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Childhood-onset mitochondrial encephalomyopathies are severe, relentlessly progressive conditions. However,
reversible infantile respiratory chain deficiency (RIRCD), due to a homoplasmic mt-tRNAGlu mutation, and revers-
ible infantilehepatopathy,duetotRNA5-methylaminomethyl-2-thiouridylatemethyltransferase(TRMU)deficiency,
stand out by showing spontaneous recovery, and provide the key to treatments of potential broader relevance.
Modification of mt-tRNAGlu is a possible functional link between these two conditions, since TRMU is responsible
for 2-thiouridylation of mt-tRNAGlu, mt-tRNALys and mt-tRNAGln. Here we show that down-regulation of TRMU in
RIRCD impairs 2-thiouridylation and exacerbates the effect of the mt-tRNAGlu mutation by triggering a mitochon-
drial translation defect in vitro. Skeletal muscle of RIRCD patients in the symptomatic phase showed significantly
reduced 2-thiouridylation. Supplementation with L-cysteine, which is required for optimal TRMU function, rescued
respiratorychainenzymeactivities inhumancell linesofpatientswithRIRCDaswell asdeficientTRMU.Our results
show that L-cysteine supplementation is a potential treatment for RIRCD and for TRMU deficiency, and is likely to
have broader application for the growing group of intra-mitochondrial translation disorders.

INTRODUCTION

Mitochondrial diseases are a large and clinically heterogeneous
group of disorders that result from deficiencies in cellular energy
production and affect at least 1 in 5000 of the population. The
underlying genetic defect in many patients remains unknown
and there are no effective treatments (1,2). Most mitochondrial
diseases are progressive conditions and lead to premature
death. However, there is a unique condition, reversible infantile
cytochrome c oxidase (COX) deficiency [or reversible infantile
respiratory chain (RC) deficiency, RIRCD; OMIM# 500009],
caused by the homoplasmic m.14674T.C/G mutation in the
mt-tRNAGlu gene, showing spontaneous recovery during early
childhood (3–5). Affected children uniformly present with
severe muscle weakness, often requiring assisted ventilation in

the first days or weeks of life. If they survive the first months
of life, they improve spontaneously, and recover fully by 2 or
3 years of age. The m.14674T.C/G mutation is thought to
impair mitochondrial translation, as reflected by ragged red
fibres/COX-negative fibres and multiple RC defects in skeletal
muscle. The steady-state level of mt-tRNAGlu was low in early
biopsies (16–30%), but a slight increase occurred in the follow-
up muscle biopsies, when the children were almost asymptomat-
ic and remained low (30–60%) in primary fibroblasts (3). The
slight recovery of the steady-state level of mt-tRNAGlu in the
face of dramatic clinical improvement indicates that, either
this mild increase is sufficient to regain normal mitochondrial
translation or other mechanisms downstream of mt-tRNAGlu

are responsible for the clinical and biochemical recovery.
Low levels of mt-tRNAGlu in muscle from clinically healthy
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mothers strongly suggest that the down-stream effects are able to
ameliorate both the biochemical and clinical phenotype.

Although previous data provide strong evidence for a patho-
genic role of m.14674T.C/G, they do not explain why all
patients develop severe isolated myopathy in the neonatal
period and, most importantly, what triggers the timed spontan-
eous recovery. Another unanswered question is why clinical
symptoms manifest only in �30% of individuals carrying the
homoplasmic m.14674T.C/G (3). However, no clear-cut
nuclear modifiers of mtDNA disease have been identified to
date (6).

RIRCD is not the only reversible mitochondrial disease. Auto-
somal-recessive mutations in a tRNA 5-methylaminomethyl-
2-thiouridylate methyltransferase (TRMU, OMIM∗610230, also
known as MTU1, MTO2), which is responsible for the 2-
thiouridylation of mt-tRNAGlu, mt-tRNAGln and mt-tRNALys, but
not of any other mt-tRNAs cause a severe but reversible infantile
hepatopathy (7,8). Infants with reversible hepatopathy develop
symptoms between 2 and 4 months of age, but if they survive this
phase of liver failure, they recover and develop normally (8). The
disease course and age of manifestation in TRMU deficiency
shows remarkable similarities to RIRCD (5).

Recently, autosomal-recessive mutations were reported in in-
fantile partially reversible hypertrophic cardiomyopathy in the
gene MTO1 (OMIM∗614667) encoding the enzyme that cata-
lyzes the 5-carboxymethylamino-methylation (mnm5s2U34)
of the same nucleotide (U34) of the wobble position that is
affected in TRMU deficiency for mt-tRNAGlu, mt-tRNAGln

and mt-tRNALys (9). Mutations in the glutamyl-tRNA synthe-
tase (EARS2, OMIM∗612799) cause early onset severe neuro-
logical disease (leukoencephalopathy involving the thalamus
and brainstem with high lactate, LTBL) and 8 out of 12 patients
showed clinical improvement and stabilization after 1 year of
age (10).

The age-dependent, partially reversible clinical presentation
and the impairment of mt-tRNAGlu strongly suggest a possible
pathophysiological link underpinning the spontaneous improve-
ment in these mitochondrial conditions. We hypothesize that an
impaired 2-thiouridylation in infants contributes to the clinical
manifestation of RIRCD, therefore decided to study whether
down-regulation of TRMU recapitulates the biochemical
defect in RIRCD. Defining the common mechanism would not
only suggest new avenues for treatment in these reversible disor-
ders, but could also have more general relevance for the growing
group of intra-mitochondrial translation defects.

RESULTS

2-Thiouridylation pattern in RIRCD patient cells

To investigate whether the homoplasmic m.14674T.C/G
mt-tRNAGlu mutation impairs 2-thiouridylation of mt-tRNAGlu

in fibroblasts and myoblasts of a patient with RIRCD myopathy,
we performed high-resolution northern blots by incorporating
N-acryloylamino phenyl mercuric chloride (APM) into the
gels, which enabled us to separate thiolated and non-thiolated
tRNA species (11). We used probes for the three mt-tRNAs
(Glu, Lys, Gln) undergoing 2-thiouridylation by TRMU, and
also probed for cytoplasmic tRNALys, and 5S rRNA as non-
thiolated controls in RIRCD cells, TRMU-deficient patient

cells and normal controls. We studied both steady-state levels
and level of thiolation.

The relative steady-state level of mt-tRNAGlu was reduced in
both myoblasts (Fig. 1A and B) and fibroblasts (Supplementary
Material, Fig. S1A and B) from RIRCD patients, as shown pre-
viously (3). Steady-state levels of mt-tRNALys and mt-tRNAGln

in RIRCD fibroblasts were also slightly decreased, while this re-
duction was subtle in myoblasts. The TRMU patient’s myoblasts
showed an increase in the steady-state level of mt-tRNAGlu and
mt-tRNALys (Fig. 1A and B), but there was no change of
steady-state levels of the three thiolated mt-tRNAs in fibroblasts
(Supplementary Material, Fig. S1A and B).

In all cell lines, mt-tRNAGln was less thiolated than
mt-tRNAGlu and mt-tRNALys. While TRMU-deficient fibro-
blasts and myoblasts showed defective thiolation of mt-tRNAGlu

and mt-tRNALys thiolation (Fig. 1C, Supplementary Material,
Fig. S1C) in RIRCD-deficient cells was similar to controls
(Fig. 1C, Supplementary Material, Fig. S1C).

Down-regulation of TRMU (siRNA) decreased
2-thiouridylation and steady-state level of mt-tRNAGlu in
RIRCD patient cells

To investigate whether an additional impairment of 2-
thiouridylation compromises the mitochondrial translation
defect in RIRCD, we down-regulated TRMU in fibroblasts and
myoblasts of a patient. We used the siRNA, which showed the
most prominent decrease of TRMU protein on immunoblotting
(11). After siRNA-mediated down-regulation, both RIRCD
and control fibroblasts (Supplementary Material, Fig. S2C)
and myoblasts (Fig. 2C) showed low levels of thiolation of
mt-tRNAGlu and mt-tRNALys, when compared with treatment
with non-targeting siRNA (NT). Thiolation of mt-tRNAGln

was low before siRNA treatment and down-regulation of
TRMU caused only a minor change in both patient and control
(Fig. 2C). Cytoplasmic tRNAs were not fully thiolated;
however, down-regulation of TRMU did not alter thiouridyla-
tion of cytoplasmic tRNAs (Fig. 2C). A part of mt-tRNAGlu,
mt-tRNALys and mt-tRNAGln always remained unthiolated.
Down-regulation of TRMU further significantly compromised
the steady-state level of tRNAGlu in RIRCD myoblasts compared
with non-targeting siRNA-treated cells (Fig. 2A and B).

Down-regulation of TRMU impaired mitochondrial
translation in RIRCD myoblasts

We reported previously that mitochondrial translation is normal
in both fibroblasts and myoblasts of RIRCD patients studied by
35S-methionine pulse labelling (3). However, down-regulation
of TRMU by siRNA resulted in an impairment of mitochondrial
translation in RIRCD myoblasts, while mitochondrial transla-
tion in controls was slightly increased, perhaps indicating a com-
pensatory mechanism (Fig. 3A and B).

Down-regulation of TRMU decreased mitochondrial protein
levels in RIRCD myoblasts

Down-regulation of TRMU in RIRCD myoblasts resulted in a
severe decrease of protein levels of the mitochondrial complex
IV subunits COX I, COX II and also for NDUFB8, representing
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Figure 1. Analyses of 2-thiouridine modification of mt-tRNA species in RIRCD, TRMU and control myoblasts. APM, (N-)acroylamino-phenyl-mercuric chloride);
RIRCD, reversible infantile respiratory chain deficiency; TRMU, patient cells carrying the TRMU mutation; CTRL, control. (A) Northern blotting with adding APM
to the gels to separate thiolated and unthiolated tRNA species was performed and probed for mt-tRNAGlu, mt-tRNALys, mt-trNAGln, cytoplasmic tRNALys and 5S
rRNA in immortalized human myoblasts of patients with RIRCD, TRMU deficiency and control cell lines. Results derive from two independent experiments, all
representative blots were used for all tRNA probes following each other. (B) Quantification of the northern blots shows relative steady-state levels of the tRNAs
and (C) the percentage of thiolated tRNA species compared with the whole amount of each tRNAs. For each sample the signal corresponding to the amount of
tRNA was normalized to the signal corresponding to the amount of 5S RNA. The total levels of each of the four thio-modified tRNAs in the control cells were set
arbitrarily to 100%. The values in the histogram are averages of two measurements, one corresponding to the signal from the gel without APM and the other to
the total signal (thiolated plus unmodified) from the gel containing APM. The quantification of the modification is presented at the bottom panel and is expressed
as a percentage of the thiolated signal from the thiolated + non-thiolated signals.

4604 Human Molecular Genetics, 2013, Vol. 22, No. 22



Figure 2. Ablation of TRMU decreased 2-thiouridylation and steady-state level of mt-tRNAGlu in RIRCD patient myoblasts. (A) Northern blotting with/without APM
was performed in RIRCD and control cells after down-regulation of TRMU by siRNA or treatment by non-targeting siRNA (NT). Results derive from the same ex-
periment; blots were used for all tRNA probes subsequently. Representative northern blots were quantified as described in Figure 1. (B) Relative steady-state levels of
the tRNAs. (C) We show the percentage of thiolated tRNA species compared with the whole amount of each tRNAs in the studied cell lines.
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Figure 3. Down-regulation of TRMU hinders mitochondrial protein translation, protein synthesis and modifies the gene expression of other mt-tRNA modifier
enzymes. (A) 35S-Methionine pulse labelling for mitochondrial translation after down-regulation of TRMU resulted in a decreased mitochondrial translation in
RIRCD cells, but not in controls. (B) Histogram of the representative translation assay. NT, non-targeting siRNA. (C) Immunoblotting detected very low mitochon-
drial protein levels for COX I, COX II and NDUFB8 after down-regulation of TRMU in RIRCD cells. TRMU depletion resulted in mildly decreased COX I and COX II
and normal NDUFB8 in controls.b-Actin was used as a loading control. (D) Blue native PAGE detected decreased complex I and IV in RIRCD myoblasts, and a mild
decrease of complex I and IV in controls after down-regulation of TRMU by siRNA. Complex II showed an additional band if TRMU was down-regulated both in
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mitochondrial complex I subunits (Fig. 3C). Control cells
showed mildly decreased steady-state levels of COX I, COX II
and no change was observed in NDUFB8 (Fig. 3C).

Blue native polyacrylamide gel electrophoresis (BN-PAGE)
and in-gel activity of oxidative phosphorylation complexes

BN-PAGE and ‘in gel’ activity measurement detected slightly
reduced complex I and IV in untreated RIRCD myoblasts com-
pared with controls, and this was the only ‘cellular phenotype’ of
a defective mitochondrial translation (Fig. 3D). Down-
regulation of TRMU resulted in a further decrease of complex
I and IV in RIRCD cells, but also led to a decrease in controls.
There was an additional �70 kDa complex II intermediate
noted in TRMU down-regulated cells, similarly to previously
reported data in TRMU-deficient human primary fibroblasts
(11). Complex III remained unchanged. In addition, non-specific
complex V assembly intermediates were detected in TRMU
down-regulated cells, which we consider to be a non-specific
finding (Fig. 3D).

Thiolation of mt-tRNAGlu or the m.14674T>C mutation may
affect EARS2 and MTO1 gene expression

To explore potential compensatory mechanisms, we studied the
effects of TRMU siRNA on the glutamyl-tRNA synthetase
(EARS2), and MTO1, another enzyme affecting the 5--
carboxymethylamino-methylation of the same nucleotide
(U34) of the wobble position of mt-tRNAGlu, mt-tRNAGln and
mt-tRNALys. Gene expression levels of both EARS2 and
MTO1 were reduced in RIRCD compared with controls, and
further decrease was detected after TRMU depletion, suggesting
that deficient 2-thiolation may alter these other important
mt-tRNAGlu modifying factors (Fig. 3E). Depletion of TRMU
resulted in increased expression of the gene-encoding cystathio-
nase, the enzyme responsible for cysteine production. The
decreased EARS2 and MTO1 gene expression did not result in
significant protein reduction, possibly due to the short period
of the siRNA experiment (Fig. 3F).

Importantly, the higher level of MTU1 gene expression in the
RIRCD patient cells may be a compensatory change which
further confirms the link between the two reversible mitochon-
drial conditions. Moreover, RT–PCR of skeletal muscle of a
TRMU patient and early muscle biopsy of an RIRCD patient
showed significantly higher MTU1 gene expression, which
decreased in parallel with clinical recovery in a follow-up
muscle.

Investigation of 2-thiouridylation in control and patient
skeletal muscle

While steady-state levels of all mt-tRNAs, but not the cytoplas-
mic tRNALys, increased gradually by age in human skeletal

muscle (Fig. 4A, B and D), the rate of thiolated/non-thiolated
tRNA species for mt-tRNALys, mt-tRNAGlu and mt-tRNAGln

showed no change by age in normal skeletal muscle (Fig. 4C
and E). Skeletal muscle of a patient with TRMU deficiency
showed impaired thiolation, but slightly increased mt-tRNA
steady states, most likely reflecting compensation, suggesting
that TRMU defect is not restricted to liver (Fig. 4E).

Follow-up skeletal muscle biopsies of two previously
reported RIRCD patients (3) were studied and showed very
low levels of thiolated mt-tRNAGlu, and also slightly lower
levels of mt-tRNALys and mt-tRNAGln in the symptomatic
phase of the disease (1 months, 5 years 4 months of age)
(Fig. 4F, I and H, K). The second patient had an unusually
long symptomatic phase causing symptoms until at least 7
years of age. There was a 20% increase in the thiolated
mt-tRNAGlu levels in both patients between early (1 month, 5
years 4 months), and follow-up biopsies after clinical recovery
(8 years 9 months and 14 years of age) (Fig. 4H and K). Both
mt-tRNALys and mt-tRNAGln showed an increase in thiolation
status between the early and late biopsies, while thiolation of
the cytoplasmic tRNAs did not change. In addition, mt-tRNA
steady states were also lower in the symptomatic phase, further
compromising mt-tRNA function (Fig. 4G and J). Repeated ana-
lysis was not possible because of the small amount of available
skeletal muscle.

In vitro L-cysteine supplementation resulted in improved
mitochondrial respiratory function

We investigated whether addition of L-cysteine, a substrate of
TRMU, required as a source of sulphur for thio-modification,
has an effect on TRMU function. In vitro supplementation of
RIRCD cells with L-cysteine rescued slightly reduced complex
I and IV on BN-PAGE (Fig. 5A and B) and significantly
increased ‘in gel’ enzyme activities, both in RIRCD and in
control myoblasts (Fig. 5C and D). Down-regulation of TRMU
resulted in a further decrease of complex I and IV in RIRCD
patient cells, and these changes were completely prevented by
adding 5 mM L-cysteine to the culture medium (Fig. 5E). The
positive effect of L-cysteine on mitochondrial translation was
also confirmed by normal immunoblotting of mitochondrial pro-
teins (COX I, COX II and NDUFB8) in RIRCD cells, if
L-cysteine was added to the cell culture medium during TRMU
down-regulation (Fig. 5F). Cysteine supplementation also
improved the respiratory chain enzymes in MTO1- and TRMU-
deficient fibroblasts. Our data indicated around a 20 and 30% im-
provement of complex I and complex IV, respectively, in both
patient cell lines. This tendency was more noticeable in TRMU-
deficient cells, where all complexes improved after the treatment
(Fig. 6A and C).

RIRCD cells and controls. Complex III was normal, but we also detected some additional bands by complex V antibody. Immunoblotting with complex II antibodies
was used as a loading control. (E) Real-time PCR analysis indicated elevated gene expression of TRMU in RIRCD myoblasts compared with control cells and follow-
ing TRMU siRNA transfection the gene expression, as expected, decreased in both cell lines. The expression of EARS2 and the MTO1 (another tRNA modifying
enzyme) seemed to be lower in the patient cell line when comparing to control and this further decreased after TRMU down-regulation. The Cystathionase (CST)
expression, however, increased after the siRNA transfection. (n ¼ 3). Data are represented as the mean+SD. (F) Immunoblotting for MTO1 and EARS2 in the
same cell lines detected no significant change in protein expressions.
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DISCUSSION

The synthesis of the 13 mitochondrial-encoded proteins is a
complex pathway, which requires �150 different proteins (ribo-
somal proteins, ribosomal assembly proteins, aminoacyl-tRNA
synthetases, tRNA-modifying enzymes, tRNA methylating
enzymes and several initiation, elongation and termination
factors) involved in mitochondrial translation (12–14). Most
of these gene defects result in histological (COX-deficient or
ragged red fibres) and biochemical abnormalities (multiple

respiratory chain defects) in affected organs. The clinical pheno-
types are usually early-onset, severe and often fatal, implying the
importance of mitochondrial translation from birth (15). Some of
these conditions affect multiple tissues; however, tissue-specific
manifestations have been reported for several mt-tRNA aminoa-
cyl synthetases or mt-tRNA-modifying genes (13,14).

Based on the striking similarities between two clearly revers-
ible mitochondrial conditions, RIRCD due to a homoplasmic
mt-tRNAGlu mutation and reversible infantile liver failure due
to TRMU deficiency, we hypothesized that the reversibility

Figure 4. 2-Thiouridylation is decreased in RIRCD skeletal muscle. We performed northern blotting in skeletal muscle and probed for mt-tRNAGlu, mt-tRNALys,
mt-tRNAGln, cytoplasmic tRNALys and 5S rRNA. Quantification of the northern blot results shows the relative steady state and percentage of thiolated tRNA
species compared with the whole amount of each tRNAs. (A) Northern blotting with and without APM has been performed in skeletal muscle of control individuals
of different age. 3 m, 3 month; 1y 6 m, 1 year 6 months. Representative blots were used for all tRNA probes following each other. (B and C) Quantification of the
representative northern blot results shows the relative steady state and percentage of thiolated tRNA species compared with the whole amount of each tRNAs. (D
and E) Northern blotting with and without APM has also been performed in skeletal muscle of other control individuals of different age and in a TRMU patient
(only quantification is shown). (F–K) Quantification of the northern blot results (with and without APM) was performed in skeletal muscle of follow-up biopsies
of two RIRCD patients in the symptomatic phase and after recovery. (F–H) Relative steady-state and percentage of thiolated tRNA species compared with the
whole amount of each tRNAs in Patient 1. Quantification of the northern blot results shows the relative steady state and percentage of thiolated tRNA species compared
with the whole amount of each tRNAs. (I–K) Relative steady state and percentage of thiolated tRNA species compared with the whole amount of each tRNAs in
Patient 2.
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may be due to basic mechanisms involving mt-tRNAGlu. The im-
portance of mt-tRNAGlu in reversible disease is also supported
by the partial recovery of patients with mutations in other two re-
cently identified mt-tRNAGlu-modifying genes (EARS2 and
MTO1) (9,10). Reversibility (or even improvement) is an ex-
tremely rare event in severe childhood mitochondrial disorders
and 2-thiouridylation may offer a common pathway; therefore,
we studied whether modifying thiolation of the U34 position
on mt-tRNAGlu, which is affected in reversible infantile liver
failure, could contribute to the muscle-specific RIRCD, caused
by the homoplasmic m.14674T.C/G mutation in mt-tRNAGlu.

The uridine at the first anticodon position (U34, wobble pos-
ition) is present only in the anticodon of 3 mt-tRNAs (Glu, Lys
and Gln). It is modified at carbons 2 and 5, and while carbon 2
is modified exclusively through thiolation (s2), various methyl
derivates can be found at carbon 5 (methylaminomethyl
mmm5, carboxymethylaminiomethyl cmmm5, etc.) (16). The
2-thio group is required for the efficient codon recognition,
and in the case of mt-tRNAGlu, it is necessary for the recognition
by the glutaminyl-tRNA synthetase (17). The 2-thio group
confers conformational rigidity, ensuring stable and accurate
codon–anticodon pairing, and causes a steric repulsion with
its 2′ OH group at the 3′ end of the tRNA, therefore an interaction
between these two positions may be possible (17). Vice versa, an

altered 2-thiouridylation may further impair the mutant but still
functioning mt-tRNAGlu, possibly similar to its effect in the case
of m.1555A.G (18).

We detected minor changes of 2-thiouridylation of
mt-tRNAGlu in RIRCD fibroblasts and no change in myoblasts,
suggesting that the homoplasmic m.14674T.C/G mutation
per se does not affect thiolation of mt-tRNAGlu. To further
explore the effect of an impaired 2-thiouridylation on function
of the mutant mt-tRNAGlu, we depleted TRMU in primary
patient cells in vitro. Down-regulation of TRMU resulted in de-
fective 2-thiouridylation of all 2-thiolated mt-tRNAs (mt-
tRNALys, mt-tRNAGlu, mt-tRNAGln) in both fibroblasts and
myoblasts of a patient with RIRCD, as well as in controls. Im-
portantly, the impairment of 2-thiouridylation of mt-tRNAGlu

was most severe in RIRCD myoblasts, implicating that mutant
m.14674T.C myoblasts are more sensitive for the 2-
thiouridylation defect of mt-tRNAGlu, triggered by the depletion
of TRMU, than RIRCD fibroblasts or control myoblasts.

It was suggested previously that TRMU is not required for
mitochondrial translation if steady-state levels of mt-tRNAs
are normal (11). Furthermore, down-regulation of TRMU did
not result in a further impairment of mitochondrial translation
in fibroblasts or myoblasts carrying the m.3243A.G
(MELAS) and m.8344A.G (MERRF) mutations (11). Our

Figure 4. Continued
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Figure 5. In vitro L-cysteine supplementation improved the mitochondrial translation defect and increased complex activities. (A and B) Blue native PAGE indicated
higher level of OXPHOS complexes after L-cysteine supplementation in both control and RIRCD myoblasts (n ¼ 5). Data were normalized to the complex II and are
presented as the mean+SD. (C and D) ‘In gel’ activity measurements also demonstrated significantly increased complex activities in both cell lines after L-cysteine
supplementation. SDS–PAGE detection of complex II was used as loading control. (n ¼ 5). Data are presented as the mean+SD. (E) Blue native PAGE after TRMU
down-regulation in a control and a RIRCD cell line. (F) Immunoblotting after TRMU down-regulation in an RIRCD cell line, 5 mM L-cysteine prevented the mito-
chondrial translation defect of mitochondrial proteins (Complex I and Complex IV) when TRMU was down-regulated in RIRCD cells.
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Figure 6. In vitro L-cysteine supplementation increased the level of mitochondrial complexes in both TRMU- and MTO1-deficient fibroblasts. (A) Blue native PAGE
indicated low level of complex I and IV in both patient cell lines compared to control fibroblasts. L-cysteine treatment improved the low level of these RC complexes.
(B) Silver-stained mitochondrial complexes shown as loading control before and after treatment. (C) The relative level of RC complexes compared with control cells.
Data were normalized to the complex II and are presented as the mean+SD (n ¼ 3). The control value obtained for the control untreated fibroblasts was represented as
100% and the value from the L-cysteine treated cells was expressed as a percentage of the control value. The asterisk denotes that the level of complex IV was sig-
nificantly lower in the MTO1 and TRMU patient cells compared to control (P ≤ 0.004, ANOVA). The triangle indicates the significance after L-cysteine supplemen-
tation (P ≤ 0.006, ANOVA).
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results are supporting these previous studies that depletion of
TRMU did not significantly alter mitochondrial translation on
pulse labelling in controls, however, unlike in MELAS and
MERRF myoblasts, down-regulation of TRMU resulted in an
impaired mitochondrial protein synthesis in RIRCD myoblasts.
This was further confirmed by a severe decrease of mitochon-
drial subunits (immunoblotting) and assembled complexes
(BN-PAGE). The reasons behind these differences can be muta-
tion specific, or other functions of TRMU may be involved (11).
An as yet uncharacterized function of TRMU in sulphur-
trafficking was suggested previously (11). However, a defect
in iron–sulphur (Fe–S) biosynthesis would not affect COX,
which does not contain an Fe–S centre, therefore cannot
explain the full biochemical phenotype caused by down-
regulation of TRMU.

It was suggested before that the 2-thiouridylation of mt-
tRNAGlu affects not only the accuracy and efficiency of transla-
tion, but also important for the recognition of the tRNA by the
mitochondrial glutamyl-tRNA synthetase (EARS2). A disturb-
ance of this interaction, possibly altered by the m.14674T.C/
G mutation, would further contribute to the defect in mitochon-
drial translation in RIRCD (19). In support of this hypothesis, in
RIRCD cells gene expression of EARS2 was lower than in con-
trols and down-regulation of TRMU resulted in a further de-
crease of EARS2 gene expression. TRMU down-regulation
also led to decreased EARS2 expression in controls, suggesting
that thiolation may affect other mt-tRNAGlu modifications.

A synergistic effect of the yeast proteins involved in 2-
thiouridylation (MTU1) and methylaminomethylation (MTO1)
of the U34 wobble nucleotide was suggested previously (19,20).
We studied whether down-regulation of the 2-thiouridylation
alters MTO1 in our cellular model and similar to EARS2, MTO1
expression was decreased in RIRCD myoblasts. TRMU down-
regulation resulted in a further decrease in MTO1 gene expression
in RIRCD and also in control myoblasts, suggesting a link
between the two modification steps of U34.

To explain the age-dependent, tissue-specific infantile
presentation of reversible mitochondrial disease, we studied
physiological or developmentally regulated changes in 2-
thiouridylation in skeletal muscle biopsies of patients of differ-
ent age. Our results suggest that the level of thiolated and non-
thiolated tRNA species in normal human skeletal muscle does
not change by age; however, steady-state levels of mt-tRNAs in-
crease during the first years of life. Most importantly, skeletal
muscle of two RIRCD patients in the symptomatic phase
showed clearly decreased thiolation and mt-tRNA steady-state
levels which improved in parallel with the clinical recovery,
providing experimental evidence for a role of thiolation in the
reversibility.

The most exciting result of our study was the effect of in vitro
L-cysteine supplementation. BN-PAGE showed minor abnor-
malities in RIRCD myoblasts, similar to a previous study (4),
and a defect of complexes I and IV was more pronounced on
the ‘in gel’ activity assay. Adding L-cysteine to the culture
medium fully reversed this deficiency. Furthermore, L-cysteine
prevented the decrease in respiratory complexes in TRMU
down-regulated RIRCD cells and controls, supporting that low
cysteine concentrations may play a role in triggering a reversible
mitochondrial translation defect in vitro, and this can be rescued
by L-cysteine supplementation. L-Cysteine supplementation led

to an improvement in most respiratory chain complex activities
in TRMU- and MTO1-deficient cells, indicating that the positive
effect is not specific to the thio-modification.

Recent publications suggested a possible beneficial effect of
supplementation with N-acetylcysteine, a precursor of sulphide-
buffering glutathione in mice and patients with a rare mitochon-
drial condition, ethylmalonic encephalopathy due to mutations
in the ETHE1 gene encoding a mitochondrial sulphur dioxygen-
ase (21). A double-blind cross-over study on patients with mito-
chondrial myopathies showed that 30-day supplementation with
a whey-based cysteine donor resulted in significantly reduced oxi-
dative stress (22), and a recent paper reported lower levels of
reduced cysteine and thiols in plasma of children with mitochon-
drial diseases, suggesting that relative thiol deficiency could be an
important factor in paediatric mitochondrial conditions (23).

How does cysteine play a role in reversible mitochondrial
disease in infants? TRMU protein requires sulphur for its activity
supplied by the cysteine desulfurase enzyme. Since the availabil-
ity of cysteine in the neonatal period is limited by the low activity
of the cystathionase enzyme, dietary cysteine intake may be very
important at this age. It was hypothesized that between 1 and 4
months of age inter-current illnesses, combined with reduced
dietary cysteine intake, may compromise TRMU activity, result-
ing in decreased 2-thiolation (7). Decreased cysteine levels
could reflect differences in nutrition, or could be due to other en-
vironmental, genetic or epigenetic factors (Fig. 7). Our data
suggest that L-cysteine supplementation may potentially
reverse the age-dependent clinical manifestation of RIRCD
and TRMU deficiency. Further investigation of infantile cyst-
eine levels may help to unveil these mechanisms which can
have important implications in reversible mitochondrial
disease, but also in other mitochondrial conditions.

MATERIALS AND METHODS

Cell culture and siRNA transfection

Fibroblast and myoblast cell cultures of two RIRCD patients, a
TRMU-deficient and a MTO1-deficient cell line as well as con-
trols (Supplementary Material) were obtained from the Biobank
of the Medical Research Council, Centre for Neuromuscular
Diseases, Newcastle, and were immortalized as described previ-
ously (24). Informed consent was obtained from all subjects.
Fibroblasts were grown in high glucose Dulbeccos modified
Eagle’s medium (Sigma, Poole, UK) supplemented with 10%
foetal bovine serum. Muscle cells were grown in skeletal
muscle growth medium (PromoCell, Heidelberg, Germany),
supplemented with 4 mM L-glutamine and 10% foetal bovine
serum and cultured as recommended by the supplier. Stealth
RNAi duplexes (TRMU HSS124809 or HSS124809 siRNA)
were transiently transfected at a final concentration of 12 nm
using Lipofectamine RNAiMAX (invitrogen), according to the
manufacturer’s specifications. Transfections were repeated on
Day 3, cells were either harvested or again transfected on Day
6, with cells being harvested on Day 9.

Supplementation with L-cysteine

Myoblasts were grown in skeletal muscle growth medium
(described above, 0.2 mM L-cysteine), supplemented with
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5 mM L-cysteine (Sigma). Cells were left to grow for 5–9 days.
The medium was changed every 72 h.

Immunoblotting

For immunoblotting, protein extracts were prepared as described
previously (15). Aliquots of total protein (5–20 mg) were loaded
on 14% sodium dodecyl sulphate–polyacrylamide gels (SDS–
PAGE), transferred to polyvinylidene fluoride membranes and
subsequently used for detection of TRMU, with a polyclonal, af-
finity purified antibody (from Prof. E. Shoubridge) at a dilution
of 1:1000. The blots were also probed with monoclonal anti-
bodies recognizing mitochondrial COX I (Molecular Probes),
COX II (Mitosciences) or NDUFB8 (Mitosciences), EARS2
(Abgent), MTO1 (Proteintech Group, Inc.) and b-actin
(Sigma) according to the recommendations of the suppliers.

APM-northern blotting analysis

Isolation of RNA from both cells and tissues was carried out
using Trizolw (Invitrogen) following the manufacturers recom-
mendations. We performed northern blotting on APM contain-
ing gels, essentially using the method described previously
(11). This is the standard method to separate thiolated and non-
thiolated tRNA species (16). Following transfer to GeneScreen
Plus membrane (Perkin Elmer), the presence of tRNA species
was detected using 32P-labelled PCR products as described pre-
viously (25). The probes for human mt-tRNAGlu, mt-tRNALys,
mt-tRNAGln, the cytoplasmic tRNALys and 5S RNA were gener-
ated using primers listed in the Supplementary material. Quanti-
fication of the radioactive signal was performed with imageJ
software.

Pulse-labelling of mitochondrial translation products

In vivo 35S-metabolic labelling studies were performed as
described previously (11,26) with the following modifications.
Cells, cultured to 60–70% confluency in T25 mm flasks,
washed with phosphate-buffered saline (PBS; Sigma) and
washed by incubating twice for 10 min at 378C/5% CO2 in me-
thionine/cysteine-free DMEM (Sigma, Poole, UK), with the
media replaced between each incubation. Cells were then incu-
bated for 15 min at 378C/5% CO2 in methionine/cysteine-free
DMEM supplemented with 5% (v/v) dialyzed FBS, 0.1 mg/ml
emetine dihydrochloride (Sigma). Following addition of
200 mCi/ml 35S-methionine/cysteine (35S EasyTag EXPRESS;
Perkin Elmer), cells were incubated for 15 min at 378 C/5%
CO2, then washed twice with ice-cold DMEM supplemented
with 7.5 mg/ml methionine. Cell pellets were prepared after
washing once with ice-cold PBS. Radio-labelled proteins were
then analyzed using SDS–PAGE as described previously (3).

RT–PCR

RNA was isolated from myoblasts after non-targeted and siRNA
transfection (Arcturus PicoPure RNA isolation kit; Applied
Biosciences). cDNA was prepared using 0.5 mg RNA and
RT–PCR was performed with SYBR Green detection. Data
were normalized tob-actin and evaluated byDDCt and standard
curve analysis. Melting curves from PCR products showed a
single peak and product sizes were confirmed with gel electro-
phoresis. Primer sequences used in RT–PCR reactions for
human TRMU, EARS2, MTO1, cystathionase (CTH), and
b-actin (ACTB) are listed in the Supplementary Material.

Figure 7. Schematic representation of cysteine sources for functional TRMU enzyme. The cystathionase enzyme or also called cystathionine gamma-lyase plays an
essential role in cysteine production. However, in the early months of life the activity of this enzyme is low. Metallothionein which represents another cysteine source,
although presents at high levels at birth, dramatically decreases in the neonatal period. Therefore, the production of this amino acid is limited. Dietary cysteine intake
might play a crucial role for the normal TRMU enzyme activity within the first few months of life when combined with underlying genetic diseases.
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Blue native poly-acrylamide gel electrophoresis (BN-PAGE)
and ‘in gel’ activity

BN-PAGE has been performed as described previously (27).
After electrophoresis activities, ‘in gel’ assays were carried out
as described previously (28).

DNA analysis

Direct sequencing of TRMU has been performed and showed no
pathogenic variants in DNA extracted from the analyzed cell
lines and in five affected and five unaffected family members
by standard methods (9).

Statistical analysis

The statistical package SigmaPlot 11.0 was used to perform all
the statistics. Data are presented as mean+ standard deviation.
The normal distribution was checked by the Kolmogorov–
Smirnov test and ANOVA tests were used to compare para-
meters. The Holm–Sidak method was used for pairwise multiple
comparison procedures. A P-value of ,0.05 was considered
significant.

Image processing

After northern blot analysis, data were quantified using ImageJ
software and total RNA levels were corrected for 5S RNA.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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