 

of zero P grown plants to both zero P or full P rescued the [Ca2+]cyt  signature, albeit to 

varying degrees (Figure 27D). It was re-assuring to find that transferring zero P grown 

plants to full P rescued the [Ca2+]cyt  signature back to dynamics normally observed in full 

P grown root tips – the response to eATP was multi-phasic, with each increase in [Ca2+]cyt  

being clearly defined.  

The initial touch response to eATP treatment was highly variable, and touch maxima did 

not differ significantly between the different growth conditions (mean touch maxima in 

µM [Ca2+]cyt ± SEM: zero P no transfer: 0.35 ± 0.09 µM, zero P to full P: 0.56 ± 0.1 µM, 

zero P to zero P: 0.52 ± 0.1 µM, p ≥ 0.998, Figure 27E). Peak 1 maxima were similar 

between root tips of non-transferred zero P grown plants and plants that had been 

transferred to zero P (zero P no transfer: 0.24 ± 0.1 µM, zero P to zero P: 0.19 ± 0.02 µM, 

p ≥ 0.285, Figure 27F). However, root tips of plants that had been transferred to full P 

showed significantly higher peak 1 maxima than when transferred to zero P (zero P to 

full P: 0.32 ± 0.02 µM, p = 0.003, Figure 27F). This pattern was even more pronounced 

when considering peak 2 maxima, where root tips of plants that had been transferred from 

zero to full P showed drastically higher peak 2 maxima (zero P to full P: 0.29 ± 0.01 µM, 

p < 0.001 for both comparisons, Figure 27G). Interestingly, root tips that had been 

transferred from zero P to zero P, showed a small but defined increase during peak 2 
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phase (see purple trace in Figure 27D). However, the magnitude of this response was not 

significantly different compared to non-transferred zero P grown root tips which did not 

show any appreciable [Ca2+]cyt increase during the same period (p = 0.999, Figure 27G). 

Overall, and compared to growing plants on zero P only (with and without transfer), P 

resupply led to a significantly higher mobilisation of [Ca2+]cyt in response to eATP 

treatment (quantified as area under the curve, p < 0.001 for both comparisons, Figure 

27H).  
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Figure 27: The [Ca2+]cyt response of short-term phosphate-resupplied Arabidopsis root tips to 

extracellular ATP. Col-0 expressing aequorin was grown on zero P for 8 days, when plants were 

either (i) not transferred (‘zero P no transfer’), (ii) transferred to zero P growth medium (‘zero P 

to zero P’), or (iii) transferred to full P growth medium (‘zero P to full P’). Root tips (1 cm) of 

11-day old seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was 

measured for 155 seconds. (A) Application of control solution; time course trace represents mean 

± standard error of mean (SEM) from 3 independent trials, with n = 8 - 15 individual root tips 

averaged per data point. Time course data were analysed for (B) touch maxima and (C) area under 

the curve (AUC), all baseline-subtracted, with each dot representing an individual data point (see 

Figure 6 for details). Boxplot middle line denotes median. (D-H) Responses to 1 mM eATP (3 

independent trials, n = 15 - 28 individual root tips per growth condition). Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant). 
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Secondly, it was investigated if a short-term deprivation of initially full P-grown plants 

would affect the [Ca2+]cyt response to eATP treatment. To this end, plants were initially 

grown on full P growth medium, until day 8, when plants were either not transferred, 

transferred from full P to full P, or transferred from full P to zero P. Excised root tips 

(1 cm) were used in the assays, and treated with control solution (to control for 

mechanical stimulation) or 1 mM eATP treatment (in control solution background).  

Control solution application led to an immediate and monophasic increase in [Ca2+]cyt, 

which was in general highly variable, and overall not significantly different between the 

three growth conditions (data from 3 independent trials, n = 8 – 13 individual root tips 

per growth condition, Figure 28A). Neither touch maxima nor area under the curve 

showed any significant differences (p ≥ 0.12 for all comparisons, Figure 28B and C).  

Application of 1 mM eATP treatment led to the typical multi-phasic response in non-

transferred full P grown root tips (data from 3 independent trials, n = 15 – 16 individual 

root tips per growth condition, Figure 28D). Root tips that had been transferred from full 

P to full P showed a multi-phasic response very similar to non-transferred full P root tips. 

However, the response was less synchronous than what was normally observed, leading 

to a small additional bump when overall averaging the time-course data (see dark green 

trace in Figure 28D). Transferring plants from full P to zero P, led to a substantial 

dampening of the overall [Ca2+]cyt response (light blue trace in Figure 28D).  

Quantifying the response to eATP showed variable touch maxima which were overall not 

significantly different between the growth conditions (p = 0.999 for all comparisons, 

Figure 28E). Peak 1 maxima were lower in full P to zero P transferred root tips (0.22 ± 

0.02 µM) compared to non-transferred full P grown root tips (0.33 ± 0.03 µM) and full P 

to full P transferred root tips (0.34 ± 0.03 µM), however, this difference was not 

significant (p = 0.189 and p = 0.104, respectively, Figure 28F). The difference was 

however highly significant when examining peak 2 maxima: full P transferred to zero P 

root tips showed much lower peak 2 maxima (0.19 ± 0.02 µM), compared to non-

transferred full P root tips (0.33 ± 0.01 µM) and full P transferred to full P root tips (0.36 

± 0.01 µM, p < 0.001 for both comparisons, Figure 28G). The latter two did not differ in 

their peak 2 maxima (p = 0.726). Overall, root tips that had been transferred from full P 

to zero P mobilised significantly less [Ca2+]cyt in response to eATP, compared to growing 

plants on full P growth medium for the entire time (as quantified by area under the curve, 

p < 0.001 for both comparisons, Figure 28H).  
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Figure 28: The [Ca2+]cyt response of short-term phosphate-starved Arabidopsis root tips to 

extracellular ATP. Col-0 expressing aequorin was grown on full P for 8 days, when plants were 

either (i) not transferred (‘full P no transfer’), (ii) transferred to full P growth medium (‘full P to 

full P’), or (iii) transferred to zero P growth medium (‘full P to zero P’). Root tips (1 cm) of 11-

day old seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was 

measured for 155 seconds. (A) Application of control solution; time course trace represents mean 

± standard error of mean (SEM) from 3 independent trials, with n = 8 - 13 individual root tips 

averaged per data point. Time course data were analysed for (B) touch maxima and (C) area under 

the curve (AUC), all baseline-subtracted, with each dot representing an individual data point (see 

Figure 6 for details). Boxplot middle line denotes median. (D-H) Responses to 1 mM eATP (3 

independent trials, n = 15 - 16 individual root tips per growth condition). Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Significance levels 

(p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant). 

 

 



Chapter 3: Phosphate Starvation alters Calcium Signalling in Arabidopsis Roots 

 115 

Taken together, both a short-term P resupply as well as P deprivation significantly altered 

the [Ca2+]cyt  dynamics triggered by eATP perception. Resupplying P to P-starved plants 

rescued their otherwise dampened [Ca2+]cyt  response to eATP treatment (Figure 27). Vice 

versa, depriving initially nutrient replete plants of P led to a significantly dampened 

[Ca2+]cyt  response to eATP (Figure 28).  

To fully acknowledge to what extent this short-term P resupply or deprivation affected 

the root tips, the response of initially P-starved and initially P-replete root tips was 

compared (i.e. comparing data shown in Figure 27 and Figure 28).  

P resupply (the transfer of initially zero P grown plants to full P growth medium) rescued 

the [Ca2+]cyt  response to eATP almost in every aspect, when compared to full P grown 

non-transferred or full P to full P transferred plants. Area under the curve, touch maxima 

and peak 1 maxima were similar (p ≥ 0.731 for all comparisons). Peak 2 maxima were 

similar when comparing zero P to full P transferred root tips with full P grown root tips 

that had not been transferred (p = 0.447). Compared to root tips that had been transferred 

from full P to full P, however, zero P to full P transferred root tips showed significantly 

lower peak 2 maxima (p < 0.001).  

P deprivation (the transfer of initially full P grown plants to zero P growth medium) 

dampened the [Ca2+]cyt  response to eATP, to a comparable extent as to what was observed 

for the touch maxima and peak 1 maxima of non-transferred zero P grown root tips, as 

well as zero P to zero P transferred root tips (p ≥ 0.896 for all comparisons). Even though 

the [Ca2+]cyt  response of short-term P-deprived root tips was dampened during peak 2 

phase, it was still significantly higher than peak 2 maxima observed for non-transferred 

zero P root tips, and zero P to zero P transferred root tips (p ≤ 0.002 for both comparisons). 

The area under the curve was thus larger in full P to zero P transferred root tips compared 

to non-transferred zero P grown root tips (p = 0.037). Compared to zero P to zero P 

transferred root tips, this difference was not significant (p = 0.083). 
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3.2.13 Iron availability alters the primary root length of phosphate-starved 

roots 

The assays described so far used a defined length of root, 1 cm of root tip, to control for 

difference in size of full P and zero P grown primary roots (also see Figure 4). Therefore, 

the finding that Fe exclusion alleviated the P starvation-induced inhibition of primary root 

growth was considered as a useful tool to (i) starve roots of P whilst (ii) maintaining 

similar primary root lengths between nutrient-replete and depleted plants.  

In general, standard half MS growth medium contains 50 µM Fe. This implies that both 

the full P and zero P growth condition described so far both contained standard levels of 

Fe, i.e. 50 µM. Therefore, to test the influence of Fe on primary root growth and ultimately 

[Ca2+]cyt signature, in addition to varying P levels, aequorin-expressing Arabidopsis 

seedlings were grown in a number of Fe exclusion and addition scenarios. 

In short, P and Fe levels were modified in a standard half MS growth medium 

background. In the following, ‘full’ always refers to standard half MS nutrient levels, i.e. 

full P = 0.625 mM P, full Fe = 50 µM Fe. ‘Zero’ refers to exclusion of the nutrient from 

the growth medium, i.e. zero P = 0 mM P, zero Fe = 0 µM Fe. ‘Low Fe’ indicates levels 

of 10 µM Fe. For the ‘excess Fe’ condition, twice the amount normally found in half MS 

was added, i.e. 100 µM.  

As modifying the amount of one species of ions in a complex solution easily affects the 

availability of the remaining ions, ion activities in solution were estimated using the 

chemical speciation program GEOCHEM-EZ (Shaff et al., 2010). According to this 

software, both P and Fe complex with each other in solution as well as with many of the 

other ions, leading to overall lower levels of available free P and free Fe than would be 

assumed from the absolute concentrations alone. Thus, in solutions containing ‘full P’, a 

small fraction of P (0.74 %) is estimated to be complexed with Fe, leading to less available 

free P and free Fe. In solutions without P, ‘zero P’, no such complexation would occur, 

leading to slightly elevated levels of free Fe compared to the P-containing solution. To 

test if this slight increase in free Fe could be responsible for the altered [Ca2+]cyt signature 

reported for zero P grown root tips, the composition of the growth medium was adjusted 

in such a way that a full P solution would have the same free Fe levels as were estimated 

for a zero P solution. Thus, the ‘full free P_full free Fe’ condition reported below 

contained 0.626 mM P and 55.35 µM Fe (see Chapter 2 section 2.2.3 for further details). 
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After 10 days of growth on varying P and Fe conditions, plants were scanned and the 

primary root length was quantified. The interplay of P and Fe led to very distinct shoot 

and root systems (representative seedlings architectures are shown in Figure 29A). 

Primary root lengths were strongly affected by the different growth conditions (data from 

3 – 8 independent trials, n = 48 – 169 individual seedlings scored per growth condition, 

Figure 29B). Nutrient-replete conditions (full P_full Fe) showed a mean primary root 

length (± SEM) of 5.68 ± 0.07 cm. Almost all other modifications of P and Fe levels led 

to shorter primary roots, except zero P_low Fe (Figure 29B). In the following, growth 

conditions are ordered, starting with the growth condition that led to the shortest mean 

primary roots (‘<’ indicating a statistically significant difference of p < 0.05; ‘,’ indicating 

no statistically significant difference): zero P_excess Fe (2.52 ± 0.07 cm) < zero P_full 

Fe (3.38 ± 0.06 cm), full P_zero Fe (3.39 ± 0.07 cm) < full P_excess Fe (4.51 ± 0.08 cm) 

< zero P_zero Fe (4.94 ± 0.09 cm), full free P_full free Fe (5.05 ± 0.07 cm) < full P_full Fe 

(5.68 ± 0.07 cm) < zero P_low Fe (6.90 ± 0.08 cm).  

In a full P background, excluding Fe (full P_zero Fe) as well as including excess amounts 

of Fe (full P_excess Fe) led to a reduction in primary root length. In a zero P background, 

the exclusion of Fe (zero P_zero Fe) rescued the primary root length of P-starved roots 

almost back to nutrient-replete levels. This corroborated previous studies (Ward et al., 

2008; Müller et al., 2015). Strikingly, plants grown without P and low levels of Fe (zero 

P_low Fe) showed primary roots even longer than nutrient replete plants. Increasing Fe 

levels to 50 µM or 100 µM in a zero P background (zero P_full Fe, zero P_excess Fe, 

respectively) however led to severely stunted primary roots. Increasing the availability of 

free Fe (in a full P background (full free P_full free Fe)) to levels estimated to occur in 

zero P_full Fe, led to on average shorter primary roots than quantified for control 

conditions (full P_full Fe), however within very much the same range (Figure 29B).  
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Figure 29: Primary root lengths of Arabidopsis grown on varying levels of phosphate and iron.  

Col-0 expressing (apo)aequorin was grown on gelled nutrient medium with varying P and Fe 

concentrations: full P (0.625 mM PO4
3-, in green) or zero P (0 mM PO4

3-, in blue). On day 10, 

plants were scanned and primary root length was quantified using the ImageJ NeuronJ Plugin. 

(A) Representative root system architecture of seedlings grown on varying P and Fe levels 

(corresponding to subjacent labelling in (B)), scale bar: 1 cm. (B) Primary root lengths (data from 

3 - 8 independent trials, n = 48 – 169 individual seedlings per growth condition). Boxplot thick 

middle line denotes median. Analysis of variance (ANOVA) with post-hoc Tukey Test was used 

to assess statistical differences. Different lower-case letters describe groups of significant 

statistical difference (p < 0.05), same letters indicate no statistical significance (p > 0.05). 

 

In the following sections, plants grown on these different combinations of P and Fe were 

analysed for their eATP-induced [Ca2+]cyt response. 
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3.2.14 Exclusion of iron rescues the altered [Ca2+]cyt response of phosphate-

starved root tips 

As described above (section 3.2.13), (apo)aequorin-expressing Arabidopsis Col-0 was 

grown on varying levels of P and Fe, in otherwise half MS growth medium background. 

For a first set of experiments, seedlings were grown on nutrient replete conditions 

(full P_full Fe), as well as zero P conditions with full or decreased Fe levels 

(zero P_full Fe, zero P_low Fe, zero P_zero Fe). To test for their [Ca2+]cyt response to 

eATP treatment, root tips (1 cm) of 11-day old seedlings were challenged with control 

solution, to account for mechanical stimulation, or 1 mM eATP (in control solution 

background).  

Control solution application led to an immediate and monophasic increase in [Ca2+]cyt 

(data from 3 - 6 independent trials, n = 11 - 35 individual root tips per data point, Figure 

30A). The touch maxima were highly variable, and there was no difference between touch 

maxima between the four growth conditions (p > 0.05, Figure 30B). The area under the 

curve was however significantly higher in full P_full Fe root tips, compared to 

zero P_low Fe and zero P_zero Fe root tips (p > 0.05, Figure 30C).  

Application of 1 mM eATP led to a multi-phasic response in full P_full Fe grown root 

tips, but most strikingly also in zero P_zero Fe grown root tips (data from 3 – 6 

independent trials, n = 24 – 61 individual root tips per growth condition, Figure 30D). 

Zero P_full Fe root tips showed the characteristic knock-out of peak 2. Zero P_low Fe 

grown root tips showed a dampened [Ca2+]cyt response, but with a defined peak 2. Touch 

maxima were similar in all conditions, but slightly higher in zero P_zero Fe grown root 

tips, however variable (Figure 30E). Peak 1 maxima were significantly lower in 

zero P_full Fe, compared to full P_full Fe and zero P_zero Fe grown root tips (p < 0.05, 

Figure 30F). This trend was amplified for peak 2 maxima: full P_full Fe and 

zero P_zero Fe grown root tips did not differ in their response (p = 0.56), a low Fe 

concentration (zero P_low Fe) however already dampened the response significantly 

(p < 0.001). Increasing the Fe concentration in P-starvation background (zero P_full Fe 

grown root tips) significantly decreased peak 2 maxima (p < 0.001, Figure 30G).  

Overall, this led to a similar area under the curve in full P_full Fe and zero P_zero Fe 

grown root tips (p = 0.999, Figure 30H). In contrast, zero P_low Fe grown root tips 

showed a significantly decreased area under the curve (p < 0.001). Zero P_full Fe grown 
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root tips had a significantly lower area under the curve than all other growth conditions 

(p < 0.001).  

Taken together, these data demonstrated that the altered eATP-induced [Ca2+]cyt response 

of P-starved root tips could be rescued by decreasing or fully excluding Fe from the 

growth medium. The induction of yet another nutrient deficiency (Fe deficiency) 

overcame the dampened [Ca2+]cyt response seen in P-starved roots, leading to a [Ca2+]cyt 

response similar to nutrient replete roots.  

Relating these observed [Ca2+]cyt responses (Figure 30) to quantified primary root lengths 

(Figure 29) showed no clear pattern. For example, zero P_low Fe grew longer primary 

roots than full P_full Fe, but showed a lower, more intermediate, [Ca2+]cyt response to 

eATP.  
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Figure 30: The [Ca2+]cyt response of phosphate- and iron-starved root tips to extracellular ATP.  

Col-0 aequorin-expressing seedlings were grown on standard half MS growth medium, 

full P_full Fe (green trace), zero P_full Fe (blue trace), zero P_low Fe (pink trace) or zero P_zero 

Fe (turquoise trace). Root tips (1 cm) of 11-day old seedlings were challenged with treatments 

applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Application of control 

solution; time course trace represents mean ± standard error of mean (SEM) from 3 - 6 

independent trials, with n = 11 - 35 individual root tips averaged per data point. Time course data 

were analysed for (B) touch maxima and (C) area under the curve (AUC), all baseline-subtracted, 

with each dot representing an individual data point (see Figure 6 for details). Boxplot middle line 

denotes median. (D-H) Responses to 1 mM eATP (3 - 6 independent trials, n = 24 - 61 root tips 

per growth condition). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to 

assess statistical differences. Different lower-case letters describe groups of significant statistical 

difference (p < 0.05), same letters indicate no statistical significance (p > 0.05). 
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3.2.15 Under phosphate starvation, increasing the iron levels in the growth 

medium does not alter the [Ca2+]cyt response further 

To test if an increase of Fe concentration in the growth medium of P-starved root tips 

could further dampen the [Ca2+]cyt response, a set of experiments was carried out where 

roots were grown on zero P growth medium with excess Fe added (100 µM Fe, which is 

double the amount found in standard half MS medium). The [Ca2+]cyt response of these 

root tips (1 cm excised root tip) was compared to nutrient-replete root tips (full P_full Fe) 

and P-starved root tips with standard amounts of Fe (zero P_full Fe, containing 50 µM 

Fe). Eleven-day old root tips were treated with control solution, to control for mechanical 

stimulation, or 1 mM eATP solution (in control solution background).  

Application of control solution led to an immediate and monophasic increase in [Ca2+]cyt 

in root tips of all three growth conditions (data from 3 – 6 independent trials, n = 12 – 35 

individual root tips per growth condition, Figure 31A). Some samples of zero P_excess Fe 

grown root tips showed a slightly prolonged response to control solution (see larger than 

usual error bars on olive coloured trace, Figure 31A). However, neither touch maxima 

nor area under the curve were significantly different between the growth conditions 

(touch maxima: p ≥ 0.645 for all comparisons, Figure 31B, area under the curve: p ≥ 

0.223 for all comparisons, Figure 31C).  

Treatment with 1 mM eATP solution led to the characteristic multi-phasic [Ca2+]cyt 

response in nutrient-replete plants (green trace in Figure 31D), and a dampened [Ca2+]cyt 

response in zero P_full Fe root tips, with peak 2’s being absent (blue trace in Figure 31D). 

Excess Fe, as in root tips grown on zero P_excess Fe (olive-coloured trace in Figure 31D), 

led to a [Ca2+]cyt response very similar to root tips grown on half the amount of Fe 

(zero P_full P). Touch maxima in response to 1 mM eATP application were varied in all 

three growth conditions, but not significantly different between the three growth 

conditions (p ≥ 0.879 for all comparisons, Figure 31E). Peak 1 maxima already showed 

a difference in response between full P_full Fe (mean µM [Ca2+]cyt ± SEM: 0.28 ± 

0.01 µM) and zero P_full Fe root tips (0.22 ± 0.01 µM, p < 0.001, Figure 31F). However, 

the response of zero P_excess Fe root tips was more intermediate (0.23 ± 0.01 µM), and 

not significantly different from neither full P_full Fe root tips (p = 0.082) or zero P_full Fe 

root tips (p = 0.999, Figure 31F).  

However, the subsequent increase in [Ca2+]cyt (‘peak 2’) was completely absent in the P-

starved root tips, regardless of whether 50 µM or 100 µM Fe had been added. This led to 
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full P_full Fe root tips showing significantly higher peak 2 maxima (0.28 ± 0.01 µM) 

compared to zero P_full Fe (0.13 ± 0.01 µM, p < 0.001) or zero P_excess Fe (0.14 ± 

0.01 µM, p < 0.001) root tips (Figure 31G). This pattern resulted in an overall 

significantly higher area under the curve in full P_full Fe root tips, compared to both zero 

P_full Fe and zero P_excess Fe root tips (p < 0.001 for both comparisons, Figure 31H).  

Overall, doubling the Fe concentration (from 50 µM to 100 µM), whilst starving 

Arabidopsis plants of P, led to an even more stunted primary root (Figure 29). However, 

the [Ca2+]cyt response to eATP was not further altered overall between the two Fe 

conditions in the P-starvation background.  
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Figure 31: The effect of Fe excess on the [Ca2+]cyt response of phosphate-starved root tips to 

extracellular ATP. Col-0 aequorin-expressing seedlings were grown on standard half MS growth 

medium, full P_full Fe (green trace), zero P_full Fe (blue trace) or zero P_excess Fe (olive trace). 

Root tips (1 cm) of 11-day old seedlings were challenged with treatments applied at 35 seconds, 

and [Ca2+]cyt was measured for 155 seconds. (A) Application of control solution; time course trace 

represents mean ± standard error of mean (SEM) from 3 - 6 independent trials, with n = 12 - 35 

individual root tips averaged per data point. Time course data were analysed for (B) touch maxima 

and (C) area under the curve (AUC), all baseline-subtracted, with each dot representing an 

individual data point (see Figure 6 for details). Boxplot middle line denotes median. (D-H) 

Responses to 1 mM eATP (3 - 6 independent trials, n = 22 - 61 root tips per growth condition). 

Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess statistical 

differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not 

significant). 
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3.2.16 Excluding iron from otherwise nutrient-replete roots only slightly 

affects their [Ca2+]cyt response to extracellular ATP 

Next, it was of interest to investigate the effect of both Fe exclusion and Fe addition on 

P-replete roots. In a first set of experiments, (apo)aequorin expressing Arabidopsis Col-

0 plants were grown on growth medium containing standard levels of P but no Fe 

(full P_zero Fe). Eleven-day old excised root tips (1 cm) were challenged with control 

solution, or 1 mM eATP treatment (in control solution background), and their response 

was compared to full P_full Fe and zero P_full Fe grown root tips.  

Application of control solution, to control for mechanical stimulation imposed during the 

assay, led to an immediate and monophasic increase in [Ca2+]cyt in all three growth 

conditions examined (data from 3 - 6 independent trials, n = 33 – 35 individual root tips 

per growth condition, Figure 32A). The [Ca2+]cyt increase was similar in all growth 

conditions, and neither touch maxima nor area under the curve differed (p ≥ 0.223 for all 

comparisons, Figure 32B and C).  

Treatment with 1 mM eATP led to the characteristic multi-phasic [Ca2+]cyt response in 

nutrient-replete plants (full P_full Fe), which was strongly knocked down in P-starved 

root tips (zero P_full Fe, data from 3 - 6 independent trials, n = 33 – 61 individual root 

tips per growth condition, Figure 32D). Fe-starved root tips (full P_zero Fe) showed a 

[Ca2+]cyt signature more similar to nutrient-replete root tips: multi-phasic, but with slightly 

different dynamics (pink trace in Figure 32D). With regards to touch maxima, the 

responses were variable, but overall full P_zero Fe root tips responded significantly more 

strongly than full P_full Fe root tips (p = 0.006), however not more strongly than zero 

P_full Fe root tips (p = 0.13, Figure 32E). The amplitude of the subsequent [Ca2+]cyt 

response was however very dissimilar, with peak 1 maxima being lowest in zero P_full 

Fe root tips (mean µM [Ca2+]cyt ± SEM: 0.22 ± 0.01 µM), intermediate in full P_full Fe 

root tips (0.28 ± 0.01 µM), and highest in full P_zero Fe root tips (0.34 ± 0.01 µM, p < 

0.001 for all comparisons, Figure 32F). With regards to peak 2 maxima, zero P_full Fe 

root tips showed almost no increase in [Ca2+]cyt, and thus had the lowest peak 2 maxima 

(0.13 ± 0.01 µM, p < 0.001 compared to both other growth conditions). Full P_zero Fe 

root tips showed significantly lower peak 2 maxima (0.26 ± 0.01 µM) compared to full 

P_full Fe root tips (0.28 ± 0.01 µM), i.e. the pattern observed for peak 1 for those two 

growth conditions was reversed (p = 0.044, Figure 32G). Strikingly, exclusion of Fe (i.e., 

in full P_zero Fe root tips) delayed the maximal increase during peak 2 phase by more 
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than 10 seconds (compare green to pink trace, Figure 32G). Considering overall amounts 

of [Ca2+]cyt mobilised in response to 1 mM eATP treatment, Fe-starved (full P_zero Fe) 

root tips showed a comparable area under the curve to nutrient-replete (full P_full Fe) 

root tips (p = 0.999, Figure 32H). P-starved (zero P_full Fe) root tips showed a 

significantly lower area under the curve compared to both full P_full Fe and 

full P_zero Fe root tips (p < 0.001 for both comparisons, Figure 32H).  

Relating the observed [Ca2+]cyt signatures of Fe-starved root tips to quantified primary 

root lengths allowed the following observation: Fe-starved plants had primary root 

lengths similar to P-starved primary roots, but much shorter than nutrient-replete plants 

(Figure 29). However, Fe-starved root tips showed a similarly strong response to eATP 

treatment as did nutrient-replete root tips (Figure 32D - H). Taken together, it can be 

concluded that (i) Fe-starvation only slightly interfered with the [Ca2+]cyt response to 

eATP compared to P-starvation, and (ii) that primary root length was not the determining 

factor in the knock-down of the [Ca2+]cyt response.  
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Figure 32: The [Ca2+]cyt response of iron-starved root tips to extracellular ATP. Col-0 aequorin-

expressing seedlings were grown on standard half MS growth medium, full P_full Fe (green 

trace), zero P_full Fe (blue trace) or full P_zero Fe (pink trace). Root tips (1 cm) of 11-day old 

seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was measured for 

155 seconds. (A) Application of control solution; time course trace represents mean ± standard 

error of mean (SEM) from 3 - 6 independent trials, with n = 33 - 35 individual root tips averaged 

per data point. Time course data were analysed for (B) touch maxima and (C) area under the curve 

(AUC), all baseline-subtracted, with each dot representing an individual data point (see Figure 6 

for details). Boxplot middle line denotes median. (D-H) Responses to 1 mM eATP (3 - 6 

independent trials, n = 33 - 61 root tips per growth condition). Analysis of variance (ANOVA) 

with post-hoc Tukey Test was used to assess statistical differences. Significance levels (p-values): 

*** (<0.001), ** (<0.01), * (<0.05), n.s. (not significant). 
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3.2.17 The dampened [Ca2+]cyt response is due to a phosphate x iron 

interaction, not to iron toxicity alone 

In the next set of experiments, the effect of excess Fe on the [Ca2+]cyt response of nutrient-

replete roots was examined. To this end, (apo)aequorin-expressing Arabidopsis Col-0 

plants were grown on medium containing replete levels of P, but increased Fe levels. 

Growth medium with two increased Fe levels were used. First, absolute Fe levels were 

increased to twice the strength found in standard half MS growth medium (i.e. increased 

from 50 µM to 100), named ‘full P_excess Fe’. Secondly, free Fe levels were increased, 

to mimic availability of free Fe estimated to occur in zero P_full Fe growth medium (see 

Chapter 2, section 2.2.3 and Table 2 for more details on ionic composition of growth 

medium). This meant translating free Fe levels from zero P_full Fe medium into a full P-

background, and was linked to also adjusting free P levels to what was estimated for 

standard P-replete medium. This modified medium was named ‘full free P_full free Fe’, 

containing 0.626 mM P and 55.35 µM Fe (see Chapter 2, section 2.2.3 for more details). 

To compare these increased Fe growth media to standard Fe growth medium, plants were 

also grown under full P_full Fe and zero P_full Fe conditions. Excised root tips (1 cm) of 

11-day old plants were used for the assay, treated with control solution or 1 mM eATP 

treatment (in control solution background).  

Application of control solution led to an immediate and monophasic increase in [Ca2+]cyt 

(data from 3 trials, n = 16 – 17 individual root tips per growth condition, Figure 33A). In 

zero P_full Fe root tips, some samples showed a slightly prolonged [Ca2+]cyt  response, 

which when averaged led to a small bump (see blue trace in Figure 33A). Besides, all four 

growth conditions did not show significant differences with regards to touch maxima (p 

≥ 0.151 for all comparisons, Figure 33B) or area under the curve (p ≥ 0.518 for all 

comparisons, Figure 33C). 

Compared to control solution, treatment with 1 mM eATP solution triggered a strong, 

multi-phasic [Ca2+]cyt  response in all root tips grown on full P, regardless of the Fe level, 

and a much weaker [Ca2+]cyt  response  in P-starved root tips (data from 3 trials, n = 16 – 

18 individual root tips per growth condition, Figure 33D). Both touch response and peak 1 

response were similar between all growth conditions (touch maxima: p ≤ 0.783 for all 

comparisons, Figure 33E; peak 1 maxima: p ≥ 0.348 for all comparisons, Figure 33F). 

The subsequent [Ca2+]cyt  response, termed peak 2, was strongly impaired in P-starved 

root tips (peak 2 maxima ± SEM: 0.11 ± 0.01 µM, p < 0.001 compared to all other three 
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growth conditions). Most interestingly, increasing the Fe concentration, both in the full 

P_excess Fe and full free P_full free Fe versions of growth medium, showed peak 2 

maxima very similar to root tips grown on standard nutrient medium, i.e. full P_full Fe 

(peak 2 maxima ± SEM: full P_full Fe: 0.30 ± 0.01 µM, full P_excess Fe: 0.29 ± 0.01 µM, 

full free P_full free Fe: 0.30 ± 0.01 µM, p ≥ 0.956 for all comparisons, Figure 33G). 

Overall, this led to very similar levels of [Ca2+]cyt  being mobilised in all full P growth 

conditions, regardless of Fe levels (p ≥ 0.862 for all comparisons), all of which were 

significantly higher than P-starved root tips (p < 0.001 for all comparisons, Figure 33H).  

Taken together, increasing the Fe concentration did not alter the [Ca2+]cyt  response of 

Arabidopsis root tips to eATP. In addition, the full free P_full free Fe growth condition 

allowed testing of the hypothesis that Fe rather than P effected the dampened [Ca2+]cyt  

response seen in P-starved root tips. However, as it did not affect the [Ca2+]cyt  response, 

it can be concluded that the [Ca2+]cyt  response to eATP observed in P-starved root tips is 

not merely due to a slightly higher availability of Fe in the growth medium.  
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Figure 33: The effect of excess iron levels on the [Ca2+]cyt response of root tips to extracellular 

ATP. Col-0 aequorin-expressing seedlings were grown on standard half MS growth medium, full 

P_full Fe (green trace), zero P_full Fe (blue trace), full free P_full free Fe (red trace) or full 

P_excess Fe (beige trace). Root tips (1 cm) of 11-day old seedlings were challenged with 

treatments applied at 35 seconds, and [Ca2+]cyt was measured for 155 seconds. (A) Application of 

control solution; time course trace represents mean ± standard error of mean (SEM) from 3 

independent trials, with n = 16 - 17 individual root tips averaged per data point. Time course data 

were analysed for (B) touch maxima and (C) area under the curve (AUC), all baseline-subtracted, 

with each dot representing an individual data point (see Figure 6 for details). Boxplot middle line 

denotes median. (D-H) Responses to 1 mM eATP (3 independent trials, n = 16 - 18 root tips per 

growth condition). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess 

statistical differences. Different lower-case letters describe groups of significant statistical 

difference (p < 0.05), same letters indicate no statistical significance (p > 0.05). 
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3.2.18 Exclusion of copper does not rescue the altered [Ca2+]cyt response of 

phosphate starved roots 

This experiment was designed by EM but carried out by Nicholas Doddrell, Part II 

student, University of Cambridge 

To test if not only Fe, but also the availability of another reactive transition metal could 

similarly rescue the dampened [Ca2+]cyt response, the involvement of copper (Cu2+) was 

investigated. Arabidopsis was therefore starved as before of P (zero P, 0 mM P), 

additionally, Cu2+ levels were varied, to either contain ‘full Cu’ (standard half MS levels, 

0.05 µM Cu2+) or ‘zero Cu’ (0 µM Cu2+). Seedlings grown under these conditions grew 

comparably, i.e. the primary root length did not differ significantly (mean primary root 

length (cm) ± SEM: zero P_full Cu: 3.24 ± 0.08 cm; zero P_zero Cu: 3.48 ± 0.14 cm, p = 

0.152 as determined by Welch two sample t-test, data from 3 independent trials, with n = 

38 – 89 individual root lengths scored per growth condition).  

Excised 11-day old root tips (1 cm) grown under these conditions were then challenged 

with control solution (to control for mechanical stimulation occurring during the assay) 

or 1 mM eATP treatment solution (in control solution background, maintaining P and 

Cu2+ levels, Figure 34). Application of control solution led to an immediate and 

monophasic increase in [Ca2+]cyt, treatment with 1 mM eATP led to the characteristic 

touch response followed by a single increase (‘peak 1’) in [Ca2+]cyt (Figure 34A), as has 

been reported so far for P-starved root tips. However, no difference could be observed 

between root tips grown with Cu2+ (zero P_full Cu) or without Cu2+ (zero P_zero Cu) 

(compare blue and pink trace in Figure 34A). Upon application of control solution, the 

variation in Cu2+ did not lead to a different area under the curve or touch maxima (p ≥ 

0.927 for both comparisons, Figure 34B and C). Treatment with 1 mM eATP did mobilize 

more [Ca2+]cyt than control solution alone, but no difference could be observed between 

root tips grown on full Cu or zero Cu, in a zero P background, for all relevant parameters 

analysed (p ≥ 0.79 for all comparisons, area under the curve (Figure 34B), touch maxima 

(Figure 34C) and peak 1 maxima (Figure 34D)).  

Taken together, exclusion of Cu2+ from the growth medium did not rescue the dampened 

[Ca2+]cyt response of P-starved roots to eATP. This indicates that the dampening of the 

response is specifically linked to Fe availability, and not a general effect of availability 

or absence of transition metals as exemplified by Cu2+ availability.  
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Figure 34: The [Ca2+]cyt response of copper- and phosphate-starved root tips to extracellular ATP.  

Col-0 aequorin-expressing seedlings were grown on modified half MS growth medium: zero 

P_full Cu (blue and grey trace) or zero P_zero Cu (pink and light pink traces). Root tips (1 cm) 

of 11-day old seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was 

measured for 155 seconds. (A) Application of control solution (grey and light pink trace) or 1 

mM eATP treatment (blue and pink trace); time course trace represents mean ± standard error of 

mean (SEM) from 3 independent trials, with n = 14 - 17 individual root tips averaged per data 

point. Time course data were analysed for (B) area under the curve (AUC), (C) touch maxima, 

and (D) peak 1 maxima, all baseline-subtracted, with each dot representing an individual data 

point (see Figure 6 for details). Boxplot middle line denotes median. Analysis of variance 

(ANOVA) with post-hoc Tukey Test was used to assess statistical differences. Different lower-

case letters describe groups of significant statistical difference (p < 0.05), same letters indicate no 

statistical significance (p > 0.05).  
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3.2.19  [Ca2+]cyt does not seem to signal P availability 

In P nutrition, it is unknown if [Ca2+]cyt (or any organellar free Ca2+ pool) signals P 

availability. More particularly, it is unknown if P re-supply is signalled through 

modulations of [Ca2+]cyt.  

Initially, it was planned to design an experiment similar to what Riveras et al. (2015) 

carried out for nitrate-starved roots; starve aequorin-expressing Arabidopsis seedlings of 

P, then monitor the [Ca2+]cyt response of roots to re-addition of a P-source, with particular 

focus on touch maxima. However, in the course of this thesis it became apparent that this 

set-up was not applicable for P-starved roots as P-starvation led to a lowered touch 

response (Figure 13) which would bias any analysis of touch maxima. Furthermore, 

application of a 2 mM P source (phosphoric acid, at pH 5.6, Figure 9) did not lead to any 

differences in [Ca2+]cyt response compared to control solution application, in  both 

medium and zero P grown root tips. P-sources in the soil are generally described to be in 

the micromolar range (Raghothama, 1999; Werner et al., 2017), thus 2 mM P addition 

(see Figure 9) would already be considered a high [P] stimulus.  

However, P re-supply could trigger [Ca2+]cyt modulations downstream of the initial touch 

response. For example, P re-supply and uptake could trigger a longer-term decrease or 

increase of [Ca2+]cyt. Therefore, aequorin-expressing, individual whole seedlings of 

Arabidopsis were grown on full or zero P medium, challenged with a high P source, 5 mM 

KH2PO4, and monitored for a longer time period of approximately 16 minutes 

(1000 seconds) using a luminometer (see Chapter 2, section 2.6.3). A 5 mM KCl 

treatment was used to control for the effect of K+ addition as part of the KH2PO4 

treatment.  

Application of both KH2PO4 or KCl treatment solution led to an immediate and 

monophasic increase in [Ca2+]cyt (data from 2 independent trials, with n = 4 individual 

whole seedlings per growth condition and treatment, Figure 35A). The initial window of 

response (150 – 250 seconds, see yellow box in Figure 35A) was analysed for peak 

maxima and area under the curve. The trend was that full P seedlings showed a stronger 

[Ca2+]cyt response than zero P seedlings, with little difference observed between KH2PO4 

and KCl treatment (Figure 35B, C). As replicate number was low, no statistical test was 

carried out.  
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Figure 35: The [Ca2+]cyt response of phosphate-starved whole seedlings to phosphate re-supply.  

Col-0 aequorin-expressing seedlings were grown on full P (green traces) or zero P (blue traces). 

Eleven-day old whole seedlings were challenged with treatments applied at 150 seconds, and 

[Ca2+]cyt was measured for in total 1000 seconds in a luminometer before application of a 

discharge solution. (A) Application of 5 mM KH2PO4 or 5 mM KCl; time course trace represents 

mean ± standard error of mean (SEM) from 2 independent trials, with n = 4 individual whole 

seedlings averaged per data point. Time course data were analysed for (B) touch maxima (150 – 

250 seconds, see yellow dashed box in (A)) and (C) area under the curve (AUC, 150 – 250 

seconds, see yellow dashed box in (A)), all baseline-subtracted, with each dot representing an 

individual data point. Boxplot middle line denotes median. Due to low replicate number, no 

statistical test was carried out.  
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3.3 Discussion  

3.3.1 Considerations on aequorin as reporter 

Limitations of the aequorin Ca2+ reporter aequorin used here are (i) prolonged incubation 

times to reconstitute aequorin, (ii) excision of sample tissue if a defined region rather than 

whole seedlings were to be investigated, and (iii) injection of treatment solutions eliciting 

a mechanical stimulation. These aspects will be discussed in the following.  

INCUBATION - Bioluminescence generation of aequorin upon Ca2+ binding relies on 

(apo)aequorin’s being reconstituted with its prosthetic group coelenterazine. This requires 

a prolonged incubation of sample tissue in coelenterazine-containing solution which can 

affect the downstream ability of the sample tissue to respond through dissimilar uptake 

of coelenterazine between individual samples. In addition, the assay bathing medium was 

found to strongly influence the [Ca2+]cyt response (reported for whole seedlings and 

osmotic stress treatment, Tracey et al., 2008), as the ionic composition would influence 

the PM resting potential. 

A proxy for how much aequorin is available to react with Ca2+ (and thus was successfully 

reconstituted with coelenterazine) is the total level of ‘discharge’, i.e. the maximal 

luminescence generated upon saturation of all reconstituted aequorin with high [Ca2+]. 

As nutrient starvation might influence both the level of aequorin protein, as well as the 

uptake levels of coelenterazine (e.g. through altered membrane composition), the 

discharge levels of N- and P-starved root tips were compared. Discharge levels varied 

between the nutrient growth conditions, but except for some N-starved root tips, were 

found to be above an acceptable threshold (over 1 million total luminescence counts) and 

thus considered suitable for [Ca2+]cyt analysis.  

Previous studies employing the aequorin reporter mostly used water (e.g. Knight et al., 

1991; Riveras et al., 2015; Lenzoni, Liu and Knight, 2017) or a low Ca2+ and low K+ 

bathing medium with set pH (e.g. Demidchik et al., 2003; Laohavisit et al., 2012; 

Richards et al., 2014). Bathing medium containing e.g. 10 mM CaCl2 and 0.1 mM KCl, 

i.e. higher [Ca2+] than [K+], would constitute a more hyperpolarizing bathing medium and 

would set the PM resting potential to approximately -135 to -150 mV (Demidchik et al., 

2002). However, both incubation in plain water or low-solute medium would quickly 

induce nutrient deficiencies, as it has been shown that nutrient deficiency can be 

perceived rapidly, e.g. P deprivation led to cell wall stiffening within 30 minutes, 
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inhibited root cell elongation within less than 2 hours (Balzergue et al., 2017), and global 

transcriptomic changes were apparent after 1 hour of P starvation (earliest time point 

tested, Lin et al., 2011). To study the particular effect of P-starvation, without 

confounding effects of other short-term nutrient deprivations, the bathing medium used 

in this thesis was therefore designed to maintain prior growth conditions, i.e. constituted 

a nutrient rich half MS liquid medium with or without P, N, etc.. Standard half MS 

medium has a K+:Ca2+ ratio of approximately 12.5:1.5, i.e. lower [Ca2+] than [K+]. This 

constitutes a depolarizing medium which would indicate a PM resting potential 

around -85 mV (Demidchik et al., 2002). P starvation was shown to not alter the PM 

potential further (Mimura et al., 1998; Dindas et al., 2018). Taken together, the bathing 

medium used for aequorin assays in this thesis, but not P starvation per se, would 

depolarize the PM resting potential which could ultimately alter ion channel activity upon 

stress perception. 

EXCISION - Previous studies employing aequorin often assayed the response of whole 

seedlings to stress treatments (Knight et al., 1991; Tanaka et al., 2010; J. Choi, Tanaka, 

Cao, et al., 2014; Chen et al., 2017). If the response of a specific tissue / organ were to 

be investigated, excised root / shoot tissue or protoplasts were employed (Demidchik, 

Nichols, et al., 2003; Rentel and Knight, 2004; Richards et al., 2014). The results 

presented here were based on using excised root tips (apical 1 cm) for aequorin assays, 

for the following reasons. First, the root tip has been shown to be highly sensitive to stress 

perception (Demidchik et al., 2007; Weerasinghe et al., 2009; Costa et al., 2013b). 

Secondly, the root tip was shown to play a dominant role in P nutrition, both in P sensing 

and uptake (Svistoonoff et al., 2007; Kanno et al., 2016; reviewed by Abel, 2017). And 

lastly, P starvation profoundly inhibited primary root growth, which is well documented 

in the literature (Sánchez-Calderón et al., 2005; Svistoonoff et al., 2007; Balzergue et al., 

2017). The data presented here showed 10-day old, P-replete seedlings to have more than 

twice the primary root length compared to chronically P-starved seedlings (approximately 

6 cm versus 2.7 cm). Monitoring the averaged [Ca2+]cyt response of whole seedlings or 

whole roots would have constituted a bias due to large differences in deployed sample 

tissue. To control for differences in root size, a defined length of root tissue of interest 

was used for the assays (1 cm of apical root tip). Whilst this might reduce the error, it is 

unlikely to fully exclude the bias as P starvation was shown to change the cellular 

patterning: The overall root meristem size was reduced, epidermal cells were found to be 

smaller, whilst the number of cortex cells increased, ultimately influencing and increasing 
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outgrowth of root hairs (Ma et al., 2001; Williamson et al., 2001; Cederholm and Benfey, 

2015; Balzergue et al., 2017; Janes et al., 2018).  

An error source introduced by excision of root tips would be acute physical damage. As 

wounding is known to induce a stress response, including e.g. ATP exudation, ROS 

production and downstream changes in gene expression (Demidchik et al., 2009; Dark et 

al., 2011; J. Choi, Tanaka, Cao, et al., 2014), excised tissue will likely be ‘primed’ 

differently to intact tissue. Particularly with regards to eATP perception, it is unclear how 

previous exposure to wounding-induced eATP might dampen or enhance any subsequent 

ATP application.  

INJECTION - Plate-reader based quantification of aequorin-derived luminescence 

necessitated the injection of treatment solutions, which elicited a [Ca2+]cyt response due 

to mechanical stimulation alone. To dissect this ‘touch response’ from the effect of abiotic 

stress responses, every experiment was complemented with control solution application 

to estimate the effect of mechanical stimulation. Salt and osmotic stress triggered a 

[Ca2+]cyt response which overlaid any response due to mechanical stimulation. In H2O2 

and extracellular nucleotide (ATP, ADP, γ-ATP) treatments, there was however an 

immediate [Ca2+]cyt response similar in dynamics to the [Ca2+]cyt response triggered by 

application of control solution alone. Indeed, comparing these initial responses between 

control solution and stress treatments showed no difference, indicating that the initial 

‘touch response’ was due to mechanical stimulation and was not further modulated due 

to H2O2 and extracellular nucleotide perception. 

To overcome the described limitations of the set-up used for [Ca2+]cyt determinations in 

this Chapter, a set-up using (i) intact plants and (ii) superfusion rather than injection of 

treatment solutions would be preferable. This can be achieved by using microscopy-based 

Ca2+ reporter in a perfusion set-up. Such a system will be employed and discussed in 

Chapter 4.  

3.3.2 Phosphate starvation dynamically alters the [Ca2+]cyt response to 

extracellular ATP, which was dependent on DORN1 but not ANNEXIN1 

Chronic P-starvation already showed a dampening of ATP-induced [Ca2+]cyt response in 

6-day old seedlings, whilst the [Ca2+]cyt dynamics (distinct touch response, followed by 

peak 1 and peak 2) were still similar to P-replete root tips. Only after 7 to 8 days of P-

starvation was the characteristic change in [Ca2+]cyt signature (dampened touch response, 
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followed by peak 1, but peak 2 absent) found to occur. This suggested that P deprivation 

gradually affects the [Ca2+]cyt response, rather than tilting a single on/off switch. 

Transferring P-starved seedlings to P-containing growth medium (for 3 days) 

significantly reversed the initially dampened [Ca2+]cyt response to eATP back to P-replete 

levels. Vice versa, subjecting P-replete plants to 3 days of P starvation significantly 

dampened the [Ca2+]cyt response to eATP. Taken together, this indicated that P availability 

dynamically modulates the [Ca2+]cyt response to eATP. 

To elucidate molecular components involved in the changed [Ca2+]cyt response to eATP 

of P-starved root tips, mutants of DORN1 and ANNEXIN1 were tested. Independent of 

P availability, the eATP receptor DORN1 was found necessary for all eATP-induced 

[Ca2+]cyt changes in root tips, which corroborated previous findings in whole seedlings (J. 

Choi, Tanaka, Cao, et al., 2014). Further, the involvement of ANNEXIN1 was tested. 

ANN1 had been reported to govern Ca2+ influx across the PM (Laohavisit et al., 2009, 

2012) and was particularly highly upregulated upon P starvation (Lan et al., 2012; Z. Q. 

Wang et al., 2018). ANN1’s upregulation upon P starvation would imply its acting as a 

negative regulator of the eATP-induced [Ca2+]cyt response, and knock-out of ANN1 

should potentially rescue the dampened [Ca2+]cyt response of P-starved root tips. 

However, knock-out of ANN1 had no effect on the [Ca2+]cyt response in the conditions 

used. Using GFP-tagged constructs, localization studies of ANN1 gene expression and 

ANN1 protein agreed with previous findings with regards to distribution in P-replete roots 

(Siân Richards, unpublished). Under P-starvation, ANN1 gene was expressed to similar 

levels as in nutrient-replete roots, and equally distributed within the root, with the 

strongest expression occurring in epidermal and root hair cells. However, ANN1 protein 

abundance was found to be diminished in P-starved root tips, contrary to what had been 

expected based on previous studies (Lan et al., 2012; Z. Q. Wang et al., 2018). This could 

be due to differences in growth conditions, e.g. both studies used a transfer set-up in 

which plants were grown on nutrient-replete conditions for 7 days, before being 

transferred to low P for 3 days (Lan et al., 2012) or 7 days (Z. Q. Wang et al., 2018). In 

addition, both studies used different complex nutrient compositions, with added sucrose 

('Arabidopsis thaliana salts', Lan et al., 2012; or half-strength Hoagland solution, Z. Q. 

Wang et al., 2018). 
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3.3.3 Phosphate-starved roots still accumulate low levels of extracellular 

ATP 

Low levels of extracellular ATP (eATP) have been shown to be essential for optimal plant 

growth (S.-Y. Kim et al., 2006; Clark et al., 2010). Furthermore, elevations of eATP are 

described to occur during stress perception (Weerasinghe et al., 2009; Dark et al., 2011), 

potentially reaching millimolar concentrations of eATP close to site of PM rupture / 

wounding. Upon mechanical stimulation, nanomolar concentrations of eATP could be 

determined in bathing medium surrounding roots (approximately 60 nM 1 minute after 

mechanical stimulation (Weerasinghe et al., 2009), or 80 nM measured 15 minutes after 

mechanical stimulation (Dark et al., 2011).  

The use of P-rich signalling molecules - ATP containing 3 labile P groups, ADP 

containing 2 labile P groups – might however be constrained in P-limited conditions. 

Onset of P-starvation has reliably been shown to induce a rapid intracellular drop in P-

rich molecules (including nucleotides), substitution of membrane phospholipids with 

glyco-/sulpholipids, and in general a switch to alternative metabolic pathways consuming 

less P (Duff et al., 1989; Andersson et al., 2005; Shimano and Ashihara, 2006; Pratt et 

al., 2009; Nakamura, 2013; Okazaki et al., 2013; Pant et al., 2015). Therefore, it was 

interesting to test if chronic P starvation altered the use of extracellular ATP as signalling 

molecule.  

Extracellular ATP in bathing medium surrounding P-replete and P-starved roots was 

quantified using a luciferase-dependent method, as has been employed by previous 

studies (Weerasinghe et al., 2009; Dark et al., 2011). These previous studies reported 

absolute ATP values (in nM) for a set number of seedlings. As seedlings grown on full or 

zero P showed strong differences in growth, comparison between individual seedlings 

would have been biased, and quantified [eATP] was therefore normalized for root fresh 

weight. In doing so, it was revealed that both full P and zero P grown roots showed similar 

baseline [eATP] baseline levels, directly after transfer to the bathing medium. eATP 

levels were in the low nanomolar range, similar to what had been reported previously 

(Weerasinghe et al., 2009; Dark et al., 2011). After 60 minutes, bathing medium sampled 

at similar positions close to the root tip showed a five-fold increase of [eATP] in full P 

grown roots, whereas zero P grown roots did not quite double the amount of [eATP] 

surrounding their roots. This indicates that P-starved roots sustain some eATP levels. 



Phosphate Starvation alters Calcium Signalling in Roots of Arabidopsis thaliana 

140   

However, the assay was limited in that it did not allow taking ATP hydrolysis into 

account, and further might be hindered by diluting exuded ATP in bathing medium, rather 

than sampling at the site of eATP exudation (between PM and cell wall). In a similar set-

up, the t1/2 of ATP breakdown in the bathing medium was determined to be 180 min 

(Weerasinghe et al., 2009). This is likely to be an underestimate, as it does not consider 

the higher activity of cell wall-localized hydrolytic enzyme compared to the diluted 

bathing medium. Nevertheless, it does show that ATP hydrolysis occurs within the time 

frame of 60 minutes (as sampled in this thesis) and thus likely contorts the absolute values 

reported here. Therefore, it can be concluded that zero P grown roots still accumulate 

some eATP, however to lower levels than P-replete roots. If this were due to lower efflux 

or a higher rate of ATP hydrolysis in P-starved roots remains to be determined.  

3.3.4 Iron-availability is linked to the phosphate-starvation induced altered 

[Ca2+]cyt response  

Excluding P from growth medium has been shown to lead to excess Fe accumulation in 

Arabidopsis roots (Hirsch et al., 2006; Ward et al., 2008). As removing Fe from the 

growth medium, in addition to P, restored primary root growth, it has been hypothesized 

that root growth inhibition is an effect of Fe toxicity rather than P starvation (Ward et al., 

2008). To test how Fe availability affected the dampened [Ca2+]cyt signature, and if it were 

due to Fe toxicity rather than P starvation, root tips grown on different P and Fe levels 

were challenged with eATP.  

In this thesis excluding Fe from the growth medium as well as P restored Arabidopsis 

primary root growth, in agreement with what had been reported previously (Ward et al., 

2008; Müller et al., 2015; Balzergue et al., 2017). Fe availability furthermore strongly 

modulated the [Ca2+]cyt signature in response to 1 mM eATP. Exclusion of Fe, as well as 

P (zero P_zero Fe), almost fully restored the ATP-induced [Ca2+]cyt signature in both 

amplitude and dynamics. Low levels of Fe (10 µM instead of 50 µM Fe, zero P_low Fe) 

relieved the impaired [Ca2+]cyt signature of P-starved root tips in response to eATP, but 

to a lesser extent. At the other end of the scale, increasing the Fe levels from 50 µM to 

100 µM Fe in a zero P background (zero P_excess Fe) did not further dampen the 

observed [Ca2+]cyt signature.  

As this could indeed support the idea that Fe toxicity, rather than P starvation, was 

responsible for the dampened [Ca2+]cyt signature, Fe availability in a P-replete background 



Chapter 3: Phosphate Starvation alters Calcium Signalling in Arabidopsis Roots 

 141 

was modified. Excluding Fe whilst maintaining sufficient P levels (full P_zero Fe) overall 

showed a [Ca2+]cyt signature similar to nutrient replete plants, however more pronounced 

in the early response (peak 1), and slightly delayed during the later response (peak 2). 

Interestingly, the delay in peak 2 maximum was similar to what was seen in zero P_zero 

Fe grown roots, indicating that Fe is involved in advancing maximal peak 2 responses.  

Increasing the absolute amount of Fe (to twice its standard level: 100 µM instead of 

50 µM, full P_excess Fe), as well as adjusting the free Fe levels in accordance with the 

free P levels of the nutrient growth medium (full free P_full free Fe, see section 3.2.13 

for a thorough explanation) did not inhibit primary root growth to the extent observed in 

P-starved seedlings. It further did not in the least alter the [Ca2+]cyt response to eATP. 

This strongly suggest that an interaction between P starvation and Fe availability, and not 

Fe toxicity alone, alters the [Ca2+]cyt signature in response to eATP. This endorses 

previous findings, where increased Fe levels (500 µM) also led to Fe depositions in P-

replete Arabidopsis roots.The studies cited above focus on Fe overaccumulation under 

low P conditions, and on the redox active role of Fe in generating ROS overload, 

eventually leading to cell wall stiffening and inhibition of cell elongation (Ward et al., 

2008; Müller et al., 2015; Hoehenwarter et al., 2016; Balzergue et al., 2017). However, 

it was not tested if the ROS overload was specific to Fe accumulation, or could at least in 

part be mediated by another redox active element such as copper (Cu2+). To test, if the 

dampened [Ca2+]cyt signature of P-starved roots could equally be rescued by exclusion of 

Cu2+, 11-day old root tips starved of P and Cu2+ were challenged with eATP. Excluding 

Cu2+ from the growth medium did not rescue the [Ca2+]cyt response to eATP, indicating 

that Fe overaccumulation in low P conditions was indeed the causative factor. However, 

as Cu2+ is required in much smaller amounts than Fe for plant growth (in absolute terms 

being 1000 x lower, as standard half-strength MS contains only 0.05 µM Cu2+, and 50 

µM Fe), it is possible that within the time frame monitored here no severe Cu2+ deficiency 

was induced. However, it is unlikely that Cu2+ availability influences the [Ca2+]cyt 

signature similar to what has been reported for Fe, as excluding Fe from zero P medium 

fully rescued the [Ca2+]cyt signature even though it would still contain standard levels of 

Cu2+. In addition, it has been reported that excluding Fe from growth medium led to 

increased accumulation of Cu2+ in 9-day old Arabidopsis and 7-day old cucumber leaves 

(Ward et al., 2008; Waters and Armbrust, 2013). If Cu2+ were involved in generating 

ROS, similar to Fe, its effect should be pronounced in Fe-free medium. Instead, Fe-free 

medium showed a [Ca2+]cyt signature comparable to nutrient-replete root tips.  
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3.3.5 Phosphate availability does not seem to be signalled through 

immediate [Ca2+]cyt modulations 

For nitrate-starved roots, it has been shown that nitrate resupply triggered a rapid increase 

in [Ca2+]cyt (Riveras et al., 2015; Liu et al., 2017). The initial discovery was done using a 

set-up similar to this thesis, i.e. aequorin-expressing Arabidopsis plants which were 

challenged with treatment solutions by injecting them onto the sample tissue (Riveras et 

al., 2015). The reported [Ca2+]cyt response was thus primarily a response to mechanical 

stimulation due to injection, which was however shown to increase if nitrate was included 

into the treatment solution (Riveras et al., 2015). Furthermore, this increased [Ca2+]cyt 

response was dependent on the nitrate transporter NRT1.1 (Riveras et al., 2015). 

Accordingly, NRT1.1 has recently been described to function as a ‘transceptor’, i.e. as a 

transporter as well as a receptor of nitrate (Bouguyon et al., 2015). For P nutrition, a 

transceptor has been characterized in yeast (Popova et al., 2010), but if plants possess a 

similar P transceptor it remains to be identified.  

To date, it has not been reported if [Ca2+]cyt is involved in signalling P availability. After 

resupply of P, P uptake has been described to occur within minutes, indicating that any 

signalling of P availability should occur within such a short time frame. Furthermore, P 

resupply to P-starved Lemna gibba, white clover and Arabidopsis root cells was shown 

to lead to a depolarization of the PM, i.e. the membrane potential becoming more positive 

(Ullrich-Eberius et al., 1981; Dunlop and Gardiner, 1993; Dong et al., 1999; Dindas et 

al., 2018). The more P-starved the tissue and the higher the [P] applied, the stronger was 

the depolarization of the PM (Dunlop and Gardiner, 1993; Dong et al., 1999; Dindas et 

al., 2018). This depolarization could be the result of net positive charge entering the cell 

via a H+-P symporter that translocates more H+ per cycle than P, rendering it electrogenic. 

It also potentially indicates opening of cation channels, including Ca2+-permeable 

channels.  

As the aequorin reporter was shown suitable to detect [Ca2+]cyt changes upon nutrient 

resupply, exemplified by Riveras et al. (2015), a similar approach was considered to test 

if P resupply would trigger modulations in [Ca2+]cyt. Both an increase or decrease in 

[Ca2+]cyt could occur. Application of control solution maintaining prior P conditions (i.e. 

applying control solution without P to zero P grown root tips) however showed that P-

starved root tips responded differently to mechanical stimulation alone. The response to 

mechanical stimulation was variable, e.g. even nutrient replete plants showed a wide 
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range of response, from very small to very large increases in [Ca2+]cyt. This may be due 

to variation in the level of force experienced by receptive cells due to the different 

positioning of individual root tip samples in the well. When analysing a high number of 

biological replicates, P-starved root tips however responded significantly less to a 

mechanical stimulus. The mechanistic basis of this is unknown, but is likely to be a 

consequence of the P starvation induced changes such as altered membrane lipid 

composition and/or thickened and stiffened cell walls (Nakamura, 2013; Müller et al., 

2015; Balzergue et al., 2017). Thus, using an altered touch response alone as read-out for 

any P-induced [Ca2+]cyt changes upon P resupply, as was done for nitrate resupply, would 

easily be biased.  

Even if an altered touch response could not be used as a read-out, it was still feasible to 

test if P resupply would modulate [Ca2+]cyt beyond the initial touch response. As root tips 

were shown to be primarily responsible for P sensing and uptake (Svistoonoff et al., 2007; 

Kanno, Arrighi, et al., 2016), they were initially used for P resupply experiments. 

However, application of a 2 mM P-source (applied as pH-buffered and dilute phosphoric 

acid) to root tips, and monitoring [Ca2+]cyt for 2 minutes after P resupply, showed no 

particular response over the usually observed response to mechanical stimulation. 

Using a more sensitive system (luminometer instead of plate reader) and whole seedlings 

instead of excised root tips, a higher P dose (5 mM KH2PO4) was applied. To control for 

additional K+ supplied with the treatment, a 5 mM KCl treatment was used. Seedlings 

were monitored for approximately 15 minutes after treatment application (as supplied P 

had been shown to translocate along whole rice plants within 15 minutes, Kobayashi et 

al., 2013). However, no modulations in [Ca2+]cyt could be observed in this set-up either. 

This could be because (i) Ca2+ is not involved in signalling P availability, (ii) the Ca2+ 

fluxes are below the detection limit of the aequorin-luminometer set-up, or (iii) the Ca2+ 

fluxes occur within specific cells / specific cell types and are lost when averaging the 

response of all cells within a root tip / whole seedling, as is done when using ubiquitously 

expressed aequorin. It is unlikely that the P pulse was below the limit what plants might 

be capable of detecting, as P occurs sparingly within soil, but generally rather in micro- 

than millimolar concentrations (Raghothama, 1999).  

Another aspect so far not considered in any study mentioning the involvement of [Ca2+]cyt 

in nutrient sensing, is a circadian regulation of both [Ca2+]cyt signalling and nutrient 

uptake. The few studies that tried to resolve diurnal P-uptake patterns reported a 

preferential P uptake during the night, independent of the transpiration stream 
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(Terabayashi et al., 1991; Marschner, 2012). If this is a general pattern in all plant species 

remains to be determined, but it could suggest that nutrient sensing might also depend on 

the time of day. The experiments reported in this thesis were carried out between late 

morning until early afternoon. In the case of P, it would be very interesting to test its 

effect on [Ca2+]cyt with circadian resolution.  

3.4 Conclusions and future work 

It was shown that P starvation led to dampened, and overall altered [Ca2+]cyt signatures in 

Arabidopsis root tips in response to mechanical, oxidative, osmotic stress and 

extracellular nucleotides. This was specific to P starvation, as severe N starvation did not 

have the same effect.  

P starvation was found to have a particularly strong effect on the [Ca2+]cyt response to 

eATP. However, P-starved roots were found to still accumulate detectable levels of eATP 

in extracellular bathing medium, indicating that even under chronic P starvation, baseline 

levels of eATP were to some extent maintained. Using a high (1 mM) eATP concentration 

as the standard test, Fe availability in combination with P nutrition was found to determine 

the [Ca2+]cyt response to eATP application. With the method used here, P-starved 

Arabidopsis root tips and whole seedlings did not respond to P resupply through 

modulations of [Ca2+]cyt. This suggests - but does not rule out - that P availability is not 

signalled through major changes of [Ca2+]cyt, in contrast to what has been shown for 

nitrate resupply.  

Future work is needed to dissect the effect of P starvation on the root and shoot [Ca2+]cyt 

response to biotic stresses. Employing tissue- or organ-specific Ca2+ reporters, such as 

aequorin targeted to various root cell types, or a reporter suited for microscopy would 

facilitate dissection of specific responses. For studying the effect of P resupply on 

[Ca2+]cyt, the Ca2+ reporter would ideally be sensitive to even subtle changes of [Ca2+]cyt 

(such as the ultrasensitive Cameleon-Nano, Horikawa et al., 2010; W.-G. Choi et al., 

2014), and targeted to epidermal root tip cells, shown to be pre-dominantly involved in P 

uptake and likely sensing (Kanno, Arrighi, et al., 2016). Any circadian effect of P uptake, 

suggested to occur during the night, should be incorporated into the experimental design.  

As excluding Fe from the growth medium was shown to relieve the dampened [Ca2+]cyt 

signature of P-starved root tips in response to eATP, whether Fe exclusion would also 

rescue the [Ca2+]cyt response to salt, osmotic and oxidative stress now needs to be 
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determined. Ideally, an atlas of nutrient deficiencies and their effect on [Ca2+]cyt could be 

generated.  
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4 DECONSTRUCTING THE 

CYTOSOLIC FREE CALCIUM 

RESPONSE TO 

EXTRACELLULAR ATP IN 

ROOTS 

4.1 Introduction 

4.1.1 Extracellular ATP as a danger signal 

Adenosine 5’-triphosphate (ATP) is the primary carrier of energy in cells. In addition, it 

occurs extracellularly, where it has been shown to function as an important signalling 

molecule in animals and, more recently, also plants (Burnstock, 1972; Demidchik, 

Nichols, et al., 2003; Tanaka et al., 2010; J. Choi, Tanaka, Cao, et al., 2014). Even though 

determinations of intracellular and extracellular ATP concentrations remain challenging, 

it has been reported that for both animals and plants, intracellular ATP is maintained at a 

surprisingly high level, occurring at millimolar levels where enzymatic reactions rely on 

micromolar concentrations (Traut, 1994; Napolitano and Shain, 2005; Patel et al., 2017). 

In plant cells, cytosolic ATP levels in the low millimolar range have been reported, 0.5 – 

1.3 mM using 31-phosphorus nuclear magnetic resonance (Gout et al., 1992, 2014), or 

approximately 2 mM based on ratiometric imaging (De Col et al., 2017). Whilst the exact 
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mechanism of ATP release into the plant cell’s extracellular space is still unknown, 

spontaneous release has been shown during growth and response to abiotic and biotic 

stimuli (Jeter et al., 2004; S.-Y. Kim et al., 2006; Song et al., 2006; Weerasinghe et al., 

2009; Clark et al., 2010; Dark et al., 2011; Zhu et al., 2017). Vesicular exocytosis or 

protein-mediated transport (through anion channels or ATP-binding cassette (ABC) 

transporters) are possible scenarios for release of intracellular ATP into the extracellular 

space, however at low concentrations (S.-Y. Kim et al., 2006; Song et al., 2006; Rieder 

and Neuhaus, 2011; Wu et al., 2011). Physical damage of cellular membranes has been 

described to rapidly release high amounts of intracellular ATP into the extracellular space 

(Song et al., 2006; Weerasinghe et al., 2009; Dark et al., 2011). Thus, extracellular ATP 

(eATP) has been termed a ‘danger signal’ (J. Choi, Tanaka, Liang, et al., 2014). Basal 

levels of eATP are however needed for optimal plant growth, and both depletion and 

augmentation of eATP was shown to trigger plant stress responses (S.-Y. Kim et al., 

2006; Clark et al., 2010; Chivasa et al., 2013). With regards to roots, eATP levels within 

a certain range were found necessary for optimal root hair growth (7.25 – 25 µM ATP or 

ADP would stimulate, ≥ 150 µM would inhibit root hair growth; Clark et al., 2010; Terrile 

et al., 2010) and root gravity perception (Tang et al., 2003; Haruta and Sussman, 2012; 

Yang et al., 2015; Zhu et al., 2017). Levels of eATP are controlled through ATP-

hydrolysing ectoenzymes, most prominently apyrases (Wu et al., 2007). Apyrases 

maintain eATP levels within the optimal range for cell growth and have furthermore been 

shown to play a role in phosphate homeostasis through scavenging of phosphate from 

ATP (Thomas et al., 1999; Lim et al., 2014). Considering that these enzymes were 

described to act extracellularly, it was unexpected to find the two apyrases of Arabidopsis, 

APY1 and APY2, localized to the Golgi (Chiu et al., 2012; Schiller et al., 2012). This 

dissent could potentially be explained by apyrases limiting the ATP loaded into Golgi-

derived vesicles which ultimately serve as eATP source through PM fusion (discussed in 

Yang et al., 2015). 

Work on Arabidopsis protoplasts, i.e. a cell-wall free system, showed that eATP is 

perceived at the plant plasma membrane rather than cell wall (Demidchik et al., 2009). 

Work on root hair cells showed that ATP as well as adenosine 5’diphosphate (ADP) 

addition caused depolarization of the PM (Lew and Dearnaley, 2000). Through a forward 

genetic screen, the receptor of eATP in plants was recently found to be a membrane-

spanning, legume-like lectin receptor kinase, termed DOes not Respond to Nucleotides1 

(DORN1; Choi, Tanaka, Cao, et al., 2014). In an earlier study, this kinase had been 
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characterized as a regulatory component of the plasma membrane-cell wall continuum, 

important for pathogen resistance (Bouwmeester et al., 2011). DORN1 was most specific 

towards ATP and ADP binding, with less affinity towards e.g. AMP, GTP, CTP and 

adenosine (J. Choi, Tanaka, Cao, et al., 2014). It was found that DORN1 self-associates, 

which is enhanced upon eATP perception (Chen et al., 2017). Most recently, it was 

reported that DORN1-mediated perception of eATP was necessary to induce plasma 

membrane K+ and Ca2+ fluxes in root epidermal protoplasts (L. Wang et al., 2018). The 

genetic identities of the K+ and Ca2+ channels activated downstream of DORN1 remain 

unknown.  

4.1.2 Extracellular ATP triggers movement of Ca2+ ions  

One of the most immediate responses to eATP perception is the rapid movement of Ca2+ 

ions across membranes (see Chapter 1, section 1.2.6 onwards for an introduction to Ca2+ 

as a second messenger). In plants, eATP was first shown to lead to an increase of [Ca2+]cyt 

in Arabidopsis roots (Demidchik, Nichols, et al., 2003). Using the Ca2+ reporter aequorin, 

which averages the Ca2+ signal of the assayed cell population, eATP was shown to trigger 

a dose-dependent, and characteristic multi-phasic [Ca2+]cyt response within seconds of 

application, lasting 5 to 10 minutes before returning to baseline levels (Demidchik et al., 

2003; Choi, Tanaka, Cao, et al., 2014; also see Chapter 3, Figure 10). Non-synchronised 

single-cell oscillations were later described to be underlying this ‘averaged’ signal 

(Tanaka et al., 2010; Krebs et al., 2012). These single-cell oscillations were dependent 

on the presence of apyrases (Tanaka et al., 2010). However, details about the origin of 

Ca2+, as well as underlying signalling components in this overall multi-phasic response, 

are not well understood as spatial and temporal resolution are lacking. Excluding Ca2+ 

from the extracellular assaying solution and inhibiting plasma membrane Ca2+ channels 

were shown to abolish most of the [Ca2+]cyt response to eATP (Demidchik, Nichols, et al., 

2003; Loro et al., 2016). This could indicate the apoplast as sole source of Ca2+, but it 

does not rule out any downstream involvement of intracellular Ca2+ stores which might 

rely on an initial trigger of apoplastic Ca2+ flux (Demidchik, Nichols, et al., 2003; 

Demidchik et al., 2009). Inhibition of intracellular phospholipase C signalling was shown 

to affect only the later stages of [Ca2+]cyt signalling in response to eATP, leading the 

authors to conclude that both intracellular as well as apoplastic Ca2+ stores were involved 

in generating the later signal (Tanaka et al., 2010).  
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Ca2+ reporters targeted to various subcellular compartments uncovered links between 

cytosolic and organellar Ca2+ dynamics upon eATP perception. These studies were not 

primarily interested in physiological eATP signalling, but used the reliable [Ca2+]cyt 

increase upon eATP treatment as a tool (Krebs et al., 2012; Loro et al., 2012, 2016; Bonza 

et al., 2013). The ratiometric Ca2+ reporter YC3.6 targeted to the plasma membrane 

reported differing Ca2+ increases within one cell, suggested to represent hotspots of local 

Ca2+ maxima (Krebs et al., 2012). Targeting YC3.6 to the nucleus revealed non-

synchronous oscillations in nuclear free [Ca2+] in response to eATP (Krebs et al., 2012). 

These lagged behind the [Ca2+]cyt response by 7 minutes (Krebs et al., 2012). Another 

nuclear targeted YC3.6 probe reported much faster Ca2+ increases in response to eATP, 

similar in amplitude and kinetics to what was observed for [Ca2+]cyt increases (Loro et al., 

2012). Extracellular ATP treatment prompted [Ca2+] increases in mitochondria, plastids 

and ER (Loro et al., 2012, 2016; Bonza et al., 2013). Mitochondrial, plastid and ER 

increases in [Ca2+] were found to be strictly related to increases of [Ca2+]cyt, i.e. the larger 

the cytosolic increase, the larger the mitochondrial / plastid / ER increase (Loro et al., 

2012, 2016; Bonza et al., 2013). Plastid and ER kinetics of Ca2+ release to the cytosol 

were similar to what was observed for the determination of the cytosolic Ca2+ response 

(Bonza et al., 2013; Loro et al., 2016). However, the return of mitochondrial Ca2+ levels 

back to pre-stimulus baseline levels was much slower than what was observed for the 

cytosol, taking more than 20 minutes to return to pre-stimulus baseline levels (Loro et al., 

2012). As none of the organelle-targeted Ca2+ reporters showed a decrease of [Ca2+] upon 

onset of the [Ca2+]cyt response, it was reasoned that the organelles examined so far do not 

function as the Ca2+ source for the observed initial [Ca2+]cyt increases (e.g. Bonza et al., 

2013). However, the involvement of other organelles such as vacuole and Golgi remains 

to be tested.  

So far, studies reporting changes in [Ca2+]cyt applied eATP treatment by total immersion 

or superfusion of the assayed tissue. This does not allow distinguishing between local or 

systemic effects of eATP perception. For example, it has been shown that locally applied 

salt treatment of Arabidopsis roots led to increases in [Ca2+]cyt, which propagated away 

and into areas of the plant that had not been in direct contact with the salt treatment, 

termed a ‘Ca2+ wave’ (W.-G. Choi et al., 2014). The same study found no such signal 

propagation upon mechanical stimulation, H2O2 or cold treatment, and did not test for the 

response to eATP (W.-G. Choi et al., 2014). Even though imaging of eATP-induced 

[Ca2+]cyt responses seemingly evoked the appearance of a Ca2+ wave (noted by e.g. Loro 
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et al., 2016), this conclusion cannot be reached when all tissue is immersed / superfused. 

Subsequent [Ca2+]cyt increases could merely be the result of direct cellular response 

delayed in time. Hence, it is unknown if eATP induces a Ca2+ wave which propagates 

away from locally treated areas.  

4.1.3 Signalling network in response to extracellular ATP perception 

Besides immediate Ca2+ mobilisation, eATP was found to induce the action of multiple 

other signalling molecules. Extracellular ATP perception triggered the production of 

intra- and extracellular reactive oxygen species (ROS) in various plant tissues of 

Medicago truncatula, Populus euphratica and Arabidopsis (S.-Y. Kim et al., 2006; Song 

et al., 2006; Demidchik et al., 2009; Sun et al., 2012; Chen et al., 2017). This response 

was found to be mostly specific to ATP (S.-Y. Kim et al., 2006; Demidchik et al., 2011) 

or ATP and ADP (Song et al., 2006), but not AMP, adenosine or phosphate. The enzymes 

underlying the ROS production include plasma membrane NADPH oxidases (Foreman 

et al., 2003; Song et al., 2006; Demidchik et al., 2009; Sun et al., 2012). These would 

generate extracellular superoxide anion that could then be converted to H2O2. The current 

model is that the H2O2 could then enter into the cytosol through aquaporins (Rodrigues et 

al., 2017), to be detected as part of the intracellular ROS accumulation. However, the 

model does not yet explain how extracellular ADP can trigger extracellular superoxide 

anion production in Arabidopsis roots (measured with a non-permeable probe), yet does 

not elicit an increase in intracellular ROS (Demidchik et al., 2009, 2011). The activation 

of NADPH oxidases in response to eATP appears to be downstream of plasma membrane 

channel-mediated Ca2+ flux (Demidchik, Shabala, et al., 2003; Jeter et al., 2004; Song et 

al., 2006; Demidchik et al., 2009). Recently, DORN1 was shown to co-localize with 

NADPH oxidase RBOHD in Arabidopsis leaves, phosphorylating RBOHD upon eATP 

recognition (Chen et al., 2017). 

Furthermore, eATP was shown to regulate the production of nitric oxide (NO). In Salvia 

miltiorrhiza, NO production was dose-dependent, with low eATP concentration (10-100 

µM) inducing NO production, and higher eATP concentrations (> 100 µM) decreasing 

NO levels (Wu and Wu, 2008). ATP-dependent NO production was dependent on Ca2+ 

fluxes across the PM (Wu and Wu, 2008). In tomato culture cells, NO production 

increased with increasing eATP concentrations, but the response saturated at 1 mM eATP 

treatment (Foresi et al., 2007). In both studies, increases in NO concentration were 
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reported over the course of hours, limiting resolution with regards to immediate NO 

production upon perception of eATP. Action of phospholipase C (PLC) and 

diacylglycerol kinase (DGK) were found to be necessary components of eATP-induced 

NO production (Sueldo et al., 2010).  

Another signalling molecule shown to be triggered by eATP perception is phosphatidic 

acid (PA). PA is a lipid-derived molecule, generated through PLC or phospholipase D 

(PLD) and DGK action (Singh et al., 2015). PA has been shown to lead to oxidative bursts 

in Arabidopsis leaf cells (Park et al., 2004), however this has not yet been studied for 

eATP application. In tomato suspension culture cells, eATP induced the accumulation of 

PA, which did not occur upon ADP or AMP treatment, and did not rely on hydrolysis of 

ATP (Sueldo et al., 2010). PA levels were analysed after 30 minutes of eATP treatment 

(Sueldo et al., 2010). The authors suggested that PA accumulation occurred 

independently of any Ca2+ fluxes, however interpretation of the data is hindered due to 

low specificity of available pharmacological treatments (Sueldo et al., 2010).  

The concerted action of all these signalling molecules upon eATP perception was 

ultimately shown to result in changes in the level of gene expression and protein 

abundance. Early work on Arabidopsis showed eATP-dependent induction of e.g. 

mitogen-activated protein kinase genes (MAPKs, particularly MPK3, Jeter et al., 2004; 

Demidchik et al., 2009). Expression of the NADPH oxidase RBOHD was found to be 

induced 15 minutes after eATP treatment (Song et al., 2006; Chen et al., 2017). Using a 

microarray approach, the genes misregulated in a non-functional DORN1 background, 

and hence described to be eATP specific, showed a large overlap with wounding-response 

markers (J. Choi, Tanaka, Cao, et al., 2014). However, overall eATP treatment led to low 

fold changes in all genes studied so far (Jeter et al., 2004; J. Choi, Tanaka, Cao, et al., 

2014). Further, induced RBOHD gene expression did not translate into increased protein 

abundance (Chen et al., 2017).   

Overall, a range of signalling molecules are set in motion upon eATP perception, enabling 

the plant to respond. A linear connection can be drawn between a few, e.g. eATP 

increases[Ca2+]cyt which in turn induces ROS production through NADPH oxidases. 

However, a more complex network likely ties in all signalling events occurring upon 

eATP perception. Currently, our understanding of signalling networks is often hampered 

by low temporal and spatial resolution, e.g. staining procedures that require minutes or 

hours to report a signalling molecule, rather than seconds.  
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4.1.4 Experimental approaches and aims 

The aim of this Chapter is to further resolve the components underlying one of the most 

immediate responses to eATP perception in Arabidopsis: the eATP-induced [Ca2+]cyt  

response. Understanding the components of eATP signalling furthers elucidation of a 

multitude of signalling networks. The focus will be on deconstructing the rapid signalling 

events (within seconds to minutes), rather than long-term induced changes. 

First, the origin of the multi-phasic response will be examined by using different root and 

shoot tissues of aequorin-expressing Arabidopsis plants. Next, to resolve if the [Ca2+]cyt 

increases that develop over time occur in spatially distinct locations of the root, 

fluorescence imaging of root tissue will be carried out. The ratiometric Ca2+ reporter 

YC3.6 as well as the intensiometric reporter GCaMP3 will be employed. Taken together, 

the tool set of aequorin, YC3.6 and GCaMP3, and their intrinsic properties, allow 

examination of the [Ca2+]cyt response in different set-ups (e.g. constant treatment versus 

superfusion, systemic versus local application of the eATP treatment). The use of multiple 

reporter constructs will further resolve if observed Ca2+ dynamics are due to construct 

limitations or physiologically relevant events. In many cases, P-starved roots will be used 

for the assays, to make use of the fact that P-starved root tips showed a significantly 

different [Ca2+]cyt  response to eATP (also see Chapter 3, Figure 10).  

Further, the involvement of ROS in generating the immediate [Ca2+]cyt  response will be 

investigated, by using pharmacological inhibitor treatments. To correlate any rapidly 

occurring ROS signalling upon eATP perception to pre-treatment ROS levels, 

histochemical staining will be performed on roots altered in baseline ROS levels. A 

similar correlation will be carried out between immediate [Ca2+]cyt  response and the 

occurrence of callose, a polysaccharide known to impair symplastic communication and 

thus limiting cell-to-cell signalling (see Chapter 1, section 1.1.4, for an introduction to 

callose deposition).  

Previous studies have used a range of eATP concentrations as treatment, from as low as 

3 µM (Demidchik, Nichols, et al., 2003) to 10 mM eATP (Cárdenas et al., 2008), with 

concentrations most commonly used being in the range of 0.1 mM to 1 mM (e.g. 

Demidchik et al., 2009; Tanaka et al., 2010; Choi, Tanaka, Cao, et al., 2014; Wang, 

Wilkins and Davies, 2018). Nano- to micromolar concentrations of eATP have been 

reported as basal levels, whilst rapid elevation to millimolar levels might occur during 

wounding and cell rupture. It is therefore not straightforward which concentration of 
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eATP should be considered a stress signal, and might depend on age and context of the 

assayed tissue. With regards to Arabidopsis root [Ca2+]cyt increases, these change only in 

amplitude when the treatment concentration is increased (also see Chapter 3, Figure 10, 

where 0.1 mM and 1 mM eATP were trialled). To provoke a clear phenotype, it was 

therefore decided to use 1 mM eATP treatment in the following experiments. 

Overall, these experimental approaches should enable answering the following questions: 

 What underlies the distinct [Ca2+]cyt increases in roots’ response to eATP? 

 Are the components of the [Ca2+]cyt response dependent on each other? 

 What other signalling molecules are involved in modulating the eATP-induced 

[Ca2+]cyt  response in roots? 
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4.2 Results 

4.2.1 The [Ca2+]cyt response to extracellular ATP comes mainly from the 

root tip 

Assays using whole root tissue were done in collaboration with Nicholas Doddrell, Part II 

student, University of Cambridge 

To check the ability of root and shoot tissue to respond to eATP in the present  laboratory 

set-up, wild type Arabidopsis plants expressing (apo)aequorin were grown on full or zero 

P, and (i) excised individual leaves, (ii) excised individual whole roots or (iii) excised 

individual 1 cm root tips of 11-day old plants were challenged with 1 mM eATP treatment 

solution (Figure 36). As a control for the mechanical stimulation due to application of the 

treatment solution, control solution without eATP was applied (Figure 36). As a proxy 

for how much [Ca2+]cyt was mobilized in the different tissues, the area under the curves 

were analysed and compared.  

To test the response of shoot tissue to eATP, individual excised leaves were used (3 

independent trials, n = 15 – 19 individual leaves, Figure 36A, B). Care was taken to 

sample true leaves and not cotyledons. Control solution application led to an immediate 

and monophasic increase in [Ca2+]cyt, in both full P- and zero P-grown leaves (Figure 

36B). eATP treatment led to an equally immediate increase in [Ca2+]cyt, followed by a 

more prolonged increase in [Ca2+]cyt starting approximately 30 seconds after eATP 

application (Figure 36B). Overall, eATP treatment mobilized significantly more [Ca2+]cyt 

than control solution application, independent of P growth regime, as assessed by area 

under the curve (Analysis of variance (ANOVA) with post-hoc Tukey test: p ≤ 0.014, 

Figure 36C). With regards to differences between P-sufficient and P-starved leaves, 

control solution application led to a very similar area under the curve (p = 0.999, Figure 

36C). eATP treatment led to an overall significantly higher [Ca2+]cyt increase in full P- 

compared to zero P-grown leaves (p = 0.023, Figure 36C).  

In whole roots, control solution application led to an immediate and monophasic increase 

in [Ca2+]cyt similar to what was observed in leaf tissue. The response to control solution 

application seemed dampened in zero P roots, however this effect was not significant 

between full and zero P grown roots (p = 0.08, data from 6 independent trials, n = 41 – 

62 individual whole roots, Figure 36E, F). In contrast to leaf tissue, eATP treatment of 

whole roots led to a more intricate [Ca2+]cyt response (Figure 36D, E). Overall, eATP 
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mobilized significantly more [Ca2+]cyt than control solution, independent of P growth 

condition (p < 0.001, Figure 36F). Further, eATP treatment triggered the characteristic 

multi-phasic increases in [Ca2+]cyt in full P whole roots (Figure 36E). In P-starved whole 

roots, the response to eATP was ‘missing’ the second, ATP-specific peak, and showed an 

overall significantly lower area under the curve compared to full P whole roots (p < 0.001, 

Figure 36E).  

To narrow down the region within the root capable of responding to eATP, the root tip of 

the primary root was considered. The root tip has long been known for its sensitivity in 

perceiving and integrating cues from the environment (Darwin and Darwin, 1880). It 

comprises production of nascent cells, and their subsequent differentiation into specific 

cell types and elongation to final size (in the meristematic / differentiation / elongation 

zone, respectively). Using a determined size of this nascent tissue (1 cm), also allowed to 

control to some extent for differences in root size between P-replete and P-starved plants 

(Figure 36G). Therefore, excised 1 cm root tips were used for the assay (also see 

Chapter 3, Figure 10, for a more detailed analysis of the root tip response to eATP). The 

response of excised root tips to eATP was similar to what was observed in whole roots (9 

independent trials, n = 29 - 75 individual root tips, Figure 36H). Control solution 

application led to an immediate and monophasic [Ca2+]cyt response, which was 

significantly lower in zero P root tips compared to full P grown root tips (p < 0.001, Figure 

36H, I). eATP treatment led to a significantly stronger [Ca2+]cyt response compared to 

control buffer treatment, regardless of P growth condition (p < 0.001, Figure 36H). Full 

P root tips showed a multi-phasic [Ca2+]cyt response to 1 mM eATP, zero P root tips 

showed a significantly dampened response to eATP (measured as area under the curve, 

p < 0.001, Figure 36I).  

Finally, as a proxy for how much [Ca2+]cyt was mobilised in the different tissues, the areas 

under the curve were compared between leaves, whole roots and root. First, the response 

of full P grown tissue was considered. In response to control solution treatment, leaves 

and whole roots mobilized similar levels of [Ca2+]cyt (p = 0.836), whereas the root tip 

mobilized significantly more [Ca2+]cyt than leaves and whole roots (p = 0.005 and p = 

0.038, respectively). eATP treatment led to a significantly higher area under the curve in 

whole roots than leaves (p < 0.001). However, root tips in turn showed a significantly 

higher area under the curve compared to whole roots (p < 0.001). Thus, 1 mM eATP 

treatment mobilized most [Ca2+]cyt in excised root tips.  
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Secondly, the response of zero P grown tissue was compared. Control solution application 

led to similar responses in leaves, whole roots and root tips (p = 0.999 for all 

comparisons). eATP treatment led to a significantly lower area under the curve in zero P 

grown leaves, compared to whole roots and tips (p < 0.001 for both comparisons). In 

contrast to full P grown tissue however, there was no significant difference of [Ca2+]cyt 

mobilized in whole roots compared to root tips (p = 0.999).  

Therefore, it can be confirmed that root tissue responds more strongly than shoot tissue 

to eATP (Tanaka et al., 2010). Within root tissue, the root tip responded most strongly to 

eATP treatment in plants grown on standard half MS (= full P growth condition). P-

starved roots still showed a stronger eATP response in root compared to shoot tissue, 

however the root tip showed a less pronounced [Ca2+]cyt response compared to whole root 

tissue. In the following experiments, the focus will therefore be on the root tips’ response 

to eATP. Using P-starved root tips, which show an impaired response to eATP, will be 

used as a tool to dissect the overall eATP-induced mechanism.  

(Please see Chapter 3 for a detailed dissection of the root tips’ response to a non-

hydrolysable ATP analogue (Figure 11) and ADP (Figure 12)). 
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Figure 36: The [Ca2+]cyt response of phosphate-starved leaves, whole roots and excised root tips 

to extracellular ATP. Arabidopsis Col-0 aequorin-expressing seedlings were grown on full or zero 

P. Excised true leaves (A-C), whole roots (D-F) or root tips (1 cm; G-I) of 11-day old seedlings 

were challenged with treatments applied at 35 seconds, then [Ca2+]cyt was measured for 155 

seconds. (A) Schematic of Arabidopsis, pink box depicts tissue sampled. (B) Response of excised 

leaves to 1 mM extracellular ATP treatment or mechanical stimulation (control solution); time 

course trace represents mean ± standard error of mean (SEM) from 3 independent trials, with n = 

15 - 19 individual leaves averaged per data point. Time course data were baseline-subtracted and 

analysed for (C) area under the curve (AUC), with each dot representing an individual data point. 

Boxplot middle line denotes median. (D-F) Responses of excised whole roots to 1 mM ATP or 

control solution (6 independent trials, n = 41 – 62 individual whole roots). (G-I) Responses of 

excised root tips (1 cm) to 1 mM ATP or control solution (9 independent trials, n = 29 - 75 root 

tips). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess statistical 

differences. Different lower-case letters describe groups of significant statistical difference (p < 

0.05), same letters indicate no statistical significance (p > 0.05).  
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4.2.2 The eATP-induced multi-phasic [Ca2+]cyt increase maps to different 

regions of the root tip 

All NES-YC3.6 imaging was carried out in the laboratory of Prof. Alex Costa, University 

of Milan. Prof. Alex Costa and Fabrizio G. Doccula provided initial training and 

facilities. 

To overcome limitations of the aequorin reporter, another genetically encoded [Ca2+]cyt 

reporter was used to resolve the spatial occurrence of eATP-induced [Ca2+]cyt changes 

within the root tip. The ratiometric reporter Yellow Cameleon 3.6 was used as its 

cytosolic targeted version (NES-YC3.6, Krebs et al., 2012). With this reporter, Ca2+ 

quantification relies on ratio changes between YFP and CFP fluorophore emission upon 

Ca2+ binding. Therefore, this ratiometric reporter requires a microscopy set-up capable of 

splitting the two output emissions. A research visit to Prof. Alex Costa’s laboratory, 

University of Milan, was undertaken to use their microscopy facilities and be trained in 

the use of ratiometric reporters.  

Arabidopsis Col-0 wild types plants, expressing NES-YC3.6, were grown on full or zero 

P (same growth medium as used in aequorin trials). Ten-day old whole seedlings were 

mounted into a custom-built superfusion chamber, with the root sitting between a glass 

slide and wetted cotton wool, and therefore within the imaging field of an inverted 

microscope. The shoot was propped up on the cotton wool, reaching into the air (see 

Chapter 2, section 2.7 for a more detailed description). This set-up allowed the imaging 

of roots (i) without the need to excise the root, and (ii) whilst superfusing control or 

treatment solution interchangeably over the same sample (Behera and Kudla, 2013). 

Before starting an image acquisition time-course, samples were acclimatized to constant 

superfusion with control solution for at least 10 minutes, to recover from any stress 

induced by sample transfer to the chamber, and until baseline cpVenus / CFP levels were 

stable (false colour-coded as blue-green, Figure 37A). Constant superfusion with control 

solution did not elicit any cpVenus / CFP ratio changes, indicating that the superfusion 

system allowed application of a treatment without incurring a mechanical stimulation, 

which had been inevitable in aequorin assays. In addition, constant superfusion with 

control solution made the separate control solution application redundant.    

Changing the superfusion solution from control to 1 mM eATP solution  led to a strong 

cpVenus / CFP ratio increase in the apical root tip of both full and zero P grown root tips 

(colour-coded by yellow-red, Figure 37A). This was then followed by a secondary ratio 
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increase, ‘shooting up’ within the longitudinal centre of full P grown roots (Figure 37A, 

upper panel, indicated by white triangles; see Appendix VI, movie 1, for a representative 

time series). This secondary response occurred to a lesser extent or was completely 

missing in zero P grown roots (Figure 37, lower panel; see Appendix VI, movie 2, for a 

representative time series). After three minutes of eATP treatment, the superfusion 

solution was changed back to the control solution. This washed out the eATP solution 

from the chamber, however, it cannot be determined exactly at which time point all eATP 

would have left the chamber. Once the eATP treatment was changed back to control, the 

cpVenus / CFP ratio returned back to pre-treatment baseline levels, taking slightly longer 

in full P than zero P roots (Figure 37A).  

The acquired images could then be analysed for specific regions of interest (Roi). First, a 

Roi containing most of the root tip imaged (2.5 mm in length) was used to analyse the 

‘whole root tip’ response (WR Roi, white dashed box in upper left image, Figure 37). 

Upon eATP application, the ratio changes in this WR Roi revealed a strong, possibly 

slightly bi-phasic, response in full P roots, peaking within 30 to 40 seconds (data from 3 

independent trials, n = 7 – 9 independent roots per growth condition, Figure 37B). Zero 

P root tips showed an equally immediate, but comparably lower ratio change in response 

to eATP treatment (Figure 37B). To account for differences in baseline ratios between 

full and zero P grown roots, the quantified cpVenus / CFP ratios were normalised with 

regards to their baseline levels (ΔR / R0 = (R – R0) / R0; Figure 37C). Essentially, this 

normalisation approach takes differences in pre-treatment signal intensities into account 

and reveals the magnitude of response. As differences in baseline ratio levels were similar 

between the two growth conditions, the response pattern looked similar when comparing 

raw and normalized ratios (Figure 37B and C).  

Quantitative raw and normalized ratios (as depicted in Figure 37B and C) could then be 

further analysed (analysis after Wagner et al., 2015; Loro et al., 2016, Figure 37D - H). 

Steady-state levels of cpVenus / CFP ratio prior to eATP application were found to be 

higher in full P WR Roi (mean cpVenus / CFP ratio ± SEM: 3.24 ± 0.04) than in zero P 

WR Roi (3.17 ± 0.02). However, this slight difference was not significant (p = 0.128, 

Figure 37D). Normalized ratio maxima, comparable to peak maxima reported for 

aequorin assays, were found to be significantly higher in full P compared to zero P WR 

Roi (mean ΔR / R0 ± SEM: full P: 0.29 ± 0.03, zero P: 0.17 ± 0.01, p = 0.006, Figure 

37E). Full P grown root tips needed on average 84.3 ± 3 seconds to reach the ratio 

maxima, whereas zero P grown root tips needed on average 109.4 ± 8 seconds to 
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maximally respond (Figure 37F). Hence, full P root tips reached their maximal response 

significantly quicker than zero P grown root tips (p = 0.013, Figure 37F). This relationship 

can also be expressed as a ratio change (ratio maximum divided by time needed to reach 

ratio maximum), with full P grown root tips showing a significantly higher ratio change 

than zero P root tips (mean ratio change ± SEM: full P: 0.009 ± 0.002, zero P: 0.003 ± 

0.001, p = 0.009, Figure 37G). In addition to analysing how quickly roots responded to 

an eATP treatment, it can further be analysed how quickly the response subsided. This is 

captured in how much time it takes to pass half-maximal ratio (t1/2 down [sec], Figure 

37H). Full P grown root tips took on average 180 ± 4.5 seconds until they reached half 

their maximal response, whereas zero P root tips took on average 154 ± 9.0 seconds 

(Figure 37H). Thus, zero P root tips significantly more quickly recovered from their 

response to eATP compared to full P root tips (p = 0.026, Figure 37H). This parameterises 

the stronger and more prolonged response of full P grown roots (visualized in Figure 37A, 

and quantified in Figure 37B and C).  
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Figure 37: Spatial dynamics of the [Ca2+]cyt response of phosphate-starved root tips to 

extracellular ATP using a ratiometric reporter. Arabidopsis Col-0 expressing the cytosolic Yellow 

Cameleon 3.6 (NES-YC3.6) was grown on full or zero P. In a superfusion chamber, 10-day old 

seedlings were constantly superfused with control solution, before applying a 1 mM eATP 

treatment (applied during 50 – 230 second interval after start of image acquisition), followed by 

wash-out with control solution. (A) Ratiometric false-colour images from representative time 

series, background subtracted. Purple box indicates treatment with 1 mM eATP. White triangles 

highlight differences between the response of full and zero P root tips. Scale bar in upper left 

image: 1 mm. White dashed box in the upper left image indicates region of interest (2.5 mm root) 

plotted over time for (B) mean FRET ratio (cpVenus / CFP) ± SEM and (C) normalized FRET 

ratio (ΔR / R0) ± SEM, of full P (green trace) and zero P root tips (blue trace); data from 3 

independent trials, with n = 7 - 9 individual root tips per growth condition. (D-H) Analysed kinetic 

parameters of data shown in (B) and (C), including (D) baseline cpVenus / CFP ratios preceding 

eATP treatment (mean of 50 seconds window before eATP application); (E) maximum 

normalized ratio after eATP treatment; (F) time needed to reach maximum ratio (in seconds); (G) 

ratio change upon eATP treatment (maximum ratio (as shown in (E)) per time needed to reach 

this maximum (as shown in (F)); and (H) time needed to reach half the maximum ratio, measured 

in seconds after maximum ratio was reached. In boxplots, each dot represents an individual data 

point, middle line denotes median. Analysis of variance (ANOVA) with post-hoc Tukey Test was 

used to assess statistical differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * 

(<0.05), n.s. (not significant). 
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From the YC3.6-based time series it became apparent that eATP treatment led to FRET 

ratio changes that were separated in time and space along the Arabidopsis root (Figure 

37A; also see Appendix VI, movies 1 and 2). In particular, a secondary response to eATP 

‘moved along’ the central part of the full P root, possibly aligning with the vasculature 

(marked by white triangles in the upper panel of Figure 37A). As the analysis of the whole 

root tip Roi did not differentiate between different regions within the roots, two efforts 

were undertaken to increase spatial resolution of the analysis: (i) visualizing the spatial 

position of ratio changes over time using the graphical features of a kymograph (Figure 

38) and (ii) analysing more defined regions of interest along the longitudinal axis of the 

root (Figure 39).  

First, for a graphical representation of the ratio changes upon eATP treatment, the NES-

YC3.6 time series images were sliced along a defined line through the root longitudinal 

axis (see white dashed line in root micrographs on the left of Figure 38). This investigated 

axis ran from the apical root tip (0 mm) through the centre of the root towards the upper 

parts of the root (2 mm from root tip). The kymograph then displays the average intensity 

values for each position over time. Kymograph visual analysis was carried out for all 

roots sampled, the kymograph of a representative root grown on either full and zero P 

medium is shown (Figure 38). It was found that both full and zero P roots responded 

strongly to 1 mM eATP treatment in the apical root tip (false colour-coded in red, Figure 

38). With a time-lag, full P roots then showed a secondary ratio increase further up the 

root (starting approximately 1 mm from the root tip, see white triangles in upper panel in 

Figure 38). This secondary response was lowered or completely missing in zero P grown 

roots (see white star in lower panel in Figure 38). Upon eATP wash-out, zero P roots 

more quickly returned to baseline FRET ratio levels (false colour-coded in green, Figure 

38) than full P roots.  

As the microscopy images were collected using a wide-field microscope (as opposed to 

a confocal microscope), the signal from all underlying cell layers were superimposed. 

Hence, no differentiation with regards to cell layers (e.g. epidermis, endodermis, etc.) 

could be made. 
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Figure 38: Kymographs of the [Ca2+]cyt response to extracellular ATP of phosphate-starved root 

tips. Quantitative ratiometric data (see Figure 37 for details) were used to generate kymographs 

of distinct regions along the root of full P- (top) and zero P- (bottom) grown root tips. On the left, 

white dashed line in root micrographs indicates region used for kymograph extraction, scale bar: 

1 mm. On the right, kymographs depict temporal and spatial changes in [Ca2+]cyt in response to a 

3-minute 1 mM eATP treatment (purple bar), preceded and followed by control solution 

superfusion. White triangles indicate increase in [Ca2+]cyt in full P root tips, which is missing in 

zero P root tips (marked by white star).  

 

Secondly, the spatial occurrence of FRET ratio changes were investigated using defined 

regions of interest along the imaged root tip (Figure 39). The Rois were of equal height, 

tightly aligned with the individual root width and equally spaced with regards to the start 

of the root tip (white boxes in root micrograph on the left of Figure 39). Four different 
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Rois were designated, based on previous analysis of the whole root tip Roi and 

kymographs: Roi A – at the apical root tip, Roi B – at the upper end of the primary 

response region to eATP, circa 1 mm away from the root tip, Roi C – within the region 

of the secondary response, and at equal distance between Roi B and D, Roi D – at the end 

of the whole root tip Roi described earlier (2.5 mm away from the root tip), which was 

due to technical restriction of the imaging field.  

As was visually depicted in the kymographs, superfusion with 1 mM eATP led to a strong 

and immediate ratio change in the apical root tip, Roi A (mean raw cpVenus /CFP ratios: 

Figure 39G; normalized ΔR / R0: Figure 39H). Interestingly, whilst superfusion with 

eATP was still on-going, the ratio already decreased. The response in Roi A was very 

similar between full and zero P-grown root tips. However, in Roi B a difference could be 

quantified between full and zero P-grown roots (Figure 39E and F). Full P root tips 

showed a stronger response to eATP, compared to zero P root tips. In Roi C, the response 

to eATP was low in both full and zero P root tips (Figure 39C), however still stronger in 

full P root tips when controlling for differences in baseline levels (Figure 39D). Furthest 

away from the root tip, in Roi D, the response to eATP was almost completely abolished 

in zero P root tips, whereas full P root tips still sustained a clear ratio increase upon eATP 

treatment (Figure 39A and B).  

Taken together, analysing different regions within the first 2.5 mm of Arabidopsis YC3.6-

expressing root tips revealed a strong spatial separation of the [Ca2+]cyt response to eATP. 

P-starved root tips were not generally impaired in responding to eATP, as their response 

to eATP was similar to P-replete root within the apical tip (Roi A). Only further up the 

root, where the secondary response to eATP occurred as visualized by kymograph and 

Roi D analysis, zero P roots showed a much weaker[Ca2+]cyt response to eATP than full 

P root tips.  
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Figure 39: The [Ca2+]cyt response to extracellular ATP in specific regions of phosphate-starved 

root tips using a ratiometric reporter. Arabidopsis Col-0 expressing the cytosolic Yellow 

Cameleon 3.6 (NES-YC3.6) were grown on full or zero P. In a superfusion chamber, 10-day old 

seedlings were constantly superfused with control solution, before applying a 1 mM eATP 

treatment (applied during 50 – 230 second interval after start of image acquisition), followed by 

wash-out with control solution. On the left, exemplary root tip with annotated regions of interest 

(‘Roi’, white boxes), analysed and plotted over time in A – H, scale bar: 1 mm. (A, B): Roi D; 

(C, D): Roi C; (E, F): Roi B; (G, H): Roi A. Purple boxes indicates treatment with 1 mM eATP. 
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(A, C, E, G) Mean FRET ratio (cpVenus / CFP) ± SEM; (B, D, F, H) normalized FRET ratio (ΔR 

/ R0) ± SEM, of full P (green trace) and zero P root tips (blue trace). Data from 3 independent 

trials, with n = 7 - 9 individual root tips per growth condition. 

 

To further validate what was found using the ratiometric NES-YC3.6 reporter, another 

[Ca2+]cyt reporter was employed. The intensiometric Ca2+ reporter GCaMP3 has been 

developed to have an increased baseline fluorescence and increased dynamic range upon 

Ca2+ binding, as well as being photostable (Tian et al., 2009), and has recently been 

expressed in Arabidopsis (Vincent et al., 2017). As Ca2+ binding leads to an increase of 

GFP signal, this single wavelength-based reporter promised ease of imaging using a less 

specific microscope set-up than was necessary for YC3.6 imaging, which necessitated an 

emission beam splitter. GCaMP3-expressing Arabidopsis plants could be trialled on a 

stereomicroscope equipped with a standard GFP-emission filter.  

To make data comparable to YC3.6-derived results (Figure 37 - Figure 39), GCaMP3-

expressing Arabidopsis wild type plants were grown on either full and zero P medium, 

and 10-day old seedlings were challenged with 1 mM eATP treatment (in control 

solution), or control solution (to account for mechanical stimulation due to treatment 

application). Compared to aequorin assays, no excision of root material and prolonged 

re-constitution with coelenterazine was necessary. Compared to both aequorin and YC3.6 

assays, no submergence of the root tissue was employed (aequorin set-up: root tissue 

submerged in wells of 96-well plate; YC3.6 set-up: root tissue constantly superfused). 

Instead, GCaMP3-expressing seedlings were left on the agar-based growth medium they 

had grown on, which allowed minimal handling of the sample prior to microscopy. 

Treatment solutions were applied to the root tips as defined amounts using a pipette (see 

Chapter 2, section 2.8 for details).  

Using a stereomicroscope equipped with a GFP-filter, GCaMP3-expressing intact root 

tips were left to acclimatize on the microscope stage until baseline fluorescence was 

stable, and then imaged over a time course of in total 250 seconds, with treatment 

solutions being applied at 20 seconds after start of image acquisition (Figure 40, also see 

Appendix VI, movies 3 – 6 for representative time series). eATP treatment led to a strong 

increase in GFP-fluorescence in the most apical regions of tips of both full and zero P 

grown roots (see representative images in Figure 40A). As the fluorescence signal 



Chapter 4: Deconstructing the Cytosolic Free Calcium Response to Extracellular ATP in Roots  

 169 

increase was strong upon eATP perception, care was taken to adjust imaging parameters 

to prevent image saturation and biasing downstream analysis.  

Time course images were analysed, first for a ‘whole root tip’ region of interest (Roi), 

comparable in size to the whole root tip Roi analysed in YC3.6-derived data (2.5 mm in 

length, see white dashed box in upper left in Figure 40A). Fluorescence intensities showed 

a slight decrease upon treatment application (see time point 20 seconds, Figure 40B), due 

to slight shifts in focus due to treatment application. Application of control solution led 

to small increases in fluorescence intensity, whereas 1 mM eATP treatment led to strong 

increases in GFP signal, particularly in full P root tips (data from 3 independent trials, 

with n = 4 – 7 individual roots per growth condition and treatment, Figure 40B). Zero P 

grown root tips showed a substantial, but lower signal increase upon eATP treatment. 

When correcting for differences in baseline fluorescence the pattern changed only slightly 

(Figure 40C).  Data normalization was carried out as was done for YC3.6 data, which is 

the same procedure as described for GCaMP3-specific data processing (ΔF / F0 = (F – F0) 

/ F0; F – Fluorescence signal, F0 – baseline fluorescence signal; Vincent et al., 2017). 

Normalized data were then further analysed with regards to maximal response upon 

treatment application (ΔFmax / F0; Figure 40D). Full P root tips showed a significant 

increase in intensity when treated with eATP compared to control buffer application 

(mean ΔFmax / F0 ± SEM: full P + 1 mM ATP: 2.00 ± 0.13, full P + control buffer: 0.09 ± 

0.04, p < 0.001, Figure 40D). Zero P root tips on average did show a higher response to 

eATP treatment than to control solution, but as the response was variable, the difference 

was not significant (zero P + 1 mM ATP: 0.46 ± 0.16, zero P + control solution: 0.06 ± 

0.03, p = 0.183, Figure 40D). There was no difference in the response to control solution 

when comparing full and zero P grown roots (p = 0.999). Full P root tips showed a 

significantly higher increase in fluorescence upon eATP treatment, compared to zero P 

grown roots (p < 0.001). 

To assess spatial differences of the roots’ response to eATP, defined Rois along the root 

were analysed (Figure 41). These Rois were designed to be comparable with Rois 

analysed for YC3.6-based data. To make the analysis more efficient, the number of Rois 

was reduced, and the two most distinct Rois were analysed, labelled ‘Roi A’ and ‘Roi D’ 

(comparable to Roi A and Roi D in YC3.6 data; see white boxes on root micrograph on 

the left of Figure 41). GFP fluorescence intensity was found to slightly decrease upon 

treatment application in Roi A, whereas no decrease was observed at 20 seconds in Roi 

D (compare Figure 41A and D). This is due to the treatment being applied to the root tip 
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(Roi A region), which then slightly moves out of focus, whereas further up the root (Roi 

D region) no focus change occurs.  

Most interestingly, the pattern of signal increase differed between the two Rois analysed. 

Control solution application led to little change in fluorescence, indicating that little 

mechanical stimulation occurred upon treatment application (Figure 41A, D, also see 

section 4.3.3 for a discussion of the probe’s sensitivity). Full P root tips showed a very 

strong increase in GFP fluorescence upon treatment with 1 mM eATP, reaching its 

maximal amplitude within 10 seconds in the root tip apex (Roi A), and with a time lag of 

approximately 50 seconds further up the root (Roi D). Zero P grown root tips also 

responded to eATP treatment in the root tip apex (Roi A), however the response was 

different in shape compared to full P Roi A response. Where full P roots showed a defined 

peak in Roi A, the shape of response in zero P Roi A was that of a narrower peak, followed 

by a shoulder (compare green and light blue trace in Figure 41D). Further up the root, in 

Roi D, zero P root tips completely lacked any response to eATP treatment (Figure 41A). 

Controlling these raw fluorescence signals for differences in baseline levels (normalized 

fluorescence signal, Figure 41B, E) resulted in little change of pattern in Roi A, however 

the strong response in Roi D of full P roots became more pronounced.  

The two Rois were further analysed by extracting fluorescence maxima for all treatments 

and growth conditions (Figure 41C, F). Not surprisingly, eATP treatment led to 

significantly higher fluorescence maxima in full P root Roi A compared to control 

treatment (full P + 1 mM ATP: 2.11 ± 0.14, full P + control: 0.03 ± 0.01, p < 0.001, Figure 

41F). Zero P root tips equally responded significantly more strongly to eATP than to 

control treatment in Roi A (zero P + 1 mM ATP: 1.43 ± 0.31, zero P + control: 0.03 ± 

0.03, p = 0.002, Figure 41F). No difference was observed when comparing control 

solution application between full and zero P root tips Roi A (p = 0.999). Similarly, 

fluorescence maxima upon eATP were not significantly different in Roi A between full 

and zero P grown roots, even though full P root tips on average showed a stronger 

response (p = 0.118).  

Fluorescence maxima in Roi D of full P grown roots were significantly higher upon eATP 

treatment compared to control treatment (full P + 1 mM ATP: 3.15 ± 0.15, full P + control: 

0.07 ± 0.02, p < 0.001, Figure 41C). In Roi D of zero P grown root tips however, no 

difference was observed between eATP or control treatment (zero P + 1 mM ATP: 0.25 

± 0.11, zero P + control: 0.05 ± 0.02, p = 0.58, Figure 41C). Full and zero P roots did not 
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differ in their response to control in Roi D (p = 0.998). Unsurprisingly, full P roots 

responded significantly more strongly than zero P roots in Roi D (p < 0.001).  

Taken together, the GCaMP3 reporter allowed for an easy-to-use imaging and 

quantification set-up to track changes in [Ca2+]cyt. In full P grown roots, treatment with 

1 mM eATP led to spatially and temporarily distinct increases in [Ca2+]cyt, as quantified 

by changes in GFP-fluorescence. Zero P grown roots showed an ATP-specific [Ca2+]cyt 

in the root tip apex, however lacked any signal further up the root. These results were 

convincingly similar to those obtained using the YC3.6 reporter. These initial trials using 

intact GCaMP3 roots can therefore be used to further corroborate what was observed in 

YC3.6-expressing roots. However, being a single wavelength-based reporter, GCaMP3-

based fluorescence signal is directly correlated with expressed protein level (i.e. more 

GCaMP3 protein, higher baseline fluorescence). Protein levels might be altered under 

nutrient starvation conditions, such as P-starvation. In the initial experiment reported here 

(Figure 40 and Figure 41), P-starved roots showed a clear fluorescence signal. 

Nevertheless, care should be taken when using GCaMP3 to compare between groups of 

potentially unequal protein expression. Due to its ease-of-use and resulting ease to 

manipulate, GCaMP3 is however very suitable when comparing within groups of e.g. the 

same nutrient growth condition (further discussed in section 4.3.3).  

 

  



Phosphate Starvation alters Calcium Signalling in Roots of Arabidopsis thaliana 

172   

 

Figure 40: Spatial dynamics of the [Ca2+]cyt response of phosphate-starved root tips to 

extracellular ATP using an intensiometric reporter. Arabidopsis Col-0 expressing the cytosolic 

GCaMP3 was grown on either full or zero P medium. Ten-day old seedlings were treated with 

control or 1 mM eATP treatment solution, applied 20 seconds after start of image acquisition to 

the root tip of seedlings resting on gel-based growth medium, and imaged for in total 250 seconds. 

(A) Intensiometric false-colour images from representative time series of full and zero P grown 

roots treated with 1 mM eATP. Purple box indicates treatment with 1 mM eATP, scale bar in 

upper left image: 1 mm. White dashed box in upper left image indicates region of interest (2.5 

mm root length) analysed and plotted over time for (B) mean GFP fluorescence intensity ± SEM, 

background subtracted, (C) normalized GFP fluorescence (ΔF / F0) ± SEM; data from 3 

independent trials, with n = 4 - 7 individual roots per growth condition and treatment. (D) 

Extracted normalized fluorescence maxima (ΔFmax / F0), each dot represents an individual data 
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point, middle line denotes median. Analysis of variance (ANOVA) with post-hoc Tukey Test was 

used to assess statistical differences. Significance levels (p-values): *** (<0.001), n.s. (not 

significant). 

 

 

Figure 41: The [Ca2+]cyt response to extracellular ATP in specific regions of phosphate-starved 

root tips using an intensiometric reporter. Arabidopsis Col-0 expressing the cytosolic GCaMP3 

was grown on full or zero P medium. Ten-day old seedlings were treated with control or 1 mM 

eATP treatment solution, applied 20 seconds after start of image acquisition to the root tip of 

seedlings resting on gel-based growth medium, and imaged for in total 250 seconds. On the left, 

exemplary root tip with annotated regions of interest (‘Roi’, white boxes), scale bar: 1 mm. (A, 

B): Roi D; (D, E): Roi A. (A, D) Mean GFP fluorescence intensity ± SEM, background subtracted, 

and (B, E) normalized GFP fluorescence (ΔF / F0) ± SEM; data from 3 independent trials, with n 

= 4 - 7 individual roots per growth condition and treatment. (C, F) Extracted normalized 

fluorescence maxima (ΔFmax / F0), each dot represents an individual data point, middle line 

denotes median. Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess 

statistical differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. 

(not significant).  
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4.2.3 The spatially distinct [Ca2+]cyt responses to extracellular ATP can be 

generated independently of each other  

Extracellular ATP evokes a robust multi-phasic pattern of [Ca2+]cyt increase in 

Arabidopsis root tissue which has reliably been quantified using the luminescent aequorin 

reporter (Demidchik, Nichols, et al., 2003; Tanaka et al., 2010, also see Figure 36). Using 

the ratiometric Ca2+-reporter YC3.6, it was shown in this Chapter that underlying this 

multi-phasic response were spatially separated hotspots of [Ca2+]cyt increase along the 

root (Figure 38, Figure 39). Interestingly, these responses were also separated in time, i.e. 

occurring in distinct phases after application of the eATP treatment, even though the 

eATP solution would envelop the assayed root tissue very rapidly. The question arose as 

to whether these two responses were dependent on each other and, if not, ultimately how 

the time difference could be explained. 

First, it was investigated if the two distinct [Ca2+]cyt responses in full P roots were linked. 

More precisely, the role of the apical root tip (1 mm) in [Ca2+]cyt signal perception and 

generation upon eATP treatment was investigated. This part of the root tip showed the 

immediate and strong [Ca2+]cyt response in both full and zero P grown root tips. To this 

end, aequorin-expressing wild type Arabidopsis were grown on full and zero P growth 

medium. A defined size of root tissue was used for the assays (excised 1 cm of the primary 

root tip), to control for differences in root size between full and zero P grown plants. 

These root tips were either used in their intact form (‘intact’ = 1 cm of root tip), or the 

apical root tip was further cut off (‘cut’ = 1 cm of root tip missing approximately the first 

1 mm of its apex). In preliminary trials it was also attempted to assay the 1 mm of apical 

root tip alone. However, handling of this delicate and small tissue proved problematic, 

and (due to limited tissue abundance) comparison of luminescence signal to intact root 

tips proved difficult. Therefore, the excised 1 mm root tip tissue was not assayed using 

the aequorin reporter (but later considered using the GCaMP3 reporter, see Figure 43).  

Intact or cut root tips were challenged with control solution, to control for mechanical 

stimulation, or 1 mM eATP treatment solution (Figure 42). Application of control 

solution led to a monophasic and immediate increase in [Ca2+]cyt in all assayed root tips, 

however to different extents (Figure 42A). Intact root tips of full P grown roots responded 

significantly more strongly than when the apical tip was cut off (mean µM [Ca2+]cyt touch 

maxima ± SEM: full P intact: 1.14 ± 0.08, full P cut: 0.45 ± 0.09, p < 0.001, Figure 42B). 

However, this might be biased as fewer samples were run for intact full P root tips (see 
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Chapter 3, Figure 13, for an in-depth analysis of the intact root tip response to mechanical 

stimulation). P-starved root tips responded less to mechanical stimulation than full P root 

tips, regardless of whether root tips were intact or cut (zero P intact: 0.17 ± 0.1, zero P 

cut: 0.12 ± 0.02, p = 0.999, Figure 42B). The same pattern was observed when analysing 

area under the curve (full P intact versus cut root tips: p < 0.001, zero P intact versus cut 

root tips: p = 0.999, Figure 42C).  

Upon application of 1 mM eATP, the difference between intact and cut root tips was 

however striking. As has been described before, intact root tips grown on full P showed 

the characteristic multi-phasic [Ca2+]cyt response of ‘touch’, ‘peak 1’ and ‘peak 2’ (see 

Chapter 3, Figure 6, for details on labelling and analysis). P-starved intact root tips 

showed a dampened [Ca2+]cyt signature, missing peak 2 (Figure 42D). When the apical 1 

mm of root tip was cut off, however, this pattern changed drastically. Full P grown root 

tips still showed the initial sharp touch response, but lacked the characteristic peak 1. 

Instead, [Ca2+]cyt levels decreased to almost pre-treatment baseline levels, before showing 

another increase in [Ca2+]cyt which temporally aligned with peak 2 observed in intact root 

tips from full P plants. Zero P cut root tips showed a small [Ca2+]cyt increase upon 1 mM 

eATP treatment, without any further [Ca2+]cyt increases (Figure 42D). Quantification of 

these responses revealed no difference in perception of mechanical stimulation, 

regardless of the root tip being intact or cut (touch maxima: full P intact versus full P cut: 

p = 0.173, zero P intact versus zero P cut: p = 0.999; Figure 42E). In full P roots, peak 1 

maxima were on average much higher in intact than in cut root tips (full P intact: 0.29 ± 

0.01, full P cut: 0.18 ± 0.02), however this difference was not significant (p = 0.057, 

Figure 42F). This might be due to low sample size of intact root tips, and further might 

have been influenced by limitations of the analysis, i.e. the touch response ‘leaking’ into 

the phase analysed for peak 1 maxima. For zero P roots, intact root tips showed 

significantly higher peak 1 maxima compared to cut root tips (zero P intact: 0.23 ± 0.01, 

zero P cut: 0.05 ± 0.01, p < 0.001, Figure 42F). Peak 2 maxima of full P root tips were 

slightly lower when the apical tip was cut off (full P intact: 0.31 ± 0.02, full P cut: 0.29 ± 

0.01), however, the difference was not significant (p = 0.586, Figure 42G). Zero P roots 

overall showed a much more dampened response than full P grown roots, however intact 

zero P root tips still responded significantly more strongly than zero P cut root tips (zero 

P intact: 0.16 ± 0.01, zero P cut: 0.05 ± 0.01, p < 0.001, Figure 42G). Again, this might 

have been biased by the analysis windows, and peak 1 might have ‘leaked’ into the 
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analysis of peak 2 maxima, particularly having an impact on peak 2 maxima in zero P 

root tips.  

Overall, less [Ca2+]cyt was mobilized upon eATP treatment in cut root tips, both in full 

and zero P grown roots (Figure 42H). The area under the curve was significantly larger 

in full P intact roots compared to cut roots (p < 0.001), as well as in zero P intact roots 

compared to cut roots (p < 0.001, Figure 42C).  

Taken together, cutting off the apical root tip (approximately 1 mm) drastically altered 

the [Ca2+]cyt signature upon eATP treatment. Both in full and zero P cut root tips, the 

characteristic [Ca2+]cyt increase termed peak 1 was absent. Full P root tips still showed a 

delayed response that temporarily aligned with what was normally observed in intact root 

tips as peak 2. However, temporal correlation would not necessarily imply that eATP 

provoked the same responses in intact and cut root tips, i.e. the underlying mechanism to 

generate [Ca2+]cyt
 influx could be different between intact and cut root tips. Further 

complicating the interpretation of the data was the fact that the aequorin-based assay did 

not allow spatial differentiation of the responses.  
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Figure 42: The [Ca2+]cyt response of phosphate-starved intact or cut root tips to extracellular ATP.  

Arabidopsis Col-0 aequorin-expressing seedlings were grown on full or zero P medium (green or 

blue traces). Intact root tips (1 cm) or cut root tips (1 cm of root tip with the apical 1 mm cut of) 

of 11-day old seedlings were challenged with treatments applied at 35 seconds, and [Ca2+]cyt was 

measured for 155 seconds. (A) Mechanical stimulation (control solution); time course trace 

represents mean ± standard error of mean (SEM) from 2 independent trials, with n = 5 individual 

intact root tips, and 3 independent trials, with n = 15 individual cut root tips averaged per data 

point. Time course data were analysed for (B) touch maxima, (C) area under the curve (AUC), all 

baseline-subtracted, with each dot representing an individual data point (see Figure 6 for details). 

Boxplot middle line denotes median. (D-H) Responses to 1 mM eATP (data from 2 independent 

trials, with n = 5 individual intact root tips, and 3 independent trials, with n = 19 individual cut 

root tips). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess statistical 

differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not 

significant). 
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To investigate the spatial origin of the eATP-induced [Ca2+]cyt responses in severed root 

tips, the GCaMP3 reporter was employed. Plants expressing the GCaMP3 reporter could 

easily be manipulated prior to experimentation, e.g. apical root tip could be cut off and 

imaged together with the remaining distal root ‘stump’. This would allow resolution of 

the spatial response of cut root tips, which was not feasible in aequorin assays.  

GCaMP3-expressing wild type Arabidopsis plants were grown on half MS medium 

(mostly labelled ‘full P’ in this thesis). Ten-day old plants used for microscopy were 

prepared in two ways: either without severing the root tip (‘intact’ roots) or by cutting the 

apical root tip off (‘cut’ roots, 0.8 – 1 mm cut off, Figure 43A). Cut off apical root tips 

were placed next to their respective distal root ‘stumps’, and left to recover for 5 to 10 

minutes from this drastic manipulation before starting the assay. Both intact and cut roots 

rested on gel-based medium during the assay (see Chapter 2,section 2.8.1 for more 

details). Intact and cut roots were then treated with 1 mM eATP solution, applied to the 

intact root tip or severed root tip and stump simultaneously. Either way, the applied 

treatment would envelop all imaged root tissue in less than 1.5 seconds. Treatment was 

applied 20 seconds after start of image acquisition, and images were taken over a period 

of in total 250 seconds (see Appendix VI, movie 7, for a representative time series). 

The response of intact GCaMP3-expressing roots to eATP treatment has been described 

in more detail previously (see Figure 40 and Figure 41). Hence, this section focusses on 

the response of cut root tips, and how it differs from the response of intact roots (Figure 

43). To enable comparison between intact and cut roots, regions of interest (Roi) were 

designed to locate to equivalent positions along the root, measuring from (intact or cut 

of) start of the root tip, i.e. Roi A was positioned at the apical root tip, Roi D was 

positioned 2.5 mm from the apical root tip (see white boxes in Figure 43A).  

Not surprisingly, baseline fluorescence levels were slightly elevated in cut roots due to 

previous wounding stress (see light and dark green traces in Figure 43B). Besides a slight 

decrease in fluorescence due to treatment application at 20 seconds, treatment with 1 mM 

eATP solution led to an immediate and strong increase in fluorescence intensity in Roi A 

of both intact and cut roots (Figure 43B). Interestingly, cut root tips exhibited a differently 

shaped response – instead of one defined peak (grey trace, intact roots), cut roots showed 

a much narrower peak, followed by a smaller shoulder (light green trace, compare in 

Figure 43B). This response indicated that some component of the eATP response went 

missing in cut roots. Furthermore, the ‘narrow peak and shoulder’ was reminiscent in 

shape as to what was observed for the eATP-response in zero P root Roi A (Figure 41D).  



Chapter 4: Deconstructing the Cytosolic Free Calcium Response to Extracellular ATP in Roots  

 179 

eATP treatment also triggered an increase in fluorescence signal in Roi D, however more 

gradual and delayed than the immediate response observed in Roi A (Figure 43B). Most 

interestingly, an increase of fluorescence in Roi D was observed even when the apical 

root tip was cut off. Moreover, both intact and cut roots showed responses that were 

aligned in time (compare dark green and dark grey traces in Figure 43B). It was further 

observed that, even though intact and cut roots ‘started’ their response from different pre-

treatment baseline fluorescence levels, upon eATP treatment both reached the same 

absolute level of fluorescence.  

When normalising for differences in baseline levels, the pattern described for Roi A 

changed little - the lower, more shouldered response in cut roots was preserved (Figure 

43C). However, the amplitude of response in Roi D of intact roots proved to be on average 

twice as high as what was observed in Roi D of cut roots (Figure 43C). To quantify this 

difference, fluorescence maxima were extracted from normalised signal intensity traces 

(ΔFmax / F0, Figure 43D). Although the kinetics of the response differed, maximal 

responses to eATP treatment were very similar in Roi A between intact and cut roots 

(mean ΔFmax / F0 ± SEM: intact roots: 2.11 ± 0.14, cut roots: 1.97 ± 0.26, p = 0.975). In 

contrast, intact roots showed a significantly higher magnitude of response in Roi D (intact 

roots: 3.15 ± 0.15, cut roots: 1.36 ± 0.26, p < 0.001, Figure 43D). 
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Figure 43: The [Ca2+]cyt response to extracellular ATP in specific regions of intact and cut root 

tips using an intensiometric reporter. Arabidopsis Col-0 expressing the cytosolic GCaMP3 were 

grown on half MS growth medium (full P). Primary roots of 10-day old seedlings were modified 

prior to the assays by either not severing the root (‘intact root’) or excising 0.8 – 1 mm of apical 

root tip (‘cut root’). Root tips were then treated with 1 mM eATP treatment solution, applied 20 

seconds after start of image acquisition to the root tip (and stump) of seedlings resting on gel-

based growth medium, and imaged for in total 250 seconds. (A) Root micrographs depicting cut 

roots (yellow dashed line indicates site of cut, with root tip being placed next to root stump), and 

intact roots, including regions of interest used for analysis (Roi A, Roi D; indicated by white 

boxes), scale bar: 1 mm. (B) Mean GFP fluorescence intensity ± SEM, background subtracted, 

and (C) normalized GFP fluorescence (ΔF / F0) ± SEM; data from 3 independent trials, with n = 

6 - 9 individual roots per root modification. (D) Extracted normalized fluorescence maxima 

(ΔFmax / F0) of individual Rois, each dot represents an individual data point, middle line denotes 

median. Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess statistical 

differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. (not 

significant). 

 

To investigate any link between the spatially separated responses (the component missing 

in Roi D of cut roots, see above), it was therefore of interest to investigate the local versus 
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systemic effect of eATP perception and resulting [Ca2+]cyt signal. With regards to eATP 

perception, it is unknown if eATP leads to the propagation of a [Ca2+]cyt signal beyond 

the tissue that is in direct contact with the treatment solution. The experimental methods 

described so far did not allow a differentiation between local and systemic response to 

eATP, as aequorin, NES-YC3.6 and GCaMP3 set-ups relied on all root tissue being in 

contact with eATP treatment solution (aequorin: tissue was completely submerged in 

treatment solution; NES-YC3.6: superfusion of all root tissue with treatment solutions; 

GCaMP3 (shown so far): treatment solution rapidly spreading along the root due to 

capillary action).  

Thus, an experiment was designed which allowed localized application of eATP 

treatment solution, whilst monitoring [Ca2+]cyt dynamics in (i) tissue that was in direct 

contact, and (ii) outside the tissue area being treated. GCaMP3-expressing plants were, 

as described for previous experiments, placed on gel-based growth medium to be imaged 

under a stereomicroscope. However, the roots were placed across a gap in the agar 

(approximately 1 mm gap). Cutting a gap in the agar was found to be the most reliable 

way to avoid spread of applied treatment solution along the whole root (see Chapter 2, 

Figure 3, for a comparison of trialled methods). Thus, the apical root tip (0.8 – 1 mm) 

rested on one side of the agar gap, allowing localized application of treatment solution to 

either the root tip or the elongation zone (see Figure 44A for an exemplary image of a 

root placed across an agar gap). The gap was supplied with liquid nutrient solution to 

avoid drying of the root placed across. Care was taken that the solution would not touch 

the roots, leading to a leak of applied treatment solution. Plant material used was 10 days 

old, and grown on full P or zero P growth medium. 

Prepared seedlings were left to recover from any handling stress for 5 to 10 minutes, i.e. 

until baseline fluorescence levels were steady. Control solution or 1 mM eATP treatment 

solution was then applied to the apical root tip or the elongation zone. To test if the order 

of treated area would play a role in the observed response, two sets of experiments were 

conducted: (i) Roots were treated first at the root tip, and secondly in the elongation zone 

(Figure 44) or (ii) roots were first treated in the elongation zone, and secondly at the root 

tip (= reverse order). In both cases, the first treatment was applied 20 seconds after start 

of image acquisition, the subsequent treatment was applied at 295 seconds after start of 

image acquisition. 

Regions of interest (‘Roi’) were designated to root regions comparable to intact and cut 

roots experiments described before, labelled as before ‘Roi A’ and ‘Roi D’ (Figure 41, 
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Figure 43). To test if any signal upon eATP perception were being propagated into the 

area not in contact with treatment solution (section of root that was placed across the gap), 

‘Roi X’ was designated to the middle of the gap (see Figure 44A for a root micrograph 

with annotated Rois).  

Applying 1 mM eATP treatment first to the root apex, and later to the elongation zone, 

revealed an immediate and strong fluorescence increase in the apex (Roi A, Figure 44B 

and E). Full P grown root fluorescence recovered back to pre-stimulus baseline levels in 

Roi A within approximately 180 seconds. Interestingly, the response showed a slight 

shoulder, which had been observed before in Roi A of cut, but not intact root tips (see 

Figure 43B). Roi A of zero P grown roots showed a similar amplitude of response, but 

different response kinetics as fluorescence levels did not return back to baseline within 

the timeframe monitored (Figure 44B and E). Application of control solution did not lead 

to any remarkable fluorescence increase (Figure 44B and E).  

Most interestingly, Roi X which covered a root region that did not come in direct contact 

with any treatment solution, quickly showed a gradual increase in fluorescence upon 

eATP treatment of the root apex, in both full and zero P grown root tips (Figure 44C). As 

images were captured every 5 seconds, temporal resolution was low; an increase of 

fluorescence in Roi X was however detectable within approximately 5 to 20 seconds. The 

response was variable, but normalizing for differences in pre-stimulus baseline levels 

revealed that full P grown roots responded with a fairly strong fluorescence increase, and 

zero P grown root tips to a lesser extent (Figure 44F). This indicated that local application 

of eATP treatment to the apical root tip triggered a [Ca2+]cyt increase in tissue that did not 

come in contact with the treatment, travelling approximately 0.3 – 0.5 mm of untreated 

tissue before being monitored in Roi X (see Figure 44A for a schematic). No fluorescence 

increase in Roi X was seen upon control solution application, indicating that the response 

in Roi X is not due to mechanical stimulation, but rather is eATP-dependent (in the range 

that the GCaMP3 reporter is sensitive for [Ca2+]cyt changes, see section 4.3.3 for a 

discussion).   

Monitoring the fluorescence response in the elongation zone (Roi D) showed no 

remarkable response in the initial 300 seconds, during which treatment was applied to the 

apical root tip, and only a slight, eATP-dependent raw fluorescence increase once 

treatment was applied to the elongation zone (Figure 44D). Most strikingly, when 

normalizing for differences in baseline fluorescence levels, full P grown roots showed an 

increase in fluorescence in Roi D upon treatment of the apical root tip (see green trace in 
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20 – 300 second window, Figure 44G and J). This would indicate that application of eATP 

to the apical root tip did not only trigger an increase in fluorescence signal in Roi X, but 

also in Roi D, essentially traversing approximately 2 mm of non-treated root tissue. 

Subsequent application of eATP to the elongation zone provoked a stronger increase in 

full P grown roots compared to zero P grown roots (Figure 44J). Control buffer 

application did not lead to any changes in fluorescence (Figure 44J).  

Next, the same experimental set-up was employed but the treatment order reversed (i.e. 

the first treatment was applied to the elongation zone, the second treatment was applied 

to the root apex; see Figure 45A for a schematic). The pattern was very similar to what 

has been described above for the reversed order. Applying 1 mM eATP solution first to 

the elongation zone led to a strong response in full P roots, and a much dampened 

response in zero P roots within Roi D (Figure 45D, G, J). In the root section not in direct 

contact with treatment solution (Roi X), an increase of fluorescence was apparent in full 

P grown roots, whilst zero P roots showed a much lower response, comparable to what 

was observed for some samples upon control solution application (Figure 45C, F, I). 

Application of eATP to the root apex, at 295 seconds, led to a strong increase in 

fluorescence in Roi A, in both full P and zero P grown roots (Figure 45B, E, H). This 

response was very similar to the previous experiment, where the root apex was treated 

first with eATP solution (compare Figure 44B and Figure 45B). Interestingly, the 

response kinetics were conserved as well, i.e. both full and zero P grown roots showed a 

peak in fluorescence, followed by a smaller shoulder (Figure 44B and Figure 45B). 

Overall, local application of eATP treatment in all root tissue and treatment order led to 

strong increases in fluorescence. When applying eATP to the root apex, there was no 

difference in response between roots grown on full or zero P. In the elongation zone, 

eATP treatment led to a stronger fluorescence increase in full P grown roots compared to 

zero P grown roots. Using this set-up, with the root being placed across a gap in the agar, 

it was possible to track any propagating signal into areas not in direct contact with eATP 

treatment. A gradual increase in fluorescence in Roi X could be detected almost instantly 

after the treatment was applied, with full P roots showing a stronger response compared 

to zero P roots. The response was however much more variable than what was observed 

in areas of direct eATP application. A fluorescence increase in Roi X was detected both 

after treatment application to the root apex and elongation zone. This indicates that the 

[Ca2+]cyt signal was capable of propagating both from the root apex shootwards, as well 

as from the elongation zone towards the apex. Care was taken to keep the root section, 
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which was placed across the gap, humid. However, it should be taken into account that 

this section might still be primed differently than root tissue lying on agar, and influence 

any downstream response.   

All experiments carried out to test the link between the spatially and temporarily distinct 

[Ca2+]cyt responses upon eATP perception can be summarized as follows. First, it was 

shown that detaching the root apex from the remaining root still led to two distinct 

[Ca2+]cyt responses in the apex and elongation zone when eATP was applied systemically. 

Secondly, local application of eATP treatment led to a strong response at the site of direct 

contact, but also triggered a systemic increase in [Ca2+]cyt outside the treated area. 

Intriguingly, this indicates that the two responses (‘peak 1’ and ‘peak 2’) mostly depend 

on direct contact with eATP containing solution, and can be generated independently of 

each other. Using the GCaMP3 reporter, some signal was shown to also occur 

systemically.  
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Figure 44: The [Ca2+]cyt response of roots to locally applied extracellular ATP, first applied to the 

tip then to the elongation zone. Arabidopsis Col-0 expressing cytosolic GCaMP3 was grown on 

full or zero P medium. Ten-day old seedlings were placed across a gap in the agar (see example 

root with annotated gap (A)); then treated with control or 1 mM eATP treatment solution, applied 

20 seconds after start of image acquisition to the root tip (indicated by purple ‘1’ in (A)), and at 

295 seconds to the elongation zone (indicated by purple ‘2’ in (A)), and imaged for in total 495 

seconds. (A) Exemplary root tip with annotated regions of interest used for analysis (‘Roi’, white 

boxes), scale bar: 1 mm. (B, C, D) Mean GFP fluorescence intensity ± SEM, background 

subtracted, and (E, F, G) normalized GFP fluorescence (ΔF / F0) ± SEM; data from 3 independent 

trials, with n = 3 individual roots for control treatments per growth condition, and n = 6 – 9 

individual roots per eATP treatment and growth condition. (H, I, J) Extracted normalized 
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fluorescence maxima (ΔFmax / F0), each dot represents an individual data point, middle line 

denotes median. Data shown in (B, E, H) represent Roi A; (C, F, I) represent Roi X; (D, G, J) 

represent Roi D.  

 

 

Figure 45: The [Ca2+]cyt response of roots to locally applied extracellular ATP, first applied to the 

elongation zone then to the tip. Arabidopsis Col-0 expressing cytosolic GCaMP3 was grown on 

full or zero P medium. Ten-day old seedlings were placed across a gap in the agar (see example 

root with annotated gap (A)); then treated with control or 1 mM eATP treatment solution, applied 
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20 seconds after start of image acquisition to the elongation zone (indicated by purple ‘1’ in (A)), 

and at 295 seconds to the root tip (indicated by purple ‘2’ in (A)), and imaged for in total 495 

seconds. (A) Exemplary root tip with annotated regions of interest used for analysis (‘Roi’, white 

boxes), scale bar: 1 mm. (B, C, D) Mean GFP fluorescence intensity ± SEM, background 

subtracted, and (E, F, G) normalized GFP fluorescence (ΔF / F0) ± SEM; data from 3 independent 

trials, with n = 3 individual roots for control buffer treatments per growth condition, and n = 8 

individual roots per eATP treatment and growth condition. (H, I, J) Extracted normalized 

fluorescence maxima (ΔFmax / F0), each dot represents an individual data point, middle line 

denotes median. Data shown in (B, E, H) represent Roi A; (C, F, I) represent Roi X; (D, G, J) 

represent Roi D.  
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4.2.4 The increase of intracellular ROS is dependent on an interplay of 

phosphate and iron levels 

Next, the involvement of intracellular reactive oxygen species (ROS) was tested in 

generating and/or modulating the [Ca2+]cyt response to eATP. It had been reported that P 

starvation led to over-accumulation of Fe in particular regions of the root tip of wild type 

Arabidopsis, which in turn correlated with hotspots of ROS (Müller et al., 2015; Reyt et 

al., 2015; Hoehenwarter et al., 2016; Balzergue et al., 2017). Thus, P-starved roots were 

to used as a tool to further delineate, and possibly correlate, the components underlying 

the different [Ca2+]cyt responses to eATP. Intracellular ROS could be visualized and 

quantified through staining with CM-H2DCFDA (2′, 7′-dichlorodihydrofluorescein 

diacetate). This dye is membrane-permeable, and passively diffuses into cells. Once 

within the cell, it is hydrolysed to CM-H2DCF by intracellular esterases and thus trapped 

in the cell. CM-H2DCF rapidly reacts with a range of ROS to produce a fluorescent 

product, with fairly low affinity for reactive nitrogen species (Halliwell and Whiteman, 

2004). The resulting fluorescence intensity can be quantified in relation to position along 

the root. The produced fluorescent product is stable, i.e. the dye is cumulative, therefore 

great care was taken to minimize any (oxidative) stress during the staining procedure. 

Furthermore, the dye is known to be photolabile, i.e. long light exposure might induce 

artifactual photochemical oxidation yielding a fluorescent product (Halliwell and 

Whiteman, 2004). Hence, exposure time was kept to a minimum. 

Wild type Arabidopsis plants were grown on growth medium with varying levels of P 

and Fe, including full P_full Fe, zero P_full Fe, full P_zero Fe, zero P_zero Fe, full free 

P_full free Fe and full P_excess Fe (see Chapter 2, section 2.2.3, for more details on 

growth conditions, and Chapter 3, section 3.2.14 onwards for corresponding aequorin 

assays).  

Bright field images of roots grown on these different growth conditions for 10 to 11 days 

showed root architectural differences (on the left of Figure 46). Nutrient-sufficient roots 

had few root hairs emerging within the field imaged, i.e. 1 – 2 mm from the root tip 

(Figure 46A). In contrast, zero P_full Fe grown roots showed increased root hair 

outgrowth (Figure 46B), which is a phenotype conclusively reported for P-starved roots 

(also see Chapter 5). Excluding Fe, as well as P, from the growth medium (Figure 46C), 

rescued this dramatic root hair response back to what was observed for nutrient-sufficient 

roots. Decreasing or increasing Fe levels in a P-replete background led to little differences 
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compared to nutrient-sufficient roots (Figure 46D, F). Adjusting the free ionic availability 

of P and Fe to resemble that of zero P_full Fe growth medium (Figure 46E), produced a 

root phenotype comparable to nutrient-sufficient conditions.  

Capturing the fluorescence signal of roots grown on varying P and Fe conditions and 

stained with 20 µM CM-H2DCFDA revealed strong differences of intracellular ROS 

levels (on the right of Figure 46). Nutrient-sufficient roots showed very low fluorescence 

levels in the apical root tip, increasing slightly to low fluorescence levels, evenly spread 

along the upper parts of the roots (Figure 46A). In stark contrast, P-starved but Fe-replete 

roots (zero P_full Fe) showed much higher fluorescence levels, with a hotspot occurring 

approximately 0.5 to 1.5 mm away from the root tip (Figure 46B). All other variations in 

P and Fe showed low fluorescence levels, overall comparable to nutrient-sufficient 

conditions (Figure 46C-F). This included roots grown on zero P_zero Fe (Figure 46C), 

indicating that excluding P did not necessarily lead to higher fluorescence through e.g. 

more porous membranes and thus higher uptake of dye.  

Roots that had undergone the same staining procedure, except including the 

CM-H2DCFDA dye, showed no fluorescence signal, independent of growth condition 

(Figure 46G, H). This indicates that any fluorescence signal quantified is due to 

fluorescence of CM-H2DCFD, background fluorescence can be excluded as a 

confounding factor.  

To quantify the observed differences in fluorescence, the fluorescence signal of individual 

roots was analysed (according to Reyt et al., 2015, see Chapter 2, section 2 2.9.1, for 

analysis details). Mean fluorescence intensities were then plotted along the length of the 

root (data from 3 independent trials, with n = 14 – 16 individual roots per growth 

condition, Figure 47). Quantification allowed localization of the intracellular ROS 

hotspot observed in zero P_full Fe roots, showing maximal intensity approximately 1 mm 

from the root tip (blue trace in Figure 47). Extracting the fluorescence signal intensities 

at designated distances from the root tip (100 µm, 1000 µm and 2000 µm from the root 

tip, Table 4) allowed statistical comparison between the different growth conditions 

(Analysis of variance (ANOVA) with post-hoc Tukey test). This revealed that at the 

apical root tip (position: 100 µm), zero P_full P roots already showed a higher 

fluorescence signal compared to all other growth conditions, however this difference was 

not significant (p ≥ 0.18). All other growth conditions showed highly similar fluorescence 

levels (p = 0.999 for all comparisons). At 1000 µm from the root tip, roots of all growth 

conditions showed increased fluorescence intensities. However, zero P_full Fe roots 
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showed a significantly higher fluorescence intensity in contrast to all other growth 

conditions (p < 0.001). As was seen for the apical root tip, all other growth conditions 

showed comparable signal intensities (p ≥ 0.45). Further up the root, 2000 µm from the 

root tip, zero P_full Fe roots showed a decreased signal compared to 1000 µm from the 

root tip, however still significantly higher than all other growth conditions (p < 0.001). 

Again, comparing all other growth conditions except zero P_full Fe did not show any 

significant differences in signal intensity at 2000 µm from the tip (p ≥ 0.12).  

Taken together, using a dye that stained intracellular ROS, it could be shown that roots 

grown without P but standard levels of Fe showed a higher ROS load. A ROS hotspot 

was found to be localized approximately 1 mm from the root tip, which spatially 

correlated with a much dampened [Ca2+]cyt response in the same region (see kymograph 

in Figure 38). Excluding Fe, as well as P, from growth medium, reduced this ROS 

overload back to roots grown on optimal nutrient conditions. Only excluding Fe from 

growth medium (as in full P_zero Fe) did not lead to any changes in intracellular ROS 

levels, indicating that the interplay of P starvation and Fe availability is necessary to 

induce intracellular ROS accumulation within the root tip of Arabidopsis.  
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Figure 46: Distribution of intracellular reactive oxygen species in phosphate- and iron-starved 

primary root tips. Arabidopsis Col-0 were grown on growth medium with different P and Fe 

levels: (A, G) full P_full Fe, (B, H) zero P_full Fe, (C) zero P_zero Fe, (D) full P_zero Fe, (E) 

full free P_full free Fe and (F) full P_excess Fe. Ten- to 11-day old seedlings were stained with 

20 µM CM-H2DCFDA (A-F), or incubation solution without CM-H2DCFDA as control for any 

background fluorescence (G-H), for 1 hour before bright field (on the left) and GFP fluorescence 

images (on the right) were captured. CM-H2DCFDA stains intracellular ROS. Three independent 

trials were conducted, representative images per growth condition are shown, false colour-coded. 

Scale bar in (A): 1 mm.  
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Figure 47: Fluorescence intensity from intracellular reactive oxygen species staining along 

phosphate- and iron-starved primary roots. Arabidopsis Col-0 were grown on medium with 

different P and Fe levels: full P_full Fe (green), full P_zero Fe (turquoise), zero P_full Fe (blue), 

zero P_zero Fe (pink), full free P_full free Fe (magenta) and full P_excess Fe (brown). Ten- to 

11-day old seedlings were stained for intracellular ROS with 20 µM CM-H2DCFDA for 1 hour 

before fluorescence images were captured. Fluorescence intensity was quantified, background 

subtracted and averaged along the root length. Mean values (coloured lines) ± SEM (grey shading) 

are shown, data from 3 independent trials, with n = 14 - 16 roots analysed per growth condition. 

Root micrograph (bottom) aligns with root tip regions quantified (yellow dashed lines), scale bar: 

1 mm.  
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Table 4: Mean signal intensities of phosphate- and iron-starved primary root tips stained for 

intracellular reactive oxygen species. Roots were incubated with 20 µM CM-H2DCFDA stain (20 

µM dye) or control solution without dye (no dye). Primary data are shown in Figure 47 (analysed 

root tip regions are marked by yellow dashed line). Fluorescence intensities were averaged at 

100 µm, 1000 µm and 2000 µm from the root tip (means ± SEM), n – number of individual root 

tips averaged, from 3 independent trials.  

 

 

   

Incubation Growth condition mean ± SEM mean ± SEM mean ± SEM n

20 µM dye full P_full Fe 3.25 0.44 28.30 6.39 13.70 2.57 15

20 µM dye full P_zero Fe 1.74 0.19 13.95 2.61 3.45 0.85 14

20 µM dye zero P_full Fe 21.28 14.44 115.93 11.06 42.01 5.78 15

20 µM dye zero P_zero Fe 1.69 0.19 19.05 3.19 6.22 1.37 16

20 µM dye full free P_full free Fe 2.00 0.18 14.58 2.02 10.51 0.97 14

20 µM dye full P_100 µM Fe 1.91 0.16 13.71 1.91 10.41 1.33 15

no dye full P_full Fe 0.43 0.20 0.09 0.04 -0.18 0.02 2

no dye zero P_full Fe 0.82 0.05 0.26 0.17 0.35 0.01 2

100 µM from tip 1000 µM from tip 2000 µM from tip 
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4.2.5 The secondary [Ca2+]cyt response to extracellular ATP is sensitive to 

pharmacological alterations of cellular redox status 

To further test the role of ROS in the [Ca2+]cyt signal generation upon eATP treatment, 

pharmacological inhibitors known to affect cellular redox state or impair ROS production 

were employed. First, sample tissue in a more reduced state was used for experimentation. 

To this end, aequorin-expressing Arabidopsis plants were grown on full or zero P (both 

including standard Fe levels). Excised root tips (1 cm) of 11-day old seedlings were 

incubated for 30 minutes with 2 mM 1,4 – dithiothreitol (DTT) prior to running the assay. 

DTT is known as a potent reducing agent, maintaining accessible protein thiol groups in 

reduced states (Carmack and Kelley, 1968; Demidchik et al., 2009).  

DTT pre-treated roots were then challenged with 1 mM eATP treatment (in control 

solution background), or control solution alone, to control for the mechanical stimulation 

due to treatment application (Figure 48). Application of control solution led to immediate 

and monophasic increases in [Ca2+]cyt (data from 3 independent trials, n = 8 – 11 

individual root tips per pre-treatment and growth condition, Figure 48A). Even though 

2 mM DTT pre-treatment led to a more unsteady [Ca2+]cyt behaviour in full P root tips 

(see light green trace in Figure 48A), there was no significant difference in magnitude of 

touch maxima or derived area under the curve between any P growth regime or pre-

treatment condition (mean peak maxima ± SEM: full P + 2 mM DTT: 0.10 ± 0.02, full P 

no DTT: 0.11 ± 0.04, zero P + 2 mM DTT: 0.09 ± 0.02, zero P no DTT: 0.10 ± 0.02, p ≥ 

0.970 for all comparisons involving touch maxima and area under the curve, Figure 48B 

and C).  

However, DTT pre-treatment altered the response to 1 mM ATP treatment (data from 3 

independent trials, n = 15 – 23 individual root tips per pre-treatment and growth condition, 

Figure 48D). Whereas full P grown root tips without DTT pre-treatment showed the 

characteristic multi-phasic [Ca2+]cyt  response (dark green trace in Figure 48D), root tips 

pre-treated with DTT showed a much lower secondary ATP-specific response (light green 

trace in Figure 48D). Zero P grown root tips showed an overall dampened [Ca2+]cyt 

response to ATP treatment, as has been described in detail before (see Chapter 3), but 

without any obvious effect of DTT pre-treatment (blue and purple trace, Figure 48D). 

Analysis of the time-course data showed no difference between touch maxima, regardless 

of P regime or DTT pre-treatment (full P + 2 mM DTT: 0.08 ± 0.02 µM, full P no DTT: 

0.08 ± 0.02 µM, zero P + 2 mM DTT: 0.08 ± 0.01 µM, zero P no DTT: 0.09 ± 0.02 µM, 
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p ≥ 0.997, Figure 48E). DTT pre-treatment led to a slight but significant dampening of 

peak 1 maxima in full P root tips (full P + 2 mM DTT: 0.22 ± 0.01 µM, full P no DTT: 

0.26 ± 0.02 µM, p = 0.023, Figure 48F). Peak 1 in zero P root tips was not affected by 

DTT (zero P + 2 mM DTT: 0.17 ± 0.01 µM, zero P no DTT: 0.16 ± 0.004 µM, p = 0.999, 

Figure 48F). The effect of DTT was even stronger on peak 2 maxima in full P root tips, 

significantly dampening the [Ca2+]cyt  increase (full P + 2 mM DTT: 0.15 ± 0.01 µM, full 

P no DTT: 0.24 ± 0.01 µM, p < 0.001), but again showed no effect on zero P root tips 

(zero P + 2 mM DTT: 0.08 ± 0.004 µM, zero P no DTT: 0.09 ± 0.001 µM, p = 0.406, 

Figure 48G). Overall, DTT pre-treatment led to a significantly lower mobilization of 

[Ca2+]cyt in full P root tips, compared to DMSO pre-treatment alone (p < 0.001, Figure 

48H). The area under the curve of zero P root tips was not affected by DTT pre-treatment 

(p = 0.624, Figure 48H).  

Taken together, the reducing agent DTT altered the [Ca2+]cyt  signature in full P grown 

root tips, with particularly peak 2 being dampened upon eATP treatment. In zero P root 

tips, which already exhibited a dampened [Ca2+]cyt  signature regardless of DTT treatment, 

DTT had no further impact on the [Ca2+]cyt  response to eATP.  
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Figure 48: The effect of a more reduced cellular redox state on the [Ca2+]cyt response of phosphate-

starved root tips to extracellular ATP. Aequorin-expressing, Arabidopsis Col-0 plants were grown 

on full or zero P growth medium (green traces, blue-purple traces, respectively). Root tips (1 cm) 

of 11-day old seedlings were pre-incubated for 30 minutes with the reducing agent DTT (2 mM 

DTT) or no DTT, before challenging root tips with treatments applied at 35 seconds, and 

measuring [Ca2+]cyt for 155 seconds. (A) Application of control solution; time course trace 

represents mean ± standard error of mean (SEM) from 3 independent trials, with n = 8 - 11 

individual root tips averaged per data point. Time course data were analysed for (B) touch maxima 

and (C) area under the curve (AUC), all baseline-subtracted, with each dot representing an 

individual data point (see Figure 6 for details). Boxplot middle line denotes median. (D-H) 

Responses to 1 mM eATP (3 independent trials, n = 15 – 23 individual root tips per growth 

condition). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess 

statistical differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. 

(not significant).  
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However, DTT has been reported to have rather unspecific side-effects in both plant and 

animal cells. As it disrupts disulphide bond formation, it is also known to e.g. induce ER 

stress through the accumulation of unfolded proteins in the endoplasmatic reticulum 

(Martinez and Chrispeels, 2003). Therefore, another pharmacological agent described to 

affect redox signalling in cells was trialled. Diphenyleneiodonium chloride (DPI) is a cell 

membrane-permeable, irreversible inhibitor of NADPH-oxidases and other flavin-

containing enzymes (Bolwell and Wojtaszek, 1997; Demidchik et al., 2009; Sun et al., 

2012). NADPH-oxidases are the major producers of ROS within cells (Desikan et al., 

1996; Foreman et al., 2003).  

The effect of NADPH-oxidase inhibition was tested on 11-day old, aequorin-expressing 

Arabidopsis root tissue. Full and zero P grown excised root tips (1 cm) were pre-incubated 

for 30 minutes with a 100 µM DPI solution (dissolved in DMSO, and further diluted to 

working concentration in control solution background; maintaining full and zero P growth 

conditions during the incubation). To account for any effects of DMSO as the solvent, 

control roots were incubated with DMSO in control solution alone. As DPI irreversibly 

inhibits NADPH-oxidases, DPI could be washed off prior to the assay, hence all roots 

were washed prior to application of 1 mM eATP treatment or mechanical stimulation 

(control solution application).  

Application of control solution led to an immediate and monophasic [Ca2+]cyt  response 

(data from 3 independent trials, n = 5 - 7 individual root tips per growth condition and 

pre-treatment, Figure 49A). This touch response did not depend on P growth conditions 

or DMSO or DPI pre-treatment (mean touch maxima ± SEM: full P + 100 µM DPI: 0.09 

± 0.01 µM, full P no DPI: 0.15 ± 0.07 µM, zero P + 100 µM DPI: 0.09 ± 0.02 µM, zero 

P no DPI: 0.03 ± 0.01 µM, p ≥ 0.918, Figure 49B). Accordingly, the area under the curve 

was similar between all treatments (p = 0.999, Figure 49C).  

In contrast, DPI pre-treatment had a distinct effect on the [Ca2+]cyt  signature in response 

to 1 mM eATP (data from 3 independent trials, n = 8 – 11 individual root tips per growth 

condition and pre-treatment, Figure 49D). Full P grown root tips showed the characteristic 

multi-phasic [Ca2+]cyt  response (traces show higher variation than what has been reported 

before in this thesis, likely due to lower sample size, see error bars of dark green trace in 

Figure 49D). However, DPI pre-treated full P root tips showed a [Ca2+]cyt  response that, 

after the initial touch response, showed a time-lag of approximately three to five seconds 

and was severely dampened (Figure 49D). Zero P grown root tips equally showed a 

delayed response of peak 1. However, DPI pre-treatment did not dampen the [Ca2+]cyt  
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response of zero P grown root tips nearly as severely (Figure 49D). Analysis of the 

response showed no difference between touch maxima (full P + 100 µM DPI: 0.07 ± 0.02 

µM, full P no DPI: 0.06 ± 0.01 µM, zero P + 100 µM DPI: 0.06 ± 0.03 µM, zero P no 

DPI: 0.13 ± 0.05 µM, p ≥ 0.706, Figure 49E). Peak 1 maxima were (just about) 

significantly lower in full P roots treated with DPI compared to no DPI treatment (full P 

+ 100 µM DPI: 0.24 ± 0.01 µM, full P no DPI: 0.29 ± 0.02 µM, p = 0.046, Figure 49F). 

Zero P roots showed lower peak 1 maxima compared to full P root tips, but no significant 

difference with regards to DPI treatment (zero P + 100 µM DPI: 0.15 ± 0.01 µM, zero P 

no DPI: 0.18 ± 0.01 µM, p ≥ 0.774, Figure 49F). The effect of DPI pre-treatment was 

even more pronounced for full P grown root tips peak 2 maxima, where DPI led to a 

highly significantly reduction of peak amplitude (full P + 100 µM DPI: 0.20 ± 0.01 µM, 

full P no DPI: 0.29 ± 0.02 µM, p < 0.001, Figure 49G). DPI again did not affect the 

amplitude of peak 2 in zero P root tips (zero P + 100 µM DPI: 0.10 ± 0.01 µM, zero P no 

DPI: 0.12 ± 0.01 µM, p ≥ 0.903, Figure 49G). Overall, DPI pre-treatment led to 

significantly less [Ca2+]cyt  being mobilized in response to eATP in full P root tips (p < 

0.001), without affecting zero P root tips (p = 0.148, Figure 49H).  

Taken together, DPI pre-treatment led to an overall dampened [Ca2+]cyt  response of full 

P root tips to eATP, particularly of peak 2. Zero P root tips did not show a DPI-dependent 

dampening of the [Ca2+]cyt  response. In both full and zero P grown root tips, DPI pre-

treatment led to a delayed onset of [Ca2+]cyt  increase.  

In summary, both DTT and DPI, pharmacological agents interfering with cellular redox 

status and ROS production, showed an effect on the [Ca2+]cyt  response of P-replete root 

tips to eATP treatment. Both a more reduced cellular redox state as well as inhibition of 

ROS-production through NADPH-oxidases dampened peak 1, and particularly peak 2 

[Ca2+]cyt  increases in full P roots. P-starved root tips were not affected by neither a more 

reduced cellular state or inhibition of ROS production with regards to amplitude of 

response. Both P-replete and –starved root tips however showed a distinct lag of ATP-

specific [Ca2+]cyt  response (peak 1) when ROS production was inhibited by DPI. No delay 

in response occurred when the root tissue was pushed towards a more reduced state using 

DTT.  

 

 

 



Chapter 4: Deconstructing the Cytosolic Free Calcium Response to Extracellular ATP in Roots  

 199 

 

 

Figure 49: The effect of inhibiting ROS production on the [Ca2+]cyt response of phosphate-starved 

root tips to extracellular ATP. Aequorin-expressing, Arabidopsis Col-0 plants were grown on full 

or zero P growth medium (green traces, blue-purple traces, respectively). Root tips (1 cm) of 11-

day old seedlings were pre-incubated for 30 minutes with an inhibitor of NADPH-oxidases: 100 

µM DPI (in DMSO) or no DPI (DMSO only), before challenging root tips with treatments applied 

at 35 seconds, and measuring [Ca2+]cyt for 155 seconds. (A) Application of control solution; time 

course trace represents mean ± standard error of mean (SEM) from 3 independent trials, with n = 

5 - 7 individual root tips averaged per data point. Time course data were analysed for (B) touch 

maxima and (C) area under the curve (AUC), all baseline-subtracted, with each dot representing 

an individual data point (see Figure 6 for details). Boxplot middle line denotes median. (D-H) 

Responses to 1 mM eATP (3 independent trials, n = 8 – 11 individual root tips per growth 

condition). Analysis of variance (ANOVA) with post-hoc Tukey Test was used to assess 

statistical differences. Significance levels (p-values): *** (<0.001), ** (<0.01), * (<0.05), n.s. 

(not significant). 

  



Phosphate Starvation alters Calcium Signalling in Roots of Arabidopsis thaliana 

200   

4.2.6 Callose deposition is dependent on iron, but not phosphate, 

availability 

To investigate the previously reported link between high ROS load and callose deposition 

(Müller et al., 2015; Hoehenwarter et al., 2016), and if a resulting loss of symplastic 

communication might play a role in the observed dampening of the [Ca2+]cyt  response to 

eATP, it was of interest to visualize and quantify callose depositions. This was achieved 

by staining callose deposits with aniline blue solution (0.1 % (w/v) aniline blue). Callose-

bound aniline blue emits fluorescence within the UV-light range, which was captured 

using a stereomicroscope. Callose deposits are known to occur as distinct small spots. To 

control for any unspecific staining, a few control roots were subjected to the staining 

procedure, without including aniline blue in the incubation solution. After staining 

samples for 1.5 with or without aniline blue, samples were embedded in 60 % glycerol, 

to prevent formation of air bubbles close to the samples and optimise imaging (see 

Chapter 2, section 2.9.2, for more details).   

Ten- to 11-day old Arabidopsis wild type plants, grown on half MS growth medium 

containing varying P and Fe levels, were used for aniline blue staining. The growth 

conditions were as described for intracellular ROS staining (see Figure 46) and included: 

full P_full Fe (= standard half MS growth medium, including both standard levels of P 

and Fe; mostly labelled ‘full P’ in this thesis), zero P_full Fe (= half MS without P, but 

with standard Fe levels; mostly labelled ‘zero P’ in this thesis), full P_zero Fe (= half MS 

containing standard P levels, but no Fe), zero P_zero Fe (= half MS without P and Fe), 

full free P_full free Fe (half MS with levels of P and Fe adjusted to give ionic free 

concentrations comparable to ionic free concentrations of zero P_full Fe medium), or full 

P_excess Fe (half MS containing standard levels of P, and double-strength (100 µM) Fe 

levels).  

Bright field images of the prepared root samples revealed drastic differences in root 

architecture between the different growth conditions (on the left of Figure 50). As 

described for ROS-stained root samples (Figure 46), P-starvation increased the outgrowth 

of long root hairs, close to the root tip and along the root (compare Figure 50A and B). 

Excluding Fe, as well as P from the growth medium, rescued this root hair phenotype, 

resulting in much less and shorter root hairs (Figure 50C). This root hair phenotype was 

not influenced by increasing or decreasing Fe levels, in a P-replete background (Figure 

50D, E, F). It was observed that some samples suffered from air inclusion close to the 
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sample. This was particularly apparent in P-starved roots, where air bubbles seemed to 

easily become trapped between the dense root hairs (Figure 50B, H).  

Capturing aniline blue-specific fluorescent emission revealed a strong and distinct pattern 

of callose deposition in most samples (on the right of Figure 50). As a stereomicroscope 

was used to image the samples, and thus all cell layers were superimposed per image, 

localization of callose deposits could only be distinguished with regards to their 

longitudinal position along the root, but not attributed to specific cell types.   

Nutrient-replete roots showed small, but distinct fluorescence emissions, spread out over 

the apical root tip, and centring more to the stele further up the root (Figure 50A). P-

starved, but Fe-replete, root tips showed a signal comparable to nutrient-replete plants 

(Figure 50B). Strikingly, the fluorescence emission was much lower in roots that were 

grown without Fe, regardless of whether P was included or excluded from the medium 

(Figure 50C and D). Some fluorescence could be detected in the apical tips of Fe-starved 

roots, however few samples showed any emission further up the root (Figure 50C and D). 

Increasing the free P and Fe levels (Figure 50E), or doubling the Fe concentration in a P-

replete background (Figure 50F) led to a distribution of fluorescence emission 

comparable to nutrient-replete plants.  

To control for any potential background noise, some roots were subjected to the staining 

procedure without including the aniline blue dye. None of these control plants showed 

the distinct fluorescence emissions described above (Figure 50G, H). However, some 

roots showed a more diffuse fluorescence emission, mostly observed in P-starved roots 

(annotated by white triangles in Figure 50B for aniline blue stained, and Figure 50H for 

non-aniline blue stained control root). These diffuse blotches always co-localized with air 

bubbles, which occurred more often in the root hair dense areas of P-starved roots. Thus, 

particular care was taken to distinguish between distinct, sharp callose spots, and diffuse 

background noise blotches. 

As callose-specific fluorescence ‘spots’ were small in size, and the employed 

stereomicroscope limited in resolution, a qualitative approach was taken to analyse the 

occurrence of callose deposits. Rather than counting individual spots, overall callose 

presence was scored within regions of the root (callose present = 1, callose not present = 

0). This was done to prevent analysis error, whilst being able to distinguish between clear 

phenotypes. Root regions used for scoring were designed to be comparable to ROS-

staining data (Figure 46). Hence, presence or absence of callose spots was scored in the 
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range of 0 to 500 µm from the root tip, and 1000 to 1500 µm from the root tip (see yellow 

dashed boxes in root micrograph in Figure 51). A heat map was generated to visualise the 

average occurrence pattern of callose deposits in roots grown on different P and Fe 

medium (data from 3 independent trials, n = 13 – 16 individual roots per growth condition, 

Figure 51). This allowed quantification of the pattern that had been described above: 

nutrient-replete plants, as well as P-starved plants showed similar levels of callose 

occurrence, both in the root tip and further up within the stele (Figure 51). The single 

variable correlating with less callose in the root tip, and almost no callose deposits further 

up the root, was the availability of Fe in the medium. Both full P_zero Fe and zero P_zero 

Fe roots showed this pattern of low callose occurrence (colour-coded with light blue, 

Figure 51).  
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Figure 50: Callose distribution in phosphate- and iron-starved primary root tips. Arabidopsis Col-

0 were grown on growth medium with different P and Fe levels: (A, G) full P_full Fe, (B, H) zero 

P_full Fe, (C) zero P_zero Fe, (D) full P_zero Fe, (E) full free P_full free Fe and (F) full P_excess 

Fe. Ten- to 11-day old seedlings were stained with 0.01 % (w/v) aniline blue (A-F), or incubation 

solution without aniline blue as control for any background signal (G-H), for 1.5 hours before 

bright field (on the left) and UV fluorescence images (on the right) were captured. Aniline blue 

stains callose depositions. (A) Scale bar: 0.5 mm, white and red scale bar indicate regions scored 

for callose presence. (B, H) White triangles indicate unspecific background signal. Three 

independent trials were conducted, representative and false colour-coded images per growth 

condition are shown. 
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Figure 51: Quantification of callose distribution in phosphate- and iron-starved primary root tips. 

Arabidopsis Col-0 were grown on growth medium with different P and Fe levels as labelled 

above. Ten- to 11-day old seedlings were stained with 0.01 % (w/v) aniline blue for 1.5 hours 

before UV-emission of the aniline-specific signal was captured using a stereo microscope. Root 

micrograph (top) indicates regions analysed for presence of distinct callose spots: 0 – 500 µm 

from the root tip, or 1000 – 1500 µm from the root tip (yellow dashed boxes), scale bar: 0.5 mm. 

Heat map (bottom) colour-codes percentage of roots scored for presence of callose depositions 

(darker colour indicates more callose deposition). Three independent trials were conducted, n = 

13 – 16 individual roots per growth condition.  
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4.3 Discussion 

4.3.1 On whole plant level, root tip tissue responds most strongly to eATP 

Most studies investigating the [Ca2+]cyt  response to eATP used whole seedlings as test 

tissue (Jeter et al., 2004; Tanaka et al., 2010; J. Choi, Tanaka, Cao, et al., 2014; Chen et 

al., 2017). To dissect the eATP-induced response, true leaves, whole roots or apical root 

tips (1 cm) of aequorin-expressing Arabidopsis were assayed, and the strongest [Ca2+]cyt 

response to eATP was found to originate from the root tip tissue. This confirmed previous 

findings (Tanaka et al., 2010, who did however not show shoot-derived data). All three 

types of tissue monitored showed an initial touch response, due to treatment application 

(Knight et al., 1991). In leaves, the touch response was followed by a delayed and small, 

but sustained [Ca2+]cyt increase. Root tissue on the other hand responded with distinct, 

multi-phasic modulations of [Ca2+]cyt, agreeing with previous studies (Demidchik, 

Nichols, et al., 2003; Tanaka et al., 2010; J. Choi, Tanaka, Cao, et al., 2014) and findings 

reported in this thesis. In Chapter 3, (Figure 10 and accompanying analysis) it was found 

that the initial touch response is a response to mechanical stimulation only, and the 

subsequent response (peak 1 and peak 2) were specific to eATP treatment. Therefore, to 

deconstruct the eATP-induced [Ca2+]cyt signature further, the root tip tissue was of major 

importance.  

4.3.2 On root tip level, eATP triggers distinct [Ca2+]cyt responses that vary 

in time and space  

It is important to stress the implications of the thus far reported multi-phasic [Ca2+]cyt 

response upon eATP perception. In the aequorin assays, applied eATP solution would in 

an instant be in direct contact with all (outer) cells of the tissue monitored. However, two 

temporarily distinct [Ca2+]cyt increases occur when monitoring aequorin-expressing root 

tips, the first increase peaking 10 to 15 seconds after treatment application (= peak 1), the 

second increase peaking circa 35  seconds after treatment application (= peak 2). The 

difference between peak 1 and peak 2 maxima amounts to approximately 20 to 25 

seconds. Both timing and amplitude of response agree with a previous study using excised 

root tissue (Demidchik, Nichols, et al., 2003). Aequorin allowed a high-throughput assay, 

resulting in consistent [Ca2+]cyt responses. However, aequorin necessitated a prolonged 

incubation time in coelenterazine-containing solution and excision of sample tissue if a 
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specific region were to be monitored instead of whole seedlings. Furthermore, the plate 

reader set-up required injection of treatment solution, triggering a response to mechanical 

stimulation, which complicated downstream analysis. 

The reporter NES-YC3.6 did not necessitate any reconstitution or light-tight photon-

counting set-up. Using NES-YC3.6 in a superfusion set-up allowed application of 

treatment solution without mechanical stimulus (Behera and Kudla, 2013). As a 

ratiometric reporter, NES-YC3.6 would be expected to be very reliable in conditions that 

might change reporter protein expression levels, e.g. nutrient starvation conditions (P. 

Koldenkova and Nagai, 2013). However, a sophisticated microscopy set-up is necessary 

to record the two emitted wavelengths from the YFP and CFP fluorophore separately. 

Using the NES-YC3.6 reporter in a superfusion set-up, which would envelop the imaged 

root tissue quickly, a slight bi-phasic response to 1 mM eATP could be observed when 

quantifying the ratio increases in the first 2.5 mm of apical root tip. However, as it was 

not measured how quickly the treatment solution would reach the perfusion chamber, 

‘time point of treatment reaching the sample tissue’ to ‘maximal response’ could not be 

unambiguously determined as was possible in the aequorin assay. However, the 

difference between first peak and second peak observed was circa 30 to 40 seconds, 

which is a larger delay than what was observed in aequorin trials, but within the same 

range. The difference could likely be explained by the different experimental set-ups. In 

aequorin assays, a double-strength eATP treatment is injected, which only in the well 

mixes to give the final concentration of 1 mM eATP, implying that some tissue might 

perceive eATP concentrations above 1 mM. In comparison, the superfusion system would 

more gently deliver the eATP treatment, already at the final concentration, to the root.  

NES-YC3.6 further allowed spatial mapping of the [Ca2+]cyt increases to root tip regions. 

The first [Ca2+]cyt response was localized mainly to the root tip apex, followed by a 

secondary response further up the root. This was reminiscent of ‘peak 1’ and ‘peak 2’ 

observed using the aequorin reporter. Furthermore, it fully agrees with a recent study 

which trialled different fluorescent reporter constructs, including YC3.6, and used eATP 

treatment as a tool to elicit robust [Ca2+]cyt changes (Waadt et al., 2017). In addition, the 

data presented here showed that P-starved root tips responded with a similarly strong 

response in the apical root tip, however little or no ratio change was observed within the 

elongation zone. This in turn was reminiscent of peak 2’s being absent in P-starved 

aequorin-expressing root tips. 
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Interestingly, using NES-YC3.6 it could be clearly monitored that the [Ca2+]cyt response 

died down before the eATP treatment was switched back to control solution. This was 

also observed in aequorin experiments, for both standard ATP and non-hydrolyzable ATP 

(see Chapter 3, Figure 10 and Figure 11). This indicated that the eATP response is 

terminated not due to ATP hydrolysis, but due to de-sensitization of the molecular players 

involved. It remains to be determined if this de-sensitization occurs on the level of eATP 

receptor DORN1, or downstream of DORN1 through altered signal transduction. 

For YC3.6 imaging, a sophisticated microscopy set-up is necessary to record the two 

emitted wavelengths from the YFP and CFP fluorophore separately. To bypass the need 

for such a set-up, the intensiometric reporter GCaMP3 was trialled. Being based on the 

conformational Ca2+-induced changes of one fluorophore only, a simple fluorescence 

stereomicroscopy set-up was sufficient for imaging. In common with NES-YC3.6, 

GCaMP3 did not require any prior reconstitution step. In contrast to NES-YC3.6, and 

similar to aequorin, its signal read-out depended on the initial amount of reporter protein, 

sounding a note of caution when comparing between e.g. roots grown on different nutrient 

conditions. Advantages of GCaMP3 include its photostability and greater dynamic range, 

i.e. strong increase in fluorescence upon Ca2+ binding (Tian et al., 2009; P. Koldenkova 

and Nagai, 2013; Vincent et al., 2017). Using GCaMP3-expressing plants in a straight-

forward set-up (imaging plants on their gel-based growth medium plates), allowed 

minimal handling and the possibility to manipulate the samples easily. Using the 

GCaMP3 reporter, and manual treatment application, the application time could be again 

tracked exactly. Analysing and averaging the response in the first 2.5 mm of apical root 

tips showed a first [Ca2+]cyt peak circa 20 seconds after treatment application, followed 

by a secondary peak in [Ca2+]cyt 55 to 60 seconds after treatment application. Thus, the 

two maximal responses were approximately 35 to 40 seconds apart, agreeing with the 

NES-YC3.6 derived data. GCaMP3 further corroborated NES-YC3.6 in the spatial 

occurrences of the two responses. P-replete grown root tips responded first in the root tip 

apex, followed by a response in the elongation zone. P-starved root tips showed a defined 

response in the root tip, but only a weak response in the elongation zone. As the treatment 

solutions were not perfused over the sample, but instead applied using a pipette, a 

drawback of the system was a slight decrease of signal upon treatment application (due 

to slight shift out of focus).  

GCaMP3 had a large response magnitude, as had been reported previously (Tian et al., 

2009; Kleist et al., 2017; Vincent et al., 2017), making it visually easy to detect changes 
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in fluorescence whilst running the experiments. However, this also complicated matters 

as the change between baseline and eATP-stimulated fluorescence was so great that in 

order to not oversaturate the camera and bias downstream analysis, exposure time had to 

be lowered, resulting in overall low baseline fluorescence levels. Considering that 

recorded raw fluorescence intensities are normalized for pre-stimulus baseline levels 

(after Vincent et al., 2017), downstream data analysis would be much affected by even 

slight inaccuracies in baseline levels.  

Taken together, all three [Ca2+]cyt reporters employed (aequorin, NES-YC3.6, GCaMP3) 

painted similar pictures overall of the immediate root tip response to eATP. All three 

constructs reported two distinct [Ca2+]cyt responses to eATP, peaking approximately 20 

to 40 seconds apart from each other. Using NES-YC3.6 and GCaMP3, the primary 

response could be mapped to the apical root tips of Arabidopsis, followed by a secondary 

response in the distal root tip. All constructs reported a dampened [Ca2+]cyt response in P-

starved roots. 

4.3.3 The Ca2+ reporters paint an overall similar picture, but differ in 

sensitivity 

Aequorin, NES-YC3.6 and GCaMP3 were all ubiquitously expressed in the cytosol of all 

cell types. For aequorin assays, assayed tissue was slightly larger (1 cm apical root tip for 

most assays) than the field of view analysed in microscopy-based YC3.6 and GCaMP3 

experiments (2.5 mm apical root tip). However, derived data would in all cases report an 

averaged signal from all monitored tissue, as widefield- and stereomicroscopy would 

illuminate all tissue layers in view. Hence, none of the reporter set-ups allowed resolution 

of the [Ca2+]cyt response down to specific cell types, or intracellular organellar Ca2+ 

fluxes.  

A calibration formula, to convert bioluminescence counts into [Ca2+]cyt, has been 

empirically determined for aequorin (Knight et al., 1997). Both NES-YC3.6 and 

GCaMP3 currently lack a calibrated conversion from raw fluorescence intensities into 

absolute [Ca2+]cyt concentrations. Recently, the first in vivo calibration of a fluorescent 

genetically encoded Ca2+ indicator in plants has been reported for another single-

wavelength construct, R-GECO1 (Waadt et al., 2017). However, as [Ca2+]cyt dynamics 

rather than absolute [Ca2+]cyt increases only are thought to encode stress-specific 

information (Whalley et al., 2011; J. Liu et al., 2015; Lenzoni et al., 2017), the NES-
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YC3.6 and GCaMP3 employed here are useful tools to follow dynamic fluxes in [Ca2+]cyt. 

What is known about GCaMP3 and YC3.6 are their varying Ca2+-binding affinities. 

GCaMP3 has been described to have a comparably lower affinity for free Ca2+ (with a 

dissociation constant, KD, reported to be in the range of 405 nM to 660 nM, (Tian et al., 

2009; Akerboom et al., 2012)) compared to YC3.6 (KD = 250 nM, (Nagai et al., 2004)). 

Put differently, this indicates that YC3.6 is more sensitive to smaller changes in [Ca2+]cyt 

compared to GCaMP3. Thus, the presence of [Ca2+]cyt fluxes reported by the different 

reporters can be taken as proof of their existence, the absence of reported [Ca2+]cyt fluxes 

might however be biased by the reporter’s being too insensitive (further discussed below).  

4.3.4 The two distinct increases in [Ca2+]cyt can be generated independently 

of each other – a ‘wave’ component is likely but requires further analysis 

Physical separation of apical and distal root tip revealed that generation of an eATP-

response still proceed in both apex and distal parts of the root, and that the two [Ca2+]cyt 

responses could indeed occur independently of each other, i.e. an increase in the 

elongation zone in response to eATP could occur even though the apical root tip was 

removed. However, physical manipulation would have induced a serious wounding 

response. Furthermore, it did not allow testing for any component that might indeed be 

triggered by local eATP perception and propagate systemically. For salt stress, it had been 

shown that salt application triggered an increase in [Ca2+]cyt at the site of treatment 

application, which rapidly propagated into tissue outside the treated area (W.-G. Choi et 

al., 2014). However, Choi et al. (2014) did not test for eATP’s triggering a systemic 

response, and all published eATP-focussed studies submerged all root tissue in treatment 

solution (Demidchik, Nichols, et al., 2003; Tanaka et al., 2010; J. Choi, Tanaka, Cao, et 

al., 2014; Loro et al., 2016). It was therefore unknown if local eATP perception would 

trigger a systemic ‘Ca2+ wave’. To test any systemic component, easy-to-handle 

GCaMP3-expressing roots were prepared in such a way that enabled localized treatment 

application. It was found that local application of 1 mM eATP to either apical root tip or 

elongation zone triggered a steep, local increase in [Ca2+]cyt. Most interestingly, a gradual 

increase in [Ca2+]cyt was also found to occur in non-treated tissue, quickly traversing a 

distance of up to 2 mm (maximum distance analysed). Propagation of such a Ca2+ wave 

has been described to occur rapidly (approximately 400 µm per seconds, as quantified by 

W.-G. Choi et al., 2014), which would be below the temporal resolution of the data 

presented here (with images taken every 5 seconds). However, the data presented here 
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would indeed indicate that eATP perception triggered a systemically propagating [Ca2+]cyt 

response. As the GCaMP3 reporter employed here is comparably insensitive to subtle 

changes in [Ca2+]cyt, the data presented likely underestimate the extent of any systemic 

[Ca2+]cyt signal propagation compared to the more sensitive reporter used in the salt-wave 

study (YCnano-65, (W.-G. Choi et al., 2014)).  

Furthermore, local application of treatment is not trivial, if entire root tissue were to be 

kept in the same conditions. In this thesis, local application of treatment solution was 

made possible by placing roots across a gap in the underlying agar medium. Previous 

studies used roots embedded in gelled medium, with a window cut out on top into which 

treatment solution was administered (W.-G. Choi et al., 2014). In both cases, parameters 

such as humidity would vary along the root, possibly biasing any downstream response.  

Intriguingly, the [Ca2+]cyt response in the elongation zone always showed a delay in 

maximal response compared to the response in the apical root tip, even when the apical 

root tip was removed or treatment was locally applied to the elongation zone. The 

underlying cause is unclear. It could possibly be explained by a quicker diffusion of eATP 

treatment solution into PM vicinity in apical root tip cells, compared to a slower diffusion 

to the more mature cells in distal parts of the root. Another (more enticing) explanation 

could possibly be different modes of eATP perception in the different root regions. For 

example, in leaves of Arabidopsis it has recently been shown that the eATP receptor 

DORN1 interacts with, and phosphorylates, NADPH-oxidase RBOHD upon eATP 

perception (Chen et al., 2017). Whether this interaction also occurs in root cells remains 

to be determined. However, it is intriguing to hypothesize that DORN1 could interact 

with different effector proteins, depending on e.g. cell type, cell context or developmental 

stage, leading to differential signalling output. Publicly available protein-protein 

interaction data (MIND database, (Jones et al., 2014)) revealed few interaction partners 

of DORN1, as only one uncharacterized leucine-rich repeat receptor kinase, At3g02880, 

was found to reliably interact with DORN1. It did not report DORN1 interaction with 

RBOHD. This is unsurprising, as interaction would highly depend on cellular conditions, 

and be transient. Accordingly, Chen et al. (2017) reported that in total 23 peptides were 

phosphorylated by DORN1 upon eATP perception, one of which was RBOHD (the 

remaining 22 peptides were not further identified in the study).  
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4.3.5 The secondary response is linked to ROS signalling, and lost when 

the root tissue is primed by ROS overload 

To determine which other signalling molecules might modulate the [Ca2+]cyt response to 

eATP, and possibly explain the difference in timing, the link to ROS was tested. ROS had 

already been firmly established in signal transduction upon eATP perception (S.-Y. Kim 

et al., 2006; Song et al., 2006; Demidchik et al., 2009; Sun et al., 2012; Chen et al., 2017). 

ROS have also been described to increase in P starvation conditions, as well as excess Fe 

conditions (Shin et al., 2005; Müller et al., 2015; Reyt et al., 2015). Thus, it was of interest 

to test (i) how initial ROS levels might alter any downstream [Ca2+]cyt response to eATP, 

and further, (ii) how manipulation of ROS production and cellular redox status would 

immediately affect the [Ca2+]cyt response to eATP. 

Staining of intracellular ROS was done using the membrane-permeable dye 

CM-H2DCFDA. This dye has been described to be particularly efficient in detecting ROS 

production that is reliant on transition metal catalysis (Halliwell and Whiteman, 2004). 

Furthermore, the dye does not detect specific ROS species, but rather is a general marker 

for oxidative stress in cells (Halliwell and Whiteman, 2004). Staining roots grown on 

varying levels of P and Fe showed a striking pattern of ROS distribution dependent on 

nutrient levels. P-starved, but Fe-replete root tips showed strongly elevated intracellular 

ROS levels, with a particular ROS hotspot’s being localized to the elongation zone (1 – 

1.5 mm from the apical root tip). This pattern is in agreement with previous studies using 

the same ROS stain (Shin et al., 2005; Müller et al., 2015; Balzergue et al., 2017). A 

previous study further showed that the ROS increase in the elongation zone was mediated 

through NADPH-oxidase RBOHC (Shin et al., 2005). In the data reported here, excluding 

Fe as well as P rescued this ROS overload back to lower levels, comparable to what was 

seen in nutrient-replete root tips (also tested and reported similarly by Balzergue et al., 

2017). Fe exclusion only did not alter the ROS levels significantly (not tested in any of 

the mentioned studies).  

Most intriguingly, the ROS overload spatially correlated with the impaired [Ca2+]cyt  

response to eATP in P-starved roots, as visualized using the NES-YC3.6 reporter. This 

indicated that ROS priming, i.e. tissue being pre-exposed to high ROS levels, could 

impair the [Ca2+]cyt  influx upon eATP treatment. To validate this link to ROS signalling 

further, pharmacological inhibitors known to manipulate cellular redox status (DTT) or 
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ROS production (DPI) were employed. And indeed, the multiphasic [Ca2+]cyt  response to 

eATP was sensitive to both DTT as well as DPI.  

DTT particularly dampened the secondary response to eATP (peak 2) in nutrient-replete 

root tips. This corroborates previous findings, where DTT impaired the Ca2+ conductance 

in root epidermal protoplasts in response to 20 µM eATP (Demidchik et al., 2009). On 

the other hand, the [Ca2+]cyt  response of P-starved root tips (peak 1 only, peak 2 being 

absent) was not influenced by DTT. However, DTT is known to have unspecific side-

effects, such as induction of ER-stress. Another inhibitor, DPI, has been described to have 

greater target specificity. DPI inhibits NADPH-oxidases, and thus major players involved 

in ROS production. DPI pre-treatment overall dampened the [Ca2+]cyt  response of 

nutrient-replete root tips to eATP, affecting both peak 1 and peak 2. This indicates that 

NADPH-oxidases are involved in the signalling cascade upon eATP perception. This 

agrees with previous findings, identifying the NADPH-oxidase RBOHC as responsible 

for eATP-induced ROS production in Arabidopsis roots (Demidchik et al., 2009). DPI 

treatment of P-starved root tips did not further dampen their [Ca2+]cyt  response to eATP.  

Overall, eATP perception induces ROS production through NADPH-oxidases, which in 

turn trigger [Ca2+]cyt  influx. Particularly the secondary response to eATP (peak 2) was 

impaired if (i) root tissue was already primed with an ROS overload before the eATP 

pulse was perceived, (ii) ROS production through NADPH-oxidases was inhibited or (iii) 

tissue was pushed towards a more reduced state. As DPI and DTT did not impair all of 

the [Ca2+]cyt  response, it is very likely that other signalling molecules / events co-occur 

and further promote [Ca2+]cyt  influx.  

For further discussion of oxidative stress triggered [Ca2+]cyt  responses, please see 

Chapter 5, section 5.2.   

4.3.6 Absolute levels of callose deposition do not correlate with the 

secondary response to eATP 

Callose deposition has recently been reported to occur due to P starvation-induced Fe 

accumulation, and resulting ROS overload, in Arabidopsis primary roots (Müller et al., 

2015; Hoehenwarter et al., 2016; Balzergue et al., 2017). Callose deposition was 

suggested to block plasmodesmata, and as such inhibit symplastic communication, 

leading to impaired movement of e.g. a transcription factor essential for stem cell niche 

maintenance (SHORT ROOT), and thus suggested to explain the stunted primary root 
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growth as observed in P-starved roots (Müller et al., 2015). Using aniline blue staining, 

Müller et al. (2015) imaged approximately the first apical 1 mm of Arabidopsis roots, and 

reported P-starvation to increase callose deposition in meristematic cells as well as cortex 

cells. Further, callose deposition reportedly did not occur if Fe as well as P was excluded 

from the growth medium (Müller et al., 2015).  

It was therefore intriguing to hypothesize that increased callose deposition due to P 

starvation conditions would correlate with a dampened [Ca2+]cyt response to eATP. To 

test this hypothesis, Arabidopsis roots grown on varying levels of P and Fe were stained 

for callose deposits using aniline blue dye.  

In the data presented here, callose deposits in the apical root tip (first 0.5 mm) were 

detectable at similar levels and not strongly influenced by P and Fe availability. Callose 

deposits further up the root (1 – 1.5 mm) were found to only be influenced by Fe, but not 

P availability: roots grown without Fe showed very weak callose staining in the 

elongation zone. This contradicts the result of Müller et al., who reported increased 

callose deposition under P starvation. Instead, findings presented here agree with a more 

recent study, which could not replicate the findings of Müller et al., but instead reported 

that meristematic callose levels were mostly unchanged regardless of P and Fe nutrition 

(O’Lexy et al., 2018). Furthermore, increasing Fe availability led to higher accumulation 

of callose in phloem cells in the elongation zone, which was reversed when plants were 

transferred and grown on Fe-free medium (O’Lexy et al., 2018). Again, this would agree 

with the data presented here: low Fe levels led to low levels of callose accumulation in 

the elongation zone, increased Fe levels led to higher levels of callose accumulation in 

the elongation zone, independent of P levels in the growth medium. However, Müller et 

al., O’Lexy et al. and data reported in this thesis used different growth conditions (nutrient 

composition and length of nutrient starvation differ), which could further explain the 

observed differences as callose deposition has been described as a dynamic, reversible 

process (Kauss, 1985; Xu et al., 2017).  

Superimposing the pattern of callose deposition with the [Ca2+]cyt response to eATP with 

regards to P and Fe nutrition (also see Chapter 3, section 3.2.14 onwards), did not show 

any correlation between presence of callose and [Ca2+]cyt response to eATP. For example, 

P-starved (and Fe-replete) root tips showed a dampened [Ca2+]cyt response to eATP with 

peak 2’s being absent, but showed no difference in callose abundance compared to 

nutrient replete roots. And the other way around, P- and Fe-starved root tips showed a 
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multi-phasic [Ca2+]cyt response to eATP, but showed much lower levels of callose 

deposition in the corresponding root region. 

Taking this reasoning a step further, the following could be deduced: if callose deposits 

did not correlate with the observed variations in [Ca2+]cyt signatures in response to eATP, 

it could be hypothesized that callose dependent cell-to-cell transmission of [Ca2+]cyt or 

other signal in response to eATP does not play a major role in dampening peak 2.  

It should be considered that the callose quantification employed in this thesis and in the 

previous studies (Müller et al., 2015; Balzergue et al., 2017) only very roughly estimated 

presence or absence of callose. It is however likely that not absolute callose levels, but 

specific localization of callose might influence cell-to-cell communication. Ideally, 

callose levels and localization would be manipulated to infer function. This is however 

technically challenging, as treatments aimed to digest callose or inhibit callose formation 

quickly led to harmful side effects (Parre and Geitmann, 2005). A callose inhibitor 

reported recently specifically inhibits callose deposits during cell plate formation, but not 

stress-induced callose deposits (Park et al., 2014). The recent development of an 

estradiol-inducible system to overproduce callose in specific tissues is promising (Yadav 

et al., 2014), and if coupled with a [Ca2+]cyt reporter, could elegantly dissect if callose 

deposition were to affect cell-to-cell dependent [Ca2+]cyt signalling.  

4.3.7 Conclusions and Future work 

It was confirmed that the root tip region of Arabidopsis responds strongly to eATP, more 

strongly compared to the overall response of leaf and whole root tissue. Dissecting the 

root tip response to eATP showed two distinct increases in [Ca2+]cyt which were separated 

in time and space. The first response could be mainly localized to the apical root tip, the 

secondary response localized mainly to the elongation zone. The two responses could be 

generated upon eATP perception even in tissue that was not physically connected, 

indicating that these two responses can be generated independently of each other. A Ca2+ 

wave component, propagating into tissue which was not in direct contact with eATP 

treatment, was observed. Particularly the secondary response in the elongation zone was 

inhibited if this region showed an initially high ROS load, such as in P-starved root tips. 

As the secondary response in the elongation zone was also strongly affected by 

pharmacological manipulation of cellular redox status and ROS generation, this suggests 

that particularly the secondary response is based on ROS production / signalling upon 
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eATP perception. Callose deposition did not correlate with the spatially observed 

variation in [Ca2+]cyt response. Callose involvement in modulating cell-to-cell 

communication can however not be dismissed, but necessitates study at higher resolution. 

In summary, the presented work dissects the spatial origin of eATP induced [Ca2+]cyt 

increases in the Arabidopsis root tip which has recently also been shown by another group 

(Waadt et al., 2017). Furthermore, the data presented here indicate that local eATP 

perception is necessary to evoke independent [Ca2+]cyt responses in both apical root tip 

and elongation zone, with [Ca2+]cyt changes propagating into areas of untreated root tissue. 

As ubiquitously expressed [Ca2+]cyt reporters were employed, no deduction with regards 

to the origin of Ca2+ (apoplast or organellar stores) could be made and requires further 

research. It further remains to be elucidated why and how cells of the apical root tip and 

elongation zone showed a response to eATP that is separated in time. To investigate any 

systemic propagation of eATP-induced [Ca2+]cyt changes, higher resolution imaging 

techniques such as confocal microscopy or current advances in light-sheet microscopy 

(inducing less photodamage on live samples) are to be employed (Costa et al., 2013b; 

Candeo et al., 2017). 

As the multiphasic [Ca2+]cyt signature upon eATP perception was strongly altered in P 

starvation conditions, it would be very interesting to quantify downstream consequences. 

One such marker could be to monitor gene expression changes, and how an altered 

[Ca2+]cyt signature results in different expression outputs. This would advance the field of 

Ca2+ signalling, as well as the field of P starvation research.  
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5 DISCUSSION 

5.1 Phosphate starvation dampens root tips’ [Ca2+]cyt response to 

abiotic stresses 

Dynamic changes of [Ca2+]cyt translate extracellular stresses into intracellular events, and 

enable plants to perceive environmental fluctuations. In this thesis, P starvation was 

shown to significantly dampen the [Ca2+]cyt response of Arabidopsis root tips to 

mechanical, oxidative, salt and general osmotic stress, as well extracellular nucleotides. 

Nutrient-replete root tips in all cases showed a pronounced [Ca2+]cyt response to these 

abiotic stresses, which was gradually dampened when decreasing P availability in the 

growth medium. P resupply (2-3 days) could rescue the dampened [Ca2+]cyt response 

(tested for eATP-elicited response). Most intriguingly, this dampened [Ca2+]cyt signature 

was only observed under P starvation conditions, as severe N starvation did not lead to a 

dampening of response. This suggests that not nutrient deficiency in general, but P 

starvation in particular influences the use of [Ca2+]cyt as a signal transducer: P starved root 

tips respond to the world differently. 

The versions of the genetically encoded Ca2+ reporters used in this thesis – aequorin, 

YC3.6 and GCaMP3 - were ubiquitously expressed in the cytosol of all cell types (Knight 

et al., 1997; Krebs et al., 2012; Vincent et al., 2017). Thus, observed [Ca2+]cyt modulations 

were based on the averaged response of all underlying cells and cell types. Thus, similar 

kinetics and amplitude of response do not allow the inference of similar underlying 

mechanisms. For example, salt and osmotic stress were reported to show similar 

responses when averaging the response from all cell types (aequorin expressed 

ubiquitously, Knight et al., 1997), but cell-type specific expression showed different 
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[Ca2+]cyt modulations between osmotic and salt stress perception (Kiegle, C. A. Moore, 

et al., 2000). What follows is that comparing amplitude and kinetics of two [Ca2+]cyt 

signatures does not allow any inference of the underlying mechanisms. Similar [Ca2+]cyt 

signatures could be composed of very different individual events, just as two dissimilar 

[Ca2+]cyt signatures could very well have all underlying components in common, only 

activated to a different degree. 

What was however striking was that P starvation led to a dampening of the [Ca2+]cyt 

response for all stresses tested. As this was not specific to a type of stress, it can be 

deduced that this [Ca2+]cyt dampening is not effected through changes in the level of 

stress-specific receptors (exemplified for the eATP receptor DORN1 in more detail 

below), but rather occurs upstream or downstream of receptor-specific stress recognition. 

As different stresses induce overlapping signalling components (besides Ca2+ fluxes e.g., 

ROS and lipid signalling molecules), it could be envisaged that common components 

might be generally downregulated in an overall P-limited cellular environment. The 

changes occurring under P limitation are numerous, but a few of the most striking 

connections are discussed in the following.  

For example, it is well studied that P starvation quickly leads to remodelling of 

membranes, i.e., substituting P-rich phospholipids with glycol- and sulpholipids 

(Andersson et al., 2005; Tjellstrom et al., 2010; Nakamura, 2013). This did reportedly 

not alter the membrane resting potential in Chara and Arabidopsis root hairs (Mimura et 

al., 1998; Dindas et al., 2018), indicating an unchanged context for the activation of 

membrane-localized channels. However, it is unknown how membrane re-composition 

would influence organization of protein domains, and protein-protein or protein-lipid 

interaction. Both oxidative stress and osmotic stress are known to affect the membrane, 

the first through ROS-induced peroxidation of membrane lipids, the latter through 

increased mechanical tension (Rudolphi-Skórska and Sieprawska, 2016). It is however 

unclear how an altered membrane composition might relay oxidative or osmotic stress 

differently.  

A drop in intracellular nucleotides, particularly ATP, is also well documented to occur 

under P starvation (Shimano and Ashihara, 2006; Gout et al., 2014). In a breakthrough 

study, ATP has recently been described as a hydrotrope, i.e, being essential in maintaining 

protein solubility and preventing protein aggregates (Patel et al., 2017). A decrease in 

intracellular ATP would strongly influence the cellular milieu to become more viscous 

(Patel et al., 2017). Considering that the Ca2+ ion has been described to be a rather slow 
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and short-distance signal (Allbritton et al., 1992), it is intriguing to speculate that a more 

viscous cellular state would further slow signalling processes and perception by specific 

binding partners. In addition, intracellular ATP has recently been described to act as a 

voltage-dependent channel blocker; the higher the ATP concentration the higher the rate 

of channel closure (De Angeli et al., 2016). Interestingly, the study delineated ATP’s 

action as a pore blocker for ALMT9 (De Angeli et al., 2016). ALMT9 localizes to the 

tonoplast (De Angeli et al., 2016), but is of the same family as ALMT1, the PM-localized 

malate transporter recently identified to regulate root growth under P starvation 

(Balzergue et al., 2017; Mora-Macías et al., 2017). It is intriguing to speculate that a 

decrease in intracellular ATP would relieve blockage of ALMT’s other than ALMT9, and 

explain a higher efflux of malate under P starvation conditions.  

Increased malate efflux has been described as a strategy to solubilize P in the rhizosphere 

(Raghothama, 1999; Diatloff et al., 2004). This acidification of the rhizosphere also 

solubilizes Fe, leading to Fe overaccumulation as an effect of P starvation (Grillet et al., 

2014; Balzergue et al., 2017). It had been reasoned that some or all of Arabidopsis P 

starvation responses would really be Fe toxicity responses (Ward et al., 2008). However, 

a number of studies have since shown that mere Fe overload is not sufficient, but an 

interaction between P starvation and Fe availability necessary to trigger downstream 

responses such as inhibition of root growth (Ticconi et al., 2009; Müller et al., 2015; 

Balzergue et al., 2017). In this thesis, altering Fe as well as P availability replicated what 

had been reported before with regards to primary root growth: P-replete plants grew the 

longest primary roots if Fe levels were adequate (50 µM), and shorter roots if the growth 

medium lacked Fe (0 µM). Excess Fe (100 µM) did not affect primary root growth much 

if P levels were adequate. In a P starvation background however, 50 µM Fe led to severely 

shorted primary roots, which were rescued back to nutrient-replete root lengths when Fe 

was lowered (10 µM) or excluded (0 µM).  

The link between P and Fe is fascinating, as it is unclear why plant roots would not 

circumvent excess Fe accumulation. P and Fe have been described to form complexes 

since the dawn of plant evolution, when ancient oceans were Fe-rich and therefore P-

scarce (Bjerrum and Canfield, 2002; Poulton, 2017). Thus, it could be speculated that P 

and Fe uptake co-evolved and are linked. Molecular evidence suggests that P and Fe 

nutrition are indeed linked (Bournier et al., 2013; Li and Lan, 2015). However, although 

well-studied in Arabidopsis, it is currently unknown if this pattern of Fe accumulation 
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under P starvation conditions is a common feature across the phylogenetic tree, as 

ionomic data are (surprisingly) scarce.  

In this thesis, all experiments quantifying [Ca2+]cyt  dynamics employed the Arabidopsis 

ecotype Col-0. Care should be taken not to extrapolate from one accession to the whole 

plant field. Col-0 is an ecotype of poorly annotated origin, but it is most closely related 

to an accession from Western Germany (Nordborg et al., 2005; Somssich, 2018) and 

likely collected there. However, exact soil conditions of its adaptation history are 

unknown. Members of the Brassicaceae family have been described to be ‘calcicol’ 

(White and Broadley, 2003). Calcicoles can tolerate high external Ca2+ conditions whilst 

managing to keep [Ca2+]cyt levels low (White and Broadley, 2003), suggesting 

Arabidopsis to have a (comparably) well-developed Ca2+ transport and effector 

machinery. However, it remains to be determined if the P starvation induced dampening 

of the [Ca2+]cyt signature reported here is a conserved response, within Arabidopsis 

ecotypes and in more distantly related plant species.  

For example, considering natural variation underlying a P starvation response (the 

elongated root hair phenotype), Col-0 was described to have a rather intermediate – ‘not 

short, not long’ – root hair phenotype compared to another 165 natural accessions (Stetter 

et al., 2015). Thus, P use and/or sensing displayed a high genetic diversity. It is intriguing 

to speculate that accessions displaying a more extreme P starvation root hair phenotype 

might similarly show an even stronger P-dependent modulation of the [Ca2+]cyt signature. 

For example, the accession Cvi-0 showed comparably short root hairs under both P-

replete and deplete conditions, whereas e.g., Ler-1, Sha and C24 showed much longer 

root hairs (Stetter et al., 2015). If not considering the priming stress (P starvation) but 

rather the acute stress (e.g., oxidative stress mimicked by application of H2O2), natural 

variation reported for H2O2-affected root growth should be considered when interpreting 

Col-0-based data. In a recent study employing 133 natural accessions, Col-0 was found 

to be relatively tolerant to H2O2, whereas e.g.,Ler-1 and Sha were found to be sensitive to 

H2O2 (Sadhukhan et al., 2017).  

Besides of considering natural variation within Arabidopsis, the real deal would be to 

extend findings reported here into other plant species. Agriculturally relevant crops such 

as rice, wheat and tomato have been transformed with Ca2+ reporters such as aequorin 

and YC3.6 (Moyen et al., 1998; Nagel-Volkmann et al., 2009; Behera et al., 2015; Y. 

Zhang et al., 2015). The transformed plants have been tested for [Ca2+]cyt response to 

stresses such as cooling, salt and oxidative stress. However, plants in all cases were grown 
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under optimal nutrient conditions, a scenario unlikely to occur in the field. It would be 

interesting to test how a nutritional priming stress, such as P starvation, would alter the 

[Ca2+]cyt signalling output.  

5.2 Phosphate-starved root tips lack the response to extracellular 

ATP in the distal root tip 

In the data reported here, the most pronounced P starvation-induced changes of the 

[Ca2+]cyt signature were observed for the root tips’ response to extracellular nucleotides, 

ATP and ADP. Particularly eATP has been characterized to increase outside cells upon 

wounding or pathogen attack, and in general to function as a danger signal (Tanaka et al., 

2014). eATP has also been shown to increase upon mechanical stress or salt stress 

(Weerasinghe et al., 2009; Dark et al., 2011), implying eATP at the cross-road of stress 

perception. eATP perception at the PM has been described to trigger robust [Ca2+]cyt 

increases, as well as the generation of other signalling molecules such as ROS 

(Demidchik, Nichols, et al., 2003; Demidchik et al., 2009; Tanaka et al., 2010). These 

initial studies employed the ubiquitously expressed Ca2+ reporter aequorin, and eATP 

treatment was described to trigger multiple distinct [Ca2+]cyt increases in whole seedlings, 

and particularly root tissue (Demidchik, Nichols, et al., 2003; Tanaka et al., 2010; J. Choi, 

Tanaka, Cao, et al., 2014). A schematic overview of signalling events occurring at the 

root tip as investigated in this thesis is depicted in Figure 52, and will be put into 

perspective in the following.  

In nutrient-replete plants, 1 mM eATP triggered an immediate and strong increase in 

[Ca2+]cyt in the apical root tip, followed by a delayed [Ca2+]cyt response in the elongation 

zone (delayed by 20 to 40 seconds, depending on Ca2+ reporter and experimental set-up 

used, responses are numbered ‘1’ and ‘2’ in Figure 52). P starvation led to a dampened 

[Ca2+]cyt response to eATP. P starvation also inhibited primary root growth, as had been 

described before (Svistoonoff et al., 2007; Ticconi et al., 2009; Balzergue et al., 2017). 

Both [Ca2+]cyt signature and primary root length were found to depend on Fe availability 

in a P starvation background. However, primary root length per se was not predictive of 

a dampened [Ca2+]cyt response, as e.g., P-replete and Fe-starved primary roots were as 

short as P-starved and Fe-replete roots, but showed the full [Ca2+]cyt response to eATP. 

Similarly, N-starved primary roots were as stunted as P-starved primary roots, but still 

sustained the full [Ca2+]cyt response to eATP.  
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Under P starvation, particularly the secondary [Ca2+]cyt response to eATP in the 

elongation zone was strongly dampened, whilst the [Ca2+]cyt response in the apical root 

tip was comparable to nutrient-replete root tips. Incorporating the finding that P-starved 

roots still accumulated low, but nonetheless detectable levels of eATP into bathing 

medium surrounding their roots, it can be deduced that P-starved roots were not in general 

impaired in sensing eATP, but that the eATP signalling machinery was maintained.  

 

  

Figure 52: Components involved in signalling extracellular ATP in the root tip of Arabidopsis as 

investigated in this thesis. For a description of the model see text. [P] – phosphate levels in the 

growth medium, [Fe] – iron levels in the growth medium, ROS – reactive oxygen species, DTT 

– cellular reductant, DPI – NADPH-oxidase inhibitor, DORN1 – plant receptor for eATP, PM – 

plasma membrane, out – extracellular space, in – intracellular space, dashed lines indicate 

hypothetical links. 

 

Previous studies reported an increased ROS load of P-starved, and Fe-replete, roots 

(Müller et al., 2015; Balzergue et al., 2017), which was also observed in this thesis. 



Phosphate Starvation alters Calcium Signalling in Roots of Arabidopsis thaliana 

222   

Further, the ROS hotspot in the elongation zone correlated with a dampened [Ca2+]cyt 

response to eATP. As pharmacological manipulation of cellular redox status as well as 

inhibition of NADPH-oxidases (using DTT and DPI) particularly dampened the 

secondary, elongation zone-localized [Ca2+]cyt response to eATP, this strongly suggests 

that ROS generation through NADPH-oxidases is necessary to elicit the full [Ca2+]cyt 

response. ROS-primed tissue, as observed in P-starved roots, was not able to perceive any 

newly generated ROS signal. NADPH-oxidases are described as generating extracellular 

ROS, whereas the ROS hotspot reported here was intracellular (using an intracellular 

ROS reporter dye). How extracellular ROS generation would influence intracellular ROS 

status had been puzzling for some time. Only recently this apparent gap has been bridged 

by the finding that aquaporins could facilitate transport of H2O2 across membranes, and 

thus from extracellular to intracellular space, demonstrated  for Arabidopsis guard cells 

and leaf tissue (Tian et al., 2016; Rodrigues et al., 2017). Aquaporin distribution in root 

membranes has been shown to be dynamic, as both 0.5 mM H2O2 as well as 100 mM salt 

stress were shown to quickly internalize and re-distribute aquaporins (Luu et al., 2012; 

Wudick et al., 2015).  In addition, P starvation has been shown to alter phosphorylation 

status of many aquaporins (di Pietro et al., 2013). It has further been reported that 

aquaporins were excluded from sites of auxin maxima (Péret et al., 2012). A recent surge 

of work showed P starvation-induced root hair outgrowth to rely on increased auxin 

transport from the root apex to the differentiation zone in both Arabidopsis and rice 

(Bhosale et al., 2018; Giri et al., 2018). Taken together, it is intriguing to speculate that 

aquaporins might be involved in facilitating (and terminating) any ROS-triggered 

[Ca2+]cyt response upon eATP treatment, and be differently regulated and/or distributed 

under P starvation conditions.  

ROS action has further been mentioned as a major component for the wave-like 

propagation of systemic [Ca2+]cyt signals (Evans et al., 2016). Data presented here showed 

that local eATP application to either apical root tip or elongation zone was sufficient to 

elicit a [Ca2+]cyt increase in the respective tissue, and as such the first report dissecting 

local from systemic eATP action. However, some [Ca2+]cyt increase upon eATP treatment 

was also observed in tissue outside the treated area (indicated by blue dashed arrows in 

Figure 52). As these sets of experiments were done using the Ca2+ reporter GCaMP3 

which is comparably insensitive to subtle changes in [Ca2+]cyt, the extent of this 

propagating [Ca2+]cyt signal might be underestimated and warrants further research. It 

does however suggest that eATP triggers a systemic [Ca2+]cyt response as had been 
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reported for salt stress in roots (W.-G. Choi et al., 2014) and wounding of leaves (Kiep et 

al., 2015; Nguyen et al., 2018; Toyota et al., 2018). The moss Physcomitrella patens was 

recently described as propagating a ‘Ca2+ wave’ when challenged with osmotic stress, 

however treatments were not explicitly applied locally but perfused over the whole 

sample tissue (Storti et al., 2018). As stressed before, care should be taken to discern 

between systemic signals occurring simply because treatment comes into contact with all 

(outer) cell layers, or due to true cell-to-cell propagation.  

It further remains to be determined if free ATP or rather Mg-complexed ATP (MgATP) 

were the active binding partner of DORN1. In animals, ATP or MgATP add another level 

of complexity to eATP receptor activation (Li et al., 2013). In sycamore cell culture, 

cytosolic ATP has been described to mainly occur complexed with Mg2+ (Gout et al., 

2014). Which ligand actually activates DORN1 is further hampered by so far 

unsuccessful attempts to crystallize the extracellular domain of Arabidopsis’ DORN1 (Li 

et al., 2016). Adding to the conundrum is the fact that ADP elicited a [Ca2+]cyt signature 

very similar to what was observed upon eATP treatment (data presented in this thesis, 

also reported by Demidchik et al., 2003, 2011; J. Choi et al., 2014). P starvation 

dampened the root tip [Ca2+]cyt response to ADP similarly to what was observed upon 

ATP perception. As ATP-hydrolysis was not necessary to trigger the full [Ca2+]cyt 

response upon eATP perception, it is unlikely that ADP is perceived merely as part of an 

ATP-hydrolysis event, but might rather be a discrete signalling molecule (Demidchik et 

al., 2011). A thorough study by Gout et al. (2014) reported cytosolic ADP levels to be 

tightly regulated and stable over a range of fluctuating conditions, whilst cytosolic ATP 

levels varied greatly depending on cellular conditions. An alluring hypothesis would be 

that extracellular ADP could be read-out in a more linear fashion than fluctuating eATP, 

thus carrying more precise information about e.g., the extent of wounding.  

In the data reported in this thesis, all [Ca2+]cyt influx upon eATP perception was dependent 

on DORN1, corroborating previous findings of DORN1’s being Arabidopsis’ major 

eATP receptor (J. Choi, Tanaka, Cao, et al., 2014). DORN1 was not differentially 

regulated under P starvation (Lin et al., 2011; Lan et al., 2012), or N or K+ deficiency for 

that matter (Kellermeier et al., 2014), suggesting DORN1 to be unfazed by nutrient 

shortages. As mentioned above, this agrees with the idea that the P starvation-induced 

dampening of the [Ca2+]cyt signature did not occur on the stress-specific receptor level, 

and further supports that the eATP signalling machinery is maintained even when P is 

limited. Besides Arabidopsis, removal or addition of eATP have been shown to trigger 
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responses in a number of plant species, including bean, maize, Medicago, poplar, tobacco 

and tomato (Demidchik, Nichols, et al., 2003; S. a Kim et al., 2006; Sueldo et al., 2010; 

Sun et al., 2012; Chivasa et al., 2013). However, eATP receptors outside of Arabidopsis 

are currently unknown, as are the molecular identities of K+ and Ca2+ channels activated 

downstream of DORN1 (L. Wang et al., 2018). As discussed in Chapter 4, DORN1 has 

been shown to interact with NADPH-oxidase RBOHD in leaves (Chen et al., 2017). It is 

unclear if this interaction also occurs in root cells upon eATP perception (illustrated by 

grey box in Figure 52). RBOHD would be expressed in root cells (Birnbaum et al., 2003), 

and was recently found to be involved in systemic propagation of the salt-induced 

[Ca2+]cyt wave there (Evans et al., 2016). Besides this, RBOHC has been implied as a 

major root NADPH-oxidase (Foreman et al., 2003; Shin and Schachtman, 2004; 

Demidchik et al., 2009). No experimental protein-protein interaction data are available 

for RBOHC, but in silico mining has recently described RBOHC to have unique partners, 

most of which are annotated to function in root hair development (Kaur and Pati, 2018).   

5.3 Molecular identities of plasma membrane Ca2+ channels and 

transporters remain largely unknown 

It is well established, and corroborated by data shown in this thesis, that a range of abiotic 

stresses induce immediate and distinct [Ca2+]cyt fluxes. Almost surprisingly, the genetic 

identity of the Ca2+ channels underlying these fluxes remains largely elusive (summarized 

by Wilkins et al., 2016). Even though non-functional versions of individual putative Ca2+ 

genes are available for Arabidopsis, investigated single mutants mostly showed mild or 

no Ca2+ phenotypes, likely due to large gene families and genetic redundancy.  

The here reported altered [Ca2+]cyt signature was shown to be linked to P and Fe 

availability, as well as ROS homeostasis, and possibly did not depend on stress-specific 

receptors. What has not been discussed is the potential differential regulation of proteins 

mediating the actual Ca2+ fluxes. Considering previous studies reporting the effect of P 

starvation on Arabidopsis roots, the only putative Ca2+ channel found to be significantly 

transcriptionally downregulated after 6 hours of P starvation was CNGC15, with the 

effect being lost after 24 hours of P starvation (Lin et al., 2011). No putative Ca2+ channel 

was picked up to be downregulated at the protein level (Lan et al., 2012; Hoehenwarter 

et al., 2016; Z. Q. Wang et al., 2018).  
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Some putative Ca2+ channels were found to be significantly upregulated at the protein 

level, including ANN1, GLR2.3 and GLR2.9 (Lan et al., 2012; Hoehenwarter et al., 2016; 

Z. Q. Wang et al., 2018), which however is counterintuitive if these were to explain a 

dampened [Ca2+]cyt signature. Particularly with regards to channel proteins, which already 

in low numbers can have a dramatic impact on ion fluxes, global studies reporting protein 

level changes in homogenized tissue might not detect slight changes in abundance. 

Particularly for membrane-integral proteins, protein extraction methods would strongly 

determine the level of resolution (Niu et al., 2018). Besides, rather than absolute levels, 

post-translational modifications might influence channel sensitivity. A previous study 

considering phosphorylation patterns under nutrient deficiencies did indeed report 

changes in phosphorylation pattern as a consequence of P limitation and resupply in 14-

day old P-starved Arabidopsis, but no putative Ca2+ channel was detected (Duan et al., 

2013).  

As part of this PhD project, a library of putative Ca2+ channel mutants was compiled, with 

focus on genes annotated to be root expressed and PM localized. These were screened for 

aberrant root hair growth under P starvation. Root hair growth has been demonstrated to 

rely on oscillatory PM Ca2+ fluxes (Bibikova et al., 1997; Very and Davies, 2000; 

Monshausen et al., 2008; Candeo et al., 2017), and any mutant essential for these Ca2+ 

fluxes was hypothesized to be particularly sensitive to conditions that provoked elongated 

root hair outgrowth. However, none of the mutants tested grew root hairs considerably 

different to their respective wild type. This could be due to genetic redundancy or Ca2+ 

channels that so far have not been annotated and thus escaped the screen. Recently, 

another group reported CNGC14 to be necessary for root hair growth under nutrient-

replete conditions (Zhang et al., 2017). CNGC14 has also been described to govern auxin-

induced [Ca2+]cyt elevations (Shih et al., 2015; Dindas et al., 2018). However, root hair 

growth of the cngc14 mutant was only impaired when roots grew into the gelled medium 

(Zhang et al., 2017). This could explain why the same mutant line did not show a root 

hair phenotype in the growth conditions tested in this thesis, and elongated root hairs just 

as wild type, even under P starvation. Root hair growth appears a highly conditional 

phenotype, potentially involving not one, but different Ca2+ channel proteins.  

It should also be considered that any dampened [Ca2+]cyt signature could not be the effect 

of a downregulated Ca2+ influx channel, but rather a highly upregulated Ca2+ efflux 

transporter. As it has recently been reported that determination of the [Ca2+]cyt signal 

carried information and affected the level of downstream gene expression (Lenzoni et al., 
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2017), alterations in Ca2+ efflux proteins would strongly affect the transduced message. 

Early work in tomato indeed reported a strong upregulation of LCA1, a root Ca2+-ATPase, 

under P starvation (Muchhal et al., 1997), which however remained a maverick. In 

Arabidopsis, upregulation of Ca2+ exchanger3 (CAX3), CAX7 and Ca2+-ATPases13 

(ACA13) were detected on the transcriptional level (Misson et al., 2005; Lin et al., 2011; 

Kellermeier et al., 2014). However, CAX3 was not only upregulated by P starvation, but 

also N and K+ imbalances (Kellermeier et al., 2014). Furthermore, the transcriptional 

upregulation did not translate into higher protein levels, where only a downregulation of 

ACA7 and ACA12 was detected (Lan et al., 2012; Hoehenwarter et al., 2016).  

Overall, mining previous studies provided little evidence to draw a strong connection 

between P starvation responses and Ca2+ regulating machinery, a ‘Ca2+ fingerprint’ seems 

to be absent.  

5.4 Linking P and Ca2+ is difficult, and direct links are scarce 

P and Ca2+ have an extraordinary relationship, with Ca2+’s being cytotoxic to a P-based 

metabolism, as P and Ca2+ easily form tight complexes. In contrast to animals, plants 

rarely ‘waste’ precious P to complex with Ca2+ for structural biomineralization purposes. 

Only recently, the first ever Ca-P complexes were reported in plants, stabilizing trichomes 

in a variety of plant species including Arabidopsis (Ensikat et al., 2016; Mustafa et al., 

2018). The mechanism underlying Ca-P formation is unknown (Weigend et al., 2017). 

Recently it has been shown that plant pathogenic Pseudomonas bacteria precipitate Ca-P 

intra- and extracellularly, and that this process is dependent on virulence genes (Fishman 

et al., 2018). The authors hypothesize that Ca2+ precipitation could be a mechanism to 

disrupt pathogen-induced Ca2+ signalling necessary for the full plant immune response 

(Fishman et al., 2018). Taken together, the special relationship between P and Ca2+ seems 

to be involved in many scenarios relevant for plant development and physiology.  

In the data reported here, the dampened [Ca2+]cyt signature observed under P starvation 

could indicate a downregulation of the use of Ca2+ as a signalling ion when P is limited. 

Little evidence however exists with regards to how this would be regulated through 

differential Ca2+ influx or efflux (as discussed above). Besides the [Ca2+]cyt signature’s 

being differentially regulated under P starvation conditions, Ca2+ could signal P 

availability. The involvement of Ca2+ in signalling nutrient availability has been the focus 

of many recent studies, most prominently for sensing nitrate (Riveras et al., 2015; Liu et 
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al., 2017). The use of Ca2+ to signal P availability has been hypothesized (Chiou and Lin, 

2011; Chien et al., 2018), but so far remains elusive.  

Data reported in this thesis did not show modulations of [Ca2+]cyt upon P resupply. 

However, resolution might be too limited as only ubiquitously expressed aequorin was 

used to monitor [Ca2+]cyt changes. Particularly the finding that P uptake predominantly 

occurred during the night and as such seems to be under circadian control (Terabayashi 

et al., 1991; Yamawaki et al., 2011), is intriguing. As [Ca2+]cyt has also been described to 

be under circadian control, and most recently to also control circadian rhythms in 

Arabidopsis (Martí Ruiz et al., 2018), it might be a question of monitoring the right time 

window in which P uptake and [Ca2+]cyt oscillations are linked. Considering any 

interaction of the P uptake system and putative Ca2+ channels, only one interaction 

between a root-expressed P transporter (PHT1;9) and a putative Ca2+ channel (OSCA2.1) 

could be found (Jones et al., 2014a). However, OSCA2.1 was found to interact with in 

total 234 protein partners according to the same database, and is furthermore mainly 

expressed in guard cells (mined from araport.org). 

Downstream read-out of any potential [Ca2+]cyt signal upon P uptake is equally difficult 

to mine from previous studies. Considering the multitude of proteins potentially involved 

in Ca2+-binding and -recognition (approximately 2 percent of all expressed Arabidopsis 

genes are annotated to be involved in Ca2+ binding; Vaz Martins et al., 2013) occurrence 

of some Ca2+-binding proteins within studies is likely stochastic. An enriched ‘Ca2+ 

fingerprint’ in previous P starvation / resupply studies is missing. Investigating plant 

species capable of forming mutual symbiosis (which Arabidopsis is not capable of), any 

link between P nutrition and Ca2+ might be indirect, as [Ca2+] oscillations are necessary 

to establish symbiosis and thus any downstream beneficial P-uptake through associated 

mycorrhiza (Gutjahr and Paszkowski, 2013; Campos et al., 2018). For example, a recent 

study reported a CDPK, annotated to be involved in symbiosis signalling, to be 

consistently upregulated under P starvation in rice, wheat and oat (Z. Q. Wang et al., 

2018). 

5.5 Concluding remarks and future work 

This is the first report of P starvation influencing [Ca2+]cyt. As [Ca2+]cyt transduces external 

into internal signals, any alteration of its use likely affects how plants perceive their 

environment, even though downstream read-outs do not necessarily correspond 
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quantitatively. Considering that previous studies mostly aimed at elucidating signalling 

components in plants grown under optimal, nutrient-replete laboratory conditions, the 

insight reported here should add to the understanding of how plants cope in less optimal 

conditions as are occurring in the field. It is intriguing to hypothesize that an altered 

[Ca2+]cyt signature could integrate information of internal nutrient status and external 

stress, potentially adding another layer of complexity to the significance of [Ca2+]cyt 

signatures.  

Next steps to take should involve testing if the altered [Ca2+]cyt signature under P 

starvation is conserved across the Arabidopsis genus, and translates into other plant 

species of interest. Moving into plant species that establish mycorrhizal symbiosis will 

add a layer of complexity to any observed Ca2+ signal in response to P availability, as 

both symbiotic [Ca2+]cyt oscillations and the fungal membrane as another component of P 

uptake will need to be considered. Furthermore, this thesis focussed on the stress response 

to abiotic stresses. It remains to be determined if biotic stress perception would show a 

similar, P-starvation dependent regulation of [Ca2+]cyt signatures. As eATP has been 

described to also signal in biotic stress interactions (Tripathi et al., 2017), the dissection 

of the eATP-induced [Ca2+]cyt signature reported here is a first step in elucidating 

components of biotic stress perception under P starvation. 

To elucidate the underlying molecular components, advances in targeted mutagenesis 

(such as the CRISPR/Cas9 system being developed for Arabidopsis, Miki et al., 2018) 

promise to efficiently circumvent the problem of genetic redundancy posed by large gene 

families, as found for putative Ca2+ channels. The downstream consequence of the altered 

[Ca2+]cyt signature in response to P starvation remains to be determined. Determining the 

read-out of transient [Ca2+]cyt modulations is often achieved by quantifying gene 

expression changes, which will gain greatly through increasingly higher tissue resolution. 

For example, single cell RNAseq is becoming economically and technically feasible in 

plants (Yuan et al., 2018).  

Nutrient deficiencies (or toxicities) are a complex field to investigate, as altering 

availability of one nutrient likely influences availability of all other nutrients, making 

causal relationships difficult to dissect. Little attention has been given to any circadian 

regulation of nutrient uptake, likely due to its being technically challenging. An 

expanding toolkit of Ca2+ reporters, as well as genetically encoded reporters for pH, 

intracellular P and ATP (Mukherjee et al., 2015; De Col et al., 2017; Martinière et al., 

2018), might greatly enhance our understanding of stress-triggered signalling networks.  
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APPENDIX I 

 

List of putative Arabidopsis Ca2+ channel mutants and annotation details (see following pages). 

Descriptions are as follows: 

‘Gene’: Gene name as commonly abbreviated;  

‘AGI’: Arabidopsis Genome Initiative (AGI) unique locus identifier;  

‘R / PT exp’: Root and/or pollen tube expressed, R – root expressed, PT – pollen tube expressed, 

no – not expressed in root or pollen tube, NA – no annotation, expression data sourced from 

araport.org, supplemented with expression studies by (T) -Talke et al. (2003), (G) - Gobert et al. 

(2006) or (K) - Kellermeier et al. (2014);  

‘RH exp’: details on root hair (RH) expression, small letter – RH expressed, capital letter – RH 

enriched/involved in RH morphogenesis, (-) expression specifically downregulated in RH, based 

on studies by A - Jones et al. (2006), B - Brady et al. (2007), C – Deal and Henikoff (2010), D 

– Bruex et al. (2012), E – Lan et al. (2013), F – Becker et al. (2014), G – Huang et al. (2017).  

‘T’: Transcriptional expression changes under phosphate starvation, after Lin et al. (2011); 

+/++/+++ upregulated after 1/6/24 hours of starvation, -/--/--- downregulated after 1/6/24 hours 

of starvation, noted is earliest timepoint, based on relative expression, NC – no change;  

‘P’ Changes in protein abundance under phosphate starvation after Lan et al. (2012), up – 

upregulation, NC – no change; ‘Co-exp’: Co-expressed genes (other putative Ca2+ channels, genes 

related to RH growth), sourced from atted.jp, connected on network by up to 2 edges; NA – no 

annotation;  

‘P-P-I’: Protein-protein-interaction, sourced from MIND database (Jones et al., 2014), given in 

brackets is interaction score (out of 4 replicates, how many were positive), manual curation of all 

protein partners that were putative Ca2+ channels, involved in Ca2+ transport, nutrition. 
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APPENDIX II 

Library of putative Arabidopsis Ca2+ channel mutants as assembled in this thesis, including origin 

of seed stock, mutant details and genotyping details (see following pages, including table with 

multiple mutant lines, mutant lines that were genotyped to be  wild typic for the mutation, mutant 

lines that did not germinate). Descriptions are as follows: 

‘Allele name’: Abbreviated mutant line name, dash indicates more than one allele for the 

mutation was processed. Bold print – genotyped homozygous in this thesis and/or previously in 

our laboratory. Superscript letters indicate origin of seed stock and further resources, A – gift 

from Lee et al. (2004); B – see J. Mortimer PhD thesis, University of Cambridge, for further 

details; C – gift from Edgar Peiter group; D – gift from (and genotyped, if not stated otherwise) 

by Keiko Yoshioka group; E – gift from and genotyped by Gerald Berkowitz group; F – gift from 

Zhonglin Shang group; G – gift from and genotyped by Alex Costa group (seed originally from 

José Feijo, published in Michard et al., 2011); H – gift from Elisasbeth Hasell / Elliot Meyerowitz 

group; I – gift from Hidetoshi Iida group; J – triple mutant generated by Adeeba Dark, Julia 

Davies group; / - not genotyped in this thesis, ? – line likely homozygous for the mutation but 

genotyping during this PhD project was troublesome / could not repeat previous results / line 

needs to be sequenced (refer to laboratory books by EM for further information).  

‘AGI’: Arabidopsis Genome Initiative (AGI) unique locus identifier;  

‘Mutant details’: Unique identifier for mutant line  

‘Paired WT’: Paired wild type Arabidopsis, as was used for mutagenesis background; used as 

control wild type in this thesis, 

‘WT size’: Wild type amplicon band size in number of base pairs, as predicted by Signal Salk 

Primer Design Tool, when using LP + RP primer 

‘M size’: Mutant amplicon band size in number of base pairs, as predicted by Signal Salk Primer 

Design Tool, when using LP/RP primer together with LBb1.3 SALK T-DNA-specific primer 

(ATTTTGCCGATTTCGGAAC). 

‘LP’: Left genomic primer used for genotyping 

‘RP’: Right genomic primer used for genotyping 
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APPENDIX III 

Growth conditions and quantification parameters used in previous studies reporting root hair 

phenotypes of Arabidopsis. RH – root hairs, d – days, MS – Murashige and Skoog growth 

medium, ATS – Arabidopsis thaliana salts. 
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Components of growth conditions trialed to phenotype root hairs of Arabidopsis. ‘Inclined’ plate 

orientation indicates roots would need to penetrate growth medium, then grow between bottom 

of plastic plate and medium, whereas with ‘vertical’ plate orientation, roots will not penetrate but 

grow on surface of growth medium (between growth medium and air). N – nitrogen, P – 

phosphate, RH – root hair, RSA – root system architecture, MES - 2-(N-

morpholino)ethanesulfonic.  
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APPENDIX IV  

 

Distribution of primary root length of putative Arabidopsis Ca2+
 hannel mutants. Lines were 

grown for six days on full P (green) or zero P (blue) growth medium, and primary root length was 

measured using the ImageJ NeuronJ plugin. Y-axis displays the absolute frequency of 

observations. (A) Histogram of primary root lengths in cm of individual roots of putative 

Arabidopsis Ca2+ channel mutants, (B) and their paired wild type backgrounds. (C) Histogram of 

primary root lengths of putative mutants given as percent of growth compared to their respective 

wild type backgrounds. Data from 6 independent trials, with n = 532 / 527 (mutants grown on full 

/ zero P, respectively) and 278 / 252 (wild types grown on full / zero P respectively).  
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Primary root lengths of putative Arabidopsis Ca2+ channel mutants. Lines were grown for six days 

on full P (green) or zero P (blue) growth medium, and primary root length was measured using 

the ImageJ NeuronJ plugin. Means of primary root length (± SEM, in cm) of 4 – 22 roots analysed 

per mutant per growth condition are shown, data from 6 independent trials. Each mutant line was 

grown with its respective paired wild type. Median primary root length of wild types across all 

experiments is shown as dashed line for full and zero P (green / blue respectively), ± 2.5 fold 

MAD (median absolute deviation, light green and blue boxes).  
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Primary root length of putative Arabidopsis Ca2+ channel mutants as percent of paired wild type 

primary root length. Median primary root length of mutants across all experiments is shown as 

dashed line for full and zero P (green / blue respectively), ± 2.5 fold MAD (median absolute 

deviation, light green and blue boxes). 
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APPENDIX V 

 

 

Distribution of measured root hair lengths of putative Arabidopsis Ca2+ channel mutants. Lines 

were grown for six days on full P (green) or zero P (blue) growth medium, and root hair lengths 

of the 10 longest root hairs (5 per side of the root) within a 1 mm segment, 4 – 5 mm from the 

root tip, were quantified and averaged. Y-axis displays the absolute frequency of observations. 

(A) Histogram of average root hair length in mm of individual roots of putative Arabidopsis Ca2+ 

channel mutants, (B) and their paired wild type backgrounds. (C) Histogram of root hair length 

averages of putative mutants given as percent of growth compared to their respective wild type 

backgrounds. Data from 6 independent trials, with n = 518 / 503 (mutants grown on full / zero P, 

respectively) and 251 / 236 (wild types grown on full / zero P, respectively). 
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Root hair lengths of putative Arabidopsis Ca2+ channel mutants. Lines were grown for six days 

on full P (green) or zero P (blue) growth medium, and root hair lengths of the 10 longest root 

hairs within a 1 mm segment, 4 – 5 mm from the root tip, were quantified using the ImageJ 

NeuronJ plugin. Shown are averages of 4 -22 analysed roots per mutant per growth condition, ± 

SEM, data from 6 independent trials. Each mutant line was grown with its respective paired wild 

type. Median root hair length of wild types across all experiments is shown as dashed line for full 

and zero P (green / blue, respectively), ± 2.5 fold MAD (median absolute deviation, light green 

and blue boxes). 
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Root hair lengths of putative Arabidopsis Ca2+ channel mutants as percent of paired wild type 

root hair lengths. Median root hair length of mutants across all experiments is shown as dashed 

line for full and zero P (green / blue, respectively), ± 2.5 fold MAD (median absolute deviation, 

light green and blue boxes). 
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APPENDIX VI 

[see attached CD] 

Movie 1 – Ratiometric false-colour movie from a representative time series of a P-replete Col-0 

root expressing NES-YC3.6, response to 1 mM extracellular ATP. A 10-day old seedling was 

superfused with control solution before 1 mM eATP (in control solution background) was 

superfused at 3 minutes after start of image acquisition. Scale bar: 1 mm. 

Movie 2 - Ratiometric false-colour movie from a representative time series of a P-starved Col-0 

root expressing NES-YC3.6, response to 1 mM extracellular ATP. A 10-day old seedling was 

superfused with control solution before 1 mM eATP (in control solution background) was 

superfused at 3 minutes after start of image acquisition. Scale bar: 1 mm. 

Movie 3 – Intensiometric false-colour movie from a representative time series of a P-replete Col-0 

root expressing GCaMP3, response to application of control solution. The root tip of a 10-day old 

seedling was treated with control solution at 20 seconds after start of image acquisition. Scale bar: 

1 mm. 

Movie 4 - Intensiometric false-colour movie from a representative time series of a P-replete Col-0 

root expressing GCaMP3, response to application of 1 mM eATP treatment. The root tip of a 10-

day old seedling was treated with 1 mM eATP (in control solution background) at 20 seconds 

after start of image acquisition. Scale bar: 1 mm. 

Movie 5 - Intensiometric false-colour movie from a representative time series of a P-starved Col-0 

root expressing GCaMP3, response to application of control solution. The root tip of a 10-day old 

seedling was treated with control solution at 20 seconds after start of image acquisition. Scale bar: 

1 mm. 

Movie 6 - Intensiometric false-colour movie from a representative time series of a P-starved Col-0 

root expressing GCaMP3, response to application of 1 mM eATP treatment. The root tip of a 10-

day old seedling was treated with 1 mM eATP (in control solution background) at 20 seconds 

after start of image acquisition. Scale bar: 1 mm. 

Movie 7 - Intensiometric false-colour movie from a representative time series of a P-replete Col-0 

root expressing GCaMP3 with cut off apical root tip, response to application of 1 mM eATP 

treatment. The apical root tip (~ 0.8 mm) of a 10-day old seedling was cut off, and apical root tip 

and distal root stump were treated simultaneously with 1 mM eATP (in control solution 

background) at 20 seconds after start of image acquisition. Scale bar: 1 mm. 

 


